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Soft-Decision COVQ for Rayleigh-Fading Channels

Fady I. Alajaji, Member, IEEE and Nam C. Phamdaviember, IEEE

Abstract— A channel-optimized vector quantizer (COVQ) Tova . .
scheme that exploits the channelsoft-decision information is VeRF | o | X€i01) npsk | WE LA
proposed. The scheme is designed for stationary memoryless p _bits Modulator
Gaussian and Gauss—Markov sources transmitted over BPSK- sample

modulated Rayleigh-fading channels. It is demonstrated that Ravioieh
substantial coding gains (2-3 dB in channel signal-to-noise ratio f;{dihi
(SNR) and 1-1.5 dB in source signal-to-distortion ratio (SDR) Channel
can be achieved over COVQ systems designed for discrete

(hard-decision demodulated) channels. bit
— tova Soft- Decis
Index Terms—Combined source-channel coding, COVQ, soft- e mr| Poeoder Iy e vg 3o | T Demod. 7

decision decoding, Rayleigh-fading channels.

Fig. 1. Block diagram of the system.

. INTRODUCTION

. TABLE |
ECENT WORKS (e'g" [2]’ [3]' [5]_[8]) on combined CAPACITY (IN BITS/CHANNEL USE) oF THE DMC DERIVED FROM

source-channel coding show that significant performanceBPSK-MobuLATED RAYLEIGH-FADING CHANNEL. A IS THE STEP-SIZE OF
improvement can be realized for very noisy communication TE SorT-DECIsioN DEMODULATOR WHICH MAXxIMIZES CAPACITY

channels. Most of these works (with the exception of [8], Channel [g=1] g=2 =3 P

[10]) deal with discretechannel models, i.e., channels used SNRB) € [ C]A]C]A]C]A
h . . . . . o] 1.000{1.000|1.000|1.000|1.00011.000 | 1.000
in conjunction with hard-decision demodulation. 160 |0.906]0.94710.20010.954|0.100/0.955 0.060
In this letter, we incorporate the use of soft-decision in- 14.0  10.865/0.920|0.240|0.929]0.130/0.931|0.070
. . . . . 12.0 0.811]0.88010.300(0.892|0.160|0.895|0.090
formation in the design of combined source—channel coding 00 |0742]0:82410 36010 81010 19010 84410 110
schemes. More specifically, we propose a channel-optimized 80 |0.656]0.719|0.440]0.769}0.240|0.774]0.130
H H H. 6.0 0.557(0.656(0.530(0.678|0.290|0.684|0.160
vector quantlzer_(COVQ) [5], [3] for |r_1dependent_ (_fuIIy in 20 o1 051810 65010572 10,360 0578 |0.200
terleaved) Rayleigh-fading channels with soft-decision binary 3.0 [0.399]0.492|0.720|0.515|0.400|0.522|0.220
phase-shift keying (BPSK) modulation. This scheme—which fg 8§§§ gigf 8:38 ngi 8438 gzg; gggg

. . . . . B i B . R il . N .
consists of a source code designed for noisy channels—is in 0.0 [0.256]0.320]1.000]0.319|0.560|0.355|0.310
many ways similar to channel-coding techniques that employ ;g 8521;1) gﬂ 1;8 8;92 8538 8250; gggg
soft-decision coded modulation. Numerical results indicate that 5o 1015000 19911 390 0213 0,700 022‘?7 0.440

coding gains of up to 3 dB can be achieved over COVQ

systems designed for hard-decision demodulated channels.
The main difference between this work and [8], [10] liegector, the encoder produces a binary veXoe {0, 1}*" for

in the fact that we employ a soft-decision quantizer at theansmission. Each of the- bits of X is BPSK modulated, and

receiver. This results in an overall system with comparable péne outputW € {—1,+1}*" is transmitted over a Rayleigh-

formance [7] but significantly reduced decoder computationading channel according to

complexity; the memory requirement, however, is higher. Z, = AW, + N, i= 1,2k

II. DMC CHANNEL MODEL whereW; € {—1, +1} is the BPSK signal of unit energy and
The proposed system is illustrated in Fig. 1. The inp rNi} is a sequence of independent and identically distributed

source vectolV is a real k-tuple, and the COVQ operates 1.i.d.) zero-mean Gaussian random variables with variarice

at a rate ofr bits per source dimension. For each inpu-{_he amplitude fading procegsl; } is assumed to be ii.d. with

probability density function (pdf)
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vector,gkr bits are produced at the demodulator output. These v ¢ g+ X Y v
bits are then passed to the COVQ decoder. ] covQ DMC covQ
We note that the concatenation of the modulator, channel, Encoder Decoder
and demodulator constitutes indeed2’ -input 2¢*"-output
discrete memoryless channel (DMC). Thlsp channel |speqU|v'-g 2. Block diagram of a COVQ system.
alent to a binary-inpu2?-output DMC usedkr times. Its
channel transition probability matrix can hence be computedft-decision information significantly increases the channel
from the channel noise variance and the complementary ereapacity during severe channel conditions; e.g., at a channel
function. More specifically, let the receiver’s uniform scalaBNR of —3 dB, the capacity increases by 44.67% (fror: 1
quantizera(-) with step-sizeA be defined as to g = 4).

a(z)=j,  ifze (T, 1)
where the threshold$Z;} satisfy

lll. COVQ DESIGN

—0, if j=—1 Given the channel .transition m_atriﬂ, we de;ign the
T;={ (j+1-20"YA, if j=0,1,---,27—2 COVQ for'the DMC using the .algorrthr.n proposed. in [3]. The
o0, if j =201 alg_orltr;m ||s an |t\e;\r/at|t\)/e illlg?jnthrrrbwh_lch resltrlts in a locally
... optimal solution. We briefly describe it as follows.
If &' =1{0,1} andy = {0, 1,2, .-, 201}, then the transition "\ 4o 2 realvalued iid. source — {Vikiz, with
probability matrixIT is given by pdf f(v). The source is to be encoded bykadimensional,
II = [m;], teX,jey kr-bit COVQ whose output is to be transmitted over f#g-
where input 22*”-output DMC with transition probability distribution
P(ylz) = [I}7, 7uy,, Wherez € X*" andy € V**. The

A . .
mi; = Pr{Y = j|X =4} COVQ system, depicted in Fig. 2, consists of an encoder

=Pr{Z € (T;_1,T3)| X =i} mappingy and a decoder mapping, The encoder mapping
=Fpx(T5]i) — Fzx(Ty_10) v: R* — X* is described in terms of a partitioh = {S¢ C
R*: z € A%} of R* according toy(v) =z if v € Sg,z €
where Fx(z]i) £ Pr{Z < z|X = i} is the conditional X*", wherev = (vy,v2,---,v;) is a block of k successive
cumulative distribution function (cdf) of given X. For the source samples. The DMC takes an input sequenand
Rayleigh-fading channel, we obtain that [9] produces an output sequengelt is given in terms of the
Fyix(2|1) =1 — Fyx(~2|0) block .channerll transrt}lorr mater?(y|x). Finally, the decoder
_ BA[PH{N < 2 — a)] mapping3: Y* — IR" is described in terms of a codebook
=EglPr{N <z-a C = {ey € R*:y € Y*"} according tos(y) = cy,y € V*.
—1_ 1 erfc< ? ) _ 1 The encoding rate of the above system isits/sample and
2 V202 202 +1 its average squared-error distortion per sample is given by [3]
o R 1 )
2 N\ V2202 1 D)o? D=1, L, @ Y Plyln)llv—cyl® ¢ dv (1)
x
(/207 41)) Y
R where f(v) = ]_L _; f(wv) is the k-dimensional source pdf.
whereerfc(z) = (2/y/7) [2° ® dt is the complimentary For a given source, channgland kr, we wish to minimize

error function. It can be observed that the above two-inp@ by proper choice of? andC.

2¢-output DMC is “weakly” symmetric in the sense that its From (1), we see that for a fixed the optimal partition
transition probability matriXII can be partitioned (along its P* = {Sx} is given by [3]

columns) into symmetric arrays—where a symmetric array is

defined as an array having the property that all its rows are Si = w: Z Plylz)|lv — %”2

permutations of each other, and all its columns are permuta- M
tions of each other [4], [1]. The symmetry property implies the

fact that the capacity of this channel is achieved by a uniform <
input distribution [4]. Its capacity can, therefore, be easily Z
computed by evaluating the mutual information betweén

andY” using a uniform distribution ofX. In Table I, we display = € A™*". Slmllarly, the optimal codebook* = {q}}} for a
the channel capacity for different valuespfind the channel given partition is [3]

wle)llo — cyl’ Vi € XM

signal-to-noise ratio (SNR)SNR = E[W?]/E[N?] = 1/o>.

For each channel SNR, we numerically select the value of the Z Pylz) /S vf(v) dv
guantization step which yields the maximum capacity of the c:“,“/ ==z d
binary-input2?-output DMC. Note that the capacity increases Z P(y|z) fw) dv
with ¢ (as expected).It is important to point out that the Sx

lindeed, ag; — oo, the capacity of the DMC monotonically converges toThe C_OdebOOk IS .precomerted offine. Hence there is no
the capacity of the channel with unquantized output [9]. decoding computational requirements (as opposed to [8], [10]);
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TABLE 1 TABLE 1l
Sourct SDR (N DeciBeLS) PERFORMANCES OFCOVQ SYSTEM IN Source SDR (N DECIBELS) PERFORMANCES OFCOVQ SYSTEM IN
RAYLEIGH-FADING CHANNEL FOR DIFFERENT VALUES OF g (NUMBER OF RAYLEIGH-FADING CHANNEL FOR DIFFERENT VALUES OF g (NUMBER OF
SorFT-DEcIsSION BITS); MEMORYLESS GAUSSIAN SOURCE, 1 = 2 BITS/SAMPLE; SorFT-DECISION BITS); GAUSS-MARKOV SOURCE WITH CORRELATION
DIMENSION & = 2. NUMBERS IN BRACKETS INDICATE THE OPTIMAL COEFFICIENT 0.9; = 2 BITS/SAMPLE; DIMENSION k = 2.
PERFORMANCE THEORETICALLY ATTAINABLE (OPTA) FOR THE MEMORYLESS NUMBERS IN BRACKETS INDICATE THE OPTIMAL PERFORMANCE
GAUSSIAN SOURCE AND DMC (DERIVED FROM THE RAYLEIGH-FADING CHANNEL) THEORETICALLY ATTAINABLE (OPTA) FOR THE GAUSS-MARKOV SOURCE
(p = 0.9) AND DMC (DERIVED FROM RAYLEIGH-FADING CHANNEL)
Channel )
SNR (dB) g=1 q=2 g=3 g=14 Channel
oc 9.60 [12.04][9.60 [12.04]19.60 [12.04][9.60 [12.04] SNR (dB) g=1 g=2 g=3 g=4
16.0  17.90 [10.90]|8.14 {11.41]}8.24 [11.49]|8.26 [11.50] © 13.52 [19.25]]13.52 [19.25] [ 13.52 [19.25][13.52 [19.25]
14.0  |7.25 [10.42]|7.56 [11.08]|7.67 [11.19]|7.70 [11.21] 16.0 1 9.93 [18.12] | 10.86 [18.62]{11.00 [18.70]|11.04 [18.72]
12.0 647 [9.77)]6.86 [10.60]|6 98 [10.75]|7.02 [10.78] 14.0 | 9.09 [17.63] |10.31 [18.29] | 10.49 [18.40}{10.50 [18.43]
10.0 1573 [ 8.93]]6.41 [ 9.92]|6.56 [10.12]|6.59 [10.16] 12.0 | 8.29 [16.98] | 9.50 [17.81] | 9.74 [17.96] | 9.79 [17.99]
8.0 1.93 [ 7.90] | 5.63 [ 9.02] | 5. 73 [9.26] | 5. 83 [9.32] 10.0 | 7.36 [16.14] | 8.45 [17.13] | 8.72 [17.33] | 8.79 [17.38]
6.0 4.08 [6.70] [4.75 [ 7.89] [4.91 [ 8.17] | 4.95 [ 8.24] 8.0 6.60 [15.11] | 7.31 [16.23] | 7.54 [16.47] | 7.59 [16.53]
4.0 3.23 [ 5.43] | 3.84 [ 6.60] 399 [ 6. 89] 1 os [ 6.96] 6.0 5.55 [13.92] | 6.30 [15.11] | 6.55 [15.38] | 6.62 [15.45]
3.0 2.83 [ 4.80] | 3.41 [ 5.92] | 3.55 [ 6.21]| 3.59 [ 6.28] 4.0 4.45 [12.64] | 5.43 [13.81] | 5.69 [14.10} | 5.76 [14.17]
2.0 2.46 [ 4.19]]3.00 [ 5.24] 3. 13 [5.52][3.16 [ 5.60] 3.0 3.92 [12.00] | 4.85 [13.13] | 5.10 [13.42] | 5.17 [13.50]
1.0 2.13 [ 3.61)|2.62 [ 4.59]{2.74 [ 4.85] | 2.77 [ 4.92] 2.0 3.41 [11.34] | 4.28 [12.46] | 4.51 [12.73] | 4.58 [12.81]
0.0 1 8) [3.08] | 2.30 [ 3.96] | 2.42 [ 4.21] | 2.45 [ 4.27] 1.0 z 94 [10.67] | 3.72 [11.78] | 3.94 [12.05] | 3.99 [12.13]
-1.0 57 [ 2.60] | 1.97 [ 3.38] | 2.08 [ 3.60] | 2.11 [ 3.67] 0.0 51 [9.99] | 3.21 [11.09] | 3.40 [11.36] 3 45 [11. 44]
-2.0 1 dz [2.18]|1.68 [ 2.86) | 1.77 [ 3.06] | 1.80 [ 3.11] -1.0 2 12 [9. 30] 2.73 [10.39] | 2.90 [10.66] | 2.95 [10.74]
-3.0 1110 [ 1.80} | 1.41 [ 2.39] | 1.50 [ 2.57}| 1.52 [ 2.62] 2.0 1.78 [ 8.60] | 2.31 [ 9.68] | 2.46 [ 9.96] | 2.50 [10.03]
-3.0 1.71[7.9)] | 1.94[8.97] | 2.07 [ 9.24] | 2.11 | 9. Jl]
although the codebook size 27~1*" times larger than the V. CONCLUSION

codebook in [8]. The above result can be easily generalizedin this letter, we introduce a COVQ for binary-input
for sources with memory, e.g., a Gauss—Markov source [6]continuous-output channels. It consists of a COVQ for
a DMC derived from theg-bit quantized outputs of the
original channel, thus incorporating the channel soft-decision
information in the quantizer design. This technique is
In Tables Il and lll, we present numerical results for OUipplied to Rayleigh-fading channels used in conjunction
soft-decision COVQ scheme when the source is memoryl&ggh BpsK-modulation. It is demonstrated that soft-decision
Gaussian and Gauss-Markov with parameter 0.9, respectivef¥modulation always yields superior performance over hard-

The results are given in terms of the source signal-to- d'Stort'BBusmn demodulation; coding gains of 2-3 dB in channel
ratio (SDR) for various values of the channel SNR. Thgn\R are achieved.

numbers in brackets indicate the optimal performances the-

oretically attainable (OPTA) obtained by evaluatify+C'),

where D(-) is the distortion-rate function of the source (for REFERENCES

the Squared'erro_r distortion measure_)' drids the capacn_y [1] R. E. Blahut,Principles and Practice of Information Theory Reading,
of the DMC derived from the Rayleigh channel (and given = MA: Addison Wesley, 1988.

in Table 1). In both tables, the rate is = 2 bits/sample 2] J. Cheng and F. Alajaji, “Channel optimized quantization of images over
. . . R bursty channels,” ifProc. Canadian Workshop on Information Theory
and the dimension i$: = 2. As many as 80000 training Toronto, Canada, June 1997, pp. 49-52.

vectors were employed in the COVQ design program. Not&l N. Farvardin and V. Valshampayan “On the performance and com-
plexity of channel-optimized vector quantizersEEE Trans. Inform.

that the results foy = 1 correspond to hard-decision demod-  Teorny vol. 37, rpp 155-160, Jan. 1991.
ulation. [4] R.G. allagerln rmatlonTheoryand Reliable CommunicatiorNew
York: Wiley, 1968.
We obse_zrve from Tabl_es Il and Il that the system perq{s| n Kumazawa, M. Kasahara, and T. Namekawa, “A construction of
formance improves ag increases. For both sources, the  vector quantizers for noisy channel§lectron. & Eng. Jpn.vol. 67-B,

i i __ pp._39-47, Jan. 1984,
performance improvement in SDR due to the channel sof 6] RI Phamdo, F. Alajaji, and N. Farvardin, “Quantization of memoryless

decision information follows a similar pattern as the capacity = and Gauss—Markov sources over binary Markov channdEE Trans.

gains reported in Table |. For the memoryless Gaussian sourge ﬁompmhuglm\é%l- 4;,] J)p'FGGBX&Y;?ji Juypeerlfg%é nce of COVO over

(Table 1), at SNR= 8 dB, the SDR increases by 0.90 dB (from "~ awGN/Rayleigh channels with soft-decision BPSK modulation,” in
g = 1 to ¢ = 4); while for the Gauss—Markov source (Table Proc. Conf. on Information Sciences and SysteRrinceton, NJ, Mar.

_ ; ; 1996, 137-142.
|||), at SNR = 8 dB, the Improvement Is by 1.5 dB. 8] M. Sko%‘ljund “On soft decoding and robust vector quantization,” Ph.D.

In terms of coding gains in channel SNR, the best coding dissertation, Chalmers Univ. of Technol., Goteborg, Sweden, Tech. Rep.

i 302., Mar. 1997.
gains for both sources are around 2 dB when the chann G. Taricco, “On the capacity of the binary input Gaussian and Rayleigh

is very noisy. Furthermore, for the Gauss—Markov source, at™ fading channels,Eur. Trans. Telecommunvol. 7, no. 2, Mar.~Apr.
an SDR= 9.09 dB, the 16-bit soft-decision COVQ syste 1996.

. . . L ] H. Xiao and B. Vucetic, “Soft input source decoding in low-bit-rate
achieves a coding gain of 3.4 dB over the hard-decision COr\]lbo speech tranmission,” ifroc. IEEE Int. Symp. on Information Theory

system. Ulm, Germany, June—July 1997, p. 443.

IV. NUMERICAL RESULTS AND DISCUSSION



