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Abstract

We present memory-efficient deterministic algorithms for constructingε-nets andε-approximations of streams of ge-
ometric data. Unlike probabilistic approaches, these deterministic samples provide guaranteed bounds on their approx-
imation factors. We show how our deterministic samples can be used to answer approximate online iceberg geometric
queries on data streams. We use these techniques to approximate several robust statistics of geometric data streams, in-
cluding Tukey depth, simplicial depth, regression depth, the Thiel-Sen estimator, and the least median of squares. Our
algorithms use only a polylogarithmic amount of memory, provided the desired approximation factors are at least inverse-
polylogarithmic. We also include a lower bound for non-iceberg geometric queries.

1 Introduction

With the proliferation of streams of packets on the Internet, as well as data streaming from embedded systems, digital
monitors, sensor networks, and scientific instruments, there is a need for new algorithms that can compute approximations
or answer approximate queries on data streams. The main challenge in these contexts is that the data volumes are often
much larger than the memory size of a typical computer. Thus,there is a considerable amount of interest in methods that
can process data streams using limited memory (e.g., see recent surveys by Muthukrishnan [38] and Babcock [4]). The
model we choose to work in is the so calledTime Seriesmodel in which each time instant reveals a new element of the data
stream “signal.”

A typical approach in data streaming algorithms is to maintain a random sample of the input data and perform com-
putations on the sample with the hope that information aboutthe sample can be used to infer properties of the entire set.
Naturally, such inferences come with an associated probability that they are inaccurate. In this paper, we are interested
in deterministically constructing samples of a data streamthat have guaranteed approximation properties for the original
set. Moreover, because of the limited memory restriction ofdata streaming applications, we are interested in deterministic
samples that can be constructed using space that is polylogarithmic in the data stream’s length.

In addition, because much of the streaming data is coming from sensors and scientific instruments, we are interested
in this paper in studying streaming algorithms for geometric data. Such data could include multi-dimensional points inthe
color space of astrophysical data or two-dimensional linesdefined by a point-line duality of a stream of points in the plane.
Of particular interest, then, is data streaming algorithmsfor constructingε-nets andε-approximations, which are general
structures developed in the computational geometry literature for deterministically sampling geometric data. Indeed, ε-
nets andε-approximations are developed in a very general context of bounded-dimensional range spaces, where we are
given a ground set and a polynomial-sized family of ranges onthat set (which constitute the queries or sampling statistics
we are interested in). Hence, results for constructing suchdeterministic samples should have a considerable number of
applications.

1.1 Related work on Streaming Algorithms

Data streaming problems have engendered a large amount of interest in the algorithms literature over the last few years.
For a comprehensive survey of the work done so far and some interesting directions for the future, the reader is referred
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to Muthukrishnan’s work [38]. An earlier survey by Babcock et. al. [4] explores the issues arising in building data stream
systems.

There has been very little work so far on constructingε-nets orε-approximations in streaming models, although these
structures have been extensively studied in full-memory contexts (e.g., see the chapter by Matoušek [37]). The two lines
of research we are aware of are by Suri, Tóth and Zhou [44] andby Brönimann et. al [10, 9].

The work by Suri et. al. [44], which appeared in the same proceedings as an earlier version of our current work [5],
is closely related to our paper. Suri et. al. present an algorithm for answering axis-parallel box range counting queries
using cross products of Greenwald and Khanna’s quantile summaries [21]. They also use Chazelle and Welzl’s results
on matchings with low crossing number [12] to give an algorithm for directly merging and reducingε-approximations for
axis-aligned box ranges. Their techniques are very interesting, synthesizing many different areas of research. Theirresults
parallel the ones we provide here although they are presented in a less general setting (and hence their space and time
bounds are slightly better.) The other major advantage of our work over theirs is that our constructions are deterministic.

Also in the streaming context, Brönnimann and others [10, 9] useε-approximations for association rule mining in large
databases. They give an algorithm for deterministically computing anε-approximation on streams of transactions (each of
which is a set of items). This algorithm operates by repeatedly halving the current sample till the approximation bound
required is violated.

An extremely productive line of research whose techniques bear relation to ours is the work on coresets [1]. Agarwal et.
al. [2] developed the notion ofε-kernels and coresets to give fast approximation algorithms for a range of extent measures
(like the smallest width of a strip containing a point set or the width of an annulus containing a point set among others)
of stationary and moving point sets. In the streaming setting their techniques are inspired by the dynamization technique
of Bentley and Saxe [6]. In fact our own “merge-and-reduce” technique, which will be described in detail in Section 4 is
very similar in flavour to techniques described by Agarwal et.al. Also related in terms of techniques to our paper is work
by Guha et. al. [22] who describe methods for clustering which have a “merge-and-reduce” flavour.

In theiceberg query[18] framework, Manku and Motwani [33] provide1 + ε approximations for the frequency counts
of items in a data stream that occur more thanεN times (which are the so-called “icebergs”). An alternativeapproach,
which requires two passes but uses less space, can be found in[29]. Another set of improved results for determining the
topk frequency counts is given in [16]. Mentioned in passing above were the algorithms for computing the quantiles of a
data stream which have been given by Greenwald and Khanna [21], guaranteeing a precision ofεN , which is similar to the
guarantees that are provided byε-approximations, while usingO(1

ε log εN) space. This limitation of an additiveεN error
in every quantile is overcome by Gupta and Zane [23]. The latter’s method provides relative error for all quantiles but uses
O(log2 N/ε3) space and requires knowledge of an upper bound on the stream size.

Although the area of geometric property testing has generated interest in algorithms with sublinear time complexity
(see e.g. [11]), the first geometric problem to be studied in the streaming model as we understand it was that of finding
the diameter of a set of points. Feigenbaum, Kannan and Zhang[19] gave anO(1/ε) space algorithm for computing
the diameter of points in two dimensions in the streaming model and aO( 1

ε3/2
· log3 N(log R + log log N + log(1

ε )))
space algorithm for computing it in the sliding window modelwhereR is the maximum, over all windows, of the ratio
of the diameter to the distance between the closest two points in the window. Indyk [26] gave a streaming algorithm that
maintains ac-approximate diameter of points ind dimensions usingO(dn1/(c2

−1)) space takingO(dn1/(c2
−1)) time per

new point, forc >
√

2.
Cormode and Muthukrishnan generalized the exponential histograms used on single dimensional data sets in earlier

works on streaming algorithms [15, 30] and definedradial histograms[14], which allowed them to give aO(1+ε) approx-
imation to the diameter usingO(1/ε) space. They were also able to use these structures to approximate convex hulls in
the sense that no point in the input stream is more thanεD outside the approximate hull, whereD is the diamter of the
point set. Constructing an approximate hull takes themO(q/ε) space. Hershberger and Suri [25] improve this to give a
sampling-based algorithm for approximating the convex hull of a streaming point set, showing how to maintain an adaptive
sample of at most2r points such that the distance between the hull of their sample and the true convex hull isO(D/r2),
whereD is the current diameter of the sample. Some of the other geometric problems that have been studied in a streaming
model include minimum spanning tree and minimum weight matching [27] and certain clustering problems like facility
location and nearest neighbour queries [14].

1.2 Our Results

In this paper, we present memory-efficient deterministic algorithms for constructingε-nets andε-approximations of streams
of geometric data. Our algorithms use a polylogarithmic amount of memory, providedε is at least inverse-polylogarithmic.
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As mentioned above,ε-nets andε-approximations are of interest in their own right and have many applications in com-
putational geometry. We show how our deterministic samplescan be used to answer online iceberg geometric queries on
data streams, such as in multi-dimensional iceberg range searching. Because the information typically of interest from
data streams is statistical, we focus in this paper primarily on the use ofε-nets andε-approximations to compute approx-
imations to several robust statistics of geometric data streams, including Tukey depth, simplicial depth, regressiondepth,
the Thiel-Sen estimator, and the least median of squares. Thus, we additionally give polylogarithmic-space data streaming
algorithms for computing approximations to these statistics. We also include a lower bound for non-iceberg range queries
in data streams.

2 Preliminaries on ε-Nets andε-Approximations

We recap certain aspects ofε-nets andε-approximations [46, 37] which are part of a general framework for modelling a
number of interesting problems in computational geometry and derandomizing divide-and-conquer algorithms.

Definition 2.1 A range spaceis a set system, i.e., a pairΣ = (X,R), whereX is a set andR is a set of subsets ofX . We
call the elements ofR therangesof Σ, asR is typically defined in terms of some well structured geometry.

If Y is a subset ofX , we denote byR|Y the set systeminduced byR on Y , i.e.,{R ∩ Y |R ∈ R}1. We say a subset
Y ⊆ X is shatteredif every possible subset ofY is induced byR, i.e., if R|Y = 2Y .

Definition 2.2 TheVC-dimensionof Σ is the maximum size of a shattered subset ofX .

If there are shattered subsets of any size, then the VC-dimension is infinite. A related and simpler notion is thescaffold
dimension[20] of Σ. It is based on the notion of theshatter functionπR(m), which we define as the maximum possible
number of sets in a subsystem ofΣ induced by anm-sized subset ofX . In other words, it is thesup{|R|Y | : Y ⊆ X, |Y | =
m}. We now define the scaffold dimension of(X,R) as the infimum of all numbersd such thatπR(m) is O(md). It turns
out that the shatter function of a set system of VC-dimensiond′ is bounded by

(

m
0

)

+
(

m
1

)

+ · · ·+
(

m
d′

)

= Θ(md′

) [42, 46].
Thus the scaffold dimension is always at most the VC-dimension. Conversely, if the scaffold dimension is bounded by
a constant, the VC-dimension too is bounded by a constant. There are, however, many natural geometric set systems of
scaffold dimension strictly smaller than the VC-dimension; for instance, the scaffold dimension of a set system defined
by halfplanes in the plane is 2, while the VC-dimension is 3. In the rest of the paper, we will always refer to the scaffold
dimension of a set system. In addition, we consider only those set systems whose scaffold dimensions are bounded by a
constant.

We are now ready to defineε-nets andε-approximations.

Definition 2.3 A subsetS ⊆ X is an ε-net for(X,R) provided thatS ∩ R 6= ∅ for everyR ∈ R with |R|/|X | > ε. A
subsetA ⊆ X is anε-approximation for(X,R) provided that for every setR ∈ R

∣

∣

∣

∣

|A ∩ R|
|A| − |X ∩ R|

|X |

∣

∣

∣

∣

≤ ε (1)

Note that everyε-approximation is automatically anε-net, but the converse need not be true. A remarkable property
about set systems of scaffold dimensiond is that, for anyε ∈ [0, 1), they admit anε-approximation whose size depends
only ond andε, noton the size ofX . The first basic result in this vein is the following lemma.

Lemma 2.4 For any set system(X,R), with a finiteX , and a scaffold dimension at mostd, whered ≥ 1, there exists, for
anyε ∈ [0, 1], anε-net of size at mostC1ε

−1 lg(ε−1), and anε-approximation of size at mostC2ε
−2 lg(ε−1). HereC1, C2

depend on onlyd.

Note that, in general, thelg(ε−1) factor cannot be removed from the bound.
Matoušek [36] gave a deterministic algorithm for efficiently computing small sizedε-approximations (and thereby,

ε-nets) for set systems with constant-bounded scaffold dimensions. Such an algorithm needs that the set system is given in
a form more “compact” than simply the listing of the elementsin each set. For this we assume the existence of asubsystem
oracle, i.e. an algorithm (depending on the specific geometric application) that, given any subsetY ⊆ X , lists all sets of
R|Y . We say that the subsystem oracle isof dimension at mostd if it lists all sets in timeO(|Y |d+1). This corresponds to
the scaffold dimension; the maximum number of sets inR|Y is πR(|Y |), and the “+1” in the exponent accounts for the
fact that each output set is given by a list of size up to|Y |. Matoušek’s result is summarized by the following lemma.

1Note that although many sets ofR may intersectY in the same subset, this intersection appears only once inR|Y .
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Lemma 2.5 Let (X,R) be a set system with a subsystem oracle of dimensiond, whered is a constant. Given any
ε ∈ [0, 1), we can compute anε-approximation of sizeO(ε−2 lg(ε−1)) and an ε-net of sizeO(ε−1 lg(ε−1)) in time
O(|X |ε−2d lgd(ε−1)).

We shall use the algorithm above as a subroutine for our streaming algorithm forε-approximations (see Section 4). It is
based on two observations that we state below. They correspond to two basic operations of our algorithm, themerge step
and thereduce step. Many algorithms for computingε-approximations (certainly the one Matoušek gave, and theone we
shall give) start by partitioningX into small pieces, and then alternate between the two steps until they get the desired
approximation.

Observation 2.6 (Merge Step)LetX1, . . . , Xm ⊆ X be disjoint subsets of equal cardinality and letAi be anε-approxi-
mation of cardinalityb for (Xi,R|Xi), i = 1, . . . , m. ThenA1∪ . . .∪Am is anε-approximation for the subsystem induced
byR onXi ∪ . . . ∪ Xm.

Observation 2.7 (Reduce Step)Let A be anε-approximation for(X,R) and letA′ be aδ-approximation for(A,R|A).
ThenA′ is an(ε + δ)-approximation for(X,R).

Lemma 2.5 can be extended to a weighted case, as in the following result by Matoušek [36].

Lemma 2.8 LetX be a finite set equipped by a probabilistic measureµ (given by a table) and letΣ = (X,R) be a range
space satisfying the assumptions of Lemma 2.5. Then anε-approximation forΣ with respect to the measureµ can be
computed with the same asymptotic efficiency in the running time and size of theε-approximation in the case of uniform
measure in Lemma 2.5.

WhenX is associated with a probabilistic measureµ, anε-approximation of(X,R) is a multi-setA such that
∣

∣

∣

∣

|A ∩ R|
|A| − µ(X ∩ R)

µ(X)

∣

∣

∣

∣

≤ ε,

for everyR ∈ R. Though we callµ a probabilistic measure, the result extends to measure in which µ(X) to take values
other than 1; specificallyµ(X) can be|X |.

3 Additional Extensions for Weighted Sets

While the extension described above is useful in our context, we nevertheless need some further generalizations, which
will be useful in the data streaming model. In particular, weneed to be able to mergeε-approximations of sets of different
cardinalities. To this end we generalize Observations 2.6 and 2.7. To the best of our knowledge, this is the first time such
observations are being made.

Our observations generalize the fact that in the un-weighted case, for anε-approximationA for (X,R), each element
in A “represents”|X |/|A| elements inX . This is easy to see if we write Requirement (1) in the following form:

∣

∣

∣

∣

|A ∩ R| |X |
|A| − |X ∩ R|

∣

∣

∣

∣

≤ ε|X |.

In general, an elementp in theε-approximationA need not represent the same number of elements ofX as every other
element inA, especially ifA has been created by merging twoε-approximationsof sets with different cardinalities. So,
instead of having an elementp ∈ A represent|X |/|A| elements, we can assign it a weightγ(p) equal to the number of
elements inX that it represents. In this generalized scenario, a subsetA ⊆ X , is aweightedε-approximation for(X,R)
if

∑

p∈A γ(p) = |X |, and for everyR ∈ R,

∣

∣

∣

∣

∣

∣

∑

p∈A∩R

γ(p) − |X ∩ R|

∣

∣

∣

∣

∣

∣

≤ ε|X |.

We are now ready to state observations related to weighted merging and weighted in a form that will be of use in the
streaming algorithm.

4



Observation 3.1 (Weighted Merge Step)Let X1, . . . , Xm ⊆ X be disjoint subsets (of possibly differing cardinalities)
and letAi be a weightedε-approximation of(Xi,R|Xi), i = 1, . . . , m. ThenA1∪ . . .∪Am is a weightedε-approximation
for the subsystem induced byR onXi ∪ . . . ∪ Xm, where the weightγ(p), p ∈ A1 ∪ . . . ∪ Am remains unchanged.

For the next observation, we define a measureµ(·) as follows:µ(Y ) =
∑

p∈Y γ(p), whereγ(p) is the weight of point
p. Recall Lemma 2.8 which talks about computing anε-approximation for a set equipped with such a measure.

Observation 3.2 (Weighted Reduce Step)Let A be a weightedε-approximation for(X,R) and letA′ be aδ-approxi-
mation for(A,R|A) with respect to measureµ(·). ThenA′ is an(ε + δ)-approximation for(X,R).

4 Computing ε-Approximations in Geometric Streams

In this section, we describe an algorithm that takes polylogarithmic space and processing time per object to compute a
compactε-approximation of a data stream of geometric objects of bounded scaffold dimension, providedε is at least
inverse polylogarithmic,

Let x1, . . . , xn, . . . be a stream of geometric objects in the time series model withinsertions only. LetX be the set
of all the objects in the stream that have arrived till now. Let R be a set of ranges defined onX , andΣ = (X,R) be the
current range space. In addition, letd, whered is a constant, be the scaffold dimension ofΣ.

We begin by imposing a natural tree hierarchy over the data stream: define acanonical setSj,k as

Sj,k = {xi|j2k ≤ i < (j + 1)2k},

for j, k ≥ 0. Canonical sets are inter-related through a natural tree hierarchy. Thechildrenof setSj,k, k ≥ 1, are the
canonical setsS2j,k−1 andS2j+1,k−1. We say that a canonical setSj,k becomesavailablewhen the last element in it, i.e.,
x(j+1)2k−1, arrives. Amaximal canonical setis one that is available but whose parent is not yet available.

Observe that whenxn arrives, there are at mostlg n maximal canonical sets. Also, the union of all the maximal
canonical sets is the setX of all elements that have arrived till now.

A0,1A0,1

time

Current Output

Current item

Past stream item

Weighted merge

Merge and reduce

Available set

Maximal set

Figure 1: Schematic: Computing anε-approximation of a data stream

We now outline our streaming algorithm. It simulates the divide-and-conquer approach of the static algorithm in a
bottom up fashion. Interestingly, we do not need to know the value ofn in advance.

The algorithm proceeds as follows (see Figure 1): At every stage, the algorithm stores aδ-approximation for all
available maximal canonical sets, whereδ varies with the set, but is always at mostε/2. Theδ-approximationAj,k for Sj,k

is constructed through merging the approximationsA2j,k−1 andA2j+1,k−1 which were earlier computed forSj,k’s two
children. Lemma 2.5 states thatε-approximations of the same size can be constructed on two different input sets of the
same cardinality, provided the sameεis used for both. Thus, by induction, we can see thatA2j,k−1 andA2j+1,k−1 have the
same cardinality, and by Observation 2.6 can be merged. After this merge theε-approximation is reduced to the required
size.

5



Theε-approximation of the setX at any point, thestream output, is determined by merging theε-approximations for
the maximal canonical sets in a weighted manner as given by Observation 3.1. Each elementp ∈ Aj,k is assigned a weight
γ(p) = |Sj,k|/|Aj,k| for this purpose.

Formally, we need the following building blocks:

• ε-approx(): An algorithm for deterministically computingε-approximation of small size (see Lemma 2.5),

• weighted ε-approx(): An algorithm for computing deterministicallyε-approximations ofweighteditems of small
size (see Lemma 2.8).

Note that we will never useε-approx() on an input that is larger than logarithmic, as otherwise we will not achieve the
space and time bounds that we are aiming for.

Our algorithm, we call itε-stream approx(), follows the basic merge and reduce technique [37] for constructing
ε-approximations. To follow this technique we need to use a sequencew1, . . . , wu, . . . with the property thatW

�
∑∞

u=1 wu = O(1). Here we shall usewi = i−c, for somec > 1.
In Figure 2 we give the fomrmal specification ofε-stream approx(). In reading the specification, assume thatAj,0 is

the element itself in the singleton setSj,0.

ε-stream approx()
When the next elementxn in the stream arrives

For each canonical setSj,k that becomes available,
taken in the order of increasingk, wherek ≥ 1

/* Combine approximations of its children
for the parent */

B ← A2j,k−1 ∪A2j+1,k−1.
/* Reduce the size of the approximation */
Aj,k ← (ε/2 · wk/W )-approximation ofB

usingε-approx().
/* Assign weights to elements */
For allp ∈ Aj,k: γ(p)← |Sj,k|/|Aj,k|.

/* Combine approximations of maximal canonical sets
for the stream */

A′ ← �Sj,k is availableAj,k.

Each element inA′ retains its weight from its orginalAj,k.
/* Reduce the size of the approximation */
A← (ε/2)-approximation ofA′ usingweighted ε-approx().
OutputA.

Figure 2: Algorithm for computing anε-approximation of a geometric stream.

We are now ready to state our main theorem.

Theorem 4.1 Given an algorithm for computing anε-approximation of ann-point range space (equipped with a proba-
bilistic measure) of sizeσ(ε) in timeT (n, ε) and taking spaceS(n, ε), the algorithmε-stream approx() can compute
an ε-approximation for a stream of objects, of whichn have been seen, such that:

1. The size of the approximation isO(σ(ε));

2. The processing time per input object isO(lg n · T (s, O(ε/ lgc n)) + T (lgn · s, ε/2));

3. The space taken isO(lg n · s + S(s, O(ε/ lgc n)) + S(lg n · s, ε/2));

wheres = σ(O(ε/ lgc n)), andc > 1 is a constant.

Proof. Observations 2.6 and 2.7 imply thatAi,j is aδ-approximation forSj,k, where

δ ≤
k

∑

u=1

ε

2
· wu

W
<

ε

2
.
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Together with Observation 3.1, this implies thatA′ is a weighted(ε/2)-approximation for the setX of elements in the
stream. By Observation 3.2, it now follows thatA is anε-approximation of(X,R). The size ofA is O(σ(ε/2)).

The data structure needs to store just theε-approximations of the maximal canonical sets, i.e., theAj,k ’s; all other sets
are intermediate results that can be discarded. Denote the size of largest such set, i.e.,Aj,lg n, bys, which isO(σ(ε/ lgc n));
recall that the size is determined by just the last reductionstep. The size of the data structure is, therefore,O(lg n · s).

Consider the space and time requirements for calls toε-approx() (there can be at mostlg n such calls per input object)
andweighted ε-approx() (1 per input object). Note thats is an upper bound for the size of the input toε-approx(), and
s lg n an upper bound for the size of the input toweighted ε-approx(). Thus, for the calls toε-approx(), the time required
is O(lg n · T (s, O(ε/ lgc n)), and the space required isS(s, O(ε/ lgc n)). For the call toweighted ε-approx(), the time
required isT (lg n · s, ε/2)), and the space required isS(lg n · s, ε/2)).

ut

The algorithm given by Matoušek [36] (see Lemmas 2.5 and 2.8) hasσ(ε) = O(ε−2 lg(ε−1)), T (n, ε) = O(n(ε−2 lg(ε−1))d),
and, we claim,S(n, ε) = O(n +

√
n · (ε−2 lg(ε−1))d). Thus, we have the following result.

Corollary 4.2 There is an algorithm for computingε-approximations for a stream of objects, of whichn have been seen,
with an associated set of ranges, such that the size of the approximation isO(ε−2 lg(ε−1)), the processing time per object
is O(lg n · sd+1), and the space taken isO(lg n · s + sd+1/2), wheres = O(ε−2 · lg2c n(lg lg n + lg(ε−1))), andc > 1 is
a constant.

5 Applications: Robust Statistics

ε-Nets andε-approximations have a number of applications in computational geometry, as well as learning theory (see,
e.g., [35]). Many of the problems in these have streaming versions. One basic application isrange counting. In this, we are
given a setS of n points in�d , and a familyR (the ranges) of subsets of�d . Each query consists of a rangeR ∈ R and
asks for the number of points in it. Typical range families are axes-orthogonal ranges, spherical ranges (proximity queries),
and simplical ranges. The corresponding range spaces for these all have a bounded scaffold dimension. In the streaming
version, the point setS comes as a continuous stream, interspersed with queries. Itis easy to see how our algorithm would
work here: useε-stream approx() to maintain anε-approximationA of the current(S,R). When queried with range
R ∈ R, output|A ∩ R| · n/|A|. This is within an additiveεn of the true value, which is akin to the iceberg queries
mentioned earlier.

The above technique has implications to a number of problemsin robust statistics.
Robust statisticsconcerns the study of statistical estimators that can tolerate high numbers ofoutliers, while maintaining

an accuracy of estimation that depends only on the remaininguncorrupted data points. In contrast, ordinary least squares
estimators, while trivial to compute even in the streaming model, can be forced to produce estimates that are arbitrarily far
from the correct model even in the presence of a single outlier. The number of outliers that an estimator can tolerate while
preserving its accuracy is called itsbreakdown point. In general, methods with high breakdown points are preferred, but
other criteria are also important including statistical efficiency (number of samples needed to achieve a given accuracy) and
computational efficiency (amount of time it takes to computea given estimate from a set of samples). Many robust statistical
methods also have the advantage of beingnon-parametric, not requiring the statistician to produce a prior probability
distribution or other arbitrary parameters before producing a fit. The paradigmatic example of a robust statistic is the
median of one-dimensional data, which, unlike the mean, is robust with a breakdown point of12 . Much research on
streaming algorithms has gone into methods for maintainingapproximate medians or more general quantiles [21], and we
would like to find similar methods for higher dimensional statistics.

Two of the critical problems studied in robust statistics are location (finding a central point in a cloud of data points)
andregression(fitting the data to a model in which a dependent variable or variables is a linear function of the independent
variables). Many methods in this area are based on various concepts ofdepth, which measures the quality of fit of an
estimate. It is natural to seek the estimate maximizing the depth, but it is also of importance to be able to compute depths
of non-optimal estimates, in order to formdepth contoursthat produce a center-outward ordering of the data.

For many of these robust statistical methods, a computationally efficient streaming approximation to the depth measure
can be obtained from anε-approximation of the sample data. The deepest fit can be approximated by a deepest fit to the
ε-approximation, and this approximate fit often has similar breakdown point properties to the non-approximate fit on which
it is based. We describe below several of the methods to whichthis technique applies:
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5.1 Tukey Depth

This quantity [17] measures the quality of fit of a center, as the minimum proportion of sample points among all halfspaces
that contain the center. The Tukey depth of a point can be computed in timeO(nd log n), wheren denotes the number
of sample points [41]. TheTukey medianis the point of maximum depth. It is known that any Tukey median has depth
at least1/(d + 1), and the breakdown point of the Tukey median as an estimate oflocation is also1/(d + 1). There are
known static algorithms for finding Tukey medians, or other points of high depth, in two or three dimensions [28, 31, 34],
but in higher dimensions only inefficient linear-programming based exact solutions are known and it is necessary to resort
to more efficient approximation algorithms [13].

The Tukey depth is based on counting points in halfspaces. Hence it can be approximated effectively usingε-approxi-
mations for halfspace ranges [13]: the depth of a point within anε-approximation of a sample is within an additive error of
ε of its depth in the original sample data. In particular, the Tukey median of anε-approximation has depth withinε of that
of the true Tukey median. The breakdown point of this approximate Tukey median is1/(d + 1) − ε. Thus, by using our
streamingε-approximation algorithm, we can efficiently maintain not only an approximate Tukey median of the data set,
but also a space-efficient data structure from which we can compute accurate approximations of the Tukey depth of any
point.

5.2 Simplicial Depth

This is another measure of quality of fit for location, introduced by Liu [32]. The simplicial depth of a fit point is defined
to be the proportion of simplices, among all the

(

n
d+1

)

simplices formed by convex hulls of(d+1)-tuples of sample points,
that contain the fit point. Equivalently, it is the probability that a randomly chosen(d + 1)-tuple contains the fit point in
its convex hull. As we now argue, for points in the plane, the simplicial depth in a sample set is accurately approximated
by the simplicial depth of anε-approximation for wedge ranges (that is, ranges formed by intersecting two halfplanes).
Therefore, as for Tukey depth, we can answer approximate depth queries and maintain an approximate deepest point in a
space-efficient manner for streaming data.

Let δ be a value to be determined later and imagine the following process for measuring approximately the simplicial
depth of a fit point: first, letL be a set of1/δ lines through the fit point, partitioning the plane into2/δ wedges having the fit
point as a common apex, with at most aδ fraction of the sample points in any wedge. Lete1 be the proportion of triangles,
determined by three input points, that are not all on one sideof one of a line inL. Thene1 is an overestimate of the
simplicial depth, but the amount by which it overestimates the depth isO(δ): the only triangles incorrectly included in the
estimate are ones that have two points in opposite wedges, there areO(δ2n3) such triangles per pair of opposite wedges,
andO(1/δ) such pairs. Next, lete2 be the proportion of triangles, determined by three points in anε-approximation of the
sample, that are not all on one side of a line inL. For the same reasons as before,e2 is within O(δ) of the simplicial depth
for theε-approximation. Further,e1 ande2 are withinO(ε/δ) of each other:

e1 = 1 −
∑

i

(

wi

3

)

+
(

wi

2

)

(hi − wi) + wi

(

hi−wi

2

)

(

n
3

) ,

wherewi is the number of sample points in theith wedge andhi is the number of sample points in the halfplane containing
theith wedge on its counterclockwise boundary. Each term in the sum is approximated withinO(ε) by the corresponding
term wherewi andhi are replaced by numbers of points in theε-approximation, and there areO(1/δ) terms, so the total
difference betweene1 ande2 is O(ε/δ). Putting together the errors in going from the original simplicial depth toe1 to
e2 to the simplicial depth of the approximation, and settingδ =

√
ε, we see that theε-approximation approximates the

simplicial depth to withinO(
√

ε).
As far as we are aware, this deterministicε-approximation based method for approximating simplicialdepth is novel

even for static, non-streaming data, although it is trivialto approximate simplicial depth randomly in the static caseby sam-
pling triangles. It seems likely that similar deterministic and streaming approximation guarantees, with worse dependence
on ε, can be shown to hold also in higher dimensions.

5.3 Regression Depth

This statistic was introduced by Rousseeuw and Hubert [39] as a measure of the quality of fit of a regression hyperplane.
It is defined as being the minimum proportion of sample pointsthat can be removed to turn the fit plane into anonfit, that
is, a hyperplane combinatorially equivalent to a vertical hyperplane. Amenta et al. [3] showed that, like Tukey depth, for
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regression depth a fit always exists with depth at least1/(d + 1), and the breakdown point of the maximum-depth fit is
1/(d + 1). Their proof technique shows that the regression depth of a query hyperplane can be measured by performing
a certain projective transformation of the space containing the sample points, and measuring the Tukey depth of a certain
point in the transformed space. Due to the transformation, ahalfspace in the transformed space may correspond to adouble
wedge(symmetric difference of two halfspaces) in the original space. Therefore the sameε-approximation technique as
is used for Tukey depth, but with double wedge ranges, also applies to regression depth, and lets us compute depths and
maintain an approximate deepest fit with high breakdown point for streaming data. Bern and Eppstein [7] generalized
regression depth to the context of multivariate regression, in which the sample data have more than one dependent variable;
in their definition, the depth of a fit is the minimum proportion of sample data contained in any double wedge, one boundary
of which contains the fit and the other of which is parallel to the dependent coordinate axes; this is again well approximated
by ε-approximations for double wedge ranges.

5.4 The Thiel-Sen Estimator

This estimator [43, 45] is a method for two-dimensional linear regression. Here we first find the median among all
(

n
2

)

slopes determined by the lines through pairs of sample points. We then select a regression line with that median slope
which bisects the sample set. The Thiel-Sen estimator has a breakdown point of1 −

√

1/2 ≈ 0.293. This has long been a
testbed for geometric optimization algorithms, and several O(n log n) time static algorithms for it are known, among them
one based on usingε-cuttings in a prune-and-search technique [8]. However these algorithms seem to require repeatedly
scanning the data in a way that is unavailable to a streaming algorithm. Instead, we apply an approximation technique very
similar to that for simplicial depth, above.

To begin with, suppose that we are given a query slopes, and must determine the approximate position ofs within
the sorted sequence of slopes, normalized by dividing the position by

(

n
2

)

. This can be solved exactly by a reduction to
computing the number of inversions in a permutation, but we are interested in approximations that can be computed by a
streaming algorithm that does not knows in advance. To do this, letδ be a parameter to be determined later, and imagine
subdividing the sample points into a grid byO(1/δ) lines that are vertical and parallel tos, in such a way that at most aδ
proportion of the points lie in the slab between any two adjacent parallel grid lines. Lete1 be an estimate of the position of
s, formed by summing up the normalized number of pairs of points that form a line with lower slope thans and that are in
a pair of grid cells that are separated both by a vertical lineof the grid and by a line parallel tos from the grid. Thene1 is
within O(δ) of the true position ofs since the only lines through a given point that are omitted from the count are the ones
where the other point determining the line is in one of the twoslabs containings, ande1 can be expressed as a sum with
O(δ−2) terms, each term being a product of the number of points in twoparallelograms. Lete2 be a similar normalized
sum, with the number of sample points in each parallelogram replaced by the number of points of anε-approximation for
parallelogram ranges, and lete3 be the normalized position ofs within the set of lines determined by pairs of points from
theε-approximation. Thene1 differs frome2 by O(εδ−2) ande2 differs frome3 by O(δ + εδ−1). Therefore, the overall
error caused by usinge3 as our approximation to the position ofs is O(δ + εδ−2). Settingδ = ε1/3 makes this total error
equalO(ε1/3).

To compute an approximate Thiel-Sen estimator, we use the same ε-approximation for parallelograms. We compute
the median slope among pairs of points from the approximation, and then find a line with that median slope bisecting the
approximation. The resulting line has slope with a normalized position withinO(ε1/3) of the median slope, partitions the
sample points withinε of exact bisection, and has a breakdown point of1 −

√

1/2 − O(ε1/3).

5.5 Least Median of Squares (LMS)

These methods [40] in robust statistics seek a fit that minimizes the median residual value separating the fit from the
sample points. This is not a depth-based criterion, but it leads to fits which are highly robust against outliers. For location
problems, the least median of squares fit is the center of the minimum radius sphere that contains at least half of the sample
data [24]. It has a breakdown point of1

2 : if fewer than half the sample data points are outliers, thenthe sphere defining the
LMS fit has smaller radius than the circumsphere of the non-outliers, and it contains at least one non-outlier, so its center
must be an accurate fit. Clearly, this is the best breakdown point possible for any location method. The natural type of
ε-approximation to use for this problem is one with balls as its ranges. If we form the LMS fit of such anε-approximation,
the result may not be robust. Instead, we approximate the LMSfit by finding the center of the minimum radius sphere
that contains at least a12 + ε proportion of the points in theε-approximation. Such a sphere must therefore contain at least
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half of the sample data, and has a radius at least as small as the smallest sphere containing at least a1
2 + 2ε fraction of the

sample data. It is robust with a breakdown point of1
2 − 2ε.

The same LMS approach can also be applied to regression problems. The least median of squares regression hyperplane
can be defined as the central hyperplane in a slab bounded by two parallel hyperplanes, with minimum vertical separation
between them, that contains at least half of the sample data;again this is robust with a breakdown point of1

2 . As above,
we can use anε-approximation, with slab ranges, and find the slab with minimum vertical separation containing a12 + ε
fraction of theε-approximation points, to produce an approximate LMS fit with breakdown point12 − 2ε.

6 A Lower Bound on Range Counting

We provide a simple lower bound on the space required to countapproximately the number of items in a range that is not
necessarily an iceberg. When we say that an algorithmf -approximates the range counting problem we mean that if a given
range containsl points, the algorithm gives us an answer which lies betweenl/f andl · f .

The bound is stated in terms oftwo-sided ranges: a point(x, y) is said to belong to the two sided range located at(p, q)
if x ≥ p andy ≥ q.

Theorem 6.1 Anyf -approximate algorithm to the two-sided range counting problem must use spaceΩ(n/f2).

We begin by assuming there is an algorithmA which gives anf approximation to the two-sided range counting problem
for a stream of points in two dimensions. Further we assume that this algorithm uses spaceo(n/f2).

Now consider a set ofn points which are grouped inn/f2 equally sized groups, we call themGi, where1 ≤ i ≤ n/f2,
in the following way (Figure 3):

ε

ε

i i

G (close up)i

Gi

(x , y )

0 1 2 n

n−1

n

2

1

n−1

Figure 3: Input sequence for the lower bound on approximate range counting

• Each point inGi has the samex coordinate, we call itxi. For simplicity of presentation assume that allxi values are
integers. Additionally, we requirexi > xi−1.

• All the points inGi havey coordinates closely clustered at a given value, we call ityi. Here too we assume that all
yi values are integers. Formally, for everypj ∈ Gi, we say that0 ≤ y(pj) − yi < 1/2.

• Every pointpj ∈ Gi hasy-coordinate strictly smaller than they-coordinates of all the points inGi−1.

• Each groupi has an additional pointqi = (xi + ε, yi + ε), for someε < 1/2, associated with it.

Note that this family of input sequences has the property that a two-sided query made at(xi, yi) should return a count
of f2 + 1 and one made at(xi + ε

2 , yi + ε
2 ) should return a count of 1. This radical change in the counts will not occur

between two such queries at any point which is not actually(xi, yi) for some value ofi. As an extension to this simple
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observation, we note that since all thexis andyis are chosen out of the integers1, 2, . . . n, it is possible to extract the exact
values of all thexi with O(n log n

f2 ) queries by using binary search.
Let us see if the algorithmA can be the query mechanism which we can deploy to this end. SinceA is anf approxi-

mation, it should return a value of at mostf at (xi + ε
2 , yi + ε

2 ) and a value betweenf + 1/f andf3 + f at (xi, yi). This
means thatA can indeed act as the oracle which identifies the locations ofthe groups in our set.

Hence, usingA as a subroutine we can extractθ(n/f2) information about the input set. This contradicts the assumption
thatA uses spaceo(n/f2). ut

Seen in the context of streaming algorithms, Theorem 6.1 implies that is not possible to approximate the range counting
problem in polylogarithmic space. One of the implications of this, among others, is that it is not possible to count inversions
in lists [23] in the sliding window model.
Acknowledgments.We would like to thank David Mount for helpful discussions ofrobust statistics in the context of the
topics of this paper, and S. Muthukrishnan for helpful discussions on geometric streaming algorithms in general.
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[9] H. Brönnimann, B. Chen, M. Dash, P. Haas, Y. Qiao, and P. Scheuerman. Efficient data-reduction methods for on-line
association rule discovery. InData Mining: Next Generation Challenges and Future Directions, Selected papers from
the NSF Workshop on Next-Generation Data Mining (NGDM ’02), pages 190–208. MIT Press, 2003.
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