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ABSTRACT

Modern scientific applications consume massive volumes of
data produced by computer simulations. Such applications
require new data management capabilities in order to scale
to terabyte-scale data volumes [25, 10]. The most common
way to discretize the application domain is to decompose it
into pyramids, forming an unstructured tetrahedral mesh.
Modern simulations generate meshes of high resolution and
precision, to be queried by a visualization or analysis tool.
Tetrahedral meshes are extremely flexible and therefore vital
to accurately model complex geometries, but also are diffi-
cult to index. To reduce query execution time, applications
either use only subsets of the data or rely on different (less
flexible) structures, thereby trading accuracy for speed.

This paper presents efficient indexing techniques for gen-
eric spatial queries on tetrahedral meshes. Because the pre-
vailing multidimensional indexing techniques attempt to ap-
proximate the tetrahedra using simpler shapes (rectangles)
query performance deteriorates significantly as a function
of the mesh’s geometric complexity. We develop Directed
Local Search (DLS), an efficient indexing algorithm based
on mesh topology information that is practically insensitive
to the geometric properties of meshes. We show how DLS
can be easily and efficiently implemented within modern
database systems without requiring new exotic index struc-
tures and complex preprocessing. Finally, we present a new
data layout approach for tetrahedral mesh datasets that pro-
vides better performance compared to the traditional space
filling curves. In our PostgreSQL implementation DLS re-
duces the number of disk page accesses and the query exe-
cution time each by 25% up to a factor of 4.

1. INTRODUCTION

Simulations are crucial for studying complex natural phe-
nomena, from the flow of hot gas inside a propellant to the
propagation of cracks inside materials, earthquakes and cli-
mate evolution. Recent advances in modern hardware allow
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Figure 1: An earthquake simulation pipeline.

scientists to carry out simulations of unprecedented resolu-
tion and scale. Accurate simulations improve our under-
standing and intuition about complex physical processes,
but in order to reap their benefits we must be able to search
for useful information in the haystack of large-scale simula-
tion output datasets.

1.1 Querying Simulation Datasets

To analyze and display simulation results, post-processing
and visualization applications query a discretized version of
the application domain (typically represented using a mesh)
and the simulation output. Figure 1 shows the architec-
ture of Hercules, a simulation application developed by the
Quake group at Carnegie Mellon [1, 32, 22], that computes
earthquake propagation for a given ground region and ini-
tial conditions. The simulation receives as input a mesh (a
grid-like discrete ground model) and at each simulated time-
step it computes the ground velocity at the mesh points and
stores the result in the simulation output. In Quake simula-
tions, mesh models typically consume hundreds of gigabytes
and simulation output volumes are in the terabyte scale [1].
To fully utilize the information involved in a modern sim-
ulation, post-processing and visualization applications need
efficient, scalable query processing capabilities.

To organize the data representing the discretized applica-
tion domain, simulations typically employ an unstructured
tetrahedral mesh. A tetrahedral mesh models the problem
domain by decomposing it into tetrahedral shapes called el-
ements. For instance, Figure 2(a) shows a part of a mechan-
ical component mesh model, whereas Figure 2(b) illustrates
a constituent tetrahedral element. The element endpoints,
called the nodes, are the discrete points on which the simu-
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Figure 2: (a) Part of a tetrahedral mesh dataset
modeling a mechanical component. (b) A tetrahe-
dral (pyramid) mesh element and its four endpoints,
the nodes.

are vital for a wide range of applications in areas like me-
chanical engineering and earthquake modeling.

The most frequent query types on tetrahedral meshes. are
spatial, point and range queries. They retrieve the mesh el-
ements intersecting an input region or containing the query
points, along with the corresponding nodes. Such queries
are important in visualization or analysis applications that
interpolate the values of physical parameters (like ground
velocity) at a given point or a region, from the values com-
puted at the mesh nodes. We also identify a class of queries
called feature queries, that retrieve arbitrarily shaped re-
gions of the dataset that are important for the application,
such as surfaces and boundaries.

Query processing performance is critical for the scientific
processing applications that require interactive rendering
rates (less than 1s per frame [34]). High frame rates are
impossible to achieve on large-scale mesh datasets without
efficient indexing techniques. Unfortunately, the pyramid-
based geometry of tetrahedral meshes, while increasing their
expressive power, makes developing effective indexing meth-
ods a challenging task. To tame the long execution times,
scientific applications typically compromise accuracy either
by utilizing a subset of the mesh data or by resorting to less
flexible structures. Because meshes are difficult to index
and query efficiently using spatial indexing methods avail-
able in today’s Database Management Systems (DBMS),
applications use specialized programs instead. As the size
and complexity of the datasets grows, however, these pro-
grams suffer from scalability, performance, and portability
limitations [14].

1.2 Previous Work

Current scientific computing and visualization practices
rely on storing tetrahedral mesh datasets in main memory.
Large datasets are processed in parallel machines (clusters or
supercomputers) with sufficient aggregate memory capacity
[23]. This solution becomes impractical for terabyte-scale
data volumes (like the 2.5TB model on the Earth Simulator
[20]). Furthermore, casting data access as a parallel process-
ing problem introduces unnecessary programming complex-
ity and communication as well as synchronization overheads.

Previous work on out-of-core visualization [31] for disk-
resident data does not address general-purpose query pro-
cessing on tetrahedral meshes. The focus is on specialized
applications like particle tracing [33], that iteratively load
parts of the mesh in main memory and process them as a
batch. The absence of effective general-purpose indexing

for large tetrahedral datasets often forces scientists to use
other types of models, like oct-tree meshes, that are easier
to index but lack the ability to model geometrically complex
problems, like ground or material fractures.

Database literature provides a wealth of spatial indexing
techniques [8]. As we show in the next section, existing
techniques do not scale when applied on arbitrarily com-
plex tetrahedral meshes, because the pyramids cannot be
effectively captured by simple approximations like the Mini-
mum Bounding Rectangle (MBR). Approximations stumble
on the irregular pyramid shapes, sizes and angles and incur
significant storage overhead and construction costs.

Using DBMS technology to handle the emerging massive
datasets in scientific applications is advocated by both senior
database researchers and scientists [10]. Commercial DBMS
successfully support astronomical databases [17], offering
huge benefits in performance and ease of implementation.
Commercial DBMS are currently also used to support sim-
ulation applications [14]. Our techniques are fully compati-
ble with commercial DBMS technology, utilizing existing ac-
cess methods and featuring extremely simple pre-processing.
Thus our work is one more step towards bridging the gap
between scientific applications and modern databases. In
fact, our algorithms were recently implemented as a module
for SQL Server 2005 and are used for real applications by
the Cornell Fracture Group [15]. *

1.3 Our Approach and Contributions

In this paper, we introduce Directed Local Search (DLS),
a query processing approach for tetrahedral mesh datasets.
DLS avoids the complexities involved in trying to capture
the geometry of the mesh, by utilizing the connectivity be-
tween mesh elements.

DLS uses a novel application of the Hilbert curve to obtain
an initial approximate solution. which is “refined” through
local search algorithms. Our technique relies on the distance
preserving properties of the Hilbert curve and on an efficient
representation of connectivity information to provide sig-
nificantly better performance compared to traditional tech-
niques that rely only on geometric approximation.

DLS allows the construction of simulation applications
that can efficiently query large-scale meshes stored in a data-
base system along with implementation simplicity and easy
integration with existing DBMS.

The detailed contributions of this paper are:

1. This is the first paper to treat query processing on
tetrahedral mesh data, a crucial problem for large scale
scientific applications, using database technology.

2. We evaluate and compare performance of the prevail-
ing spatial indexing methods when applied on tetrahe-
dral meshes, explaining their inefficiencies.

3. We design Directed Local Search (DLS), an efficient al-
gorithm for indexing and querying large unstructured
tetrahedral meshes. To index a mesh efficiently, DLS
for the first time

We are well aware of the current mismatch between scien-
tific applications and databases. We believe it is a matter of
definition. The DBMS we refer to in this paper do not need
to include features like transactions, which are not required
by scientific applications. Instead, we refer to a highly opti-
mized and mature ”core” DBMS functionality (like B-Tree
indexes and join algorithms) that can benefit scientific data
management.
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Figure 3: The mesh representation in the database
consists of separate tables for the mesh elements and
nodes.

(a) Combines mesh topology information with the

mesh geometry.
(b) Applies the Hilbert space-filling curve for approx-

imate indexing

4. We implement DLS in a simple and efficient fashion,
using standard access methods (the ubiquitous B-Tree).
In addition, we use graph-based techniques to effi-
ciently store dataset topology information.

5. Experiments with DLS running on top of PostgreSQL
show that DLS results in a reduction in the number of
I/O accesses and query execution time by 25% up to
a factor of 4.

6. We propose a graph-based technique for clustering mesh
elements on disk pages. and we show that it improves
the I/O performance of feature queries by 16% to 37.9%
compared to traditional linear ordering based on the
Hilbert space-filling curves.

This paper is structured as follows. Section 2 details
the database design and query workloads. Section 3 eval-
uates the prevailing spatial indexing techniques on tetrahe-
dral mesh datasets. In Section 4 we describe Directed Lo-
cal Search and the related indexing and data organization,
and in Section 5 our element clustering approach. Section
6 details our implementation and experimental setup, while
Section 7 presents our experimental results. We conclude
with Section 8.

2. BACKGROUND

We use the database organization shown in Figure 3. The
mesh components, elements (tetrahedra) and nodes (points),
are stored in separate tables. Each Elements record contains
the IDs of the 4 corresponding nodes, while Nodes holds the
coordinates for each node. This organization is suitable for
spatial queries, as it allows fast access to all the nodes of an
element. There exist other relational mappings for meshes
[14], but they are tuned towards different query types, for
instance determining all the elements sharing a given node.

We consider the following 3 types of queries:

1. A point query simply returns the containing element
(and its nodes). Post-processing and visualization ap-
plications use point queries in order to interpolate the
value of a physical parameter on the particular query
point, given the values computed by the simulation at
the nodes. This general functionality is vital to vir-
tually every application that requires values at points
that do not coincide with the input mesh node set.

2. Range queries return a set of elements contained in or
overlapping with the rectangular query region, along
with the corresponding nodes. A range query is used
to retrieve “chunks” of data that are then fed to a
(possibly parallel) visualization or analysis tool.

3. Feature queries return connected regions of the dataset
that have arbitrary shapes. Features in datasets are
defined by the application. For example, in earthquake
analysis the ground surface is a feature of particular
interest if we want to measure earthquake impact on
buildings.

3. TRADITIONAL INDEXING ON TETRA-
HEDRAL MESHES

Database literature provides a wealth of multidimensional
indexing techniques. An excellent survey is [8]. In this sec-
tion we demonstrate that existing techniques have subopti-
mal performance for tetrahedral meshes and/or exhibit low
storage utilization and preprocessing overheads.

R-Tree based approaches approximate objects by their
Minimum Bounding Rectangles (MBRs) and index them
with an R-Tree [12] variant. Performance optimizations in-
volve packing, clipping and replicating overlapping MBRs
and using more complex bounding shapes (polyhedra). We
investigate the applicability of R-Tree based techniques in
sections 3.1 and 3.2.

Another approach is to overlay a rectilinear grid over the
indexed domain and approximate each object by one or more
grid cells. The cells are arranged and indexed using coordi-
nate transformations like the Z-order. Z-order based tech-
niques are investigated in section 3.3.

3.1 R-Tree Based Techniques

The R-Tree search for a query starts from the root level
and follows a path of internal nodes whose MBR, intersects
the query range or contains the query point. If multiple
nodes at one level match the query criteria the search will
follow all possible paths, requiring more page accesses. There
exists a large body of research on improving performance by
minimizing the area of R-Tree nodes and the overlaps that
lead to multiple paths. Dynamic techniques like the origi-
nal R-Tree construction algorithm [12] and the R*-Tree [3]
maintain an optimized tree structure in the presence of data
updates. Static techniques like the Hilbert-packed R-Tree
[18], the Priority R-Tree [2] and others [28, 5] attempt to
compute an optimal R-Tree organization for datasets that
do not change.

Tetrahedral meshes are a challenging application for R-
Trees because they are guaranteed to have overlapping MBRs.
Figure 4 (a) shows a two-dimensional example. The overlap
between the R-Tree leaf nodes A and B is significant and it
is not clear how to arrange the individual triangles to mini-
mize it. Also, the elongated triangles in the upper right part
give a very large surface to node C.

We evaluate R-Tree performance with a real dataset used
for crack propagation simulations [14]. We compare two dy-
namic implementations, the originally proposed quadratic-
split R-Tree and the R*-Tree and two packed implementa-
tions, the Hilbert-packed R-Tree and the STR-packed R-
Tree. The first two are implemented using PostgreSQL, and
the others are taken from the “Spatial Index Library” ([13]).



Figure 4: (a) Overlaps between the leaf-level nodes
of an R-Tree for a 2D mesh. (b) The mesh used in
the R-Tree experiments.
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Figure 5: (a) Average number of page accesses per
point query for 4 R-Tree variants, where all trees
have 3 levels. (b) Internal structure of a leaf-level
node of the Hilbert-packed R-Tree.

Figure 4 (b) shows the dataset structure. Our mesh mod-
els a mechanical component with a crack at its center. It
contains a very high-resolution central area, surrounded by
more coarse-grained elements.

Figure 5 (a) shows the average number of page accesses for
the 4 indexes over 1000 point queries focused on the dense
region. The indexes perform 30-198 page accesses, while the
tree height (and hence the theoretical minimum number of
accesses) is 3. Figure 5 illustrates the cause for the measured
performance, showing one of the Hilbert-packed R-Tree’s
leaf nodes. The node has an unnecessarily large volume
because of the large elements on the top, that ’cover’ the
smaller elements. Any query intersecting the bottom right
part of the MBR (which is approximately where the dense
region of the dataset is) will have to unnecessarily hit that
node.

Extensions like the P-Tree [16] attempt to improve R-Tree
performance by using Minimum Bounding Polyhedra. The
P-Tree relies on polyhedra with faces aligned to a fixed set of
d orientations. Such ’constrained’ polyhedra will likely still
lead to overlaps because they do not capture the geometry
of every pyramid in the mesh. In addition, they require
additional storage for storing the more complex bounding
approximations.
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Figure 6: Number of elements intersected by R-Tree
nodes, as a function of node volume.

3.2 Clipping

A clever solution to the problem of overlaps is to use
non-overlapping regions. The R+-Tree [29] ensures non-
overlapping tree nodes by generating disjoint MBRs during
node-splitting and replicating the objects that cross MBR
boundaries.

The R+-Tree attempts to improve performance by trading
search efficiency with higher storage overhead, as pointers to
the same object consume space in more than one tree nodes.
The increased storage requirements of the R+-Tree make it
undesirable for scientific datasets: Simulation datasets are
challenging exactly because of their unprecedented volumes
and it makes no sense to adopt an indexing solution that
multiplies the storage needed for each object!

Storage space is not the only problem: reduced storage
utilization negatively affects performance. Unlike point que-
ries (that benefit from the non-overlapping nodes), range
queries will suffer because links to objects within the query
range will be retrieved multiple times. The performance of
loading data in the index will also be problematic, because
of the more complicated loading algorithm (that also needs
to write a lot more data).

We highlight the R+-Tree inefficiency by showing how in-
dexing a tetrahedral mesh dataset requires an unreasonable
amount of replication. We measure the number of tetrahe-
dra intersected by leaf-level nodes of different sizes, for the
mesh dataset described in Section 3.1, using the nodes gener-
ated by the Hilbert R-Tree of Section 3.1 as a guide. Figure
6 shows the number of mesh elements intersected by nodes
as a function of the MBR’s volume. According to Figure 6,
80% of the nodes intersect 500 to 1000 elements, which will
have to be replicated. Given that each node contains 120
entries, the new dataset would require 5 to 10 times more
space.

More sophisticated clipping-based techniques, like the dis-
joint convex polygons of the cell-tree [11] exhibit similar inef-
ficiencies: First, the cell-tree construction algorithm still re-
quires the replication of objects that cross partition bound-
aries, like in the R+-Tree case. Furthermore, the space over-
head of keeping the polygon descriptions in the tree nodes
is much higher compared to that of storing MBRs and leads
to poor storage utilization for large datasets.



[ Grid Resolution | Number of intersected elements |

16x16x16 100

32x32x32 40

64x64x64 20
128x128x128 10

Table 1: Number of mesh elements intersected by
grid cells with varying resolution.
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Figure 7: (a) A 2D example of Directed Local
Search. (b) Directed Local Search for a point query.

3.3 Z-Order based techniques

Z-order based techniques overlay a rectilinear grid on the
indexed domain. Each object is approximated by a collec-
tion of grid cells and a linear cell ordering is computed using
the Z-order [26, 27].

The cells intersecting the query range (or the cell contain-
ing a query point) is identified by comparing the query’s
Z-order value range with those of the cells, using a B-Tree.
Query performance depends on the grid resolution. A very
fine grid will lead to a large number of indexed cells, but each
cell will overlap with only a few elements. Higher resolution
reduces the number of cells at the cost of losing precision
and performance.

Investigating the tradeoffs involved in picking the right
resolution and thus minimizing the impact of replication is
an interesting exercise. However, regardless of the optimal
resolution, the z-order approach will suffer from the same
inherent problems of replication, described in Section 3.2.

Table 1 demonstrates the amount of required replication
for varying grid resolutions, for the uniform, dense region
of the dataset in Section 3.1. Figure 1 shows the average
number of tetrahedra overlapping a cell. For the high reso-
lution grid, which consists of 128" cells, the dataset requires
1282 x 10 = 20971520 records, which implies a 20X increase
in the dataset size. Lower resolutions reduce the storage
overhead, at the expense of search time (100 elements must
be searched for the 16 x 16 x 16 decomposition).

4. DIRECTED LOCAL SEARCH

In this section we present Directed Local Search (DLS).
We first present the basic DLS algorithm for range and
point queries and then describe in detail the techniques that
enable DLS, namely the proximity search algorithm and
the compressed representation of mesh connectivity infor-
mation.

4.1 Algorithm Overview

Directed Local Search processes range and point queries
by utilizing the mesh connectivity. Figure 7 (a) shows an
example range query on a 2D triangular mesh. If we know a
single initial element that is part of the answer (highlighted)
we compute the query result by searching first all of the

1.Identify a suitable starting element E
2.enqueue (BFS_Queue, E); mark E as visited
3.While (BFS_Queue not empty)
3.1 element e = dequeue (BFS_Queue)
3.2 if e intersects Q
3.2.1 add e to the query result
3.3 for each ni in neighbors(e)
3.3.1 if face fi intersects Q
and ni not visited
3.3.2 enqueue (BFS_Queue, ni)

3.3.3 mark ni as visited

Figure 8: The Directed Local Search algorithm

initial element’s neighbors and incrementally expanding the
search in a breadth-first search (BFS) fashion until we find
no additional elements within the range. Figure 7 (b) shows
the same principle applied to a point query: Starting at
an initial element, we perform the same expansion until we
reach the target element.

Figure 8 details the DLS algorithm for a range query Q.
Step 1 identifies a starting element that intersects the range
query, using the proxzimity search algorithm described in
the next section. The next steps describe the breadth-first
search (BFS), that stops when no further elements inter-
secting the range can be found. The predicate in step 3.3.1
examines if the face f; of the current element e intersects
the query range. If it does not, it is not necessary to visit
neighbor n;.

The primary advantage of DLS over traditional spatial
indexing is that the breadth-first search is independent of
the mesh geometry. Using the mesh connectivity avoids
the performance problems generated by overlapping MBRs.
Furthermore, DLS does not approximate tetrahedra by sim-
pler shapes and therefore directly computes the query re-
sults instead of first forming approximate answers and then
post-processing them.

Implementing DLS requires solving the following subprob-
lems. First, we need a way to determine a suitable starting
element (step 1 of Figure 8) that intersects the query range.
We call this starting element selection “proximity search”
and describe it in Section 4.2. For point queries, the prox-
imity search described in the next section directly finds the
containing element and thus the BFS search of Figure 8 is
not used. In addition, we need to efficiently represent the
“neighbor” relationships between elements, so that BFS can
quickly access them. In Section 4.3 we show how to improve
over the adjacency-list representation of connectivity infor-
mation.

Finally, note that DLS is guaranteed to succeed if the
dataset is convex, not containing any holes or concavities,
This is the case for many models used in practice (ground,
materials models). In practice, our techniques work also
for small holes or concavities because the BFS can “work
around” them as long as they are not too big. A more
general treatment involves cataloguing all the exterior mesh
surfaces and “jumping” from one surface face to another as
long as they are contained in the query region. Such a solu-
tion is part of our ongoing work.

4.2 Proximity Search

In this section we present algorithms for selecting an ini-



[ Query [ Point | Range 1% [ Range 5% [ Range 10% |
Chit % | 52% | 933% | 947% | 977% |

Table 2: BFS “hit rates” for various query types

(a) (b) (c)

Figure 9: (a) Using the Hilbert order to select a
starting element for point Q. (b) Hilbert_BFS ex-
ample. (c¢) Hilbert_Direct example.

tial “seed” element for DLS. We use the Hilbert curve to
index the tetrahedral elements, after representing each el-
ement by its center point. For a range query, we find the
element whose center has the closest Hilbert value to the
center of the query range. For a point query, we identify the
element closest to the query point in Hilbert space (Figure
9 (a)). We work similarly for range queries, looking for an
element close to the center of the query range. The distance
preserving properties of the Hilbert curve [24] imply that
the obtained element will be close to the query region and
thus a suitable starting point.

The Hilbert ordering translates the proximity search, a
geometric operation, into a numerical one. Thus we are able
to use linear access methods (the B-Tree) that are fast and
predictable, avoiding the complexity and cost of accessing a
spatial access method.

To our knowledge this is the first time that the Hilbert
curve is directly used for spatial indexing. (Multiple Hilbert
curves have been proposed for nearest neighbor queries [21]).
The problem is that there exist no guarantees about the dis-
tance between the returned element and the query point.
The novelty of our approach is that using the connectivity
information, we can correct the problem by reaching a suit-
able starting element even if the Hilbert index returns an
element that is far away.

Figure 9 (b) outlines our basic proximity search algorithm,
Hilbert_BFS. Hilbert_BFS selects an initial element using
the Hilbert value index and if it doesn’t overlap the query
region, it performs a breadth-first expansion until another
suitable element is found. Regardless of the initial element
the algorithm will eventually return an overlapping element,
as in the worst case the entire dataset will be scanned. The
Hilbert ordering of the elements benefits BFS by increasing
spatial locality and minimizing page accesses.

Figure 9 (c) presents Hilbert_Direct, an improvement over
the basic Hilbert_BFS algorithm. Instead of “expanding”
the search towards all directions, Hilbert_Direct follows a
path of elements towards the center of the query region. The
next neighbor in the path is determined by “drawing” a line
connecting the center of the current triangle to the center
of the query region and crossing the face intersected by the
line. Hilbert_Direct resembles a depth-first search, since it
expands only the one neighbor that lies in the direction of
the query region. It is still useful to remember the other
neighbors as well, since following alternative paths makes
the algorithm robust to small concavities and “holes” in the
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Figure 10: (a) Elements examined by the BES vari-
ants. (b) Corresponding page accesses

datasets.

We now present a characterization of the above algorithms
in terms of their effectiveness in determining a suitable start-
ing elements, using our gear dataset discussed in Section 6
We answer the following questions:

1. How often does the Hilbert index provide a suitable
starting element immediately? For range queries, we
measure the percentage of queries that immediately
find an intersected element. For point queries, we mea-
sure the percentage of queries where the returned ele-
ment contains the query point.

2. How many elements does each of the above techniques
examine before a suitable element is returned?

3. How many page accesses does each of the above search
techniques require?

Table 2 shows how effective the Hilbert index would be if it
was used by itself. The Hilbert index immediately returned
the correct element for half of the point queries. Also, more
than 90% of the queries can be answered by the Hilbert
index directly. Thus Hilbert indexing by itself is highly ef-
ficient, returning immediately suitable results most of the
time. Similar results were obtained for all the datasets de-
scribed in our experimental section.

Figures 10 (a)-(b) characterize the performance of Hilbert-
_BFS and Hilbert_Direct, by measuring the tuples and pages
accessed until we reach a suitable starting element, consid-
ering only the queries that were not answered immediately
by the Hilbert index. We consider point queries and range
queries whose size is 1, 5 and 10 percent of the dataset size.
Hilbert_BFS accesses a much higher number of tuples than
Hilbert_Direct, because it searches towards all directions.
Since Hilbert_Direct offers the best performance, we use it
in our implementation and experimental evaluation.

Hilbert_Direct uses the same geometric principles as the
“triangulation walking” studies [6] by the computational ge-
ometry community, where the main focus is the theoretical
analysis of point query performance. A complete theoretical
analysis is a separate area of study, where the additional as-
sumption of uniformly distributed mesh nodes is necessary
for tractability [7] (such a theoretical analysis is beyond the
scope of this paper). When running point queries, at most
128 elements were processed by a single query before find-
ing a suitable starting point, incurring 9 page accesses. In
our experiments, only one in a thousand queries exhibits this
worst-case scenario, hence the excellent average performance
shown in Figure 10.



4.3 Representing Element Adjacency

In order to implement the algorithms of the previous sec-
tion we need to be able to retrieve the neighbors for each
mesh element. A simple way to obtain this connectivity
information is through the mesh generation process itself:
Mesh generators like Pyramid [30] can provide the neigh-
bors of each tetrahedral element as part of the output. If the
connectivity information is not accessible, there are simple
techniques to compute it, by using a hash table to match
the elements with the same face. There is even a way to
compute element connectivity using a standard commercial
DBMS, as outlined in [15] 2. The development of optimized
ways to extract connectivity information from large meshes
is part of our ongoing work.

The connectivity information comprises, for each element,
the location on the disk of its 4 (at most) neighbors. A disk
pointer is a (page_no,offset) tuple ID. The simplest way to
store the pointers is to extend the FElements table with 4
additional columns. However, it is desirable to develop a
more efficient representation technique for the connectivity
information in order to improve the storage requirements
and I/O performance of our solution.

We propose a compressed representation based on the
clustering properties of the Hilbert curve. By computing
the Hilbert ordering for the elements, besides facilitating the
efficient proximity search of Section 4.2, we re-label the ele-
ments so that the spatially close elements receive IDs that
tend to be numerically close. The implication is that the
neighbors of an element are also likely to receive similar
IDs. We take advantage of this labeling property by actu-
ally storing the differences between the IDs of an element
and its neighbors. The motivation is that in the common
case the difference will be much smaller than the IDs them-
selves and thus, with an appropriate encoding scheme, it
will require fewer bits. Figure 11 shows an example. The
neighbors of element “1000” received similar IDs. The ID
differences are orders of magnitude smaller and require fewer
bits to represent.

We now describe our compression scheme in more detail.
Given an element with ID E and 4 neighbors with IDs Ei,
E,, E3, E4, we encode them by storing the values code(E —
E1), code(E — E3), code(E — E3), code(FE — E4) in a variable
length field. For the compression to be efficient, the integer
encoding function code(.) must represent small values with
fewer bits compared to larger values.

We use snip codes [4], shown to provide both high stor-
age efficiency and performance for general purpose graph
compression. The snip encoding of an integer is the actual
binary representation of the integer, in a linked list format.
Each 2-bit “snip” contains 1 binary digit from the number’s
representation and one “continue” bit that is set to zero only
for the last snip. We use one additional snip for signs, as ID
differences could be negative. To account for elements with
fewer than 4 neighbors we prefix the code with 2 bits for the
neighbor count.

In practice, instead of logical IDs, we need to store the
differences of page numbers (encoding the offset within the
page is easy, as it is typically small). Compressing page
differences is not straightforward. We need to know the
page numbers of neighboring elements in advance, but this
is impossible as the page number of an element depends in

2By generalizing their surface extraction algorithm.

1001
999 002
998 000
1003
997

//604
1000|312

ID N1N2N3

Figure 11: 2D example of adjacency compression.
Logical ID differences require fewer bits.

[ Dataset | Rows | Bits/Record | Fragmentation |
[ gear [ 8.8M ]| 14.5 [ 3% ]
[ circle [ 10M ] 14.3 [ 3.1% ]
[ cube [ 5.4M ] 14.8 [ 3.4% ]
[ heatt [5I0K [ 122 [ 2.9% |
[ quake [ 14M | 14.2 [ 3.3% ]

Table 3: Compression results for our real datasets.

turn on the compression of all the previous elements!

For simplicity, instead of developing complex multi-pass
mapping algorithms we use a constant page capacity P for
the entire dataset. We set P to be equal to the minimum
page capacity when we use logical ID encoding. Since the
page number differences are smaller than the ID differences,
this approach might generate some free space in the page.
We can minimize the free space by increasing P an recom-
puting the differences, up to the point where we do not‘cause
page overflows.

Table 3 quantifies the compression achievable for our ex-
perimental datasets and the amount of internal fragmenta-
tion incurred and characterizes the storage overhead of our
technique. The connectivity information requires fewer than
2 bytes per record even for large datasets, in contrast to the
24 bytes of the adjacency-list implementation. The small
overhead (increased space utilization) translates to improved
I/0 performance for range queries.

4.4 DLS Generalization

DLS can form the basis for a more general indexing tool
that can support other types of mesh shapes besides the
tetrahedra, such as bricks, prisms, or pyramids with more
faces (like pentahedra). DLS is extensible because for all
of the above shapes we can exploit the foundations of out
technique:

1. There exists a Hilbert encoding, that allows for prox-
imity search and clustering.

2. We can easily evaluate point containment or range in-
tersection predicates.

3. We can exploit element connectivity.

Extending DLS to handle finite volume meshes, such as
those used in Computational Fluid Dynamics (CFD) is not
as straightforward, because such meshes are often repre-
sented in a face-oriented rather than element-oriented fash-
ion. The absence of explicit elements means that are no
constraints in the volumes enclosed by faces, allowing non-
convexities and multiple elements sharing a face. Further-
more, there are numerical tolerance issues in determining
whether a face contains a query point. A solution to this
problem requires the development of new indexing tech-
niques and is also part of our ongoing work.



5. GRAPH-BASED CLUSTERING FOR
TETRAHEDRAL MESH DATA

Our techniques use the Hilbert curve to cluster mesh ele-
ments on the disk, minimizing the Elements page accesses.
In this section we show that, while Hilbert clustering offers
very good performance for rectangular, box-shaped range
queries, it is sub-optimal for queries on arbitrarily shaped
regions (like surfaces) that are frequent on scientific appli-
cations.

To improve the clustering for these cases, we introduce
the idea of graph-based clustering. Rather than relying on
element center coordinates, graph based techniques try to
place an element on the same page with its neighboring el-
ements, as frequently as possible.

Our approach goes beyond space-filling curve clustering,
so far the only general-purpose layout technique for spatial
data, by allowing efficient retrieval of arbitrary, application-
specific regions without sacrificing the overall spatial locality
of the layout (and thus without requiring multiple copies
or orderings of the same data and without affecting DLS
indexing).

5.1 Graph Partitioning and I/O

We use the dual graph representation of a mesh, mapping
each mesh element to a graph vertex and each pair of neigh-
boring elements to an edge. Using the dual graph, we restate
the abstract problem of “preserving element spatial local-
ity” as a graph partitioning problem: We partition the dual
graph vertices into page-size chunks so that we minimize the
number of edges crossing page boundaries. This formulation
implies spatial locality because, intuitively, nodes connected
by an edge are likely to be retrieved together by a range
query. .

Graph partitioning is a hard problem [9] but there exist
many practical heuristics. We use METIS [19], a multi-
level graph partitioning heuristic, shown to offer the best
known results [4]. The dual representation of a mesh is
given by the mesh generation process and thus we can use
METIS directly. In the case of very large models, we can
first coarsely partition them into memory-sized chunks using
the Hilbert clustering and use METIS on each individual
partition. Alternatively, we could modify METIS to produce
memory-sized first level partitions.

5.2 Feature-Based Clustering

Scientific datasets commonly have distinct features, con-
nected regions repeatedly queried by the application. An
example is the ground surface in earthquake simulations,
as we are interested in the damage inflicted on the build-
ings. Features are usually known in advance and are heavily
queried because we need to access the relevant data for every
simulated time step.

Hilbert curve clustering is suboptimal for querying fea-

tures, because it is optimized for rectangular, box-like queries.

It is well known that its quality deteriorates with increasing
query region hyper-surface [24]. We use graph-based cluster-
ing to improve the retrieval performance for feature queries.
Our approach is based on explicitly specifying frequently co-
accessed elements and on using this information to guide
data layout. The dual graph of the mesh dataset is ideal for
this purpose, as co-access information can be encoded into
the edge weight.

As the example in Figure 12 shows, we overlay the dual

Figure 12: A 2D feature example (highlighted)

graph on the feature region and strengthen the weights for
the edges within the region. Our experimental results sug-
gest that it is sufficient to increase the edge weights so that
the total weight associated with the region is is compara-
ble to the total original weight of the entire graph. If the
weight increase is too small, it will not affect the overall
quality of the solution. Due to the increased edge weights,
graph partitioning will pack the feature’s elements in disk
pages. sacrificing some of the edges not fully contained in
the feature. The remaining “regular” edges help by still
maintaining the overall spatial locality in the dataset.

Note that feature based clustering is not related to in-
dexing: The feature specification and the assignment of el-
ements to features is application dependent. Rather than
identifying the feature elements. feature-based clustering
reduces the I/O cost of retrieving them after they have been
identified by the application. Also, although we are mo-
tivated by datasets queried repeatedly (per time-step), in
this paper we only consider spatial queries (not involving
multiple time-steps).

6. EXPERIMENTAL SETUP

In this section we describe the techniques, datasets and
methodology used to experimentally evaluate DLS.

6.1 Implementation

We implemented DLS on top of PostgreSQL (version 7.4.5).
The data is stored in the Elements and Nodes tables as
shown in Section 2. We store element center coordinates us-
ing the cube datatype included with the PostgreSQL distri-
bution and use the center for sorting and building the B-Tree
for the proximity search, based on the Hilbert ordering. To
incorporate the Hilbert order, we replaced the PostgreSQL
comparison routines with code that compares Hilbert values
directly from IEEE double precision coordinates, without ac-
tually computing them. The direct comparison routines al-
low us to use the highest possible Hilbert curve resolution,
equivalent to 192-bit Hilbert values. The additional storage
required for the connectivity information is shown in Table
3 of Section 4.3. The DLS routines were implemented as
new join operators, based on the PostgreSQL nested loop
join.

We compare DLS to a Hilbert R-Tree implementation also
built on top of PostgreSQL. We utilized the GiST access
method, which we modified to allow for the Hilbert R-Tree
bulk loading method. The Hilbert R-Tree is optimized so
that it stops the search once the containing element for a
point query is found, eliminating unnecessary page accesses.

Our experiments run on a 2-way P4 Xeon machine with
4GBs of memory and 2 IDE 250GB hard drives, running
Linux 2.6.



Name | Elements | Nodes [ Size | R-Tree | B-Tree rtree The time for an R-Tree lookup.
(GB) | levels | levels btree The time for a B-Tree lookup.
gear 8.8M 1.3M 1.3 4 4 nodes Time for a Tookup on the Nodes table.
circle 10M 1.5M 1.4 4 1 elements Time for DLS proximity search and BFS.
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éllj}:?e 511%[{ 121.?11\\/[/[ Oél Z Z Table 6: Running time breakdowns.
Table 4: Datasets used in our experiments. w50
é 300 Enodes gear % zgg Enodes circle
riree HRTree pages accesses. g 250 | DTN 8 250 | Depemen®
btree B-Tree pages accesses (DLS). s fgg mriree S 2001 mie
elements | The Elements page accesses. < 100
nodes Accesses to Nodes and its index. % 50 E B
2 o W = :

Table 5: PostgreSQL page access categories.
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Our query workloads consist of uniformly distributed point
and range queries. We vary the sizes of the range queries,
so that the range size is equal to 1%, 5% and 10% of the
dataset size.

6.3 Performance Metrics

We report page accesses and query running times for the
point and range queries described in the previous sections.
For page access counts, we report the number of distinct
database pages accessed per query, broken down into the
subcategories of Table 5. We measure running times on a
“cold” system, where no data or index pages are cached
in main memory at the beginning of each query. We use
cold measurements because they better capture the impact
of I/O on query performance. We break the running times
into the components shown in Table 6.

Performance improvements in terms of speedups of DLS
over the Hilbert R-Tree (HRTree) are computed by:

1 — Page accesses (DLS)/Page accesses (HRTree) and
1 — Running Time(DLS)/Running Time(HRTree).

Constructing the Hilbert index is essentially a standard
sorting operation that uses the comparison routine of Sec-
tion 6.1. It is handled by the DBMS and we therefore do not
report its performance. Besides, the Hilbert R-Tree which
we compare against has exactly the same performance. The
connectivity information is computed and stored during the
mesh creation time and involves an additional pass over the
Elements table for computing the new element IDs after
sorting the elements according to the Hilbert order.

7. EXPERIMENTAL RESULTS

In this section we experiment with DLS and compare its
performance against the Hilbert-packed Tree (HRTree).

3Made available by the Computational Visualiza-
tion Center at the University of Texas, Austin
(http://ccvweb.csres.utexas.edu/cve/).
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Figure 13: Page accesses for range queries of varying
sizes on our 5 datasets for the Hilbert R-Tree and
DLS.

7.1 Range Query Performance

Figures 13 (a)-(e) show the average number of page ac-
cesses for range intersection queries of varying sizes, on 5
datasets. For each pair of bars, the first corresponds to
the HRTree (labeled hrtree) and the second to DLS (dls).
As Figure 13 demonstrates, the R-Tree access is the largest
component in all the cases (up to 74% for circle 1%) except
for the “large” 10% queries where it is comparable to the
Elements table accesses. For the 10% queries, the R-Tree is
responsible for 32% (heart) to 39% (circle) of the accesses.

DLS eliminates the R-Tree overhead by combining an effi-
cient B-Tree lookup and a localized proximity search instead
of a costly R-Tree traversal operation. The B-Tree lookup
requires 4 page accesses for all datasets (except for heart
with only 3 levels). The proximity search is highly efficient,
requiring 0.5-2 additional page accesses on average across
all datasets. The overall effect is a reduction of up to 96
times (quake 10%) in the number of page accesses required
for indexing.

The improvement is larger for our more complex datasets
(gear, circle, quake) as opposed to the more uniform ones
(cube, heart), highlighting the robustness of DLS with re-
spect to the geometric complexity of the dataset (the same
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Figure 14: Page Accesses per point query for the
Hilbert R-Tree and DLS on our 5 datasets.
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Figure 15: (a)-(b) query execution times for range
queries on gear and circle. (¢) Query execution times
for point queries.

trend appears in the results for point queries, Section 7.2).
The cube and heart meshes contain more regular elements (in
terms of size/geometry), characteristics that help the perfor-
mance of the HRTree. The gear, circle and quake datasets
are representative of the real meshes used in applications:
In practice only certain regions of the domain are “refined”
(modeled with large numbers of tiny elements), which leads
to significant irregularities in the mesh structure.

The number of Elements pages accessed by DLS is compa-
rable to that of the HRTree, even for the 10% queries. Due
to the effectiveness of our compression technique, the ad-
ditional connectivity information does not deteriorate I/O
performance. For all the “small” ranges (1%) DLS accesses
1-3 fewer pages than the HRTree, corresponding to a re-
duction of up to 48%. This happens because the R-Tree
accesses leaf pages whose MBR intersects the query range,
but do not contain a result. The impact of this imprecision
decreases for larger ranges, as it is more likely that a leaf
page will actually contain an element intersecting the query
range and is anyway needed by the query.

The overall performance improvement offered by DLS ran-
ges from 28% to up to a significant factor of 4 (circle, 1%).
The circle dataset benefits from DLS the most, with im-
provements of 36% up to a factor of 4.

Figure 15 (a), (b) shows the query execution times for the
same workloads on the gear and circle datasets. The query

(a) (b) (c)

Figure 16: (a) Heart model with cross-sections.
(b) Heart model with boundaries. (c) Partitioned
ground mesh

execution times confirm the trend in the page access count
results. DLS can improve overall query execution perfor-
mance by up to a factor of 4 for circle 10%.

7.2 Point Query Performance

Figure 14 shows the average number of page accesses for
point queries. The results are similar to the range query
results. R-Tree accesses correspond to 41% (cube) to 83%
(circle) of the total page accesses. As in Section 7.1, circle
and gear, the most irregular datasets in this study, have the
highest number of R-Tree accesses.

DLS replaces the expensive R-Tree lookups with B-Tree
page accesses that need only 4 page accesses (3 for the
smaller heart). The elimination of the R-Tree leads to over-
all improvements ranging from 19% up to a factor of 4.

The number of Elements pages accessed by the R-Tree
and DLS methods is very similar, 1.67-2.5 for the HRTree
and 1.4-1.64 for DLS. DLS accesses slightly fewer pages on
average, as the R-Tree might have to access more elements
simply because their MBRs intersect the query point, with-
out actually being part of the solution. The Hilbert cluster-
ing of Elements however helps in keeping those elements on
the same page.

Figure 15 (c) shows the query response times for point
queries on two datasets, gear and circle. The execution times
confirm our page count measurements and demonstrate that
the reduction of R-Tree page accesses by DLS can lead to
significant savings in the overall query response time. Simi-
lar to our page access results, gear and circle show the largest
running time improvements, 34% up to a factor of 2.5.

7.3 Feature Clustering: Heart Model

In this section we show that feature-based clustering pro-
vides better I/O performance compared to Hilbert curve
clustering for feature queries. We use two feature examples
on the heart dataset.

Figure 16 (a) shows our first experiment, a situation where
several cross-sections of the heart model have been identified
in advance and are used for querying the model.

We use 10 such cross-sections, each represented by a “thin”
range query, with height equal to 1% of the dataset height,
randomly spread within the model. The elements inter-
sected by each cross-section are known in advance and our
goal is to reduce the number of page accesses required to
retrieve them.

Figure 17 (a) compares the performance of Hilbert-order
clustering to that obtained by using the ideas in Section 5.2
and the METIS partitioning tool. Feature-based clustering
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Figure 18: (a) % Reduction in the number of page
accesses per partition for the earthquake dataset.
(b) Average page accesses for range queries

reduces the number of pages accessed per cross-section by
18%-31%, for an average improvement of 25%. More im-
portantly, as Figure 17 (c¢) demonstrates, this performance
improvement comes at no cost for the average spatial range
query performance. In fact, the layout obtained through
graph partitioning improves range queries by 15%-19%.

For this particular scenario the Hilbert curve clustering
could be modified to favor accesses along horizontal cross-
sections, by appropriately “stretching” the Hilbert cells. This
approach however does not work for arbitrarily shaped fea-
tures. As the next example illustrates, feature-based clus-
tering is a natural match for such datasets.

Figure 16(b) shows the heart model augmented with ad-
ditional surfaces corresponding to various heart components
(like the pulmonary valve or the aorta). This information is
provided by the model’s constructor by assigning each node
to either one of 22 different boundaries or to the model’s in-
terior. Using the node information we identify the elements
adjacent to each boundary and treat each boundary as a
separate feature.

Figure 17 (b) compares the page accesses per surface for
the Hilbert and feature-based clustering. The improvements
obtained by our layout are 6% to 25% for an average of 16%.
Again, like in the previous example. there is no impact on
the performance of the random range query (Not shown).

7.4 Feature Clustering: Earthquake model

Figure 16 (c) shows a ground model mesh used in earth-
quake simulations. The mesh is partitioned into 128 parts
for parallel simulation on 128 computing nodes. Improving
the performance of retrieving the individual mesh compo-
nents is useful for applications that move the same data
between the storage subsystem and the computation nodes
multiple times, like for example large-scale 1/O-bound vi-
sualization systems [34] that read the same partitions for
every time-step and distribute them to rendering processors
working in parallel.

Figure 18 (a) shows the reduction in the number of page
accesses obtained by feature-based clustering over the Hilbert
clustering for the 128 partitions. The improvements range
from 15.2% to 57.5% with an average improvement of 37.9%.

Figure 18 (b) shows the impact of the graph-based cluster-
ing on the performance of random range queries of varying
sizes. Contrary to the previous examples, feature based clus-
tering in this case hurts random query performance. This
happens because Hilbert clustering has much better perfor-
mance compared to graph based techniques for this partic-
ular dataset, even when we use graph partitioning on the
initial dual graph without changing any edge weights (as the
bar labeled metis_untuned of Figure 18 (b) demonstrates).

We believe that this happens because of the small dataset
size (150K elements) and its regular structure, also shown in
Figure 16 (c). The mesh is derived by triangulating an oct-
tree mesh, thus the elements fit nicely into cubical regions
and the Hilbert curve does a better job at clustering them.
This example, besides highlighting the potential for improv-
ing Hilbert-based clustering, motivates further research on
the general properties of graph-based partitioning, specifi-
cally on how it relates to different dataset geometries.

8. CONCLUSION

In this paper we examine database support for efficient
query execution on large tetrahedral mesh datasets. We
present Directed Local Search (DLS), a query processing
technique for spatial queries that takes advantage of the
mesh connectivity and its efficiency is independent of the
complexity of the mesh geometry. We show that DLS can be
easily implemented in a database system without requiring
the development of new access methods. We also propose
a new graph-based technique for clustering mesh elements
to disk pages and demonstrate that it has better perfor-
mance than traditional clustering techniques using space-
filling curves when retrieving regions of arbitrary shapes.
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