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ABSTRACT: 
 
This paper presents a comparative study with different remote sensing technologies to recognize pathologies in façades of historical 
buildings. Building materials deteriorate over the years due to different extrinsic and intrinsic agents, so assessing these diseases in a 
non-invasive way is crucial to help preserve them. Most of these buildings are extremely valuable and some of them have been 
declared monuments of cultural interest. In this way through close range remote sensing techniques, it is possible to study material 
pathologies in a rigorous way and in a short duration field campaign.  
 
For the investigation two different acquisition systems were applied, active and passive methods. The terrestrial laser scanner FARO 
Focus 3D was used as active sensor, working at the wavelength of 905 nm. For the case of passive sensors, a Nikon D-5000 and a 6-
bands Mini-MCA multispectral camera (530-801 nm) were applied covering visible and near infrared spectral range. This analysis 
allows assessing the sensor, or sensors combination, suitability for pathologies detection, addressing the limitations according to the 
spatial and spectral resolution. Moreover, the pathology detection by unsupervised classification methods is addressed in order to 
evaluate the automation capability of this process. 
 

1. INTRODUCTION 

Historical buildings and monuments are extremely valuable 
constructions for the area where they are placed. The 
degradation of their construction materials is caused mainly by 
environmental factors such as pollution and meteorological 
conditions. Water increases the ability of air contaminants to 
degrade stone by combining with them to produce a hard and 
blackened layer on the surface of the rock (Marszałek, 2004). In 
addition, results of previous uncontrolled restoration techniques 
applied in some cases influence the degradation (Price, 2011). 
For that reason the use of non-contact and non-destructive 
technologies to study stone damages is important for the 
preservation of buildings and for the choice of the best 
technique for restoration (Fort et al., 2002; Weritz et al., 2009).  
 
Terrestrial laser scanner and digital cameras are two different 
technologies that are suitable for these studies. They are non-
destructive and non-invasive sensors that allow researchers to 
acquire huge geometric and radiometric information across the 
building with high accuracy and in a short duration acquisition. 
The geometrical information provided by laser scanner 
technology has been successfully applied in a large number of 
fields such as archaeology (Lamberts et al., 2007), civil 
engineering (González-Aguilera et al., 2008), geology (Buckley 
et al., 2008) and geomorphological analysis (Armesto et al., 
2009). On the other hand, radiometric information, provided by 
the intensity measurements in the case of laser technology and 
by the digital levels in the case of digital cameras, is used less 
frequently. Even so, it has demonstrated its high potential for 
classification tasks and recognition of different materials. 
Nowadays, in the literature, one can find works related to this 
issue: from methodologies of radiometric calibration 

(Kaasalainen et al., 2008), to corrections of intensity values 
(Franceschi et al., 2009; Höfle and Pfeifer, 2007) and to 
applications of the intensity data (Lichti, 2005). Spectral 
classification methods are based on the fact that each specific 
material has wavelength dependent reflection characteristics. 
There are many classification methods, which vary in 
complexity. These methods include hard and soft classifiers, 
parametric and non-parametric methods and supervised and 
unsupervised techniques (Mather and Tso, 2003). There are 
several works related to the application of these techniques to 
the identification of damage on building surfaces (Lerma, 2001; 
Lerma, 2005; Ruiz et al., 2002). 
 
The main goal of this study was to compare three different 
sensors to detect damages in facades of historical buildings. 
Additional goals were to detect different building materials and 
also increase the degree of automation in the pathology 
detection of façades. To succeed these objectives, the paper is 
divided into the following sections: Section 2 gives the details 
and specifications of the equipment employed and thoroughly 
describes the methods employed in the workflow methodology. 
Section 3 shows the classification results for both unsupervised 
and supervised algorithms, closing with Section 4 which 
summarizes the conclusions drawn from the study. 
 

2. MATERIAL AND METHODS 

Sensors and their role in the workflow developed are outlined in 
Figure 1. 
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2.1 Equipment 

For the documentation of the façade three different sensors 
were used with different characteristics and data acquisition 
principles, one active terrestrial laser scanner and two passive 
digital cameras (a multispectral camera and a single lens reflex-
SLR digital camera). Figure 1 shows the different wavelength 
sensors used in this research.  
 
The FARO Focus 3D laser scanner is based on the principle of 
continuous wave, with a wavelength of 905 nm. This device 
measures distances in a range of 0.60–120 m with a point 
measurement rate of 976,000 points per second. It has an 
accuracy of 0.015° in normal lighting and reflectivity 
conditions and a beam divergence of 0.19 mrad, equivalent to 
19 mm per 100 m range. The field of view covers 320° 
vertically and 360° horizontally with a 0.009° of angular 
resolution and the returning intensity is recorded in 11 bits. This 
laser scanner includes, in addition, a double compensator in the 
horizontal and vertical axis that can be used as constraint for the 
scan alignment. 
 
For the multispectral data acquisition, a lightweight Multiple 
Camera Array (MCA-6, Tetracam) was employed. This low-
cost sensor allows versatility in data acquisition, however 
requires the radiometric and geometric corrections to ensure the 
quality of the results (Del Pozo et al., 2014). It includes a total 
of 6 individual sensors with filters for the visible and near 
infrared spectrum data acquisition. More concretely, the 
individual bands of 530, 672, 700, 742, 778 and 801 nm were 
used. The longest wavelength was chosen taking into account 

that the multispectral sensor is not external cooled. In spite of 
its 1280 x 1024 pixels of spatial resolution, the camera has a 
radiometric resolution of 10 bits. The focal length of 9.6 mm 
and the pixel size of 5.2 µm yield a façade sample distance 
(FSD) of 5.4 mm for a distance of 10 m, which should be taken 
into account for the pathology detection performance in small 
elements. The main limitation of this camera is the field of view 
(38º x 31º), so several captures were needed to keep the FSD. 
 
The Nikon D5000 is a high-resolution digital SLR camera 
chosen to acquire information relating to the visible range of the 
spectrum with a resolution of 4288 x 2848 pixels. This camera 
uses RBG CMOS (Complementary Metal-Oxide-
Semiconductor) sensor with a pixel size of 5.5 µm. The focal 
length chosen for the study is 18 mm in order to capture high 
field of view.  
 
2.2 Data acquisition 

2.2.1  Range data: For the laser scanner, intensity data at 
11-bit resolution was collected at an average distance of 10 m. 
Scanning positions were selected according to the different 
technical specifications of the scanner for an spatial resolution 
of 6 mm at the working distance. The laser network was 
adapted and optimized due to the presence of obstacles that 
hinders a single station data acquisition. 
 

Figure 1. The workflow of the methodology presented. RR= Radiometric resolution, SR= Spatial resolution, Mp= Million points. 
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2.2.2  Image data: Illumination was a crucial parameter for 
both sensors in the image data acquisition since they were 
passive sensors and also several shot positions per sensor were 
required to cover the object of study. For that reason take fewer 
number of photos and farther was prioritized ensuring the 
greatest resolution. Images were collected at 10-m distance with 
a spatial resolution of 5.4 mm for the worst case (multispectral 
images).  
 
2.3 Pre-Processing 

2.3.1 Optimization and alignment of the point clouds: The 
raw TLS data were filtered and segmented in order to remove 
those points that were not part of the object of study (adjacent 
building, artificial elements, trees, etc.). The individual point 
cloud alignment was done by a solid rigid transformation by the 
use of external artificial targets (spheres). The spheres were 
stationed in tripods in the vertical of ground control points 
(GCP) surveyed by GNSS. The laser local coordinate frame 
could be transformed to a global coordinate system (UTM30N 
in ETRS89), allowing the geo-reference of the subsequent 
classification for a global analysis e interpretation. This 
proposed workflow allowed a final relative precision of the 
GCP coordinate of 0.01 m and an absolute error of 0.03 m after 
post-processing. As a result, a unique point cloud in a local 
coordinate system with 11-mm precision (due to the error 
propagation of inherent error sources of TLS (Reshetyuk, 2009) 
and the error associated to the definition of the coordinate 
frame) was generated. 
 
2.3.2 Multispectral images corrections: Low-cost sensors 
are more likely to be affected by different noise sources so that 
the actual value of radiation collected by them is altered 
(Equation (1)) (Al-amri et al., 2010). The Mini MCA6 was 
affected by two different sources errors: a background noise and 
a vignetting effect (Del Pozo et al., 2014). Both errors were 
studied under laboratory controlled conditions for each 
wavelength band.  
 
The background noise is a systematic error caused by the sensor 
electronics of the camera.  It was analysed in a completely dark 
room in the absence of light determining the noise per band and 
exposure time. For this study, the maximum background error 
was for the 801-nm band and involved a 1.07% increment of 
the actual digital level value. Regarding the vignetting effect, 
the radially attenuation of the brightness was studied taking 
images of a white pattern with uniform lighting conditions. 
Digital levels of each multispectral image were corrected for 
these two effects through a script developed in Matlab to 
improve the data quality before the orthoimages generation.  
 
 ( )raw radiance bn vDL DL DL DL      (1) 

 
where  DLraw = digital levels of the raw images 

 DLradiance = digital levels from the radiance 
component 

 DLbn = digital levels from background noise 
DLbn = digital levels from vignetting component 

 
 

2.3.3 Demosaicing of RGB images: The Nikon D5000 uses 
a Bayer filter over the CCD (Figure 2). It is a colour filter array 
(CFA) for arranging the red, green and blue colour filters on a 
rectangular grid of the sensor (Lu and Tan, 2003). Two filtered 
green, one blue and one red were obtained from each square of 
four pixels. There is double number of pixels for the green 
because the human eye is more sensitive to this colour. Each 
image is a mosaicked image. The process consists of estimate 
the three colours with the only one spectral measurement stored 
per pixel according to the neighbouring colours (Li et al., 
2008). We make use of the open-source dcraw (Coffin, 2011) 
computer application to convert these images. As result, the 
demosaiced images enclose the half spatial resolution of the 
original ones. 
 

 
Figure 2. Bayer-pattern block CFA. 

 
2.4  Processing 

In this section data from the different sensors were joined to 
achieve the orthoimages of each wavelength and the subsequent 
classifications maps. The pre-selected images from both 
cameras and the optimized laser scanner point cloud are the 
input data of the following procedures. 
 
2.4.1 Meshing: Once the final point cloud was generated a 
triangulation was applied to create the digital surface model 
(DSM). This step was required in order to generate continue 2D 
products (in the form of orthoimages) and carry out the 
pathology detection by the classification process. For the DSM 
generation the incremental triangulation Delaunay algorithm 
was applied (Bourke, 1989). The output was refined to avoid 
artifact, meshing gaps, and other errors (Attene, 2010). 
 
2.4.2 Orthoimages generation: Orthoimages are highly 
demanded products that offer many benefits: metric accuracy 
and radiometric information useful to analyse quantitatively and 
qualitatively different kind of information.  
 
For the orthoimage generation, there is necessary to known the 
external orientation of the images with respect to the coordinate 
system of the laser point model. For that purpose an average of 
20 corresponding points between the point cloud and images 
were establish. The image projection is characterised by a rigid 
transformation (rotation and translation) together with the 
internal camera parameters.  
 
Orthoimages were generated based on the anchor point method 
(Kraus, 1993). This method consists of applying an affine 
transformation to each one of the planes formed by the 
optimised triangular mesh, which was obtained from the point 
cloud determined by the laser. Through the collinearity 
condition (Albertz and Kreiling, 1989), the pixel coordinates of 
the vertices of the mesh are calculated, and the mathematical 
model of the affine transformation directly relates the pixel 
coordinates of the registered image and of the orthoimage.  
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2.4.3 Orthoimages classifications: In order to categorize the 
orthoimages in different informational classes a firstly 
unsupervised and a posterior supervised classification were 
performed. The unsupervised classification was based on the 
Fuzzy K-means clustering algorithm where each observation 
can concurrently belong to multiple clusters (Bezdek, 1981). 
For a set of n multidimensional pixels, the automatic 
management in k classes iteratively minimizes the Equation (2) 
(Kannan et al., 2009): 
 

 2

,
1 1

; 1
n k

m
m i l i j

i l

J u x c m
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        (2) 

 
where  m = any real number greater than 1 
 xi = the i-th of d-dimensional measured data 
 ui,l = degree of membership of xi in the cluster l 
 cl = d-dimensional centre of the cluster 

** = any norm expressing the similarity between 

any measured data and the centre 
 

Fuzzy partitioning is carried out through an iterative 
optimization of the objective function shown above, with the 
update of membership and the cluster centres by Equation (3). 
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This iteration will stop when  ( 1) ( )max k k
il il ilu u    ε 

 
where  ε = termination criterion between 0 and 1 
 k = the iteration steps 
 
After this classification, a fist approach of the spectral classes 
and different construction materials was obtained. With a 
subsequently supervised classification and applying the expert 
knowledge of some classes, the final results improve.  

Furthermore, this classification will serve as reference to 
discuss which sensor is the ideal for detecting materials and 
pathologies in façades. 
 
In this case, a maximum likelihood (ML) classification 
algorithm (Richards and Richards, 1999) was applied. The ML 
classifier quantitatively evaluates both the variance and 
covariance of the category spectral response patterns when 
classifying an unknown pixel. The resulting bell-shaped 
surfaces are called probability functions (Equation (4)), and 
there is one such function for each spectral category (Lillesand 
et al., 2004). 
 
 1Pr( / ) ln ( ) ( )T

k kk g k g k g          (4) 

 
where  k  = covariance matrix 

wk. = mean vector 
 
 

3. EXPERIMENTAL RESULTS 

The study area was the Shrine of San Segundo declared World 
Cultural Heritage in 1923 (García, 2006) (Figure 3). This 
Romanesque shrine is located in the west of the city of Ávila 
(Spain) and was built in the 12th century with unaltered grey 
granite plinths and walls with the alternation of granite blocks 
with different alteration degrees. The unaltered granite is 
mainly present in the blocks of low areas because of its high 
compressive strength and resistance to water absorption.  
 

  

Figure 3. South façade of the Church of San Segundo in Ávila (Spain). 

 

 

Figure 4. Orthoimages of the southern façade from the 3 analysed sensors. 
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The field work was carried out on 27 July 2012 around the 
southern façade of the church (Figure 3), the most interesting 
façade from a historical point of view because it preserves the 
Romanesque main front. The five archivolts and capitals are 
decorated with plant and animal motifs. A total of 3 stations for 
the case of laser scanner were performed to cover the façade at 
a distance of 10 m. The resolution of the data capture of the 
FARO Focus 3D was 6 mm. Moreover, the façade was 
photographed at the same distance with both passive sensors, 
Nikon D5000 and Mini MCA6-Tetracam. A total of 3 RGB 
images and 9 multispectral images were used for the 
orthoimages generation. The total volume of information 
generated amounted to 10.7 GB, where the great part was due to 
the meshes and orthoimages generation projects. Figure 4 
shows the set of the 10 final orthoimages. 
 
In order to compare the discrimination capability of the three 
sensors to distinguish rock and pathologies a first unsupervised 
classification for the orthoimages of each sensor was performed 
(Figures 5, 6 and 7). A final supervised classification with the 
complete set of 10 orthoimages was carried out. This last 
classification serves as a reference against which compare each 
individual unsupervised classification. The steps followed by 
the workflow are shown in Figure 1. 
 
3.1 Unsupervised classifications 

Ten predefined clusters were used in each case for the 
unsupervised classification algorithm. In all of them, the 
resulting map showed the existence of affected areas. Post-
analysis reduced the number of clusters. The number of clusters 
decreased from 10 initial clusters to 6 thematic classes with real 
meaning: 1) unaltered granite, 2) altered granite, 3) wood (door 
of the church), 4) areas with moisture evidences (caused by 
capillarity or filtration water), 5) mortar between blocks and 6) 
biological colonization areas. 
 

 
Figure 5. FARO Focus 3D map for the 6–classes unsupervised 

classification. 

 

 
Figure 6. Mini MCA6 map for the 6-classes unsupervised classification. 

 

 
Figure 7. Nikon D5000 map for the 6-classes unsupervised 

classification. 

 
It is noteworthy that data are not as satisfactory as could be due 
to large variability in lighting conditions during the data 
acquisition. As mentioned at the beginning of Section 3, the 
fieldwork took place on July 27, with a 6-hours total acquisition 
time.  
 
Comparing the results with a visual inspection, results 
corresponds quite well to reality for both types of existing 
granites (unaltered and altered) by two well differentiated 
clusters in all classification maps (Figure 5, 6 and 7). Note that 
only 6 clusters of the final 6 pre-set informational classes were 
distinguished for the case of laser scanner (Figure 5). Regarding 
pathologies detection, it was not possible to draw conclusions 
with these first unsupervised classifications. However, this 
process served to perform a better defined supervised 
classification. 
 
Table 1 summarizes the values of the overall accuracy for the 
Fuzzy K-means unsupervised classification for each data set 
evaluated. 
 

Overall accuracy (%) 
Sensor Fuzzy K-means algorithm 

FARO Focus 3D (905 nm) 78.96 
Mini MCA6 (530-801 nm) 86.20 
Nikon D5000 (Visible) 75.92 

Table 1. Unsupervised classification accuracies achieved for each data 
set. 

 
The best classification accuracy was 86.20%, achieved for the 
Mini MCA6 unsupervised classification (Table 1). This 
indicates that the best correlation between the number of pixels 
correctly classified and the total number of pixels occurred for 
this sensor. 
 
3.2 Supervised classification 

With the full set of the 10 orthoimages a supervised 
classification of the façade was performed (Figure 8) taking into 
account the two existing variants of granite and their 
pathologies derived primarily from moisture and biological 
colonizations. 
 
In order to compare the reference classification (based on 
training areas) with each sensor data unsupervised classification 
Table 2 was performed. The table shows the sum of pixels 
belonging to each class for each of the classifications 
performed. The count is expressed as a percentage of the total 
number of classified pixels.    
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Count of 
pixels (%) 

Reference 
map 

Laser 
map 

Multispectral 
map 

Visible 
map 

 Unaltered 
granite 

29.29 7.77 22.17 31.98 

 Altered 
granite 

14.69 34.02 25.04 18.97 

 Wood 30.65 5.72 0.00 0.00 

 Moisture 21.81 12.67 34.23 35.04 

 Mortar 1.71 39.80 10.85 5.98 

 Biological 
colonization 

1.84 0.03 7.71 8.04 

Table 2. Pixels computation belonging for each thematic class. 

In a quantitative analysis, intensity data from laser scanner is 
the furthest from the reference. Results show a high number of 
pixels classified as mortar in the case of laser map (38.09% 
higher with respect to the reference map) and few pixels 
classified as unaltered granite offset by the altered granite 
count. For the multispectral and visible passive sensors results 
are quite similar. For both cases it was not possible to discretize 
wood from biological colonization so these two classes were 
exempted from being part of the multi-sensor analysis. Note 
that in the case of the multispectral camera, moisture 

classification was closer to reality. Since best results for 
moisture detection were achieved by the multispectral camera 
and it is the most comprehensive sensor with results closer to 
the reference it is concluded that the best of the three sensors to 
detect pathologies and construction materials differences is the 
Mini MCA6, which also had the best classification accuracy. 
 
To evaluate the separability between classes the transformed 
divergence was used as a quantitative estimator (Davis et al., 
1978) being the most widely used estimator for this purpose 
(Tolpekin and Stein, 2009). Table 3 shows the separability 
between the final 7 classes (taking into account the background 
or null cluster).  
 
A high separability was achieved for all 7 classes, highlighting 
the good separability between the two granite types. The worst 
case was for moisture and unaltered granite. This fact is 
explained because most of the moisture was part of the 
unaltered granite. This granite type was constructively situated 
in lower areas to support the loads of the building (also in 
buttress), coinciding with the most likely areas to be affected by 
filtration and capillarity of water. This radiometric 
misunderstanding did not occur in the case of altered granite 
since being part of the centre of the façade hardly had moisture. 

 Unaltered 
granite 

Altered 
granite 

Wood Moisture Mortar Biological 
colonization 

Altered granite 1.99 - - - - - 
Wood 2.00 2.00 - - - - 
Moisture 1.51 1.99 2.00 - - - 
Mortar 1.99 1.92 2.00 1.99 - - 
Biological colonization 1.99 2.00 2.00 1.97 1.99 - 
Background 2.00 2.00 2.00 2.00 2.00 2.00 

Table 3. Transformed divergence for the supervised classification. 

Figure 8. Multisensory map for the 6-classes unsupervised classification. 
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4. CONCLUSIONS 

The work presented in this paper shows a comparison of the 
classification results of different sensors in the detection of 
pathologies in materials of historical buildings façades. By 
combining the use of two different data acquisition techniques 
(active and passive), three sensors were examined: a 3D laser 
scanner, a multispectral camera and a digital SLR camera. The 
results show the different radiometric responses of the ashlars 
with different damages (mainly moisture and biological 
colonization) levels. The classification algorithms used for the 
classification processes were the Fuzzy K-means and the 
maximum likelihood (ML) classification algorithm. 
 
A complete description of the workflow followed: data 
acquisition, pre-processing, orthoimages generation, and the 
application of two classification algorithms to assess the final 
results was outlined. Our results show that the most 
comprehensive sensor for which the best results were obtained 
is the MCA6. This is possibly due to the advantage of having 
the highest spectral resolution of the three analysed sensors. 
However, for the limited registration to a single wavelength, the 
results from the FARO laser scanner were quite good. 
Furthermore, geometric models of the study object can be 
derived thanks its data capture. With these models, physical 
pathologies (such as fissures, desquamations, etc.) could be 
analysed and both these and chemical pathologies could be 
quantified. Therefore, by consider all that issues, it is concluded 
that the best solution for pathology detection and quantification 
is a sensor combination where laser scanning as a primary 
choice. By adding the intensity information to visible or 
multispectral information results of classification improves in a 
quantitative and a qualitative way. 
 
As future perspective, additionally to the proposed workflow, 
the possibility of extend the pathological analysis by the geo-
referenced data, will allow analysing global pattern in areas 
with high density of cultural heritage elements. Therefore, 
according to the inherent characteristics of each sensor a 
specific radiometric calibration of each one will allow working 
in reflectance values instead of digital levels. The final results 
will be improved due to variable light conditions will not affect 
them. 
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