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Abstract. This paper presents a markerless motion capture pipeline
based on volumetric reconstruction, skeletonization and articulated ICP
with hard constraints. The skeletonization produces a set of 3D points
roughly distributed around the limbs’ medial axes. Then, the ICP-based
algorithm fits an articulated skeletal model (stick figure) of the human
body. The algorithm fits each stick to a limb in a hierarchical fashion,
traversing the body’s kinematic chain, while preserving the connection of
the sticks at the joints. Experimental results with real data demonstrate
the performances of the algorithm.

1 Introduction

Tracking or capturing the motion of a human subject is a problem that has a
long history in Computer Vision (see [1] for a survey) and several real-world
applications, such as human-computer interfaces, motion transfer, animation
of virtual characters, activity/gesture/gait recognition, biomechanical studies.
Marker-based commercial systems are available that work at very high frame
rates and very high precision. While it is out of doubt that such speed/accuracy
combination is necessary in biomechanics, it is questionable whether it is needed
when animating a virtual character in a videogame or building a user-interface.
Therefore, there is a niche for less expensive markerless systems that work at a
reduced speed. In this paper we present some preliminary results of an ongoing
project aimed at building a system with those characteristics.

The literature on markerless body tracking in three dimensions can be broadly
split into two groups: those using a stick model for the human body [2, 3], roughly
corresponding to its skeleton, and those using a full 3D model of the body’s
shape, in the form of a polygonal mesh or a volumetric model [4–6]. Since we
aim at a real-time system, we are forced to work with a stick model. Indeed, a
stick (or skeletal) model has fewer dependencies on anthropometric parameters
than a shape model and can be tracked much faster because of its simplicity.

Our system bases on volumetric reconstruction from multiple cameras (shape
from silhouette [7]) followed by skeletonization and model fitting. Proper skele-
tonization algorithms, like [8, 9], are too computationally demanding to process
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more than a few images per second, hence we are proposing here a novel strategy
that produces a very coarse – but fast – approximation of the centerline of the
human body.

The model fitting is based on the well-known Iterative Closest Point (ICP)
algorithm [10]: the model is an articulated stick figure representing the body and
it’s kinematics, the data are 3D points roughly distributed around the centerline
of the limbs. The data are registered to the model using a hierarchical approach
that proceeds by traversing the kinematic chain.

Previous work on using ICP on articulated bodies include [11, 6, 12]. In [11]
each segment is aligned independently to the data and articulated constraints
are enforced a-posteriori by projection on the constraints surface. Likewise, [6]
uses ICP to find a solution to a problem with relaxed joint constraints, and then
forces hard constraints on that solution, thereby interfering with the result of
ICP, which is optimal in the least-squares sense. Differently from these works we
enforce joints constraint during the registration process. The only work with this
feature is [12], that have been independently proposed. For the sake of clarity,
the discussion on the differences is postponed to Section 5.

Other related approaches include those that optimize the same objective
function as the articulated ICP (namely: the sum of squared distance between
data and model with respect to the pose parameters of all the segments of
the structure) with a different strategy, e.g. Expectation-Maximization [3] or
Levenberg-Marquardt. The first is too computationally demanding for a tracking
application, whereas the latter have been reported [12] to suffer from convergence
to local minima more than articulated ICP.

2 Human Body Model

In this section we describe the articulated model representing the human body
pose we used in the paper. It consists of a kinematic chain of ten sticks and nine
joints, as depicted in Figure 1. The torso is at the root of tree, children represents
limbs, each limb being described by a fixed-length stick and the corresponding
rotation from its parent. Hence, the motion of one body segment can be described
as the motion of the previous segment in the kinematic chain and an angular
motion around a body joint. Only the torso contains a translation that accounts
for the translation of the whole body. Rotations are represented with 3 × 3
matrices. For the sake of simplicity, all the joints are spherical (three d.o.f.) with
no angle limits.

3 Shape from Silhouette

Shape from silhouette consist in recovering a volumetric approximate descrip-
tion of the human body (the visual hull [13]) from its silhouettes projected onto
a number of cameras (three, in our case). Its main advantage over other recon-
struction techniques is that it seamlessly integrates the information from multi-
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Fig. 1. The stick figure body model.

ple cameras. Moreover, implementations have been demonstrated that achieves
real-time performances [14] by exploiting the graphical hardware.

Silhouettes are obtained by background subtraction with the software dis-
tributed with the HumanEva dataset [15]. The reconstruction is accomplished
using the technique described in [16, 14], with a plane parallel to the floor sweep-
ing the working volume (see Fig. 2). At each step the silhouettes are projected
onto the current plane, using the projective texture mapping feature of OpenGL
and the GPU acceleration, as described in [17]. The slice of the volume corre-
sponding to the plane is reconstructed by doing the intersection of the projected
silhouettes.

4 Skeletonization

The medial axis (or skeleton) of a 3D object is the locus of the centers of maximal
spheres contained in the object. In principle it is a surface, even if it can degen-
erate to a curve or a point. A close relative is the centerline (or curve-skeleton)
that is a curve in 3D space that captures the main object’s symmetry axes and
roughly runs along the middle of an object. This definition matches with the
stick-figures model, hence the data onto which the model is to be registered will
be points on the body’s centerline.

There are many techniques in literature to find skeletons or centerlines of a 3D
object (see [18] for a survey). However, they are too computationally demanding
to fit our design, hence we introduce a new method based on slicing the volume
along three axis-parallel directions (see Fig. 3). In each slice – which is a binary
image – we compute the centroid of every connected component and add it to
the set of centerline points. The slicing along the Z-axis comes for free from the
previous volumetric reconstruction stage, whereas slicing along X and Y must
be done expressly, but uses the same procedure with GPU acceleration.
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Fig. 2. a) Silhouettes; b) projection onto the sweeping plane; c) intersection (slice) d)
final volumetric reconstruction

Our method is similar to [16] which computes the centerline of a body by
finding the centroids of the blobs produced by intersecting the body with planes
orthogonal to Z-axes. Using a single sweep direction has some problems with
some configurations of the body. Consider for example the “T” pose: using only
the scan along the Z-axes we completely loose the arms because by cutting the
body at the arms height produces one single elongated blob containing a slice of
the torso and the two arms, whose centroid is located on the vertebral column.

Our method solves this problem using three sweeps, thus it can be considered
as a refinement of [16]. On the other hand, it can also be regarded as a coarse ap-
proximation of [19], where first 2D skeletons are extracted for each axis-parallel
2D slice of the 3D volume and then they are intersected to obtain the 3D cen-
terline of the object. When the centroid belongs to the centerline our method
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returns a subsampling of the centerline, and this is approximately the case for
most configurations of the human body. Yet, when the 2D shape is strongly non
convex and the centroid falls outside the shape itself the method yields spurious
points. However, the subsequent fitting procedure, that will be described in the
following section, has been designed to be robust with respect to outliers.

Fig. 3. a) slices along Z; b) slices along X and Y; c) centerline points with the stick
figure overlaid.

5 Hierarchical Articulated ICP

This section describes the Hierarchical Articulated ICP algorithm for registering
an articulate stick model to a cloud of points. It is based on the well-known
Iterative Closest Point (ICP) [20, 10] that estimates the rigid motion between a
given set of 3D data points and a set of 3D model points.
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We assume that the data are 3D points distributed roughly around the cen-
terline of the body’s segments. The data are registered to the model using a hi-
erarchical approach that starts from the torso and traverse the kinematic chain
down to the extremities. At each step ICP computes the best rigid transfor-
mation of the current limb that fits the data while preserving the articulated
structure.

The closest point search works from the data to the model, by computing
for each data point its closest point on the body segments. Only the matches
with the current segment are considered, all the other should be – in principle –
discarded.

However, the rotation in 3D space of a line segment cannot be computed
unambiguously, for the rotation around the axis is undetermined. In order to cope
with this problem we formulate a Weighted Extended Orthogonal Procrustes
Problem and give a small but non-zero weight also to points that match the
descendants of the current segment in the kinematic chain. In this way they
contribute to constrain the rotation around the segment axis. Think, for example,
of the torso: by weighting the points that match the limbs as well, even if they
cannot be aligned with single rigid transformation, the coronal (aka frontal)
plane can be correctly recovered.

In order to improve ICP robustness against false matches and spurious points,
following [21], we discard closest pairs whose distance is larger than a threshold
computed using the X84 rejection rule. Let ei be the closest-point distances, a
robust scale estimator is the Median Absolute Deviation (MAD):

σ∗ = 1.4826 medi |ei − medj ej |. (1)

The X84 rejection rule prescribes to discard those pairs such that |ei−medj ej | >
3.5σ∗.

The Hierarchical Articulate ICP is is described step by step in Algorithm 1.
Point 6, where a transformation is computed given some putative correspon-

dences, deserves to be expanded, in order to make the paper self-contained. The
problem to be solved is an instance of the Extended Orthogonal Procrustes Prob-
lem (EOPP) [22], which can be stated as follows: transform a given matrix A
into a given matrix B by a similarity transformation (rotation, translation and
scale) in such a way to minimize the sum of squares of the residual matrix. More
precisely, since we introduced weights on the points, we shall consider instead
the Weighted Extended Orthogonal Procrustes Problem (WEOPP) problem. In
formulae:

arg min
R

∥∥(cRA + tu> − B)W
∥∥2

F
subject to RT R = I (2)

where matrices A and B are (3 × p) matrices containing p corresponding point
in 3-D space, R is (3 × 3) orthogonal rotation matrix, t is a (3 × 1) translation
vector, c is scale factor, u is a p×1 vector of ones, W is a (p×p) diagonal matrix
weighting the p points, and ‖·‖F denotes the Frobenius norm.
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Algorithm 1 Hierarchical Articulate ICP

Input: The model S composed by segments and the data set A of 3D points
Output: a set of rigid motions (referred to the kinematic chain) that brings the model
onto the data

1. Traverse the body model tree structure using a level-order or a preorder traversal
method.

2. Let sj ∈ S be the current body segment.
3. Compute the closest points:

(a) For each data point ai ∈ A and for each segment s` ∈ S compute its projection
pi` onto the line containing s` ;

(b) if pi` ∈ s` then add pi` to M (the set of the closest-point candidates), other-
wise add the endpoint of s` to M.

(c) Find bi, the closet point to ai in M.
4. Weight the points: If bi belongs to sj than its weight is 1, otherwise it is ε (chosen

heuristically) for all the descendant and 0 for all the others.
5. If the distance of bi to ai is above the X84 threshold then the weight is set to 0.
6. Solve for the transformation of sj .
7. Apply the transformation to sj and its descendants.
8. Repeat from step 3 until the weighted average distance between closest points

points is less than a given threshold.

The solution to the the problem (derived in [23]) is based on the Singular
Value Decomposition (SVD). Let

UDV > = Aw

(
Ip −

uwu>w
u>wuw

)
B>

w (3)

be the SVD decomposition of the matrix on the right-hand side1, where Aw =
AW , Bw = BW , and uw = Wu. The sought transformation is given by (we
omit the scale c that is not needed in our case):

R = V

1 0 0
0 1 0
0 0 det(V UT )

U> (4)

t = (Bw − RAw)
uw

u>wuw
(5)

The diagonal matrix in (4) is needed to ensure that the resulting matrix is a
rotation [24]

The Weighted Orthogonal Procrustes Problem (WOPP) problem is a special
case of WEOPP and the solution can be derived straightforwardly by setting
u = 0. In our case we use WEOPP for the torso and WOPP (only rotation) for
the limbs.

1 Please note that A
uwu>w
u>wuw

is a matrix of the same size as A with identical columns,

each of them equal to the centroid of the points contained in A.
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The hierarchical articulate ICP is deterministic, every limb is considered
only once and brought into alignment with ICP. The transformation that aligns
a limb sj is determined mostly by the points the matches sj and secondarily
by the points that matches its descendants. The transformation is applied to sj

and its descendants, considered as a rigid structure. The output of the algorithm
represents the pose of the body. In a tracking framework, the pose obtained at
the previous time-step is used as the initial pose for the current frame.

A similar algorithm has been independently proposed in [12]. The main dif-
ference is in the way the basic ICP is applied to the articulated structure, which
leads to different schema. In [12] at each step of the algorithm the subtree of the
selected joint is rigidly aligned using ICP with no weights, i.e., all the descen-
dants of the joint plays the same role in the minimization. As a result, the same
joint needs to be considered more than once to converge to the final solution. In
this regard our approach is less computationally demanding. On the other hand
one error in the alignment of a limb propagates downward without recovery,
whereas in [12] a subsequent sweep may be able to correct the error, hence [12]
seems to be more tolerant to a looser initialization.

6 Experimental Results

The body tracker has been tested on sequences taken from the HumanEva-I
dataset [15]. All the sequences in HumanEva-I have been calibrated using the
Vicon’s proprietary software and the motion data saved in the common c3d file
format. The dataset contains multiple subjects performing a variety of actions
like walking, running, boxing, etc. In particular we used the sequences called “S2
Jog”, “S2 Throwcatch”. Figures 4 and 5 show some sample frames from these
sequences together with the output of the silhouette extraction.

Fig. 4. Sample frames of “S2 Jog” and silhouettes.
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Fig. 5. Sample frames of “S2 Throwcatch” and silhouettes.

Validation of the algorithm is done by comparing the angles of the ground-
truth with the angles of the computed model. Figure 6 reports the ground truth
and estimated joint angles of the torso, right shoulder and right elbow in the
two sequences. It can be seen that the estimated angles follows fairly closely the
ground truth. There some spikes where the error grows but the tracker is able
to recover in the subsequent frames. We expect that a Kalman filter will be able
to smooth out significantly those spikes.
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Fig. 6. Plots comparing ground truth and estimated joint angles of the torso, right
shoulder and right elbow in the two sequences used for the experiments (the sequence
name is on the right).
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This results are remarkable if one considers the coarseness of the volumetric
reconstruction, due to the small number of cameras (three) and the poor quality
of image silhouettes.

For a quantitative comparison we computed the following angular error for
each joint, in each frame of the sequence:

e(R1, R2) = ∠(R1R
>
2 ) (6)

where ∠(·) denotes the angle of the axis-angle representation of the rotation,
and can be computed with ∠(R) = arccos((tr(R) − 1)/2).

Mean and standard deviation of the error are shown in Table 1. The magni-
tude of the error is still higher than the target standard, which is about three
degrees, as reported in [25]. We expect, however, that a Kalman filter will be
able to smooth out significantly the aforementioned spikes and thus reduce sig-
nificantly the error.

S2 Jog S2
Throw-
catch

Torso
Mean 0.29 0.21
Std. dev. 0.40 0.57

Neck
Mean 0.59 0.82
Std. dev. 0.74 1.09

Left shoulder
Mean 0.73 0.44
Std. dev. 0.81 0.61

Right shoulder
Mean 0.63 0.53
Std. dev. 0.79 0.53

Left hip
Mean 0.96 0.56
Std. dev. 0.12 0.87

Right hip
Mean 0.76 1.66
Std. dev. 1.08 1.67

Left elbow
Mean 0.68 0.55
Std. dev. 0.81 0.80

Right elbow
Mean 0.48 0.56
Std. dev. 0.65 0.81

Left knee
Mean 0.51 0.25
Std. dev. 0.70 0.25

Right knee
Mean 0.33 0.70
Std. dev. 0.38 0.77

Table 1. Mean and standard deviation of the errors (in radians) for each joint of the
body for the sequences used in the experiments.
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7 Conclusions and Future Work

This paper has proposed a new ICP-based algorithm for tracking articulated
skeletal model of a human body. The proposed algorithm takes as input multi-
ple calibrated views of the subject, computes a volumetric reconstruction and
the centerlines of the body and fits the skeletal body model in each frame us-
ing a hierarchic tree traversal version of the ICP algorithm that preserves the
connection of the segments at the joints. The proposed approach uses only the
kinematic constraints and no other assumptions are made on the position of the
body. This implies that we can recognize potentially all the body configuration.

The results presented here demonstrate the feasibility of the approach, which
is is intended to be used in complete system for vision-based markerless human
body tracking.

The current Matlab implementation takes about 4 seconds to process a frame
on a laptop with an Intel Core Duo Processor T2250. However, being the algo-
rithm still in a prototypal stage, we are confident that a careful implementation
in C/C++ could achieve nearly real-time performances. Indeed all the design
choices focused on computational efficiency: the use of a simple stick model, the
volumetric reconstruction on the GPU, the fast approximated skeletonization,
the hierarchical ICP.

Future work will be aimed at optimizing the implementation and tackling
the issue of pose initialization.
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