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Abstract. DMRT-ML is a physically based numerical model
designed to compute the thermal microwave emission of
a given snowpack. Its main application is the simula-
tion of brightness temperatures at frequencies in the range
1–200 GHz similar to those acquired routinely by space-
based microwave radiometers. The model is based on the
Dense Media Radiative Transfer (DMRT) theory for the
computation of the snow scattering and extinction coeffi-
cients and on the Discrete Ordinate Method (DISORT) to nu-
merically solve the radiative transfer equation. The snowpack
is modeled as a stack of multiple horizontal snow layers and
an optional underlying interface representing the soil or the
bottom ice. The model handles both dry and wet snow con-
ditions. Such a general design allows the model to account
for a wide range of snow conditions. Hitherto, the model
has been used to simulate the thermal emission of the deep
firn on ice sheets, shallow snowpacks overlying soil in Arc-
tic and Alpine regions, and overlying ice on the large ice-
sheet margins and glaciers. DMRT-ML has thus been vali-
dated in three very different conditions: Antarctica, Barnes
Ice Cap (Canada) and Canadian tundra. It has been recently
used in conjunction with inverse methods to retrieve snow
grain size from remote sensing data. The model is written in
Fortran90 and available to the snow remote sensing commu-
nity as an open-source software. A convenient user interface
is provided in Python.

1 Introduction

Passive microwave radiometers on-board satellites acquire
useful observations for the characterization of snow-covered
areas. These observations are available in these areas several
times a day, are relatively insensitive to the atmosphere in
many frequency bands, and are independent of the solar il-
lumination. They are sensitive to several properties relevant
for monitoring the snow cover and have been exploited in nu-
merous algorithms to retrieve continental snow cover extent
(Grody and Basist, 1996), snow depth and snow water equiv-
alent on both land (Josberger and Mognard, 2002; Kelly and
Chang, 2003; Derksen et al., 2003) and sea ice (Cavalieri
et al., 2012; Brucker and Markus, 2013), snow accumulation
on ice sheets (Abdalati and Steffen, 1998; Vaughan et al.,
1999; Winebrenner et al., 2001; Arthern et al., 2006), melt
events (Abdalati and Steffen, 1997; Picard and Fily, 2006),
snow temperature (Shuman et al., 1995; Schneider, 2002;
Schneider et al., 2004), and snow grain size (Brucker et al.,
2010; Picard et al., 2012). Some of these studies are based
on empirical relationships supported by physical interpre-
tations (Koenig et al., 2007) and others directly use phys-
ical models and data assimilation techniques (Durand and
Margulis, 2007; Picard et al., 2009; Takala et al., 2011; Toure
et al., 2011; Huang et al., 2012). In both cases, understanding
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and modeling the physical processes of the microwave emis-
sion by snow and the underlying surface are crucial.

Modeling the snow microwave emission from snow phys-
ical properties takes in general two successive steps. The
first step is the computation of the electromagnetic proper-
ties (e.g., effective dielectric constant, scattering and absorp-
tion coefficients) that characterize the propagation and the
single events of interaction between wave and matter. These
properties are calculated from the geometric micro-structural
properties of the snow, assumed to be homogeneous within a
given layer. The second step is the computation of the emis-
sion and the propagation through the snowpack by account-
ing for the multiple interactions of microwaves within the
snow as well as by refraction, reflection and transmission at
the interfaces. It is often treated with the radiative transfer
equation on a plane-parallel medium for which generic solu-
tions exist (Tsang et al., 1985; Fung, 1994). In contrast, the
first step is specific to the medium. In the case of snow, the
main challenge for the electromagnetic calculation is the high
density of scatterers. The volume occupied by the scatterers
over the total volume (referred to as the fractional volumef )
is significant – typically larger than 20 % –, which implies
that the scatterers strongly interact with each other and the
independent scattering theory used for vegetation or clouds
(Tsang et al., 1985; Ulaby et al., 1986; Chuah and Tan, 1989)
is inadequate. Several empirical formulas relating the scat-
tering and absorption coefficients to grain size and density
have been proposed to solve this issue and are found in the
Helsinki University of Technology model (HUT/TKK) (Pul-
liainen et al., 1999; Lemmetyinen et al., 2010) and in the Mi-
crowave Emission Model of Layered Snowpacks (MEMLS)
(Wiesmann and M̈atzler, 1999). The derivation of relation-
ships from Maxwell’s equations is an attractive alternative
because it is independent of particular snow conditions and
the assumptions are explicit:

– the strong fluctuation theory (SFT,Stogryn, 1986) al-
lows calculations at low frequencies typically less than
20 GHz;

– to cover the frequency range of 1–100 GHz, which is
relevant for existing radiometers,Mätzler (1998) pro-
posed the improved Born approximation (IBA). As in
the SFT, the size of grains is given by the correlation
length (Mätzler, 2002). This metric is well defined but
direct measurements are only possible from 2-D or 3-
D micro-structure data, which require advanced experi-
mental techniques (Wiesmann et al., 1998). Estimations
can be indirectly obtained from quantities measurable
in the field like the snow specific surface area (Mätzler,
2002; Arnaud et al., 2011) or the micro-penetration pro-
file (Löwe and van Herwijnen, 2012);

– the dense media radiative transfer theory (DMRT;
Tsang et al., 1985; West et al., 1993; Shih et al., 1997;
Tsang et al., 2000a, 2007) considers snow as a collec-

tion of spherical ice particles and provides analytical
formulas of the effective propagation wave number, the
scattering and absorption coefficients as a function of
the sphere radius and the density. It is attractive be-
cause sphere radius and snow density are well defined
and, when the snow grains are close to spheres like in
fine grained snow (Colbeck, 1993), they are both mea-
surable in the field. Moreover, the DMRT-ML theory
has solid theoretical grounds and has been regularly im-
proved during the last two decades.

These theories have been implemented in several models:
the SFT inSurdyk and Fily(1995), the IBA in MEMLS
(Mätzler and Wiesmann, 1999) and the DMRT-ML inMa-
celloni et al.(2001); Tedesco and Kim(2006); Liang et al.
(2008); Grody (2008); Brogioni et al.(2009). In addition to
the underlying theory, the models differ by many aspects, in-
cluding the methods for solving the radiative transfer, the
presence of smooth or rough interfaces, the possible num-
ber of layers, etc. In particular, HUT uses the two-stream
method and MEMLS the six-stream method while most
DMRT-based models consider a larger number of streams.
The comparison for a large variety of snow types (Tedesco
and Kim, 2006) showed that no particular model systema-
tically reproduces all of the experimental data. It is not yet
known if the discrepancies were attributable to the electro-
magnetic theory, specific details of the implementations of
the models, or uncertainties pertaining to input or evalua-
tion data. Moreover, the different representations of the snow
grain size in these different approaches are a major limit to
the comparison. Both MEMLS and HUT/TKK models are
widely used (Butt and Kelly, 2008; Durand et al., 2008; Rees
et al., 2010; Brucker et al., 2011b; Gunn et al., 2011). In con-
trast, several groups use home-made DMRT-based models
but no widely-used reference implementation exists, which
limits the spread of this theory and limits the comparisons
between studies.

The objective of this paper is to present the DMRT-ML
(DMRT Multi-Layer) model that was released under an open
source license and accompanied by a detailed documentation
(http://lgge.osug.fr/∼picard/dmrtml/). This model initially
developed at Laboratoire de Glaciologie and Géophysique de
l’Environment in Grenoble, France, for perennial snowpack
(Brucker et al., 2010, 2011a) and improved for seasonal snow
on soil (Roy et al., 2013) and on superimposed ice (Dupont
et al., 2012), is now suitable for modeling the microwave
emission in a wide range of snowy continental environments.
It is also designed to be extensible and uses standard For-
tran90, which allows efficient computations with different
types of computers and operating systems and facilitates the
embedding in other models or assimilation schemes. A con-
venient user interface is provided by the optional bindings
with the Python language.
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This paper is a comprehensive scientific reference for
DMRT-ML users. It is structured as follows. Section2
describes DMRT-ML in detail. Section3 presents the
sensitivity to the most important input variables and parame-
ters and provides practical recommendations on the validity
range of the input variables and parameters to use. Section4
summarizes the results of the detailed comparisons (Brucker
et al., 2011a; Roy et al., 2013; Dupont et al., 2012) with ra-
diometric data obtained for various cold environments.

2 The DMRT-ML model

2.1 Radiative transfer equation and model architecture

The energy emanating from snowpacks is the result of the
thermal emission of the snow, the substratum and the atmo-
sphere, and of the complex propagation of this energy toward
the upper snow layers. The emission and propagation can be
described by the radiative transfer equation. Assuming that
the medium is a stack ofL plane-parallel layers containing
an isotropic and homogeneous material, the equation in every
layer is (Jin, 1994)

cosθ
d

dz
T B(z,θ,φ) = −κeT B(z,θ,φ)

+

π/2∫
0

2π∫
0

sinθ ′dθ ′dφ′P(θ,φ,θ ′,φ′)T B(z,θ ′,φ′) + κaT (z)I . (1)

By convention, matrices are written in bold, and vectors
in bold and italic.I is the unit column vector.T B(z,θ,φ)

is the radiance at depthz propagating along the direction
with zenith angleθ and azimuth angleφ. According to the
Rayleigh Jeans approximation, that is valid in the microwave
range,T B(z,θ,φ) also represents the brightness tempera-
ture. Since the medium is isotropic,T B is a vector with only
two non-null components (Jin, 1994, p. 19): the vertically
and horizontally polarized brightness temperature.κe andκa
are the extinction and absorption coefficients in the layer and
P is the phase function.T is the physical temperature of the
layer.

The model solves this equation for the particular medium
described by the input variables and parameters (Fig.1).
Several steps are needed: the determination of the dielectric
properties of the constitutive materials (Sect.2.2), the de-
termination of the effective propagation constant and of the
extinction and scattering coefficients for each homogeneous
layer of the medium (Sect.2.3) by using the DMRT-ML the-
ory, the determination of the boundary conditions (Sect.2.4)
and lastly the numerical computation of the solution of the ra-
diative transfer equation (Sect.2.5). The result is the bright-
ness temperature emerging from the surface in several direc-
tions. Finally, other relevant variables are accessible via ad-
ditional post-computations (Sect.2.6).
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Fig. 1. The snowpack viewed by DMRT-ML.L is the number of
layers. For each homogeneous layerk, the input variables and pa-
rameters are grain sizeak , snow densityρk , physical temperature
Tk , stickinessτk and liquid water content LWCk . The extinction
and absorption coefficientsκe andκa are calculated with the DMRT-
ML theory. The boundary conditions require the input of the down-
welling brightness temperatureT atmos

B and the variables and param-
eters to compute the reflection coefficientr(θ) of the underlying
interface (see Table1). The DISORT method is used to solve the ra-
diative transfer equation in the snowpack and provides as output the
brightness temperatureTB(θ,z = 0) emerging from the snowpack.

2.2 Dielectric constants

The computation of the scattering and extinction coefficients
in the DMRT-ML theory requires the dielectric constant of
the scatterer and background materials. When snow is dry
(temperature strictly below the melting point), the grains are
assumed to be composed of pure ice, whose dielectric con-
stantεice was measured byMätzler and Wegm̈uller (1987)
andMätzler et al.(2006):

εice = 3.1884+ 0.00091(T − 273.0) + 
(α

ν
+ βν

)
, (2a)

α = (0.00504+ 0.00622)exp(−22.12), (2b)

β =
0.0207

T

exp(335
T

)(
exp(335

T
) − 1

)2
(2c)

+ 1.1610−11ν2
+ exp(−9.963+ 0.0372(T − 273.16)) ,

(2d)

2 =
300

T
− 1, (2e)

where ν is the frequency in GHz,T the ice temperature
in K and 2

= −1. This model is valid for temperatures
above 240 K and in the microwave range (1–200 GHz) but
its accuracy certainly decreases at low frequencies (Jiang and
Wu, 2004).

www.geosci-model-dev.net/6/1061/2013/ Geosci. Model Dev., 6, 1061–1078, 2013
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When the snow is wet (at 273.15 K), ice grains are coated
by liquid water with an uneven distribution controlled by
capillarity forces. Since such a complex particle cannot be
taken explicitly into account in the DMRT-ML theory and
given the low content of liquid water usually present in moist
and wet snow (less than 8 %;Colbeck, 1993), DMRT-ML
assumes that the grains are composed of a fictitious homo-
geneous material. The dielectric constantεwet ice of this ma-
terial is calculated using the mixture relationship (Borghese
et al., 2007; Chopra and Reddy, 1986):

εwet ice=
C+ + 2C−

C+ − C−

εwater , (3a)

C+ = εice+ εwater , (3b)

C− = (εice− εwater)(1− LWC), (3c)

where LWC is the liquid water content expressed here as the
ratio between the volume of liquid water and the volume of
ice present in snow (in m3 m−3) and the water dielectric con-
stantεwater is given by

εwater= ε2 +
ε1 − ε2

1−  ν
ν2

+
ε0 − ε1

1−  ν
ν1

, (4a)

ε0 = 77.66+ 103.32, (4b)

ε1 = 0.0671ε0 , (4c)

ε2 = 3.52+ 7.522, (4d)

ν1 = 20.2− 146.42 − 31622 , (4e)

ν2 = 39.8ν1 . (4f)

2.3 Snow extinction and absorption coefficients, and
phase function: the DMRT-ML theory

The extinction and absorption coefficients, as well as the
form of the phase function are obtained by the so-called
DMRT-ML theory. Different versions of this theory have
been published over time and the underlying assumptions
can significantly differ from each other. Four characteristics
distinguish these versions: (i) the underlying approximation
used for the DMRT-ML derivation, (ii) the particle size with
respect to the wavelength, (iii) the stickiness between parti-
cles and (iv) the distribution of particle size. DMRT-ML pro-
poses some of these versions and allows various options as
detailed here.

DMRT-ML uses the quasicrystalline approximation with
coherent potential (QCA-CP) (Tsang et al., 2000b) and is
limited to particle size smaller than the wavelength. This
may be a limitation at frequencies higher than 37 GHz and
with large grains commonly found in aged snow. The cal-
culation for large particles requires a Mie-like development
(Tsang et al., 2000a) and is computationally much more in-
tensive than the QCA-CP calculation. In addition, it leads to a
form of the phase function that is incompatible with the opti-
mization of the radiative transfer equation resolution used in
DMRT-ML (Sect. 2.5). To avoid the strong divergence that

characterized QCA-CP with large particles,Grody (2008)
proposed an empirical and computationally efficient treat-
ment of this issue. He noticed that snow is composed of par-
ticles with a broad range of sizes, which results in a smooth-
ing of the undulation characteristic of the Mie resonances.
Hence, a good approximation of the medium scattering ef-
ficiency Qs for large particles is the asymptotic limit, i.e.,
Qs ≈ 2, accounting from the fact that the absorption is weak
(Twomey and Bohren, 1980). If enabled by the user, DMRT-
ML applies this idea by limiting theQs maximum value to 2.
Nevertheless, this ad hoc correction has not the objective to
replace the rigorous solution for fine-grained studies (Tsang
et al., 2000a).

Recent versions of DMRT-ML introduce the concept of
stickiness. Instead of considering randomly positioned non-
penetrable spheres, the sticky spheres are attracted to one an-
other and tend to form clusters with large voids between. This
concept is meant to better represent the micro-structure of
natural snow using solely spherical grains. In this case, the
stickiness is also a means to account for coarse grained snow
by considering that such snow is made of small clustered
particles. However, DMRT-ML only implements the “short
range” version of the sticky formulation, which assumes that
the clusters are small with respect to the wavelength (Tsang
et al., 2000b, pp. 504–505). In this simplified case, the phase
function remains identical to that of the nonsticky small par-
ticle case for which the optimization of the resolution of the
radiative transfer equation works (Sect.2.5).

Another way to improve the representation of the micro-
structure of natural snow is to consider a collection of spheres
with different sizes. In DMRT-ML, the particle sizes follow
the Rayleigh distribution (Jin, 1994). In addition, only the
nonsticky particle case is available because the formulation
with both stickiness and size distribution leads to a quadratic
system of equations that is difficult to solve and is computa-
tionally intensive (Tsang and Kong, 2001, p. 430).

In summary, DMRT-ML includes two implementations:

– QCA-CP mono-disperse, with optional “short range”
stickiness, and optional Grody’s-based empirical treat-
ment of large particles;

– QCA-CP poly-disperse with a Rayleigh distribution, no
stickiness and no large particles.

The mono-disperse version is formulated according to
Shih et al.(1997). The effective dielectric constant with-
out scatteringEeff0 is obtained by solving the follow-
ing quadratic Eq. (3) inShih et al.(1997) with a = 0 or
Eq. (5.3.125) inTsang and Kong(2001):

E2
eff0 + Eeff0

(
εs− εb

3
(1− 4f ) − εb

)
− εb

εs− 1

3
(1− f ) = 0, (5)

wheref is the fractional volume of scatterers,εb andεs are
the dielectric constants of the background and scatterers, re-
spectively. The effective dielectric constant with scattering
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(Eq. 3 inShih et al., 1997) combined with Eq. (5) yields:

Eeff = εb + (Eeff0 − εb)(
1+ 

2

9
(k0a)3

√
Eeff0

εs− εb

1

+
εs− εb

3Eeff0
(1− f )

(1− f )4

(1+ 2f − tf (1− f ))2

)
, (6)

wherea is the radius of the spheres andk0 = π/λ is the wave
number withλ the wavelength.t is zero for nonsticky spheres
and otherwise is the largest solution of Eq. 6 inShih et al.
(1997)

f

12
t2

− (τ +
f

1− f
)t +

1+ f/2

(1− f )2
= 0, (7)

whereτ is the stickiness parameter (Shih et al., 1997; Tsang
and Kong, 2001, p. 430). At last, the extinction and absorp-
tion coefficients are respectively given by

κe = 2k0=
√

Eeff, (8a)

κa = κe − κs , (8b)

κs =
2

9
k4

0a3f

∣∣∣∣∣ εs−εb

1+
εs−εb
3Eeff

(1−f )

∣∣∣∣∣
2

(1−f )4

(1+2f −tf (1−f ))2
, (8c)

with = the imaginary part indicator andκs the scattering co-
efficient.

In the case of small particles, the phase function in
DMRT-ML has the same form as with independent particles
Rayleigh phase function (Jin, 1994, Eqs. 2–26 to 2–28).

The DMRT-ML theory inherits its name from the fact that
it extends the classical radiative transfer theory, which re-
quires the particles not to interact with each other. This con-
dition is met only when the fractional volumef is less than
a few percent (Ishimaru and Kuga, 1982). Despite its name,
recent works suggest the DMRT-ML theory does not work
for any large fractional volumes (see Sect.3.3 for details).
As a consequence, for icy layers or layers subject to several
melt–refreeze cycles, it is recommended to use the DMRT-
ML theory for a collection of air bubbles embedded in ice
background. This is achieved in DMRT-ML by exchanging
the dielectric constant of ice and air in Eqs. (5) and (6).

2.4 Properties of the interfaces

Once the extinction and absorption coefficients and the phase
function within every layer are determined, all the variables
and parameters in Eq. (1) are known and a general solu-
tion can be obtained independently for every layer. To obtain
the particular solution and hence the brightness temperature
emerging from the surface, it is necessary to propagate the
radiation between the individual snow layers. This propaga-
tion must ensure the energy conservation and requires the
reflection properties at every interface as well as any external
source of energy.

For the interfaces within the snowpack and at the air–
snow interface, DMRT-ML considers smooth interfaces. The
roughness of this interface due to ripples, sastrugi and other
dunes (Watanabe, 1978) may contribute especially at hori-
zontal polarization and grazing incidence angles (Lacroix
et al., 2009), but the existing formulations of the bi-static re-
flection coefficient are based on the method of moments and
are therefore computationally intensive and limited to low
frequencies (<18 GHz;Liang et al., 2009; Chang and Tsang,
2011). For flat interfaces, the reflection coefficient only de-
pends on the zenith angle and the refractive indexes of both
sides of the interface. In DMRT-ML, it is obtained by Fres-
nel’s relationships (e.g.Jin, 1994, p. 59) using the effective
dielectric constants calculated with Eq. (6).

At the air–snow interface, the energy coming down from
the atmosphereT atmos

B is an input variable given by the user.
It is assumed isotropic in the current version of DRMT-ML
but this assumption can be easily changed. The calculation of
T atmos

B from meteorological data requires an external model
such as proposed byRosenkranz(1998) andSaunders et al.
(1999).

At the bottom interface, to account for the diversity of me-
dia that can be present below snow covers (e.g., soil, ice, lake
ice, sea ice) and the diversity of electromagnetic modeling
approaches for the soil, several substratum models are avail-
able in DMRT-ML and the addition of new models is easy.
The role of the substratum model is to provide the reflec-
tion coefficient of the interface. DMRT-ML only takes into
account the reflection of the coherent wave and neglects the
diffuse reflections at the bottom interface. It means that the
roughness of the interface is only partially taken into account.
In addition to reflecting downwelling energy, the substratum
is an emitter: the energy emitted and entering into the snow-
pack is calculated using the temperature of the substratum
given as an input variable and the emissivity deduced from
the reflection coefficient and Kirchhoff’s law.

DMRT-ML proposes 11 models that cover soil, ice, lake
and semi-infinite snowpack. The user selects the type of sub-
stratum model using an identification number and provides
the required variables and parameters depending on the type
of model (Table1). Since these substratum models have been
published elsewhere, their evaluation is not addressed in this
paper. In the case where snow lies over ice, DMRT-ML offers
two options. If the ice is free of bubbles, isothermal and semi-
infinite, the best option to use is the “ice” substratum model
(ID 202, or ID 1 with ice dielectric constant). In any other
conditions, it is recommended to represent the underlying
ice using layers with a high density (up to 917 kg m−3 for
bubble-free ice) and no substratum. The number of layers
to use depends on the temperature and density profile in the
ice. The total depth of the ice layers must be large enough to
avoid “leakage” at the bottom. Special attention is required at
low frequencies (like L band, 1.4 GHz) since ice absorption
can be very weak and the layers well below 100 m can sig-
nificantly contribute.

www.geosci-model-dev.net/6/1061/2013/ Geosci. Model Dev., 6, 1061–1078, 2013
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Table 1. Available models for the reflection coefficient of the bottom interface and required input variables and parameters. SM is the soil
moisture (volume fraction),ε is the complex dielectric constant,σ is the surface root mean square height (in meters),fclay andfsandare the

fractions of clay and sand,ρorga is the density of dry organic matter (kg m−3), T is the temperature (in K) and Q and H are dimensionless
parameters. P99 stands forPulliainen et al.(1999), D85 for Dobson et al.(1985), M87 for Mätzler and Wegm̈uller (1987) and M06 for
Mätzler et al.(2006).

Interface model Material Dielectric constant ID Variables and parameters

No interface None 0
Flat surface, Fresnel Any prescribed 1 ε

Flat surface, Fresnel Soil from P99 2 SM,fclay, fsand, ρorga, T

Flat surface, Fresnel Soil from D85 3 SM,T

Rough surface WM99 Any prescribed 101 σ ,ε
Rough surface WM99 Soil from P99 102 σ , SM,fclay, fsand, ρorga, T

Rough surface WM99 Soil from D85 103 σ , SM,T
Flat surface, Fresnel Ice from M87, M06 202 T

QH model W83 Any prescribed 301 σ , Q, H,ε
QH model W83 Soil from P99 302 σ , Q, H, SM,fclay, fsand, ρorga, T

QH model W83 Soil from D85 303 σ , Q, H, SM,T
Flat surface, Fresnel Fresh water from M87 402 T

2.5 Solution of the radiative transfer equation using the
DISORT method

Once the extinction and scattering coefficients of every layer
and the reflection coefficients at all the interfaces are known,
the radiative transfer equation is solved using the DISORT
method (Chandrasekhar, 1960). This method takes into ac-
count multiple scattering within and between the layers,
which is an asset with respect to the iterative method (Tsang
et al., 1985; Jin, 1994; Ishimaru, 1997) for which the number
of calculated order of scattering is limited. It also computes
the energy propagation in an unlimited number of directions
(or “streams”) as opposed to the two-stream (Pulliainen et al.,
1999) or six-stream (Wiesmann and M̈atzler, 1999) methods
whose formulations are based on a fixed and small number
of directions. The drawback of the DISORT method is usu-
ally the computational cost. However, in the case of passive
remote sensing, isotropic media, and when the phase func-
tion has a simple analytical form, the azimuthal dependence
in Eq. (1) can be analytically integrated. This simplifies the
equation and reduces the numerical complexity and compu-
tation cost with respect to other cases like active remote sens-
ing (Stamnes et al., 1988; Picard et al., 2004) or anisotropic
media. For snow passive microwave modeling, the assump-
tion of an isotropic medium is reasonable and the DMRT the-
ory with small scatterers predicts that the phase function is
the Rayleigh phase function (Jin, 1994, Eqs. 2–26 to 2–28),
which only involves the cosines of the azimuth angle.

In the single layer formulation of DISORT, the integra-
tion over the zenith angleθ ′ uses a Gaussian quadrature (Jin,
1994, p. 96), i.e., it is replaced by a discrete sum of inte-
grand evaluation at optimal angles. The number of anglesn

is defined by the user. This approach cannot be seamlessly
transposed for multiple layers. The variations of refractive

index – mainly driven by the snow density profile – cause
a change of the direction of the streams between the layers
(Fig. 2). A possible approach (Liang et al., 2008) uses the
same Gaussian quadrature in every layer (as in the single-
layer case), which ensures an optimal integration at the ex-
pense of complex boundary conditions since cubic spline in-
terpolations are needed to “reconnect” the streams. We use
a simpler approach in DMRT-ML similar to that proposed
in Jin (1994, p. 151). The angles are determined by Gaus-
sian quadrature only in the most refractive layer. In the other
layers, the angles are determined from Snell’s refraction law,
which ensures the continuity of the streams between the lay-
ers. The boundary conditions are simpler at the expense of a
sub-optimal integration (except in the most refractive layer).
This issue is easily compensated by increasing the number of
streamsn.

Another consequence of using the refraction law to deter-
mine the stream angles is that the number of streams (nk,
k = 1· · ·L, whereL is the number of layers) varies from one
layer to another. This is caused by the total reflection at large
zenith angles when a stream propagates from a higher to a
lower refractive index layer. Such streams in the high refrac-
tive index layer have no companion in the low index one.
This also applies to then0 streams emerging from the snow
into the air. Since snow density is much higher than air den-
sity, n0 is usually much lower thann. The only consequence
for the user is thatn is not the number of emerging streams as
it would be in the six-stream or two-stream methods. In prac-
tice, it is recommended to adjustn to get the wanted number
of emerging streamsn0 or alternatively to increasen until
the residual variations of brightness temperature are less than
the wanted accuracy. Figure2 illustrates a 4-layer snowpack
(with snow density values, from top to bottom, of 50, 400,
200, 320 kg m−3). Only upwelling streams are represented.
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underlying interface

Airz

Fig. 2. Upwelling streams for a 4-layer snowpack with varying
density. The stream directions are calculated with Snell’s refraction
law using the real part of the effective propagation constantEeff
(Eq.6) that mostly depends on snow density. The number of streams
is 8 in the most dense layer and decreases as the density decreases.
Only 4 streams emerge in the air above the snowpack. For clarity,
downwelling streams are not represented.

In this particular example with extreme variations of density,
the number of streams in the air is only 4 whereas it is 8 in the
most refractive layer. The total reflection phenomenon is also
called internal reflection inWiesmann and M̈atzler (1999)
and causes energy trapping when a layer is surrounded by
less dense layers.

Once the integration is replaced by the discrete sum, the
differential Eq. (1) in z is written for every angleθj (j =

±1· · · ± nk, j > 0 andj < 0 for the upward and downward
directions, respectively) in each layer.

µj

d

dz
T B(µj ,z) = −κeT B(µj ,z)

+

nk∑
j ′

wj ′P(µj ,µj ′)T B(µ′

j ,z) + κaT I (9)

whereµj = cos(θj ), P is found inJin (1994, Eq. 2–28) and
I is the unit column vector. In the following, we only present
the most relevant equations, intermediate calculations are
given inJin (1994, Chaps. 4 and 5).

By introducing the asymmetric and symmetric bright-
ness temperatures (T Bs(µj ) = T B(µj ) + T B(−µj ) and
T Ba(µj ) = T B(µj ) − T B(−µj ) respectively), Eq. (9) be-
comes

µj

d

dz
T Ba(µj ,z) = −κeT Bs(µj ,z), (10a)

µj

d

dz
T Bs(µj ,z) =

nk∑
j ′

Ajj ′T Ba(µ
′

j ,z) + 2κaT , (10b)

Ajj ′ = −κeIδjj ′ +
3

4
κswj ′

[[
2(1− µ2

j )(1− µ2
j ′) + µ2

jµ
2
j ′

]
µ2

j

µ2
j ′ 1

]
, (10c)

whereI is the 2×2 identity matrix andδjj ′ is 1 whenj = j ′,
otherwise 0. Note that theW matrix inJin (1994, Eq. 4–42b)
is trivial in our caseW = −κe owing to the symmetry of the
Rayleigh phase function. Differentiating Eq. (10a) and com-
bining it with Eq. (10b) leads to a second-order ordinary sys-
tem of differential equations. The solutions are of the form

T Ba(µj ,z)

=

2ni∑
m

[
xm exp(αmz)+ym exp(−αm(z + d))

]
T 0

Ba,m(µj )+2T I , (11)

where d is the layer depth,αm = +
√

3m, (m = 1...2ni)
and 3m are the eigenvalues andT 0

Ba,m(µj ) the eigenvec-

tors of the 2ni × 2ni matrix whose elements areκe
µ2

j

App′

jj ′

(j = 1...N,p = v,h and j ′
= 1...N,p′

= v,h). xm and ym

are 2× 2ni unknown constants to be determined with the
boundary conditions. In DMRT-ML, the eigenvalue problem
is solved using LAPACK routines (Anderson et al., 1999).

Combining Eqs. (10b) and (11), the solutions for the sym-
metric brightness temperature are

T Bs(µj ,z) =

2ni∑
m

[
xm exp(αmz) (12a)

−ym exp(−αm(z + d))
]
T 0

Bs,m(µj ),

T 0
Bs,m(µj ) =

nk∑
j ′

1

µjαm

Ajj ′T 0
Ba,m(µj ′) (12b)

= κeµjαmT 0
Ba,m(µj ).

Note thatT 0
Ba,m(µj ) andT 0

Bs,m(µj ) are writtenE andQ,
respectively, inJin (1994, p. 102).

The boundary conditions express the conservation of en-
ergy at every interface. For each layerk of depthdk, every di-
rectionj and polarization, there are two boundary conditions
(Jin, 1994, Eqs. 5–10a and 5–10c). The boundary condition
at the top interface is

nk∑
m

[(
1− r top

j,k

)
T 0

Ba,m,k(µj,k)

−

(
1+ r top

j,k

)
T 0

Bs,m,k(µj,k)
]
xm,k

+

[(
1− r top

j,k

)
T 0

Ba,m,k(µj,k)+(
1+ r top

j,k

)
T 0

Bs,m,k(µj,k)
]

exp(−αm,kdk)ym,k

−

nk−1∑
m

(
1− r top

j,k

)[
T 0

Ba,m,k−1(µj,k)

−T 0
Bs,m,k−1(µj,k)

]
exp

(
−αm,k−1dk−1

)
xm,k−1

−

(
1− r top

j,k

)[
T 0

Ba,m,k−1(µj,k)

+T 0
Bs,m,k−1(µj,k)

]
ym,k−1

=

(
1− r top

j,k

)
(Tk−1 − Tk),

(13)
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and the one at the bottom interface is

nk+1∑
m

(
1− rbottom

j,k

)[
T 0

Ba,m,k+1(µj,k)

+T 0
Bs,m,k+1(µj,k)

]
xm,k+1

+

(
1− rbottom

j,k

)[
T 0

Ba,m,k+1(µj,k)

−T 0
Bs,m,k+1(µj,k)

]
exp

(
−αm,k+1dk+1

)
ym,k+1

−

nk∑
m

[(
1− rbottom

j,k

)
T 0

Ba,m,k(µj,k)

+

(
1+ rbottom

j,k

)
T 0

Bs,m,k(µj,k)
]

exp
(
−αm,kdk

)
xm,k

−

[(
1− rbottom

j,k

)
T 0

Ba,m,k(µj,k)

−

(
1+ rbottom

j,k

)
T 0

Bs,m,k

(
µj,k

)]
ym,k

=

(
1− rbottom

j,k

)
(Tk − Tk+1) ,

(14)

where r top
j,k and rbottom

j,k are the reflection coefficients for
streams going from the layerk to the upperk − 1 and lower
k+1 layers respectively. At the top of the snowpack, Eq.(13)
is formally valid if x0 andy0 are set to zero andT0 is T atmos

B .
At the bottom of the snowpack, Eq. (14) is valid if xL+1 and
yL+1 are set to 0, the reflection coefficientsrbottom

jL are cal-
culated with the substratum model (Table1) andTL+1 is the
substratum temperature.

The set of boundary conditions forms a linear system of
N equations (N = 4

∑
k nk). Since the unknownsx andy in

layerk are only linked to unknowns in layerk −1 andk +1,
the system can be arranged in block-diagonal structure and
can be solved using the efficient banded matrix solver in LA-
PACK. The brightness temperature emerging from the snow-
pack is then calculated with

T B(µj,0,z = 0) =

(
1− rbottom

j,0

)(
T1 +

n1∑
m[

T 0
Ba,m,1(µj,0) + T 0

Bs,m,1(µj,0)
]
xm,1

+

[
T 0

Ba,m,1

(
µj,1

)
− T 0

Bs,m,1(µj,1)
]

exp
(
−αm,1d1

)
ym,1

)
.

(15)

The value from this last equation is returned to the user as
the simulated top-of-snowpack brightness temperature.

2.6 Post-computation: emissivity and reflectivity

The emissivity, i.e., the coefficient measuring the departure
from a black body, is often used to present modeling results
in passive microwave studies instead of brightness temper-
ature (whose value is related to the snow physical tempera-
ture). Only when the medium is strictly isothermal, that is,
when the physical temperature of snow and the underlying

medium is uniform and equal toT , it is possible to compute
the emissivity using a single simulation and the following
equation:

e =
T B

T
. (16)

For a nonconstant temperature profile, which is the rule
for any natural snowpack, the definition of emissivity is not
trivial. To mimic the in-equilibrium case and the Kirchhoff
law, the emissivity can be defined as one minus the reflec-
tivity of the medium (Peake, 1959). The calculation requires
two simulations with slightly different atmospheric bright-
ness temperatures (T atmos

B andT atmos
B +1T atmos

B ). Assuming
T B andT ′

B are the results of these simulations, the reflectiv-
ity and emissivity are given by

e = 1− r = 1−
T ′

B − T B

1T atmos
B

. (17)

In practice, usingT atmos
B = 0 and1T atmos

B = 1 K is recom-
mended.

3 Results

This section presents the sensitivity of DMRT-ML to the
most important snow properties required as inputs. It also
discusses the limitations of the model and provides the range
of validity of the input variables whenever possible.

3.1 Sensitivity to ice dielectric constant

Figure3a shows brightness temperatures at 18 GHz as a func-
tion of the zenith angle calculated with DMRT-ML and cal-
culated byKong et al.(1979) together with observations re-
ported byTsang and Kong(2001, Fig. 7.7.2). The medium
is considered semi-infinite, the grain size was chosen to be
1.75 mm and the ice dielectric constantεice = 3.2+ i0.016.
The result of the DMRT-ML simulation with prescribed di-
electric constant (solid line) closely matches the original cal-
culation (dotted line) byTsang and Kong(2001) up to in-
cidence angles of 65◦. This provides a technical validation
of our implementation in the single layer case. However,
the imaginary part of the ice dielectric constant used by
Kong et al.(1979) was an order of magnitude higher than
the one obtained with the more recent Eq. (2) from Mätzler
and Wegm̈uller (1987). With the latter parameterization, the
brightness temperatures simulated using the same grain size
of 1.75 mm are much lower (dash line in Fig.3b), leading to a
strong disagreement with the observations. Modeling results
and observations can be re-conciliated by using a smaller ra-
dius of 0.83 mm (solid line in Fig.3b). This new simulation
yields results very close to those of the original simulation
and observations.

Even if Eq. (2) is likely closer to reality than earlier for-
mulas, the parameters of ice dielectric constants are still not
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Fig. 3. Comparison of DMRT-ML simulations (solid line) at 18 GHz with previous calculations (Tsang and Kong, 2001) (dotted curve)
and with experimental observations (filled dots). The medium is semi-infinite, with a density of 350 kg m−3, a temperature of 272 K, a
grain radius of 1.75 mm and an ice dielectric constant of 3.2+ 0.016. Simulations with a more realistic dielectric constant (Mätzler and
Wegm̈uller, 1987) are shown on the right panel with the original radius of 1.75 mm (dashed curve) and refitted radius of 0.83 mm (solid line).
The gray bars represent variations of the dielectric constant imaginary part of±20 % around in the later case.

well constrained by measurements especially at low frequen-
cies (Jiang and Wu, 2004) and the uncertainty is unknown.
The consequences on the predicted brightness temperature
can be significant as illustrated in Fig.3b (gray area) obtained
by assuming an error of±20 % of the dielectric loss (imagi-
nary part of the dielectric constant). At a 53◦ incidence angle
for instance, the error is 11 and 12 K at vertical and horizon-
tal polarizations respectively. Such an error is significant and
must be taken into account in the interpretation of simula-
tions by thermal microwave emission models.

3.2 Sensitivity to the grain size

The significant sensitivity of microwave thermal radiation to
snow grain size is widely recognized (Zwally, 1977). It stems
from the fact that snow grains are usually smaller than the
wavelength in the microwave range and their scattering co-
efficient (Eq.8c) increases as the cubic power of the sphere
radiusa. Figure4 presents the variation of the scattering ef-
ficiency (Qs = 4aκs/3f ) as a function of sphere radius. The
calculations with DMRT-ML (for various densities) are plot-
ted as solid lines.

In contrast, the absorption coefficient increases linearly
with the size. It results that the emissivity and the bright-
ness temperature of a semi-infinite medium strongly decrease
with size (Fig.5). The difference between vertical and hori-
zontal polarizations also slightly decreases as scattering in-
creases.

An important consequence of this cubic dependence is that
a collection of spheres with different sizes is not equivalent to
a collection of identical spheres with the averaged size. The
contribution of the largest spheres of the collection to scatter-
ing is comparably greater than the contribution of the small-

est. However,Jin (1994) shows that, under the assumption
of small grains, any collection can be represented by equal-
radius spheres with an equivalent grain sizeac. This size is
always larger than the average of the distribution but depends
on the distribution shape as well as snow density (Jin, 1994,
Eq. 3–42 and Figs. 3–11, 3–12). In DMRT-ML, we imple-
mented the calculation for a Rayleigh distribution of size and
reached the same conclusion asJin(1994). Unfortunately, the
results are highly dependent on the choice of the distribution
and especially on the slope of the upper tail of the distribu-
tion. For instance, a log-normal distribution – relevant for
snow (Flanner and Zender, 2006) – features many very large
grains for a reasonable mean grain size, which leads to the
divergence of the DMRT-ML calculation and breaks the as-
sumptions of small scatterers. In practice, the choice of the
distribution is difficult and is related to the more general is-
sue of the representation of snow by a collection of spherical
grains.

Figure4 also illustrates the empirical correction for large
particles proposed in DMRT-ML (Sect.2.3). The corrected
scattering efficiency (circles) is limited to a maximum value
of 2, which corresponds to the theoretical asymptotic value
for very large particles (Grody, 2008). This correction elim-
inates the unrealistic divergence of the scattering efficiency
for large grain sizes (solid line). Nevertheless, the quality
of this correction is difficult to evaluate for dense media.
For a sparse medium however, the scatterers are independent
and the scattering efficiency is obtained by Mie’s calculation
(Warren, 1982). Figure4 (dashed blue curve) shows that the
Mie scattering efficiency at 89 GHz diverges from DMRT-
ML with density tending to 0 kg m−3 (i.e., independent scat-
terers) for grain radii larger than 0.75 mm (i.e.,a ≈ λ/5
and Qs of 2–3). This is in agreement with our correction.
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Fig. 4. Scattering efficiency (Qs = 4aκs/3f ) at 89 GHz as a function of the grain size for different ap-
proximations and densities: Independent scattering approximation (applies for very small density only)
using DMRT with a density approaching 0 (solid blue line), or full Mie calculation (dashed blue line);
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efficiency at Qs=2, for two different densities.
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blue line), or full Mie calculation (dashed blue line); DMRT-ML
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However, Mie efficiency reaches a maximum value of nearly
5 and remains largely above 2 in the range of realistic grain
sizes. This is not reproduced by our correction. In fact, the
convergence towards 2 is only observed at much larger grain
sizes. This result suggests that the empirical correction would
be more accurate if the efficiency limit were increased up to
a value around 4. However, this result was derived in partic-
ular conditions (sparse medium, 89 GHz) and its generality
is unknown. We therefore recommend to use the correction
with caution and only when a very limited number of layers
in the snowpack have large grains. It is worth noting that the
conditionQs < 2 is valid for most types of snow at frequen-
cies lower or equal to 89 GHz as shown in Fig.6. Harlow
and Essery(2012, Fig. 11) show using Mie-QCA with sticky
spheres (τ = 0.2) that this assumption is valid up to about
60 GHz for 1 mm-radius particles and to 200 GHz for par-
ticles of 0.3 mm radius and smaller. This confirms that the
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Fig. 6.Range of grain sizes for which the DMRT-ML QCA-CP non-
sticky is reasonably valid as a function of the frequency for snow at
260 K and 200 (red) or 300 kg m−3 (black). The upper limit is the
grain size for which the scattering efficiency reaches a value of 2.

general criteriaa / λ/5 is adequate to evaluate the validity
of QCA-CP for small scatterers.

However, even if the conditionQs < 2 is true, we note that
the brightness temperatures become unrealistically low be-
fore Qs reaches a value of 2 (which occurs fora > 1 mm in
Fig. 5). For example, the lowest brightness temperature ever
observed at 89 GHz in Antarctica by AMSR-E is 117 K.

3.3 Influence of snow density

Snow density is involved in many components of the model.
It drives (i) the proximity of the grains, thus the scatter-
ing coefficient of the medium in relation with the grain size
(Eqs.5, 6); (ii) the mass of ice, thus the absorption coeffi-
cient; (iii) the real part of the refractive index, which deter-
mines the stream angles, and the transmission and reflection
coefficients of every interface (West et al., 1996).

The first two effects are illustrated in Fig.7 at 37 GHz and
for a grain size of 0.3 mm. The absorption and scattering co-
efficients are calculated assuming a medium of “ice spheres
in air” for density less than half of the pure ice density (i.e.,
fractional volume of 50 %) and “air spheres in ice” other-
wise. The discontinuity observed in Fig.7 comes from the
fact that both representations are not strictly equivalent even
at a fractional volume of 50 %.

The absorption coefficient increases almost linearly with
the density because the ice is the only absorber. In contrast,
the case of the scattering coefficient is more complex. For
very low density, the medium is sparse and the scattering
coefficient calculated with the DMRT-ML theory increases
closely to the one calculated with the independent scatter-
ers assumption (Fig.7, dashed line). However, for densities
larger than 100 kg m−3, the latter becomes invalid, because
the scatterers are too close to be considered independent –
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they are in fact in the shadow of each other, which weak-
ens their scattering efficiency (Liang et al., 2006). This effect
is nicely captured by the DMRT-ML theory (Tsang et al.,
2000b, Fig. 10.4.5), which predicts that the rate of variation
of the scattering coefficient decreases with density. The co-
efficient reaches a maximum at a density around 150 kg m−3

and decreases for higher densities. Although this general be-
havior is expected, the accuracy of the DMRT-ML theory
is not well known at such high densities. Recent work us-
ing exact numerical calculation has shown that the theory
DMRT-ML QCA starts to deviate from fractional volume
around 30 % (Liang et al., 2006), i.e., a density of 275 kg
m−3 (validity range represented by circles in Fig.7). How-
ever, the generality of this result for smaller grains, moderate
stickiness or under the QCA-CP assumption is unexplored.
If we assume that the value of 30 % is correct and applies
also for “air spheres in ice”, the theory would be valid in
the range 640–917 kg m−3 (represented by squares in Fig.7).
Unfortunately, snow density falls in the intermediate range
(275–640 kg m−3) in many conditions. To deal with this is-
sue in practice, a pragmatic option is to consider the devia-
tion above 30 % fractional volume is moderate with respect
to other errors (such as grain size measurements) and to apply
DMRT-ML QCA-CP using the most adequate medium rep-
resentation as a function of the density as in Fig.7. A second
option is to interpolate the scattering and absorption coeffi-
cients using polynomials fitted with anchor points taken in
both domains where the theory is valid. This option called
“bridging” (Dierking et al., 2012) is appealing because it
yields continuous relationships as a function of the density.
However, the sensitivity to the choice of the polynomial or-
der and the anchor points has to be evaluated. Therefore, the
“bridging” option is not implemented in DMRT-ML yet.

3.4 Influence of the stickiness

Figure8 shows the scattering coefficient at 37 GHz as a func-
tion of density for different values of the stickiness parameter
τ and grain radiusa for a given temperature. It shows that the
scattering coefficient increases as the stickiness parameterτ

decreases (from blue to black to green curves). The lower
values of stickiness correspond indeed to stronger attractions
between spheres and a more pronounced clustering effect.
Clusters are “seen” by the microwaves as larger objects than
the particles they are made of. It means that they scatter more
than if the particles were randomly positioned (i.e. nonsticky
case). However, the stickiness parameter is not just a scaling
factor of the grain size. In fact, a cluster of small particles is
not equivalent to a large particle as illustrated in Fig.8: the
sensitivity to the density is different between a cluster (green
curve) and a large particle (red curve). The stickiness tends
to shift the maximum of the scattering coefficient toward a
larger density.

In practice, choosing a realistic value of stickiness to rep-
resent natural snow is difficult. There is currently no means
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Fig. 7. Scattering (blue and plain symbols) and absorption (red and
hollow symbols) coefficients at 37 GHz as a function of the density.
The temperature is 260 K and the grain radius is 0.3 mm. The model
“ice spheres in air” is used for densities less than half the pure ice
density (458.5 kg m−3). For higher densities, the model “air spheres
in ice” is used. Circles and squares show the domain of validity of
the DMRT-ML theory for each model. The scattering coefficient
under the assumption of independent “ice spheres in air” is shown
as a blue dash curve.
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Fig. 8. Scattering coefficient at 37 GHz as a function of the density
for different stickiness parametersτ and grain radiusa. The tem-
perature is 260 K.

to estimate this value either from field measurements, 3-D
images of snow micro-structure or snow evolution model
outputs. As for choosing a grain size distribution, the core
of the problem is the representation of snow by spheres.
Tsang et al.(2008) suggest to useτ = 0.1 because it yields
a frequency-dependence in better agreement with measure-
ments. With such a low value, the clustering effect is in
fact very strong and the size of the cluster approaches the
wavelength (long-range effect), which explains the change
of the frequency-dependence.Mätzler(1998) suggests to use
a higher value,τ = 0.2, based on a comparison between the
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density dependence in DMRT-ML with various degrees of
stickiness and in the improved Born approximation (Mätzler,
1998).

The implementation of the stickiness in DMRT-ML is lim-
ited to the “short range” version, i.e., both the grains and the
cluster must be small with respect to the wavelength. In prac-
tice, τ should be larger than its theoretical minimum value
of (2−

√
2)/6 = 0.098 (Tsang et al., 2000b, p. 427). After

Tsang et al.(2000b, Fig. 8.4.3) and our own calculation (not
shown), the “short range” calculation is valid forτ values
larger than 0.25 and grain sizes, which respects the small
scatterer assumption. For lowerτ , the validity depends on
the grain size.

3.5 Influence of the liquid water content

Figure9 shows the relationship between the brightness tem-
perature at 19 GHz and horizontal polarization as a func-
tion of the total column liquid water content. The snowpack
is considered homogeneous, except that the liquid water is
concentrated in the top 10 cm. This calculation confirms the
strong influence of the liquid water on brightness tempera-
ture, which is exploited to detect snowmelt events from pas-
sive microwave observations (e.g. Picard and Fily, 2006). It
also shows that brightness temperature reaches a nearly con-
stant value from about 0.5 kg m−2 of liquid water. This fea-
ture explains why the retrieval of the amount of liquid wa-
ter from passive microwave observation is probably impos-
sible. The threshold value, 0.5 kg m−2, is close to value ob-
tained with the MEMLS model (Tedesco et al., 2007) and
that obtained indirectly by comparing observations and out-
puts of the RACMO regional snow and atmosphere model
(Kuipers Munneke et al., 2012).

3.6 Layered snowpack

It is well known that the natural snowpack is composed of
relatively homogeneous layers formed by episodes of accu-
mulation and subject to metamorphisms. Hence, the density
and grain size (and stickiness) can be different in every layer.
Since the electromagnetic properties (i.e., the scattering and
absorption coefficients and the effective constant of propaga-
tion) have a nonlinear dependence to the snow properties, the
single-layer “average” snowpack is not electromagnetically
equivalent to the multi-layer snowpack. In addition, the tem-
perature is rarely uniform within the snowpack, especially
close to the surface where the strong temperature gradients
are caused by the daily variations of solar energy (Brandt
and Warren, 1993).

Several effects can result from the layered nature of the
snowpack. In general, accounting for the multi-layered na-
ture is particularly important for

– the difference between the horizontal and vertical po-
larizations. The difference is particularly sensitive to re-
flection at the air–snow interface, which is driven by the
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Fig. 9. Brightness temperature at 19 GHz and horizontal polariza-
tion as a function of the total amount of liquid water in the snow-
pack. The temperature is 273 K, density is 300 kg m−3 and there
exist two grain size values (0.5 and 1 mm). The liquid water is con-
centrated in the top first 10 cm of the snowpack.

density in the upper layer and by the reflection at the
internal interface, which depend on the contrast of den-
sity between successive layers. There are several exper-
imental and theoretical evidences of this effect (Mätzler
et al., 1984; Liang et al., 2008; Champollion et al.,
2013). Smoothing the profile of density in simulation
results directly in a decrease of the difference between
the polarizations.

– the spectrum of emissivity. It is particularly sensitive to
the scattering and absorption profiles because the pen-
etration depth highly depends on the frequency. For in-
stance,Brucker et al.(2010) showed that the spectra ob-
served in Antarctica cannot be explained with a homo-
geneous snowpack, and that the increase of grain size
with depth is a necessary condition to explain the ob-
served spectra. In some extreme cases called “anoma-
lous spectra” byRosenfeld and Grody(2000), the ob-
served emissivity increases with frequency although the
emissivity of a homogeneous snowpack decreases with
frequency due to a stronger increase of scattering rel-
ative to that of the absorption. To illustrate the effect
of the resolution of the snow parameter profiles, the
calculation presented inBrucker et al.(2011a) using
the original 2.5 cm high-resolution profiles of grain size
and density measured at Dome C in Antarctica are pre-
sented in Fig.10 along with calculations using lower-
resolution profiles. The simulations are performed at
19 and 37 GHz with a homogeneous temperature of
219 K (the annual mean at Dome C). Only the resolution
in the upper 3 m for which measurements were avail-
able is varied. Figure10 shows that coarser-resolution
results in higher brightness temperatures (up to about
8 %), except for the lowest resolution (3 m-thick layer,
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corresponding to the homogeneous snowpack). This
complex dependence might be explained by the fact that
the modeled brightness temperature is more sensitive to
the resolution of the density profile than that of the grain
size (simulations not shown) and that the density depen-
dence of the electromagnetic properties is not mono-
tonic as shown in Fig.7. These results are specific to
Dome C but they emphasize the importance of the reso-
lution of the input parameters.

– time series of brightness temperature. Even if the grain
size and density are assumed homogeneous the temper-
ature profile is rarely uniform nor constant over time in
snow and its variations can even be significant in the
layer identified in the field based on the homogeneity of
the grains and compactness. The variations of tempera-
ture near the surface are in general more rapid than the
change of grain size and density due to metamorphism,
and thus have the most important contribution to the
short-term brightness temperature variations. Simula-
tions at Dome C inBrucker et al.(2011a) show that even
with grain size and density profiles taken constant over
a few years (metamorphism is very slow at Dome C due
to low temperature), the variations of brightness temper-
ature are well reproduced (≈ 2 K) using measured time
series of temperature profiles. Reducing the resolution
of the temperature profile would result in a smoother
time series.

4 Validation of DMRT-ML with external data

The comparison between measured brightness temperatures
and results of DMRT-ML simulations using measured in-
puts was addressed in several studies: for a typical dry semi-
infinite snowpack in Antarctica (Brucker et al., 2011a), for
Arctic and sub-Arctic seasonal snowpacks (Roy et al., 2013)
and for snow overlying ice as found in the ablation zone of
the ice sheets (Dupont et al., 2012). In the three cases, it was
necessary to estimate some parameters by optimization with
respect to the measured brightness temperature. It is indeed
difficult to measure all the input variables and parameters
and the brightness temperatures with the same representa-
tiveness. In addition, some quantities – like the snow grain
size and the soil properties – are notoriously difficult to de-
termine in the field. The representation of snow grain in the
DMRT-ML theory by spherical particles is also a conceptual
difficulty.

Hence, the results of the comparisons and the errors esti-
mated in these studies depends on the methodology and are
meaningless out of the context of each study. Nevertheless,
these studies converge on two facts. First, the grain size de-
rived from specific surface area measurements, i.e., optical
radius, needs to be increased by a factor between 2.8 and
3.5 to be suitable as input of DMRT-ML (see discussion in
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Fig. 10. Brightness temperature at 18.7 and 36.5 GHz at Dome C,
Antarctica, simulated as a function of the resolution of the pro-
files of grain size and density. The original profiles are presented
in Brucker et al.(2011a) and are composed of two parts: the upper
3 m were measured with a vertical resolution of 2.5 cm (simulation
marked by a symbol) and the lower part (3 to 100 m depth) is a de-
terministic function of the depth. The profiles at lower resolutions
are generated by merging successive layers in the upper part only
to emphasize the influence of measured profile resolution, the lower
part remaining unchanged. Thex axis reports the thickness of the
layers, from 2.5 cm (original profile) to 3 m (i.e. one single layer for
the upper part).

Roy et al., 2013). There is no evidence that similar adjust-
ments would be required for the density or temperature mea-
surements. Second, the model predicts reliable dependence
between horizontal and vertical polarizations near the Brew-
ster angle (50–55◦). Figures11 and 12 illustrate the latter
point for the polarizations at 37 and 19 GHz respectively.
They show the brightness temperature at horizontal polariza-
tion versus vertical polarization for all the snow pits or pixels
analyzed inBrucker et al.(2011a), Roy et al.(2013), and
Dupont et al.(2012). Observations (in red) were acquired
with a ground-based radiometer except at Dome C (stars),
where measurements were recorded by the advanced mi-
crowave scanning radiometer for EOS (AMSR-E). DMRT-
ML predictions are in blue. A large variety of environments
are represented: Antarctica, ice-sheet ablation area, Arctic
tundra, Arctic windy tundra, Arctic fen, and grassland. Each
gray line links the observation and simulation result from the
same snow pit or pixel. The length of each line illustrates the
discrepancy between the observation and the simulation re-
sult of the order of 2–13 K but, as stated before, this is not an
absolute error since it depends on the calibration procedure
that differs between the studies. The relationship between the
polarizations can be safely interpreted as it is almost inde-
pendent of the calibration: Figs.11 and12 demonstrate that
the measured brightness temperatures at both polarizations
are highly correlated over a large range of about 120 K at
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Fig. 11. Brightness temperatures at 55◦ incidence angle and
37 GHz, at vertical polarization versus horizontal polarization for
a variety of sites: Dome C, Antarctica (stars), Arctic tundra (trian-
gles up), Arctic windy tundra (triangles down), Arctic fen (squares),
grassland (diamonds), ice-sheet ablation or percolation areas (cir-
cles). Observations are in red and DMRT-ML predictions in blue.
The gray lines link the observation and prediction of the same site.
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Fig. 12.Same as Fig.11 for a frequency of 19 GHz.

37 GHz and 70 K at 19 GHz. Part of this correlation stems
from the linear relationship between the brightness tempera-
ture and the snow physical temperature. However the range
of physical temperature – typically from−55 to 0◦C – is
less than the brightness temperature ranges. It means that the
emissivities at both polarizations are correlated. At 19 GHz,
the correlation is lower than at 37 GHz. A probable explana-

tion is the larger contribution of the substratum at the lower
frequency due to the longer penetration depth. The important
point is that the model nicely reproduces this general corre-
lation. Even where the model and the observations disagree
(i.e. long gray lines), the correlation between polarizations
remains (i.e. the gray lines follow the general trend of the
points).

5 Conclusions

The DMRT-ML is a physically based model used to compute
brightness temperature at any frequency in the microwave
range and at horizontal and vertical polarizations from input
variables describing multi-layered snowpack and its environ-
ment. These variables and parameters include the profiles of
snow temperature, density, grain size, stickiness, and liquid
water content, the characteristics of the substratum (e.g. soil
moisture, texture and temperature in the case of a soil sub-
stratum), and the downwelling atmospheric brightness tem-
perature.

The paper presents the sensitivity of the microwave emis-
sion to the most important input variables and parameters
and makes recommendations on the validity ranges of these
variables and parameters, either constrained by the underly-
ing DMRT-ML theory or by the specific DMRT-ML imple-
mentation. The validation of DMRT-ML with external in situ
measurements is detailed in several studies (Brucker et al.,
2011a; Roy et al., 2013; Dupont et al., 2012) for various en-
vironments. The error found between predicted and observed
brightness temperatures ranged between 2 and 13 K, which
gives the magnitude of accessible errors but which depend
on the methodology used for the comparison. In particular,
the choice of the relationship to relate the measured grain
size to the grain size metric relevant to the DMRT-ML the-
ory is critical and no ideal solution exists yet. However, these
studies add up to many others that have contributed to vali-
date the DMRT-ML theory (Macelloni et al., 2001; Tsang
and Kong, 2001; Tedesco et al., 2004; Grody, 2008). Cur-
rently, the most problematic point is probably the limited ac-
curacy of the DMRT-ML theory for intermediate density val-
ues (about 300–500 kg m−3) that are commonly observed in
natural snow and firn. An empirical correction of this prob-
lem has been recently proposed (Dierking et al., 2012). Even
though it could be accurate enough, it has not the theoretical
grounds that characterize the DMRT-ML theory and makes
one of its merits. Further improvements are needed.

The main characteristics of the DMRT-ML implemen-
tation are the availability as an open source software, the
efficiency of the computation due to the use of Fortran90
and LAPACK library, the wide range of cryospheric environ-
ments that can be modeled without any change of the source
code (dry and wet snowpack, seasonal snow over soil, sea-
sonal snow over bubbly ice, frozen lakes, perennial snow,
etc.). In addition, modeling sea ice will be possible in the near
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future with the implementation of the dielectric constants
of salted snow and water. These particularities are strong
assets for the coupling of DMRT-ML with land surface
models (Vionnet et al., 2012) and for the integration as an
observation operator into data assimilation schemes or com-
putationally intensive inverse methods. DMRT-ML is avail-
able for download athttp://lgge.osug.fr/∼picard/dmrtml/.
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