Another Generalization of Abelian Equivalence: Binomial Complexity of Infinite Words

M. Rigo¹ and P. Salimov^{$1,2\star$}

¹ Dept of Math., University of Liège, Grande traverse 12 (B37), B-4000 Liège, Belgium, M.Rigo@ulg.ac.be

 $^2\,$ Sobolev Institute of Math., 4 Acad. Kopty
ug avenue, 630090 Novosibirsk, Russia.

Abstract. The binomial coefficient of two words u and v is the number of times v occurs as a subsequence of u. Based on this classical notion, we introduce the *m*-binomial equivalence of two words refining the abelian equivalence. The *m*-binomial complexity of an infinite word x maps an integer n to the number of *m*-binomial equivalence classes of factors of length n occurring in x. We study the first properties of *m*-binomial equivalence. We compute the *m*-binomial complexity of the Sturmian words and of the Thue–Morse word. We also mention the possible avoidance of 2-binomial squares.

1 Introduction

In the literature, many measures of complexity of infinite words have been introduced. One of the most studied is the factor complexity p_x counting the number of distinct blocks of n consecutive letters occurring in an infinite word $x \in A^{\mathbb{N}}$. In particular, Morse–Hedlund theorem gives a characterization of ultimately periodic words in terms of bounded factor complexity. Sturmian words have a null topological entropy and are characterized by the relation $p_x(n) = n + 1$ for all $n \ge 0$. Abelian complexity counts the number of distinct Parikh vectors for blocks of n consecutive letters occurring in an infinite word, i.e., factors of length n are counted up to abelian equivalence. Already in 1961, Erdős opened the way to a new research direction by raising the question of avoiding abelian squares in arbitrarily long words [6]. Related to Van der Waerden theorem, we can also mention the arithmetic complexity [1] mapping $n \ge 0$ to the number of distinct subwords $x_i x_{i+p} \cdots x_{i+(n-1)p}$ built from n letters arranged in arithmetic progressions in the infinite word $x, i \ge 0, p \ge 1$. In the same direction, one can also consider maximal pattern complexity [7].

As a generalization of abelian complexity, the k-abelian complexity was recently introduced through a hierarchy of equivalence relations, the coarsest being abelian equivalence and refining up to equality. We recall these notions.

^{*} The second author is supported by the Russian President's grant no. MK-4075.2012.1 and Russian Foundation for Basic Research grants no. 12-01-00089 and no. 11-01-00997 and by a University of Liège post-doctoral grant.

Let $k \in \mathbb{N} \cup \{+\infty\}$ and A be a finite alphabet. As usual, |u| denotes the length of u and $|u|_x$ denotes the number of occurrences of the word x as a factor of the word u. Karhumäki *et al.* [8] introduce the notion of k-abelian equivalence of finite words as follows. Let u, v be two words over A. We write $u \sim_{ab,k} v$ if and only if $|u|_x = |v|_x$ for all words x of length $|x| \leq k$. In particular, $u \sim_{ab,1} v$ means that u and v are *abelian equivalent*, i.e., u is obtained by permuting the letters in v.

The aim of this paper is to introduce and study the first properties of a different family of equivalence relations over A^* , called k-binomial equivalence, where the coarsest relation coincide with the abelian equivalence.

Let $u = u_0 \cdots u_{n-1}$ be a word of length n over A. Let $\ell \leq n$. Let $t : \mathbb{N} \to \mathbb{N}$ be an increasing map such that $t(\ell - 1) < n$. Then the word $u_{t(0)} \cdots u_{t(\ell-1)}$ is a subword of length ℓ of u. Note that what we call subword is also called scattered subword in the literature. The notion of binomial coefficient of two finite words uand v is well-known, $\binom{u}{v}$ is defined as the number of times v occurs as a subword of u. In other words, the binomial coefficient of u and v is the number of times v appears as a subsequence of u. Properties of these coefficients are presented in the chapter of Lothaire's book written by Sakarovitch and Simon [12, Section 6.3]. Let $a, b \in A$, $u, v \in A^*$ and p, q be integers. We set $\delta_{a,b} = 1$ if a = b, and $\delta_{a,b} = 0$ otherwise. We just recall that

$$\begin{pmatrix} a^p \\ a^q \end{pmatrix} = \begin{pmatrix} p \\ q \end{pmatrix}, \ \begin{pmatrix} u \\ \varepsilon \end{pmatrix} = 1, \ |u| < |v| \Rightarrow \begin{pmatrix} u \\ v \end{pmatrix} = 0, \ \begin{pmatrix} ua \\ vb \end{pmatrix} = \begin{pmatrix} u \\ vb \end{pmatrix} + \delta_{a,b} \begin{pmatrix} u \\ v \end{pmatrix}$$

and the last three relations completely determine the binomial coefficient $\binom{u}{v}$ for all $u, v \in A^*$.

Remark 1. Note that we have to make a distinction between subwords and factors. A factor is a particular subword made of consecutive letters. Factors of u are denoted either by $u_i \cdots u_j$ or $u[i, j], 0 \leq i \leq j < |u|$.

Definition 1. Let $m \in \mathbb{N} \cup \{+\infty\}$ and u, v be two words over A. We say that u and v are m-binomially equivalent if

$$\binom{u}{x} = \binom{v}{x}, \ \forall x \in A^{\leqslant m}.$$

Since the main relation studied in this paper is the m-binomial equivalence, we simply write in that case: $u \sim_m v$.

Since $\binom{u}{a} = |u|_a$ for all $a \in A$, it is clear that two words u and v are abelian equivalent if and only if $u \sim_1 v$. As for abelian equivalence, we have a family of refined relations: for all $u, v \in A^*$, $m \ge 0$, $u \sim_{m+1} v \Rightarrow u \sim_m v$.

Example 1. For instance, the four words ababbba, abbabab, baabbab and babaabb are 2-binomially equivalent. For any w amongst these words, we have the following coefficients

$$\binom{w}{a} = 3, \ \binom{w}{b} = 4, \ \binom{w}{aa} = 3, \ \binom{w}{ab} = 7, \ \binom{w}{ba} = 5, \ \binom{w}{bb} = 6.$$

But one can check that they are not 3-binomially equivalent, as an example,

$$\binom{ababbba}{aab} = 3 \text{ but } \binom{abbabab}{aab} = 4$$

indeed, for this last binomial coefficient, aab appears as subwords $w_0w_3w_4$, $w_0w_3w_6$, $w_0w_5w_6$ and $w_3w_5w_6$. Considering again the first two words, we find $|ababbba|_{ab} = 2$ and $|abbabab|_{ab} = 3$, showing that these two words are not 2-abelian equivalent. Conversely, the words abbaba and ababba are 2-abelian equivalent but are not 2-binomially equivalent:

$$\binom{abbaba}{ab} = 4 \text{ but } \binom{ababba}{ab} = 5.$$

This paper is organized as follows. In the next section, we present some straightforward properties of binomial coefficients and *m*-binomial equivalence. In Section 3, we give upper bounds on the number of *m*-binomial equivalence classes partitioning A^n . Section 3 ends with the introduction of the *m*-binomial complexity $\mathbf{b}_x^{(m)}$ of an infinite word x. In Section 4, we prove that if x is a Sturmian word then, for any $m \ge 2$, $\mathbf{b}_x^{(m)}(n) = n + 1$ for all $n \ge 0$. In Section 5 we consider the Thue–Morse word t and show that, for all $m \ge 1$, there exists a constant C_m such that $\mathbf{b}_t^{(m)}(n) \le C_m$ for all $n \ge 0$. For instance, binomial coefficients of t were considered in [3]. Due to space limitations, we only give details for the cases m = 2, 3. In the last section, we evoke the problem of avoiding 2-binomial squares.

2 First Properties

We denote by $\mathbf{B}^{(m)}(v)$ the equivalence class of words *m*-binomially equivalent to v. Binomial coefficients have a nice behavior with respect to the concatenation of words.

Proposition 1. Let p, s and $e = e_0 e_1 \cdots e_{n-1}$ be finite words. We have

$$\binom{ps}{e} = \sum_{i=0}^{n} \binom{p}{e_0 e_1 \cdots e_{i-1}} \binom{s}{e_i e_{i+1} \cdots e_{n-1}}.$$

We can also mention some other basic facts on m-binomial equivalence.

Lemma 1. Let u, u', v, v' be finite words and $m \ge 1$.

 $\begin{array}{l} - \ \ If \ u \sim_m v, \ then \ u \sim_\ell v \ for \ all \ \ell \leqslant m. \\ - \ \ If \ u \sim_m v \ and \ u' \sim_m v', \ then \ uu' \sim_m vv'. \end{array}$

Proof. Simply note for the second point that, for all $x = x_0 \cdots x_{\ell-1}$ of length $\ell \leq m$, $\binom{uu'}{x}$ is equal to

$$\sum_{i=0}^{\ell} \binom{u}{x[0,i-1]} \binom{u'}{x[i,\ell-1]} = \sum_{i=0}^{\ell} \binom{v}{x[0,i-1]} \binom{v'}{x[i,\ell-1]} = \binom{vv'}{x}.$$

Remark 2. Thanks to the above lemma, we can endow the quotient set A^*/\sim_m with a monoid structure using an operation $\circ: A^*/\sim_m \times A^*/\sim_m \to A^*/\sim_m$ defined by $\mathbf{B}^{(m)}(p) \circ \mathbf{B}^{(m)}(q) = \mathbf{B}^{(m)}(r)$ if the concatenation $\mathbf{B}^{(m)}(p) \cdot \mathbf{B}^{(m)}(q)$ is a subset of $\mathbf{B}^{(m)}(r)$. In particular, one can take r = pq. If a word v is factorized as v = pus, then the *m*-equivalence class $\mathbf{B}^{(m)}(v)$ is completely determined by p, s and $\mathbf{B}^{(m)}(u)$.

3 On the Number of k-Binomial Equivalence Classes

For 2- and 3-abelian equivalence, the number of equivalence classes for words of length n over a binary alphabet are respectively $n^2 - n + 2$ and $\Theta(n^4)$. In general, for k-abelian equivalence, the number of equivalence classes for words of length n over a ℓ -letter alphabet is $\Theta(n^{(\ell-1)\ell^{k-1}})$ [8]. We consider similar results for m-binomial equivalence (proofs can be found in [15]).

Lemma 2. Let $u \in A^*$, $a \in A$ and $\ell \ge 0$. We have

$$\begin{pmatrix} u \\ a^{\ell} \end{pmatrix} = \begin{pmatrix} |u|_a \\ \ell \end{pmatrix} \quad and \quad \sum_{|v|=\ell} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} |u| \\ \ell \end{pmatrix}.$$

Lemma 3. Let A be a binary alphabet, we have

$$\# (A^n / \sim_2) = \sum_{j=0}^n ((n-j)j+1) = \frac{n^3 + 5n + 6}{6}.$$

Proposition 2. Let $m \ge 2$. Let A be a binary alphabet, we have

$$\#(A^n/\sim_m) \in \mathcal{O}(n^{2((m-1)2^m+1)})$$

We denote by $\operatorname{Fac}_{x}(n)$ the set of factors of length n occurring in x.

Definition 2. Let $m \ge 1$. The *m*-binomial complexity of an infinite word *x* counts the number of *m*-binomial equivalence classes of factors of length *n* occurring in *x*,

$$\mathbf{b}_x^{(m)}: \mathbb{N} \to \mathbb{N}, \ n \mapsto \#(\operatorname{Fac}_x(n)/\sim_m).$$

Note that $\mathbf{b}_x^{(1)}$ corresponds to the usual abelian complexity denoted by ρ_x^{ab} .

If p_x denotes the usual factor complexity, then for all $m \ge 1$, we have

$$\mathbf{b}_x^{(m)}(n) \leqslant \mathbf{b}_x^{(m+1)}(n) \quad \text{and} \quad \rho_x^{\mathrm{ab}}(n) \leqslant \mathbf{b}_x^{(m)}(n) \leqslant p_x(n).$$
(1)

4 The *m*-Binomial Complexity of Sturmian Words

Recall that a Sturmian word x is a non-periodic word of minimal (factor) complexity, that is, $p_x(n) = n + 1$ for all $n \ge 0$. The following characterization is also useful. **Theorem 1.** [13, Theorem 2.1.5] An infinite word $x \in \{0,1\}^{\omega}$ is Sturmian if and only if it is aperiodic and balanced, i.e., for all factors u, v of the same length occurring in x, we have $||u|_1 - |v|_1| \leq 1$.

The aim of this section is to compute the *m*-binomial complexity of a Sturmian word as expressed by Theorem 2. We show that any two distinct factors of length *n* occurring in a Sturmian words are never *m*-binomially equivalent. First note that Sturmian words have a constant abelian complexity. Hence, if *x* is a Sturmian word, then $\mathbf{b}_x^{(1)}(n) = 2$ for all $n \ge 1$.

Theorem 2. Let $m \ge 2$. If x is a Sturmian word, then $\mathbf{b}_x^{(m)}(n) = n + 1$ for all $n \ge 0$.

Remark 3. If x is a right-infinite word such that $\mathbf{b}_x^{(1)}(n) = 2$ for all $n \ge 1$, then x is clearly balanced. If $\mathbf{b}_x^{(2)}(n) = n+1$, for all $n \ge 0$, then the factor complexity function p_x is unbounded and x is aperiodic. As a consequence of Theorem 2, an infinite word x is Sturmian if and only if, for all $n \ge 1$ and all $m \ge 2$, $\mathbf{b}_x^{(1)}(n) = 2$ and $\mathbf{b}_x^{(m)}(n) = n+1$.

Before proceeding to the proof of Theorem 2, we first recall some well-known fact about Sturmian words. One of the two symbols occurring in a Sturmian word x over $\{0, 1\}$ is always isolated, for instance, 1 is always followed by 0. In that latter case, there exists a unique $k \ge 1$ such that each occurrence of 1 is always followed by either $0^{k}1$ or $0^{k+1}1$ and x is said to be of type 0. See for instance [14, Chapter 6]. More precisely, we have the following remarkable fact showing that the recoding of a Sturmian sequence corresponds to another Sturmian sequence. Note that $\sigma: A^{\omega} \to A^{\omega}$ is the shift operator mapping $(x_n)_{n\ge 0}$ to $(x_{n+1})_{n\ge 0}$.

Theorem 3. Let $x \in \{0,1\}^{\omega}$ be a Sturmian word of type 0. There exists a unique integer $k \ge 1$ and a Sturmian word $y \in \{0,1\}^{\omega}$ such that $x = \sigma^c(\mu(y))$ for some $c \le k+1$ and where the morphism $\mu : \{0,1\}^* \to \{0,1\}^*$ is defined by $\mu(0) = 0^k 1$ and $\mu(1) = 0^{k+1} 1$.

Corollary 1. Let $x \in \{0,1\}^{\omega}$ be a Sturmian word of type 0. There exists a unique integer $k \ge 1$ such that any factor occurring in x is of the form

$$0^{r} 10^{k+\epsilon_{0}} 10^{k+\epsilon_{1}} 1 \cdots 0^{k+\epsilon_{n-1}} 10^{s} \tag{2}$$

where $r, s \leq k+1$ and $\epsilon_0 \epsilon_1 \cdots \epsilon_{n-1} \in \{0,1\}^*$ is a factor of the Sturmian word y introduced in the above theorem.

Let $\epsilon = \epsilon_0 \cdots \epsilon_{n-1}$ be a word over $\{0, 1\}$. For $m \leq n-1$, we define

$$S(\epsilon, m) := \sum_{j=0}^{m} (n-j)\epsilon_j \quad \text{and} \quad S(\epsilon) := S(\epsilon, n-1).$$
(3)

Remark 4. Let $v = 0^r 10^{k+\epsilon_0} 10^{k+\epsilon_1} 1 \cdots 0^{k+\epsilon_{n-1}} 10^s$ of the form (2), we have

$$\binom{v}{01} = r(n+1) + \sum_{j=0}^{n-1} (k+\epsilon_j)(n-j) = r(n+1) + S(\epsilon_0 \cdots \epsilon_{n-1}) + k \frac{n(n+1)}{2}.$$

We need a technical lemma on the factors of a Sturmian word.

Lemma 4. Let $n \ge 1$. If u and v are two distinct factors of length n occurring in a Sturmian word over $\{0,1\}$, then $S(u) \not\equiv S(v) \pmod{n+1}$.

Proof. Consider two distinct factors u, v of length n occurring in a Sturmian word y. For m < n, we define $\Delta(m) := |u_0u_1 \cdots u_m|_1 - |v_0v_1 \cdots v_m|_1$. Due to Theorem 3, we have $|\Delta(m)| \leq 1$. Note that, if there exists i such that $\Delta(i) = 1$ then, for all j > i, we have $\Delta(j) \ge 0$. Otherwise, we would have $|v[i+1,j]|_1 - |u[i+1,j]|_1 > 1$ contradicting the fact that y is balanced. Similarly, for all j < i, we also have $\Delta(j) \ge 0$.

Since u and v are distinct, replacing u with v if needed, we may assume that there exists a minimal $i \in \{0, ..., n-1\}$ such that $\Delta(i) = 1$. From the above discussion and the minimality of i, $\Delta(j) = 0$ for j < i and $\Delta(j) \in \{0, 1\}$ for j > i.

From (3), for any j < n, we have

$$\begin{split} &\Delta(j+1) > \Delta(j) \Rightarrow S(u,j+1) - S(v,j+1) = S(u,j) - S(v,j) + (n-j) \\ &\Delta(j+1) = \Delta(j) \Rightarrow S(u,j+1) - S(v,j+1) = S(u,j) - S(v,j) \\ &\Delta(j+1) < \Delta(j) \Rightarrow S(u,j+1) - S(v,j+1) = S(u,j) - S(v,j) - (n-j). \end{split}$$

In view of these observations, the knowledge of $\Delta(0), \Delta(1), \ldots$ permits to compute $(S(u, j) - S(v, j))_{0 \leq j < n}$ and we deduce that 0 < S(u) - S(v) < n + 1 concluding the proof.

Proof (Proof of Theorem 2). Let x be a Sturmian word of type 0 and $m \ge 2$. From (1), we have, for all $\ell \ge 0$,

$$\mathbf{b}_x^{(2)}(\ell) \leqslant \mathbf{b}_x^{(m)}(\ell) \leqslant p_x(\ell) = \ell + 1.$$

We just need to show that any two distinct factors of length ℓ in x are not 2-binomially equivalent, i.e., $\ell + 1 \leq \mathbf{b}_x^{(2)}(\ell)$.

Proceed by contradiction. Assume that x contains two distinct factors u and v that are 2-binomially equivalent. In particular, $\binom{u}{00} = \binom{v}{00}$ and $\binom{u}{11} = \binom{v}{11}$. Hence we get |u| = |v| and $|u|_1 = |v|_1 = n$. From Corollary 1, there exist $k \ge 1$ and a Sturmian word y such that

$$u = 0^{r} 10^{k+\epsilon_{0}} 10^{k+\epsilon_{1}} 1 \cdots 0^{k+\epsilon_{n-1}} 10^{s}, \quad v = 0^{r'} 10^{k+\epsilon'_{0}} 10^{k+\epsilon'_{1}} 1 \cdots 0^{k+\epsilon'_{n-1}} 10^{s'}$$

where $\epsilon = \epsilon_0 \epsilon_1 \cdots \epsilon_{n-1}$ and $\epsilon' = \epsilon'_0 \epsilon'_1 \cdots \epsilon'_{n-1}$ are both factors of y. Since $u \sim_2 v$, it follows $\binom{u}{01} = \binom{v}{01}$. From Remark 4, we get

$$r(n+1) + S(\epsilon) + k\frac{n(n+1)}{2} = r'(n+1) + S(\epsilon') + k\frac{n(n+1)}{2}.$$

Otherwise stated, we get $S(\epsilon) - S(\epsilon') = (r' - r)(n+1)$ contradicting the previous lemma.

5 The Case of the Thue–Morse Word

The *Thue–Morse* word $t = 0110100110010110100101100101100101 \cdots$ is the infinite word $\lim_{n\to\infty} \varphi^n(a)$ where $\varphi: 0 \mapsto 01, 1 \mapsto 10$. The factor complexity of the Thue–Morse word is well-known [2,5]: $p_t(0) = 1, p_t(1) = 2, p_t(2) = 4$ and

$$p_t(n) = \begin{cases} 4n - 2 \cdot 2^m - 4 \text{ if } 2 \cdot 2^m < n \leqslant 3 \cdot 2^m \\ 2n + 4 \cdot 2^m - 2 \text{ if } 3 \cdot 2^m < n \leqslant 4 \cdot 2^m \end{cases}$$

and the abelian complexity of t is obvious.

Lemma 5. We have $\mathbf{b}_t^{(1)}(2n) = 3$ and $\mathbf{b}_t^{(1)}(2n+1) = 2$ for all $n \ge 1$.

The main result of this section is the following one. It is quite in contrast with the Sturmian case because here, the Thue–Morse word exhibits a bounded m-binomial complexity.

Theorem 4. Let $m \ge 2$. There exists $C_m > 0$ such that the m-binomial complexity of the Thue–Morse word satisfies $\mathbf{b}_t^{(m)}(n) \le C_m$ for all $n \ge 0$.

For the sake of presentation, we first show that the 2-binomial complexity of the Thue–Morse word is bounded by a constant.

Theorem 5. There exists $C_2 > 0$ such that the 2-binomial complexity of the Thue–Morse word satisfies $\mathbf{b}_t^{(2)}(n) \leq C_2$ for all $n \geq 0$.

Proof. Any factor v of t admits a factorization of the kind $p\varphi(u)s$ with $p, s \in \{0, 1, \varepsilon\}$ and where u is a factor of t. Using Remark 2, it is therefore enough to prove that, for all n,

$$\#\{\mathbf{B}^{(2)}(v) \mid \exists u \in \operatorname{Fac}_t(n) : v = \varphi(u)\} \leqslant 9.$$
(4)

Recall from the proof of Lemma 3 that the 2-binomial equivalence class of a word v of length 2n over a binary alphabet $\{0,1\}$ is completely determined by its length, $|v|_0$ and $\binom{v}{01}$, i.e.,

$$#\{\mathbf{B}^{(2)}(v) \mid \exists u \in \operatorname{Fac}_t(n) : v = \varphi(u)\}$$

=
$$#\{(\binom{v}{0}, \binom{v}{1}, \binom{v}{00}, \binom{v}{01}, \binom{v}{10}, \binom{v}{11}) \mid \exists u \in \operatorname{Fac}_t(n) : v = \varphi(u)\}$$

=
$$#\{(|v|_0, \binom{v}{01}) \mid \exists u \in \operatorname{Fac}_t(n) : v = \varphi(u)\}.$$

Fix $n \ge 1$. Consider an arbitrary factor $u = u_0 \cdots u_{n-1} \in \operatorname{Fac}_t(n)$ and the corresponding factor $v = \varphi(u) = v_0 \cdots v_{2n-1}$ of t of length 2n. From Lemma 5, $|v|_0$ takes at most three values (depending on n).

Let us compute the possible values taken by the coefficient $\binom{v}{01}$. Consider an occurrence of 01 as a subword of v, i.e., a pair (i, j), $i < j \leq n - 1$, such that $v_i v_j = 01$. There are two possible cases:

- If i = 2m and j = 2m+1, for some $m \ge 0$, then $u_m = 0$ because $v_{2m}v_{2m+1} = \varphi(u_m)$. There are $|u|_0$ such occurrences.
- Otherwise, we have $i \in \{2m, 2m+1\}, j \in \{2m', 2m'+1\}$ with m' > m. For all m (resp. m'), exactly one letter of the factor $v_{2m}v_{2m+1} = \varphi(u_m)$ (resp. $v_{2m'}v_{2m'+1} = \varphi(u'_m)$) is 0 and the other one is 1. Hence, for any $i \in \{0, \ldots, n-2\}, j$ can take a value of the n-1-i values in $\{i+1, \ldots, n-1\}$.

Summarizing these two cases, we have

$$\binom{v}{01} = |u|_0 + \sum_{i=0}^{n-2} (n-1-i) = |u|_0 + \frac{n(n-1)}{2}$$

From Lemma 5, $|u|_0$ takes at most three values (depending on n) and therefore the same holds for $\binom{v}{01}$. Hence, the conclusion follows.

We now extend the proof of Theorem 5. The first part is to generalize (4).

Lemma 6. Let $m, k \ge 1$. Assume that there exists D such that, for all n,

 $#\{\mathbf{B}^{(m)}(v) \mid \exists u \in \operatorname{Fac}_t(n) : v = \varphi^k(u)\} \leqslant D.$

Then the m-binomial complexity of the Thue–Morse word $\mathbf{b}_t^{(m)}$ is bounded by a constant.

Proof. Let $\ell \ge 1$. Let f be a factor of t of length ℓ . This factor is of the form³ pvs where p (resp. s) is a proper suffix (resp. prefix) of some $\varphi^k(a)$ (resp. $\varphi^k(b)$) where a, b are letters and $v = \varphi^k(u)$ for some factor u of t of length n. In particular, we have $|p|, |q| \le 2^k - 1$. Note that ℓ is of the form $n \cdot 2^k + r$ with $0 \le r \le 2(2^k - 1)$. Hence, for a given f of length ℓ , the corresponding integer n can take at most 2 values which are $\lfloor \ell/2^k \rfloor - 1$ and $\lfloor \ell/2^k \rfloor$. From the assumption, we get

$$#\{\mathbf{B}^{(m)}(v) \mid \exists u \in \operatorname{Fac}_t(\lfloor \ell/2^k \rfloor - 1) \cup \operatorname{Fac}_t(\lfloor \ell/2^k \rfloor) : v = \varphi^k(u)\} \leqslant 2D.$$

Finally, using Remark 2, we have $\mathbf{B}^{(m)}(f) = \mathbf{B}^{(m)}(p) \circ \mathbf{B}^{(m)}(v) \circ \mathbf{B}^{(m)}(s)$. Since p and s have bounded length, $\mathbf{B}^{(m)}(p)$ and $\mathbf{B}^{(m)}(s)$ take a bounded number of values. Moreover, $\mathbf{B}^{(m)}(v)$ takes at most 2D values, hence $\mathbf{b}_t^{(m)}$ is bounded by constant.

From now on, intervals [r, s] (resp. [r, s)) will be considered as intervals of integers, i.e., one should understand $[r, s] \cap \mathbb{Z}$ (resp. $[r, s) \cap \mathbb{Z}$).

Aside from the idea of dealing with words of a convenient form, the second key idea of the proof of Theorem 5 is to split the set of occurrences of the subword 01 into two disjoint subsets facilitating the counting. We shall now generalize this idea for *m*-binomial complexity but some terminology is required. Let v be a word. A subset $T = \{t_1 < t_2 < \ldots < t_n\} \subseteq [0, |v|)$ defines a subword denoted by $v_T = v_{t_1}v_{t_2}\cdots v_{t_n}$.

³ This is the idea of "de-substitution" where t is factorized into consecutive factors of length 2^k .

Definition 3. If $\alpha_1, \ldots, \alpha_m$ are non-empty and pairwise disjoint subsets of a set X such that $\bigcup_i \alpha_i = X$, then $\alpha = \{\alpha_1, \ldots, \alpha_m\}$ is a partition of X. Any partition α of a set X is a refinement of a partition β of X if every element of α is a subset of some element of β . In that case, α is said to be finer than β (equivalently β is coarser than α) and we write $\alpha \leq \beta$. Since \leq is a partial order, we define a chain as a subset of partitions $\beta^{(1)}, \beta^{(2)}, \ldots$ of X satisfying

$$\beta^{(1)} \preceq \beta^{(2)} \preceq \cdots$$

A k-partition $\alpha = \{\alpha_1, \ldots, \alpha_m\}$ of the set [0, mk) is a partition into subsets $\alpha_i = [(i-1)k, ik)$ of size k. In particular, a 2^i -partition is a refinement of a 2^j -partition of $[0, 2^k)$, $i < j \leq k$.

Definition 4. Let X be a set and $T = \{t_1 < t_2 < \ldots < t_n\}$ be a subset of X. A partition $\alpha = \{\alpha_1, \ldots, \alpha_m\}$ of X induces a partition $\alpha_T = \{\gamma_1, \ldots, \gamma_r\}$ of [1, n] defined by

$$i, j \in \gamma_t \Leftrightarrow \exists s : t_i, t_j \in \alpha_s$$

Note that for two partitions α, β of X, if $\alpha \leq \beta$, then $\alpha_T \leq \beta_T$.

Example 2. Take X = [0, 7] and $T = \{0, 2, 3, 5\}$. Consider the following two partitions of X: $\alpha = \{\{0, 1\}, \{2, 3, 4\}, \{5, 6, 7\}\}$ and $\beta = \{\{0, 1, 2\}, \{3, 4, 5\}, \{6, 7\}\}$. We get $\alpha_T = \{\{1\}, \{2, 3\}, \{4\}\}$ and $\beta_T = \{\{1, 2\}, \{3, 4\}\}$.

Definition 5. Let $T = \{t_1 < t_2 < ... < t_n\}$ and $U = \{u_1 < u_2 < ... < u_n\}$ be subsets of X. These subsets are equidistributed with respect to a partition α of X if $\alpha_T = \alpha_U$. These subsets are equidistributed with respect to a chain \mathfrak{C} of partitions of X if $\alpha_T = \alpha_U$ for all $\alpha \in \mathfrak{C}$. We also say that the subsets are \mathfrak{C} -equidistributed.

Example 3. Consider the chain \mathfrak{C} consisting of the 4-partition $\beta = \{[0,3], [4,7]\}$ and the 2-partition $\alpha = \{[0,1], [2,3], [4,5], [6,7]\}$ of the set [0,7]. The subsets $T = \{0,5\}, U = \{1,2\}$ and $V = \{3,4\}$ are equidistributed with respect to the 2-partition ($\alpha_T = \alpha_U = \alpha_V = \{\{1\}, \{2\}\}\}$), but U is not \mathfrak{C} -equidistributed to T(resp. V) because $\beta_T = \beta_V = \{\{1\}, \{2\}\}\}$ and $\beta_U = \{\{1,2\}\}$.

Example 4. In the last part of the proof of Theorem 5, we have considered the two possible cases for an occurrence of the subword 01 in v. If $T = \{i, j\}$ is a subset of [0, |v|) and α is the 2-partition of [0, |v|), then these cases correspond exactly to the two possible values $\alpha_T = \{1, 2\}$ or $\alpha_T = \{\{1\}, \{2\}\}$.

Let \mathfrak{C} be a chain $\beta^{(1)} \leq \beta^{(2)} \leq \cdots$ of partitions of X and $T = \{t_1, \ldots, t_n\}$ be a subset of X. We use nested brackets to represent the induced chain $\beta_T^{(1)} \leq \beta_T^{(2)} \leq \cdots$ of partitions of [1, n]. The outer (resp. inner) brackets represent the coarsest (resp. finest) partition of [1, n]. As an example $[[t_1t_2]][[t_3][t_4]]$ represents the partition $\{\{1, 2\}, \{3\}, \{4\}\}$ and the coarser partition $\{\{1, 2\}, \{3, 4\}\}$. To get used to these new definitions, we consider another particular statement. (A precise and formal definition of the bracket notation is given in [15].)

Remark 5. Two subsets T and U of size n of X are equidistributed with respect to a chain \mathfrak{C} of partitions of X if and only if they give rise to the same notation of nested brackets. We call it the *type* of T with respect to \mathfrak{C} .

Example 5 (continuing Example 3). Consider the subsets $R = \{0, 1, 4, 7\}$ and $S = \{2, 3, 4, 6\}$ of [0, 7]. We have $\alpha_R = \alpha_S = \{\{1, 2\}, \{3\}, \{4\}\}$ and $\beta_R = \beta_S = \{\{1, 2\}, \{3, 4\}\}$. Hence R and S are \mathfrak{C} -equidistributed and give both rise to the notation $[[t_1t_2]][[t_3]][t_4]]$.

We prove the case of the 3-binomial complexity. The proof of the general case has been treated in [15].

Theorem 6. There exists $C_3 > 0$ such that the 3-binomial complexity of the Thue–Morse word satisfies $\mathbf{b}_t^{(3)}(n) \leq C_3$ for all $n \geq 0$.

Proof. In view of Lemma 6, it is enough to show that there exists a constant D such that, for all n, we have $\#\{\mathbf{B}^{(3)}(v) \mid \exists u \in \operatorname{Fac}_t(n) : v = \varphi^2(u)\} \leq D$.

Let $n \ge 1$. Let $v = \varphi^2(u)$ with $u \in \operatorname{Fac}_t(n)$. In particular, |v| = 4n. Consider the chain \mathfrak{C} consisting of the 2-partition and the 4-partition of [0, 4n). Any subset $T = \{t_1 < t_2 < t_3\}$ of [0, 4n) is \mathfrak{C} -equidistributed to a subset of one the following types:

- $-[t_1][t_2][t_3]$, i.e., the union of the types $[[t_1]][[t_2]][[t_3]]$, $[[t_1][t_2]][[t_3]]$ and $[[t_1]][[t_2][t_3]]$: the 3 elements of T belong to pairwise distinct subsets of the 2-partition of [0, 4n)
- $[[t_1t_2][t_3]]$ or $[[t_1][t_2t_3]]$: two elements belong to the same subset of the 2partition of [0, 4n) and the 3 elements of T belong to the same subset of the 4-partition of [0, 4n).
- $[[t_1t_2]][[t_3]]$ or $[[t_1]][[t_2t_3]]$: two elements belong to the same subset of the 2-partition and to the same subset of the 4-partition of [0, 4n).

Let $e = e_0 e_1 e_2$ be a word of length 3. We will count the number of occurrences of the subword $e = v_{t_1} v_{t_2} v_{t_3}$ in v depending on the type of $T = \{t_1, t_2, t_3\}$ with respect to \mathfrak{C} .

Assume that the type of T is $[t_1][t_2][t_3]$. Each subset S of the 2-partition of [0, 4n) corresponds to a factor $v_S = 01$ or $v_S = 10$ and v contains 2n such factors. Hence the number of subwords e occurring in v for this type takes, for a given n, a unique value which is $\binom{2n}{3}$.

Now assume that the type of T is $[[t_1t_2][t_3]]$ (similar arguments apply to $[[t_1][t_2t_3]]$). Each subset S of the 4-partition of [0, 4n) corresponds to a factor v_S which is either $\varphi^2(0) = 0110$ or $\varphi^2(1) = 1001$. Then the number of subwords e occurring in v of this type is

$$\underbrace{\binom{01}{e_0e_1}}_{0 \text{ or } 1}\underbrace{\binom{10}{e_2}}_{1}|u|_0 + \underbrace{\binom{10}{e_0e_1}}_{0 \text{ or } 1}\underbrace{\binom{01}{e_2}}_{1}|u|_1 \in \{0, |u|_0, |u|_1\}.$$

Recall that, for a given n = |u|, the pair $(|u|_0, |u|_1)$ can take at most three values (see Lemma 5). The number of subwords e occurring in v of this type takes, for a given n, takes at most 4 values⁴.

Now assume that the type of T is $[[t_1t_2]][[t_3]]$ (similar arguments apply to $[[t_1]][[t_2t_3]]$). Each subset S of the 4-partition of [0, 4n) is a union of two sets S', S'' of the 2-partition of [0, 4n) and we have either $v_{S'} = 01, v_{S''} = 10$ or $v_{S'} = 10, v_{S''} = 01$. They are n subsets of size 4 in the 4-partition of [0, 4n) and we have to pick 2 of them. Hence, the number of subwords e occurring in v for this type is

$$(\underbrace{\begin{pmatrix}01\\e_0e_1\end{pmatrix}+\begin{pmatrix}10\\e_0e_1\end{pmatrix}}_{0 \text{ or } 1})(\underbrace{\begin{pmatrix}01\\e_2\end{pmatrix}+\begin{pmatrix}10\\e_2\end{pmatrix}}_{2})\binom{n}{2}$$

and this quantity, for a given n, takes at most 2 values.

We have proved that, for all |e| = 3 and $v = \varphi^2(u)$ with $u \in \operatorname{Fac}_t(n)$, $\binom{v}{e}$ takes at most $1 + 2 \cdot 4 + 2 \cdot 2 = 13$ values (these values depend on n, but the number of values is bounded without any dependence to n). Note that $\mathbf{B}^{(3)}(v)$ is determined from $\mathbf{B}^{(2)}(v)$ and by the values of $\binom{v}{e}$ for the words e of length 3. To conclude the proof, note that $\#\{\mathbf{B}^{(2)}(v) \mid \exists u \in \operatorname{Fac}_t(n) : v = \varphi^2(u)\}$ is bounded by $\#\{\mathbf{B}^{(2)}(v) \mid \exists z \in \operatorname{Fac}_t(2n) : v = \varphi(z)\} \leq 9$ using (4). Consequently, we have shown that $\#\{\mathbf{B}^{(3)}(v) \mid \exists u \in \operatorname{Fac}_t(n) : v = \varphi^2(u)\} \leq 9 \cdot 13^8$ for all $n \geq 1$.

Remark 6. By computer experiments, $\mathbf{b}_t^{(2)}(n)$ is equal to 9 if $n \equiv 0 \pmod{4}$ and to 8 otherwise, for $10 \leq n \leq 1000$. Moreover, $\mathbf{b}_t^{(3)}(n)$ is equal to 21 if $n \equiv 0 \pmod{8}$ and to 20 otherwise, for $8 \leq n \leq 500$.

6 A Glimpse at Avoidance

It is obvious that, over a 2-letter alphabet, any word of length ≥ 4 contains a square. On the other hand, there exist square-free infinite ternary words [12]. In the same way, over a 3-letter alphabet, any word of length ≥ 8 contains an abelian square, i.e., a word uu' where $u \sim_1 u'$. But, over a 4-letter alphabet, abelian squares are avoidable, see for instance [10]. So a first natural question in that direction is to determine, whether or not, over a 3-letter alphabet 2-binomial square is a word of the form uu' where $u \sim_2 u'$. Note that, for abelian equivalence, the longest ternary word which is 2-abelian square-free has length 537 [9].

As an example, u = 121321231213123123121312 is a word of length 27 without 2-binomial squares but this word cannot be extended without getting a 2-binomial square. Indeed, u1 (resp. u3) ends with a square of length 8 (resp. 26)

Consider the 13-uniform morphism of Leech [11] which is well-known to be square-free, $g : a \mapsto abcbacbcabcba, b \mapsto bcacbacabcacb, c \mapsto cabacbabcabac$. In

⁴ A close inspection shows that if |u| = 2n, then $|u|_0, |u|_1 \in \{n - 1, n, n + 1\}$, if |u| = 2n + 1, then $|u|_0, |u|_1 \in \{n, n + 1\}$.

the submitted version of this paper, we conjectured that the infinite square-free word $g^{\omega}(1)$ avoids 2-binomial squares. For instance, we can prove that

$$u \sim_2 v \Leftrightarrow g(u) \sim_2 g(v).$$

Nevertheless, M. Bennett has recently shown that the factor of length 508 occurring in position 845 is a 2-binomial square [4].

Acknowledgments

The idea of this binomial equivalence came after the meeting "Representing streams" organized at the Lorentz center in December 2012 where Jean-Eric Pin presented a talk, *Noncommutative extension of Mahlers theorem on interpolation series*, involving binomial coefficients on words. Jean-Eric Pin and the first author proposed independently to introduce this new relation.

References

- S.V. Avgustinovich, D.G. Fon-Der-Flaass, A.E. Frid, Arithmetical complexity of infinite words, in *Words, Languages & Combinatorics III*, M. Ito and T. Imaoka (Eds.), World Scientific Publishing (2003) 51–62.
- S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Appl. Math. 24 (1989), 83–96.
- J. Berstel, M. Crochemore, J.-E. Pin, Thue–Morse sequence and p-adic topology for the free monoid, *Disc. Math.* 76 (1989), 89–94.
- 4. J. Currie, personal communication, 3th June 2013.
- A. de Luca, S. Varricchio, On the factors of the Thue-Morse word on three symbols, Inform. Process. Lett. 27 (1988), 281–285.
- P. Erdős, Some unsolved problems, Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961), 221-254.
- T. Kamae, L. Zamboni, Sequence entropy and the maximal pattern complexity of infinite words, *Ergodic Theory Dynam. Systems* 22 (2002), 1191–1199.
- J. Karhumäki, A. Saarela, L. Q. Zamboni, On a generalization of Abelian equivalence and complexity of infinite words, arXiv:1301.5104.
- M. Huova, J. Karhumäki, Observations and problems on k-abelian avoidability, In Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081), (2011) 2215-2219.
- V. Keränen, Abelian squares are avoidable on 4 letters, *Lecture Notes in Comput. Sci.* 623 (1992), 41-52.
- 11. J. Leech, A problem on strings of beads, Math. Gazette 41, 277–278 (1957).
- M. Lothaire, *Combinatorics on Words*, Cambridge Mathematical Library, Cambridge University Press, (1997).
- 13. M. Lothaire, *Algebraic Combinatorics on Words*, Encyclopedia of Mathematics and its Applications **90**, Cambridge University Press (2002).
- N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel (Eds.), Lecture Notes in Mathematics 1794, Springer-Verlag, Berlin, 2002.
- M. Rigo, P. Salimov, Another Generalization of Abelian Equivalence: Binomial Complexity of Infinite Words (long version), preprint (2013), available at http://hdl.handle.net/2268/149313