
Issues in active vision: attention and cueintegration/selectionJan-Olof Eklundh, Peter Nordlund, and Tomas UhlinComputational Vision and Active Perception Laboratory (CVAP)Department of Numerical Analysis and Computing ScienceRoyal Institute of Technology, S-100 44 Stockholm, Swedenjoe@nada.kth.seAbstractIn this paper which is a summary of our talk, we stress a systems ap-proach for research in active vision. We also argue that design andanalysis of seeing agents should be accompanied by experiments, re-quiring implementations, i.e. a constructive approach. In particular,we discuss two issues that we have worked with: use and integrationof multiple cues and attention.1 IntroductionDuring the past decade computer vision researchers have devoted considerableattention to vision as a guide to action. This work has been performed underthe names of Active, Animate, Purposive or Behavioral Vision, see e.g. (Bajcsy,1985; Aloimonos et al., 1987; Ballard, 1991; Aloimonos, 1990; Nelson, 1991) Theperspective is not new: perception and action in conjunction have for a long timebeen studied within �elds such as robotics, AI, and also in the neurosciences,psychology and cognitive science. In fact vision as a means to guide robots wasconsidered already in the 1960's. No doubt, there is a wealth of interesting resultson vision and action, see e.g. (Ferm�uller and Aloimonos, 1995; Eklundh, 1995) fordiscussions, but as pointed out in the introduction of the �rst of these two papersthere exists no �rm theoretical foundation for integrating vision and action. Iteven seems to be an open question how the problem of devising arti�cial seeingagents should be approached scienti�cally at all. Although it may be di�cult toanswer that question at present, we believe that one can identify some key issuesin this context. In our talk, which is summarized in this paper, we will discusstwo of them and review some results of our own, as well as point to other relevantwork. These issues are:� use of multiple types of visual information (cues)� attention and �gure-ground segmentationBefore turning to these topics and to provide a motivation for them we willmake some remarks on the general question of how to approach the problem ofstudying arti�cial seeing agents.
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British Machine Vision Conference2 The Systems PerspectiveStudying seeing agents and vision and action from a general perspective is a far-reaching and di�cult undertaking. The systems aspects become central, since allcomponents should be regarded in the context of the tasks that the agent performs.Ferm�uller and Aloimonos propose a model consisting of \procedures for perform-ing visual perceptions, physical actions, learning, and information retrieval, andpurposive representations of the perceptual information, along with representa-tions of information acquired over time and stored in memory", topics that covermost of what is being considered in cognitive science, AI and computer vision.An important question then becomes what kind of approach can be used toinvestigate such a system in its entirety. Attempts to develop systems that closethe loop between perception and action in real environments but in limited con-texts certainly exist. One could mention the work on on visual guidance of vehicleswhich has been quite successful, see e.g. (Masaki, 1995) for an overview. Anotherexample is the work in the ESPRIT-project Vision-as-Process, reported in partin (Crowley and Christensen, 1995), aiming at seeing robots in indoor scenarios.However, none of these projects have considered the problems from the basic per-spective that Ferm�uller and Aloimonos consider. For instance they don't addresssystems capable of dealing with varying and complex environments and competentto perform a multiplicity of tasks.In analogy to Brooks (1986), Ferm�uller and Aloimonos suggest a synthetic ap-proach by which a complex system is built up step by step by adding operationalmodels, thereby including more and more competences. Such a constructive ap-proach is what many researchers in active vision have used, although with lessambitious goals. However, it is far from clear how such a methodology can bescienti�cally founded.If the work aims at understanding biological vision, obviously the designedmodels can be tested against empirical data. If on the other hand, the goal is todesign arti�cial vision systems, there is a need both to devise working systems andto provide some formal analysis of it. Issues on scaling must also be addressed.To date that seems to be beyond the state-of-the-art: systems for which there isan analysis of their functionality, such as the one proposed in (Ko�secka, 1996),have limited capabilities and address few of the basic issues in vision. Moreover,presented systems have few competences and evidence that they could scale up ismissing.Despite these unanswered questions we believe that a constructive approach isworth pursuing and that it involves design and analysis as well as implementationand experiments. With that in mind we now turn to the two aspects mentionedabove.3 Use of multiple cuesThe vision systems we are aiming for in our work should function in complex andunpredictable environments and be capable of performing a repertoire of tasks.Even if particular tasks, such as homing or ground plane obstacle avoidance, maybe solved by using one speci�c type of information, the full system should be able



British Machine Vision Conferenceto use whatever information is required and available at the moment, see (Uhlinand Eklundh, 1995; Uhlin, 1996). Hence, questions about cue integration arise.
Figure 1: The experimental platform. The KTH head-eye system mounted on amobile platform.In human vision it is well-known that the cues often are integrated by averag-ing. However, from the work of B�ultho� and Mallot (1988; 1991) we know thatthere also exist mechanisms for overriding and vetoing some information in certainsituations.Machine vision research has mainly been concerned with the \fusion-by-averag-ing" approach, even though various advanced techniques to introduce more com-plex behaviors exist, see (Clark and Yuille, 1990) for an extensive treatment.Moreover, the problem has mainly been considered in the context of visual re-construction.However, in a purposive and task-oriented approach the selection problem be-comes important. One particular case is when a cue is or becomes unavailableand the system therefore has to rely on some other cue. An example is when amoving target that is tracked suddenly stops. The motion segmentation no longerworks, but stereopsis, or an image or feature based algorithm may still be capableof identifying the target. Similarly, motion and stereo algorithms requiring tex-tures will not work if the observer happens to look at a uniformly colored object.However, in that case the boundary could then be easy to extract.The knowledge about biological vision can gives us indications for a selectionstrategy, since it presumably embodies ecological validity. Such an argument sug-gests that cues from motion, and depth cues from binocular and accommodativedisparities in some sense should be given priority. We have applied such ap-proaches in our work on dynamic �xation (see Pahlavan et al., 1996; Uhlin, 1996)and recently in work more directly concerned with the use of multiple cues.The actual fusion/selection in this work has been done by assuming that con-sistency over time and between cues is not accidental, and therefore indicatesreliable information. By combining this principle with a favoring of motion and



British Machine Vision Conferencethree dimensional cues and with computation of uncertainty measures we obtainsystems that seem to provide results predicted by our models. Without going intodetails (which can be found in the references) we illustrate this by two examples,implemented on our mobile platform with the KTH head-eye system mounted onit, Figure 1.The �rst, shown in Figures 2-4 demonstrates how the system can rely on motionand binocular disparities as primary cues to keep track of a moving object, butswitch to static monocular cues when the object stops.Each algorithm provides a reliability measure. In Figure 3 we see results ofcombining stereo-disparity and motion. The masks are computed on a frame-to-frame basis, but the resulting mask shown has been obtained by using a simplehysteresis-update scheme over time. The reliability measure is calculated fromthe temporal mask-updating algorithm. We favor a compact mask and no suddenarea-changes.By exploiting the reliability measure we can detect that the algorithm is break-ing down somewhere between frame 79 and 82.In Figure 4 we see results using static monocular features more precisely usingthe size of the dot pattern1. This information is not proper for segmenting outthe object satisfactory in the beginning of the sequence since the background hasthe same size of the dot pattern as the object there. Around frame 76 it can beobserved that the two algorithms produce masks overlapping very well. From thisindication that the second algorithm is producing a reliable result it takes overwhen the �rst algorithm breaks down.In the example in Figure 5 (from Br�autigam et al., 1996), we illustrate co-incidence between two types of information. L-junctions indicate planar surfacepatches. In binocular viewing a matched pair of L-junctions provide one posi-tional disparity (between the intersection points) and two orientation disparities(between the edge elements). In combination with partial information about theviewing geometry, this makes it possible to compute th local surface orientation(Wildes, 1991; Jones and Malik, 1992). This cue is used as a hypothesis for anoccurrence of a planar patch which is tested for support by in this case looking atpairs of L-junctions which could stem from right angle bounding a rectangular. Inthe example, where such features are abundant, the obvious planar surface popsout clearly without reconstruction of the whole scene. We refer to the cited paperfor details.4 Attention and Figure-Ground SegmentationAn agent using vision to guide its actions need to selectively derive informationrequired to solve the tasks at hand. In active vision research it is generally assumedthat this selection occurs at an early stage. This leads to the ubiquitous problemof �gure-ground segmentation and also to issues on attention.Let us �rst make some remarks on attention. In recent years mechanismsfor attention has been extensively studied by computer vision researchers, see1This algorithm is only operating in a region of interest area obtained from the former de-scribed algorithm.



British Machine Vision Conference40 45 50 5560 65 70 7576 78 80 82Figure 2: Original sequence, showing a white paper rectangle moving from left toright. The rectangle stops moving in the end of the sequence.40 45 50 5560 65 70 7576 78 80 82Figure 3: Segmentation using stereo disparity and motion. The algorithm is break-ing down somewhere between frame 79 and 82, and the mask changes dramatically.



British Machine Vision Conference40 45 50 5560 65 70 7576 78 80 82Figure 4: Segmentation using only static monocular features (dot size). Aroundframe 76-78 the two algorithm produce masks overlapping very well. Hence, whenthe mask in Figure 3 changes dramatically the system ascribes this mask to theobject.e.g. (Tsotsos et al., 1995; Clark and Ferrier, 1988). There is also a wealth ofresults on ways to quantify and measure salience. In our work we have built uponthese results and particularly emphasized the e�ectiveness of motion and three-dimensional cues. However, even if mechanisms for attention have been developed,based on e.g. winner-take-all schemes, little is known about how to apply thesewhen an agent is to solve a set of (pre-attentive and attentive) tasks, i.e. theproblem of guiding attention in a purposive way. We feel that this problem hasto be addressed from the systems perspective, and empirical validation of suchmodels implies substantial implementational work.In our work (see e.g. Uhlin et al., 1995; Maki et al., 1996) we have demonstratedthat three dimensional objects can be detected and segmented out using motionand binocular disparities coupled with estimation and inhibition of backgroundmotion caused by egomotion. In fact, we have shown that this can be done bycoarse and therefore fast and reliable techniques, although our work so far only ap-plies to textured objects. We have combined these methods with �xation to obtaina system that can detect and hold gaze on an object, inhibiting its background. Inprinciple, this provides time for other algorithms to process the image of a singleobject, without much disturbance from structure and events in the background.An example is shown in Figures 6 and 7, from (Maki et al., 1996). The criterionfor holding vs shifting gaze is based on habituation: after holding gaze on thesame target for n (= 10) frames it is inhibited and a saccade is made. Betweencompeting targets the system generally selects the closest one. These criteria arehere hardwired into the system. The aim is to show that this information is indeed
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(a) The right image (b) The left image (c) Right polygons (d) Left polygons
(e) Right junctions (f) Left junctions (g) Normals from OD (h) Normals from RAP

(i) Supported clusters (j) Veri�ed matchednormals from thesupported cluster (k) Veri�ed plane(white) and obstacles(black) (l) Veri�ed plane maskapplied to original im-ageFigure 5: Both local cues, orientation disparity and right angle pairs, give riseto several di�erent surface orientations, as shown in images (g), and (h). Butwhen selecting surface orientation clusters that are supported by both cues, onlytwo clusters remain as shown in image (i). The matched normals from the �rstcluster that were veri�ed to satisfy a plane projectivity are shown in (j), and thecorresponding image mask is shown in (k) and (l).computable from the cues employed. Note also that the system immediately aftera gaze shift picks ups parts of the background, but that these disappear since theyare grouped with the background and inhibited. The errors are mainly related tothe fact that the ranges of disparity and horizontal 
ow are �xed.An example is shown in Figure 6. It includes again three persons in front ofa cluttered background: the person A, moving in front from the left to the rightthroughout the sequence, the person B, standing on the right hand side, and theperson C, walking further back from the left hand side. Every 5th frame is shown(images are taken at frame rate 25 Hz). In Figure 7 the target masks are shown.The frames are numbered from 85 to 140. An attentional shift occurs periodicallyafter 10 frames. More speci�cally:Frame 85-95: Being the only moving object, A is selected as the target for at-tention. This period continues even longer than the �xed duration since noother candidate creates su�cient movement to be attended to.



British Machine Vision Conference85 90 95 100105 110 115 120125 130 135 140Figure 6: An example sequence with 3 persons taken by a stationary binocularcamera head. Top-left to bottom-right. Every 5th frame of the left image is shown(40 ms between frames).85 90 95 100105 110 115 120125 130 135 140Figure 7: Target masks computed for the sequence in Figure 6. Top-left to bottom-right. The frames are numbered from 85 to 140. Every 5th frame is shown (40 msbetween frames).



British Machine Vision ConferenceFrame 100-105: The attention is shifted to C whose movement begins to berecognized. For 10 frames C is kept as the target in pursuit mode.Frame 110-135: The attention is shifted back and forth after �xed durations.First back to A, then to C and again to A. During this period B with littlemovement is not among the candidates for attention.Frame 140: This time attention is shifted instead to B that is �nally starting tomove in closer to the observer than C. The depth-based criterion applieshere.A particular feature of the approach in the previous example is that the systemis capable of �rst shifting gaze to a moving target and then being able to changeto pursuit mode. An example showing this in the case of a static observer (i.e. theplatform is static) is given in Figure 8, from (Uhlin, 1996).It shows, seen from one of the cameras, the system's reaction to a moving targetthat enters the �eld of view through a door. Initially the lamp-pole is �xated, butsince this is stationary, the attention is switched to the incoming person. Themotion in the periphery (left) is detected and a quick gaze-shifting saccade ismade to center the person. The saccade utilizes both neck and camera movementsto perform the saccade. During the saccade the image is severely blurred due tomotion. The saccade is completed in about 3 frames (120 ms). At that time thetarget becomes reasonably free from motion blur.As the person enters the door he continues to move across the room. The same�gure shows the result of the pursuit movements that follow the initial gaze-shiftsaccade. The amount of motion may easily be seen from the white lamps thatare in the top of the image. Notice how the light condition, the environment, andthe motion of the person changes during the pursuit movement. The pursuit issuccessful in spite of these changes.The systems and control structure in all these examples is described in detailin the references and will be presented in the talk. The experiments are of afeasibility nature and much remains to be done before more conclusive results canbe derived. However, in the spirit of a synthetic approach they provide buildingblocks that can be used in devising and analyzing more situations and tasks. Theycan naturally also be applied together with established results on visual recovery.5 ConclusionIn this paper we have argued that studying vision in the context of action shouldbe done from a systems perspective, supporting ideas elaborated by Ferm�uller andAloimonos (1995). We contend that this implies that we need to approach theproblem in a constructive manner and actually implement systems, to obtain away of analyzing the problems arising in real, natural environments. We focusedon some issues that we regard as important: use and integration of multiple cues,attention, and �gure-ground segmentation. In the paper we have shown examplesof a system performing such operations from our own work. The talk will provide amore detailed presentation of these results and their relation to the general issues.
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Figure 8: Door watch. A person is entering through a door. An initial saccadecatches the person and smooth pursuit is performed as he moves through the roomand then turns to move the other way. Every 3rd frame is shown.
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