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Abstract

We present memory-efficient deterministic algorithms fonstructinge-nets and-approximations of streams of ge-
ometric data. Unlike probabilistic approaches, theserdetéstic samples provide guaranteed bounds on their appro
imation factors. We show how our deterministic samples camised to answer approximate online iceberg geometric
gueries on data streams. We use these techniques to apptexseveral robust statistics of geometric data streams, in
cluding Tukey depth, simplicial depth, regression depltie, Thiel-Sen estimator, and the least median of squares. Our
algorithms use only a polylogarithmic amount of memoryvited the desired approximation factors are at least ievers
polylogarithmic. We also include a lower bound for non-ieebgeometric queries.

1 Introduction

With the proliferation of streams of packets on the Interastwell as data streaming from embedded systems, digital
monitors, sensor networks, and scientific instrumentsettsea need for new algorithms that can compute approximstio
or answer approximate queries on data streams. The mailepalin these contexts is that the data volumes are often
much larger than the memory size of a typical computer. Tthese is a considerable amount of interest in methods that
can process data streams using limited memory (e.g., seatrsgrveys by Muthukrishnan [38] and Babcock [4]). The
model we choose to work in is the so callEiche Seriesnodel in which each time instant reveals a new element oféite d
stream “signal.”

A typical approach in data streaming algorithms is to maingarandom sample of the input data and perform com-
putations on the sample with the hope that information abmisample can be used to infer properties of the entire set.
Naturally, such inferences come with an associated prétyathiat they are inaccurate. In this paper, we are integbst
in deterministically constructing samples of a data strélaam have guaranteed approximation properties for thenaiig
set. Moreover, because of the limited memory restrictiodaif streaming applications, we are interested in detéstizin
samples that can be constructed using space that is potittogé in the data stream’s length.

In addition, because much of the streaming data is coming Bensors and scientific instruments, we are interested
in this paper in studying streaming algorithms for geoneeteta. Such data could include multi-dimensional pointhén
color space of astrophysical data or two-dimensional ldefsied by a point-line duality of a stream of points in thengla
Of particular interest, then, is data streaming algoritfionconstructinge-nets and-approximations, which are general
structures developed in the computational geometry titeeafor deterministically sampling geometric data. Imilee
nets ande-approximations are developed in a very general contexbahded-dimensional range spaces, where we are
given a ground set and a polynomial-sized family of rangethanset (which constitute the queries or sampling stesisti
we are interested in). Hence, results for constructing sietbrministic samples should have a considerable number of
applications.

1.1 Related work on Streaming Algorithms

Data streaming problems have engendered a large amourtecdshin the algorithms literature over the last few years.
For a comprehensive survey of the work done so far and soraeesting directions for the future, the reader is referred
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to Muthukrishnan’s work [38]. An earlier survey by Babcodk &. [4] explores the issues arising in building data strea
systems.

There has been very little work so far on constructintets ore-approximations in streaming models, although these
structures have been extensively studied in full-memontexts (e.g., see the chapter by Matousek [37]). The tweslin
of research we are aware of are by Suri, Toth and Zhou [44psrRBfOnimann et. al [10, 9].

The work by Suri et. al. [44], which appeared in the same prditeys as an earlier version of our current work [5],
is closely related to our paper. Suri et. al. present an #lgorfor answering axis-parallel box range counting querie
using cross products of Greenwald and Khanna's quantilevsanmas [21]. They also use Chazelle and Welzl's results
on matchings with low crossing number [12] to give an aldonitfor directly merging and reducirgapproximations for
axis-aligned box ranges. Their techniques are very iniegesynthesizing many different areas of research. Tesults
parallel the ones we provide here although they are predémta less general setting (and hence their space and time
bounds are slightly better.) The other major advantage ofwouk over theirs is that our constructions are determimist

Also in the streaming context, Bronnimann and others [10s8e-approximations for association rule mining in large
databases. They give an algorithm for deterministicallppoting anc-approximation on streams of transactions (each of
which is a set of items). This algorithm operates by repdatealving the current sample till the approximation bound
required is violated.

An extremely productive line of research whose technigees telation to ours is the work on coresets [1]. Agarwal et.
al. [2] developed the notion efkernels and coresets to give fast approximation algostfona range of extent measures
(like the smallest width of a strip containing a point sethog tvidth of an annulus containing a point set among others)
of stationary and moving point sets. In the streaming sgttieir techniques are inspired by the dynamization teakaiq
of Bentley and Saxe [6]. In fact our own “merge-and-redueehnique, which will be described in detail in Section 4 is
very similar in flavour to techniques described by AgarwadletAlso related in terms of techniques to our paper is work
by Guha et. al. [22] who describe methods for clustering Wihiave a “merge-and-reduce” flavour.

In theiceberg query18] framework, Manku and Motwani [33] provide+ ¢ approximations for the frequency counts
of items in a data stream that occur more thahtimes (which are the so-called “icebergs”). An alternatypgproach,
which requires two passes but uses less space, can be fo[28].iAnother set of improved results for determining the
top k frequency counts is given in [16]. Mentioned in passing &were the algorithms for computing the quantiles of a
data stream which have been given by Greenwald and KhanhaiZranteeing a precision eV, which is similar to the
guarantees that are provided &gpproximations, while usin@(% log eN') space. This limitation of an additiveV error
in every quantile is overcome by Gupta and Zane [23]. Thefatethod provides relative error for all quantiles bigsus
O(log® N/€*) space and requires knowledge of an upper bound on the stizem s

Although the area of geometric property testing has geedraterest in algorithms with sublinear time complexity
(see e.g. [11]), the first geometric problem to be studiedhéndtreaming model as we understand it was that of finding
the diameter of a set of points. Feigenbaum, Kannan and Zfi#gave anO(1/¢) space algorithm for computing
the diameter of points in two dimensions in the streaming ehadd aO(ggl/2 -log® N(log R + loglog N + 1og(§)))
space algorithm for computing it in the sliding window modéiere R is the maximum, over all windows, of the ratio
of the diameter to the distance between the closest twopmirihe window. Indyk [26] gave a streaming algorithm that
maintains ac-approximate diameter of points ihdimensions using(dn'/(<*~1) space taking)(dn'/(<*~1)) time per
new point, fore > /2.

Cormode and Muthukrishnan generalized the exponentitddriams used on single dimensional data sets in earlier
works on streaming algorithms [15, 30] and definadial histogramg14], which allowed them to give &(1 + ¢) approx-
imation to the diameter using(1/¢) space. They were also able to use these structures to appatexconvex hulls in
the sense that no point in the input stream is more tiamutside the approximate hull, whefe is the diamter of the
point set. Constructing an approximate hull takes th@fy/e) space. Hershberger and Suri [25] improve this to give a
sampling-based algorithm for approximating the convekdifid streaming point set, showing how to maintain an adaptiv
sample of at mos2r points such that the distance between the hull of their sarmptl the true convex hull 8(D/r?),
whereD is the current diameter of the sample. Some of the other gemrpeoblems that have been studied in a streaming
model include minimum spanning tree and minimum weight matg [27] and certain clustering problems like facility
location and nearest neighbour queries [14].

1.2 Our Results

In this paper, we present memory-efficient deterministiogthms for constructing-nets and-approximations of streams
of geometric data. Our algorithms use a polylogarithmicamof memory, provided is at least inverse-polylogarithmic.



As mentioned above-nets ande-approximations are of interest in their own right and hawnynapplications in com-
putational geometry. We show how our deterministic samgdgsbe used to answer online iceberg geometric queries on
data streams, such as in multi-dimensional iceberg rangelsiag. Because the information typically of interestnfro
data streams is statistical, we focus in this paper primarilthe use o-nets anc-approximations to compute approx-
imations to several robust statistics of geometric da&astis, including Tukey depth, simplicial depth, regressiepth,

the Thiel-Sen estimator, and the least median of squaress, We additionally give polylogarithmic-space data strizey
algorithms for computing approximations to these statistiVe also include a lower bound for non-iceberg range gseri

in data streams.

2 Preliminaries one-Nets ande-Approximations

We recap certain aspects ehets and-approximations [46, 37] which are part of a general framéwior modelling a
number of interesting problems in computational geomet/@erandomizing divide-and-conquer algorithms.

Definition 2.1 Arange spaces a set system, i.e., a paif = (X, R), whereX is a set andR is a set of subsets df. We
call the elements dR therangesof X2, asR is typically defined in terms of some well structured geoynetr

If Y is a subset o, we denote byR|y the set systermduced byR onY, i.e., {RNY|R € R}!. We say a subset
Y C X is shatteredf every possible subset of is induced byRr, i.e., if R|y = 2Y.

Definition 2.2 TheVC-dimensionof X is the maximum size of a shattered subseY of

If there are shattered subsets of any size, then the VC-diimeis infinite. A related and simpler notion is theaffold
dimensior[20] of ¥. It is based on the notion of ttehatter functionrz (m), which we define as the maximum possible
number of sets in a subsystemfnduced by amn-sized subset ok . In other words, itis theup{|R|y|: Y C X,|Y| =
m}. We now define the scaffold dimension(f, R) as the infimum of all numbergsuch thatrr (m) is O(m?). It turns
out that the shatter function of a set system of VC-dimendigsbounded by(}) + () +- - - + () = ©(m) [42, 46].
Thus the scaffold dimension is always at most the VC-dimmmsiConversely, if the scaffold dimension is bounded by
a constant, the VC-dimension too is bounded by a constardreTére, however, many natural geometric set systems of
scaffold dimension strictly smaller than the VC-dimensifor instance, the scaffold dimension of a set system defined
by halfplanes in the plane is 2, while the VC-dimension isr8thie rest of the paper, we will always refer to the scaffold
dimension of a set system. In addition, we consider onlydlsst systems whose scaffold dimensions are bounded by a
constant.

We are now ready to defirenets and-approximations.

Definition 2.3 A subsetS C X is ane-net for (X, R) provided thatS N R # 0 for everyR € R with |R|/|X]| > €. A
subsetd C X is ane-approximation for X, R) provided that for every se® € R

[ANR| |XNR
— <e
A RY
Note that every-approximation is automatically annet, but the converse need not be true. A remarkable psopert

about set systems of scaffold dimensibis that, for anye € [0, 1), they admit are-approximation whose size depends
only ond ande, noton the size ofX. The first basic result in this vein is the following lemma.

1)

Lemma 2.4 For any set systerfiX, R), with a finite X', and a scaffold dimension at mastwhered > 1, there exists, for
anye € [0, 1], ane-net of size at mogt e~ lg(e~!), and ane-approximation of size at moéte~21g(¢~1). HereCy, Cy
depend on only.

Note that, in general, thig(¢~!) factor cannot be removed from the bound.

MatouSek [36] gave a deterministic algorithm for efficlgntomputing small sized-approximations (and thereby,
e-nets) for set systems with constant-bounded scaffold d&moas. Such an algorithm needs that the set system is given i
a form more “compact” than simply the listing of the elementsach set. For this we assume the existencesobaystem
oracle i.e. an algorithm (depending on the specific geometriciegiabn) that, given any subskt C X, lists all sets of
R|y. We say that the subsystem oracleislimension at most if it lists all sets in timeO(|Y'|¢*1). This corresponds to
the scaffold dimension; the maximum number of set®jg is 7z (|Y]), and the 41" in the exponent accounts for the
fact that each output set is given by a list of size ufith MatouSek’s result is summarized by the following lemma.

INote that although many sets & may intersect” in the same subset, this intersection appears only orReyn



Lemma 2.5 Let (X, R) be a set system with a subsystem oracle of dimengiamhered is a constant. Given any
e € [0,1), we can compute aam-approximation of sized(¢~21g(¢~1)) and ane-net of sizeO(e~!1g(e~!)) in time
O(IX e 1g"(e)).

We shall use the algorithm above as a subroutine for ourretrepalgorithm fore-approximations (see Section 4). It is
based on two observations that we state below. They comedpawo basic operations of our algorithm, tiherge step
and thereduce stepMany algorithms for computing-approximations (certainly the one MatouSek gave, andtteewe
shall give) start by partitioning into small pieces, and then alternate between the two stejisthey get the desired
approximation.

Observation 2.6 (Merge Step)Let X1, ..., X,, C X be disjoint subsets of equal cardinality and letbe ane-approxi-
mation of cardinalityb for (X;, R|x,),i =1,... ,m. Then4; U...UA,, is ane-approximation for the subsystem induced
byRonX,;U...UX,,.

Observation 2.7 (Reduce Step) et A be ane-approximation for(X, R) and letA’ be ad-approximation for(A, R|4).
ThenA’ is an (e + §)-approximation for X, R).

Lemma 2.5 can be extended to a weighted case, as in the fotoesult by MatouSek [36].

Lemma 2.8 Let X be a finite set equipped by a probabilistic measufgiven by a table) and I1ef = (X, R) be arange
space satisfying the assumptions of Lemma 2.5. Thenagproximation for: with respect to the measuye can be
computed with the same asymptotic efficiency in the runiing &and size of the-approximation in the case of uniform
measure in Lemma 2.5.

WhenX is associated with a probabilistic measprene-approximation of X, R) is a multi-setA such that

|[ANR| w(XNR)
_ €,
Al wX) |-

for everyR € R. Though we calls a probabilistic measure, the result extends to measure ichytiX') to take values
other than 1; specifically(X) can be X|.

3 Additional Extensions for Weighted Sets

While the extension described above is useful in our contegtnevertheless need some further generalizations, which
will be useful in the data streaming model. In particular,meed to be able to mergeapproximations of sets of different
cardinalities. To this end we generalize Observations 2d62a7. To the best of our knowledge, this is the first time such
observations are being made.

Our observations generalize the fact that in the un-we@jbése, for ar-approximationA for (X, R), each element
in A “represents’| X |/|A| elements inX. This is easy to see if we write Requirement (1) in the follogviorm:

X
|AﬂR|% — X NR|| <€X].

In general, an elemenptin thee-approximationd need not represent the same number of elememsad every other
element inA, especially ifA has been created by merging ter@pproximationsof sets with different cardinalities. So,
instead of having an elemente A representX|/|A| elements, we can assign it a weigh{p) equal to the number of
elements inX that it represents. In this generalized scenario, a subsetX, is aweightede-approximation for X, R)
if >-,ca7(p) = [X], and for everyr € R,

> ) - IXNR|| <dX].
pEANR

We are now ready to state observations related to weightegimgeand weighted in a form that will be of use in the
streaming algorithm.



Observation 3.1 (Weighted Merge Step)Let X, ..., X,, € X be disjoint subsets (of possibly differing cardinalities)
and letA; be a weighted-approximation of X;, R|x,),i = 1,... ,m. Then4; U...UA,, is a weighted-approximation
for the subsystem induced ®on X; U ... U X,,,, where the weight(p),p € A; U...U A,, remains unchanged.

For the next observation, we define a meagurgas follows:n(Y') = 3° .y v(p), wherey(p) is the weight of point
p. Recall Lemma 2.8 which talks about computingeaapproximation for a set equipped with such a measure.

Observation 3.2 (Weighted Reduce Step).et A be a weighted-approximation for(X, R) and let A’ be ad-approxi-
mation for(A, R|4) with respect to measurg(-). ThenA’ is an (e + §)-approximation for( X, R).

4 Computing e-Approximations in Geometric Streams

In this section, we describe an algorithm that takes pollillgmic space and processing time per object to compute a
compacte-approximation of a data stream of geometric objects of bednscaffold dimension, providedis at least
inverse polylogarithmic,

Letxy,...,x,,... be a stream of geometric objects in the time series modelingrtions only. LetX be the set
of all the objects in the stream that have arrived till nowt Rebe a set of ranges defined éh andX = (X, R) be the
current range space. In addition, tgtwhered is a constant, be the scaffold dimensior?bf

We begin by imposing a natural tree hierarchy over the datast: define @anonical setS; ;, as

Sin = {wi|j2k <i < (j+1)2%},

for j,k > 0. Canonical sets are inter-related through a natural treeatdhy. Thechildrenof setS; ;, £ > 1, are the
canonical set$s; ;1 andSs;41,x—1. We say that a canonical s8f ;, becomesvailablewhen the last elementin it, i.e.,
T(j41)2¢—1, arrives. Amaximal canonical sat one that is available but whose parent is not yet available

Observe that when,, arrives, there are at mogtn maximal canonical sets. Also, the union of all the maximal
canonical sets is the sét of all elements that have arrived till now.

Current Output
T A T t

[ ] u Past stream item

i i ] Current item

Available set

@ T Weighted merge

A

Merge and reduce

time

Figure 1: Schematic: Computing arapproximation of a data stream

We now outline our streaming algorithm. It simulates theidBvand-conquer approach of the static algorithm in a
bottom up fashion. Interestingly, we do not need to know tleer ofn. in advance.

The algorithm proceeds as follows (see Figure 1): At eveagest the algorithm stores &approximation for all
available maximal canonical sets, whénearies with the set, but is always at meg2. Thed-approximationd; j for S,
is constructed through merging the approximatiging,—, andAs;+1 ,—1 Which were earlier computed fdf; ;'s two
children. Lemma 2.5 states thatpproximations of the same size can be constructed on tiferetit input sets of the
same cardinality, provided the sarig used for both. Thus, by induction, we can see that;,_; andAs;41,,—1 have the
same cardinality, and by Observation 2.6 can be mergedr i merge the-approximation is reduced to the required
size.



The e-approximation of the seX at any point, thestream outputis determined by merging theapproximations for
the maximal canonical sets in a weighted manner as given lsg®&tion 3.1. Each elememi A; ;. is assigned a weight
7(p) = |S;.1/14;| for this purpose.

Formally, we need the following building blocks:

e c-approx(): An algorithm for deterministically computingapproximation of small size (see Lemma 2.5),

e weighted_c-approx(): An algorithm for computing deterministicalbrapproximations ofveighteditems of small
size (see Lemma 2.8).

Note that we will never use-approx() on an input that is larger than logarithmic, as otherwise enet achieve the
space and time bounds that we are aiming for.

Our algorithm, we call ite-stream_approx(), follows the basic merge and reduce technique [37] for canthg
e-approximations. To follow this technique we need to usequeBcew, ... ,w,, ... With the property that?V =
> oo, wy = O(1). Here we shall use; = i~¢, for somec > 1.

In Figure 2 we give the fomrmal specificatione$tream_approx(). In reading the specification, assume tHat, is
the element itself in the singleton s&t,.

e-stream_approx()
When the next element,, in the stream arrives
For each canonical sét; ;. that becomes available,
taken in the order of increasirig wherek > 1
/* Combine approximations of its children
for the parent */
B — Agjp—1UAzjt1,6-1.
/* Reduce the size of the approximation */
Aj ok — (/2 - wi /W )-approximation ofB
usinge-approx().
/* Assign weights to elements */
Forallp € A; ki v(p) < [Sikl/[Ajkl-
/* Combine approximations of maximal canonical sets
for the stream */
A" —Us; . is availabledi.#-
Each element i’ retains its weight from its orginad ; 5.
/* Reduce the size of the approximation */
A « (e/2)-approximation ofA’ usingweighted_e-approx().
Output A.

Figure 2: Algorithm for computing as-approximation of a geometric stream.

We are now ready to state our main theorem.

Theorem 4.1 Given an algorithm for computing antapproximation of am-point range space (equipped with a proba-
bilistic measure) of size(e) in timeT'(n, €) and taking spaceé(n, €), the algorithme-stream_approx() can compute
an e-approximation for a stream of objects, of whiethave been seen, such that:

1. The size of the approximation@¥o (¢));

2. The processing time per input objecti$lgn - T'(s, O(e/1g°n)) + T(lgn - s,¢/2));
3. The spacetaken8(lgn - s+ S(s,0(e/1g°n)) + S(lgn - s,¢/2));

wheres = 0(O(¢/1g°n)), andc > 1 is a constant.

Proof. Observations 2.6 and 2.7 imply thdt ; is aj-approximation fors; ., where

k
§§Z NS
u=1

N o
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Together with Observation 3.1, this implies thétis a weighted(¢/2)-approximation for the seX of elements in the
stream. By Observation 3.2, it now follows thtis ane-approximation of X, R). The size ofd is O(c(¢/2)).

The data structure needs to store justefagproximations of the maximal canonical sets, i.e.,Ahg’s; all other sets
are intermediate results that can be discarded. Denoté&thefdargest such set, i.€4;; 1, », by s, which isO(co(¢/1g" n));
recall that the size is determined by just the last reduaiep. The size of the data structure is, therefoxég n - s).

Consider the space and time requirements for calisapprox() (there can be at mokgt » such calls per input object)
andweighted_e-approx() (1 per input object). Note thatis an upper bound for the size of the inputtapprox(), and
slgn an upper bound for the size of the inputteighted_c-approx(). Thus, for the calls te-approx(), the time required
is O(lgn - T'(s,0(e/1g°n)), and the space required$§s, O(e/1g°n)). For the call toweighted_e-approx(), the time
required isT’'(Ign - s,€/2)), and the space requiredSglg n - s,¢/2)).

O

The algorithm given by Matousek [36] (see Lemmas 2.5 anptsr (¢) = O(e 21g(e™ 1)), T(n, €) = O(n(e 2 lg(e~1))%),
and, we claimS(n, e) = O(n + /n - (e 21g(e~1))?). Thus, we have the following result.

Corollary 4.2 There is an algorithm for computingapproximations for a stream of objects, of whiclhave been seen,
with an associated set of ranges, such that the size of th@xippation isO(¢ 2 Ig(¢~ 1)), the processing time per object
is O(Ign - s?t1), and the space taken @(lgn - s + s4+1/2), wheres = O(¢=2 - 1g* n(lglgn +1g(e"))), ande > 11is

a constant.

5 Applications: Robust Statistics

e-Nets ande-approximations have a number of applications in compuontati geometry, as well as learning theory (see,
e.g., [35]). Many of the problems in these have streamingiges. One basic applicationrsnge countinglin this, we are
given a setS of n points inR¢, and a familyR (the ranges) of subsets Bff. Each query consists of a rangec R and
asks for the number of points in it. Typical range families axes-orthogonal ranges, spherical ranges (proximitsieg)e

and simplical ranges. The corresponding range spacesdse @l have a bounded scaffold dimension. In the streaming
version, the point sef comes as a continuous stream, interspersed with querisgdsy to see how our algorithm would
work here: use-stream_approx() to maintain anc-approximationA of the current(S, R). When queried with range

R € R, output|A N R| - n/|A|. This is within an additiveen of the true value, which is akin to the iceberg queries
mentioned earlier.

The above technique has implications to a number of problemabust statistics.

Robust statisticeoncerns the study of statistical estimators that canat#drigh numbers afutliers, while maintaining
an accuracy of estimation that depends only on the remaimigrrupted data points. In contrast, ordinary least sgpuar
estimators, while trivial to compute even in the streamiragled, can be forced to produce estimates that are arbytfaril
from the correct model even in the presence of a single oulllee number of outliers that an estimator can tolerateavhil
preserving its accuracy is called liseakdown pointin general, methods with high breakdown points are pretgrout
other criteria are also important including statisticdilbééncy (number of samples needed to achieve a given agguaad
computational efficiency (amount of time it takes to compugéven estimate from a set of samples). Many robust stailsti
methods also have the advantage of beiog-parametri¢ not requiring the statistician to produce a prior prokigpbil
distribution or other arbitrary parameters before prodga fit. The paradigmatic example of a robust statistic is the
median of one-dimensional data, which, unlike the meanoplsist with a breakdown point (1} Much research on
streaming algorithms has gone into methods for maintaiapgroximate medians or more general quantiles [21], and we
would like to find similar methods for higher dimensionatstics.

Two of the critical problems studied in robust statistics lacation (finding a central point in a cloud of data points)
andregressiorfitting the data to a model in which a dependent variable datées is a linear function of the independent
variables). Many methods in this area are based on variousepts ofdepth which measures the quality of fit of an
estimate. It is natural to seek the estimate maximizing tthd but it is also of importance to be able to compute depths
of non-optimal estimates, in order to foiepth contourshat produce a center-outward ordering of the data.

For many of these robust statistical methods, a computatioefficient streaming approximation to the depth measure
can be obtained from anrapproximation of the sample data. The deepest fit can bezippated by a deepest fit to the
e-approximation, and this approximate fit often has simitaaxdown point properties to the non-approximate fit on twhic
it is based. We describe below several of the methods to whistiechnique applies:



5.1 Tukey Depth

This quantity [17] measures the quality of fit of a centerhasrhinimum proportion of sample points among all halfspaces
that contain the center. The Tukey depth of a point can be otedgn timeO(n? log n), wheren denotes the number
of sample points [41]. Th&ukey mediars the point of maximum depth. It is known that any Tukey madias depth

at leastl/(d + 1), and the breakdown point of the Tukey median as an estimdteafion is alsol/(d + 1). There are
known static algorithms for finding Tukey medians, or otheings of high depth, in two or three dimensions [28, 31, 34],
but in higher dimensions only inefficient linear-programmbased exact solutions are known and it is necessary td reso
to more efficient approximation algorithms [13].

The Tukey depth is based on counting points in halfspacescélie can be approximated effectively usirrgpproxi-
mations for halfspace ranges [13]: the depth of a point wittnic-approximation of a sample is within an additive error of
e of its depth in the original sample data. In particular, thdy median of am-approximation has depth withinof that
of the true Tukey median. The breakdown point of this appnate Tukey median i$/(d + 1) — e. Thus, by using our
streaminge-approximation algorithm, we can efficiently maintain natyoan approximate Tukey median of the data set,
but also a space-efficient data structure from which we campebe accurate approximations of the Tukey depth of any
point.

5.2 Simplicial Depth

This is another measure of quality of fit for location, intueed by Liu [32]. The simplicial depth of a fit point is defined
to be the proportion of simplices, among all n@g;l) simplices formed by convex hulls 6f + 1)-tuples of sample points,
that contain the fit point. Equivalently, it is the probatyilihat a randomly chosefa + 1)-tuple contains the fit point in

its convex hull. As we now argue, for points in the plane, tingpdicial depth in a sample set is accurately approximated
by the simplicial depth of am-approximation for wedge ranges (that is, ranges formechi®rsecting two halfplanes).
Therefore, as for Tukey depth, we can answer approximateé dgeries and maintain an approximate deepest pointin a
space-efficient manner for streaming data.

Let ¢ be a value to be determined later and imagine the followinggss for measuring approximately the simplicial
depth of a fit point: first, leL be a set ol /4 lines through the fit point, partitioning the plane it wedges having the fit
point as a common apex, with at most raction of the sample points in any wedge. ketbe the proportion of triangles,
determined by three input points, that are not all on one sfdene of a line inL. Thene; is an overestimate of the
simplicial depth, but the amount by which it overestimatesdepth i<D(4): the only triangles incorrectly included in the
estimate are ones that have two points in opposite wedga® #ne0(52n3) such triangles per pair of opposite wedges,
andO(1/6) such pairs. Next, let; be the proportion of triangles, determined by three poimtmie-approximation of the
sample, that are not all on one side of a lind.inFor the same reasons as befereis within O(¢) of the simplicial depth
for thee-approximation. Furtheg; ande, are withinO(e/¢) of each other:

WY+ (%) (he — wy) + w; (M5
ey G )

wherew; is the number of sample points in tith wedge and; is the number of sample points in the halfplane containing
theith wedge on its counterclockwise boundary. Each term intineis approximated withi®(¢) by the corresponding
term wherew; andh; are replaced by numbers of points in thapproximation, and there af(1/4) terms, so the total
difference between; andes is O(e¢/§). Putting together the errors in going from the original digial depth toe; to

e to the simplicial depth of the approximation, and settihg- /¢, we see that the-approximation approximates the
simplicial depth to withinD(/e).

As far as we are aware, this deterministiapproximation based method for approximating simplidighth is novel
even for static, non-streaming data, although it is tritdgepproximate simplicial depth randomly in the static dagseam-
pling triangles. It seems likely that similar determiristind streaming approximation guarantees, with worse di=pee
one, can be shown to hold also in higher dimensions.

5.3 Regression Depth

This statistic was introduced by Rousseeuw and Hubert [89] measure of the quality of fit of a regression hyperplane.
It is defined as being the minimum proportion of sample pdimé$ can be removed to turn the fit plane intoanfit, that
is, a hyperplane combinatorially equivalent to a vertiggddrplane. Amenta et al. [3] showed that, like Tukey depih, f



regression depth a fit always exists with depth at lé@&t + 1), and the breakdown point of the maximum-depth fit is
1/(d + 1). Their proof technique shows that the regression depth ofeaychyperplane can be measured by performing
a certain projective transformation of the space contgittie sample points, and measuring the Tukey depth of a sertai
point in the transformed space. Due to the transformatibalfapace in the transformed space may corresponddéable
wedge(symmetric difference of two halfspaces) in the originadep. Therefore the samaeapproximation technique as

is used for Tukey depth, but with double wedge ranges, alpbiespto regression depth, and lets us compute depths and
maintain an approximate deepest fit with high breakdowntgoinstreaming data. Bern and Eppstein [7] generalized
regression depth to the context of multivariate regressiomwhich the sample data have more than one dependent hegriab
in their definition, the depth of a fit is the minimum proportiaf sample data contained in any double wedge, one boundary
of which contains the fit and the other of which is parallehte iependent coordinate axes; this is again well approgunat
by e-approximations for double wedge ranges.

5.4 The Thiel-Sen Estimator

This estimator [43, 45] is a method for two-dimensional éineegression. Here we first find the median among{@ll
slopes determined by the lines through pairs of sample poife then select a regression line with that median slope
which bisects the sample set. The Thiel-Sen estimator hesakdown point ofl — \/1/_2 ~ (0.293. This has long been a
testbed for geometric optimization algorithms, and sdv@(a log n) time static algorithms for it are known, among them
one based on usingcuttings in a prune-and-search technique [8]. Howevesdladgorithms seem to require repeatedly
scanning the data in a way that is unavailable to a streanhjiogitom. Instead, we apply an approximation technique ver
similar to that for simplicial depth, above.

To begin with, suppose that we are given a query slgpend must determine the approximate positiors @fithin
the sorted sequence of slopes, normalized by dividing tiséipo by (g) This can be solved exactly by a reduction to
computing the number of inversions in a permutation, but reeirsterested in approximations that can be computed by a
streaming algorithm that does not knevin advance. To do this, Iétbe a parameter to be determined later, and imagine
subdividing the sample points into a grid B)f1/4) lines that are vertical and parallel #pin such a way that at mostéa
proportion of the points lie in the slab between any two agljaparallel grid lines. Let; be an estimate of the position of
s, formed by summing up the normalized number of pairs of pdimat form a line with lower slope thanand that are in
a pair of grid cells that are separated both by a verticaldinde grid and by a line parallel tofrom the grid. There; is
within O(§) of the true position of since the only lines through a given point that are omittedifthe count are the ones
where the other point determining the line is in one of the shados containing, ande; can be expressed as a sum with
O(62) terms, each term being a product of the number of points ingarallelograms. Let, be a similar normalized
sum, with the number of sample points in each parallelogeptaced by the number of points of aapproximation for
parallelogram ranges, and ket be the normalized position afwithin the set of lines determined by pairs of points from
the e-approximation. Them; differs fromes by O(e6—2) ande differs fromes by O(§ + €5~ 1). Therefore, the overall
error caused by using; as our approximation to the position ofs O(5 + e5—2). Settingd = €'/> makes this total error
equalO(e'/3).

To compute an approximate Thiel-Sen estimator, we use te sapproximation for parallelograms. We compute
the median slope among pairs of points from the approximatiad then find a line with that median slope bisecting the
approximation. The resulting line has slope with a nornealiposition withinO(e!/3) of the median slope, partitions the
sample points withir of exact bisection, and has a breakdown poirtt ef /1/2 — O(e'/3).

5.5 Least Median of Squares (LMS)

These methods [40] in robust statistics seek a fit that mizesithe median residual value separating the fit from the
sample points. This is not a depth-based criterion, buti$eto fits which are highly robust against outliers. For tioca
problems, the least median of squares fit is the center of thiemam radius sphere that contains at least half of the sampl
data [24]. It has a breakdown pointé)f if fewer than half the sample data points are outliers, thersphere defining the
LMS fit has smaller radius than the circumsphere of the ndfiess, and it contains at least one non-outlier, so its@ent
must be an accurate fit. Clearly, this is the best breakdovmt possible for any location method. The natural type of
e-approximation to use for this problem is one with balls asdtnges. If we form the LMS fit of such arapproximation,

the result may not be robust. Instead, we approximate the fiM& finding the center of the minimum radius sphere
that contains at Ieast%u— e proportion of the points in the-approximation. Such a sphere must therefore contain st lea



half of the sample data, and has a radius at least as sma# ashllest sphere containing at Iea%ta 2¢ fraction of the
sample data. It is robust with a breakdown poin%oﬁ 2¢.

The same LMS approach can also be applied to regressiorepnsblThe least median of squares regression hyperplane
can be defined as the central hyperplane in a slab boundedlyyarallel hyperplanes, with minimum vertical separation
between them, that contains at least half of the sample dgtan this is robust with a breakdown pointgxf As above,
we can use ap-approximation, with slab ranges, and find the slab with minn vertical separation containing%a—l— €
fraction of thee-approximation points, to produce an approximate LMS fitvbiteakdown poiniz- — 2e.

6 A Lower Bound on Range Counting

We provide a simple lower bound on the space required to approximately the number of items in a range that is not
necessarily an iceberg. When we say that an algorjtrapproximates the range counting problem we mean that fengi
range containspoints, the algorithm gives us an answer which lies betwgérand! - f.

The bound is stated in termswfo-sided rangesa point(x, y) is said to belong to the two sided range locate(bai)
if x > pandy > q.

Theorem 6.1 Any f-approximate algorithm to the two-sided range countinggbeon must use spaé¥n/ f2).

We begin by assuming there is an algoritdnwhich gives anf approximation to the two-sided range counting problem
for a stream of points in two dimensions. Further we assumthiis algorithm uses spaoén/ f2).

Now consider a set of points which are grouped in/ 2 equally sized groups, we call the@), wherel <i < n/f?,
in the following way (Figure 3):

n
> o ’
n—1 > G; (close up)
D
4 ¢
D
b
P €
: ' |
4K Xi; i)
HE
| LR
G
2  *
1  *
0 1 2 n-1 n

Figure 3: Input sequence for the lower bound on approxinatge counting

Each pointinG,; has the same coordinate, we call it;. For simplicity of presentation assume thatalvalues are
integers. Additionally, we requirg; > z;_;.

All the points inG; havey coordinates closely clustered at a given value, we cgll iHHere too we assume that all
y; values are integers. Formally, for everye G;, we say thad < y(p;) — y; < 1/2.

Every pointp; € G; hasy-coordinate strictly smaller than thecoordinates of all the points i¥;_;.

Each group has an additional poirt; = (z; + €, y; + €), for somee < 1/2, associated with it.

Note that this family of input sequences has the propertyatao-sided query made ét;, y;) should return a count
of f2 + 1 and one made &tr; + 5,y: + ) should return a count of 1. This radical change in the couiitswat occur
between two such queries at any point which is not actuallyy;) for some value of. As an extension to this simple
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observation, we note that since all thegs andy;s are chosen out of the integdr2, . . . n, it is possible to extract the exact
values of all ther; with O(™1%") queries by using binary search.

Let us see if the algorithm can be the query mechanism which we can deploy to this endedins an f approxi-
mation, it should return a value of at mgsét (z; + 5, v; + 5) and a value betweefi+ 1/ f andf3 + f at(x;,y;). This
means thatd can indeed act as the oracle which identifies the locatiottseo§roups in our set.

Hence, usingl as a subroutine we can extré¢t/ f2) information about the input set. This contradicts the aggtion
that A uses space(n/ f?). 0

Seen in the context of streaming algorithms, Theorem 6.li@mthat is not possible to approximate the range counting
problemin polylogarithmic space. One of the implicatiohthis, among others, is that it is not possible to count iei@rs
in lists [23] in the sliding window model.

Acknowledgments. We would like to thank David Mount for helpful discussionsrobust statistics in the context of the
topics of this paper, and S. Muthukrishnan for helpful d&sions on geometric streaming algorithms in general.
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