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Abstract

Whereas traditional databases manage only
deterministic information, many applications
that use databases involve uncertain data.
This paper presents a Probabilistic Tree Data
Base (ProTDB) to manage probabilistic data,
represented in XML.

Our approach differs from previous efforts
to develop probabilistic relational systems in
that we build a probabilistic XML database.
This design is driven by application needs that
involve data not readily amenable to a rela-
tional representation. XML data poses several
modeling challenges: due to its structure, due
to the possibility of uncertainty association at
multiple granularities, and due to the possi-
bility of missing and repeated sub-elements.
We present a probabilistic XML model that
addresses all of these challenges. We devise
an implementation of XML query operations
using our probability model, and demonstrate
the efficiency of our implementation experi-
mentally.

We have used ProTDB to manage data from
two application areas: protein chemistry data
from the bioinformatics domain, and informa-
tion extraction data obtained from the web
using a natural language analysis system. We
present a brief case study of the latter to
demonstrate the value of probabilistic XML
data management.
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1 Introduction

Traditional databases allow for the storage and re-
trieval of large amounts of data, but do not make any
concessions for uncertainty in the data. In many do-
mains, it is difficult, if not impossible, to state all in-
formation with 100% certainty. Scientific research, for
example, is subject to a great deal of uncertainty and
error that cannot be modeled by traditional database
systems. Error-prone experimental machinery, pol-
luted samples, and simple human error are a few of
the many possible sources of this uncertainty.

With the recent importance of the web, and the
many textual (and HTML encoded) sources of infor-
mation that it makes available, information extraction
has become a hot area. The idea is to use natural
language analysis tools to create structured represen-
tations of free-form text documents. This information
extraction is an error-prone endeavor: even the best
systems can only hope to be right part of the time.
Therefore, it is appropriate to treat this extracted in-
formation as uncertain.

We would like to model such uncertainty effectively.
We would like to insert data into a database even if it
is not known with certainty, along with an appropriate
indication of the level of uncertainty associated with
it. When queried, these certainty levels should be re-
turned with the query results, giving an indication of
how likely an element is to satisfy a particular query.
Towards this end, probabilistic relational algebras and
databases [4–7,9, 11,12,19,21,25] have been proposed
by several researchers.

Much of the data in the types of applications where
uncertainty is an issue, such as web data and scientific
data, are not easy to represent in a relational model,
even ignoring issues of uncertainty. The flexibility of
a semi-structured model is critical, and XML suggests
itself as a natural representation choice. Additionally,
uncertain information can frequently be represented
much more succinctly in XML than in competing re-
lational representations.
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Managing probabilistic XML data raises many chal-
lenges. XML is structured, so we must assign and in-
terpret probabilities naturally for structurally related
elements. Element probabilities can occur at multiple
levels, and nested probabilities within a subtree must
be considered. Also, XML supports incomplete infor-
mation gracefully, so we should not insist on having
complete probability distributions. A central contri-
bution of this paper is the definition of a framework
for probabilistic XML data management introduced
in Sections 4 and 5. A property of our model is that
probabilities default to 1 when not specified, and all
results obtained in this case are identical to those in
an equivalent deterministic system.

In Section 6 we show that the results produced
are always probabilistically meaningful in light of our
probability model. We develop efficient algorithms
to evaluate queries against a probabilistic database.
These algorithms provide the basis for the implemen-
tation of ProTDB, which we have constructed on top
of Timber [17] a (non-probabilistic) XML database.

We populate our probabilistic XML database and
present results from our implementation in Section 7.
We show that the overhead of maintaining and manip-
ulating probabilistic information in an XML database
is small, compared with the cost of evaluating the same
queries against a non-probabilistic XML database.

But first, we present motivating examples in Sec-
tion 2 and then discuss prior work in Section 3.

2 Application Scenarios

Life is uncertain. This suggests, besides eating dessert
first [13], that we manage uncertain data in our
databases. In this section we consider two quite dis-
tinct applications that require probabilistic data man-
agement: information extraction and scientific data
management. While these are the two specific appli-
cations that we have studied in some depth, the same
general probabilistic requirements can be found in a
broad range of applications.

2.1 Information Extraction

Vast amounts of information are available to us in the
form of plain text. Such information can be hard to
query. Traditional information retrieval can at best re-
trieve documents containing specified keywords, leav-
ing the final information extraction task to a human.
Recently, however, there have been major strides in
automatically extracting information from text doc-
uments. Quite often, this takes the form of directly
answering (simple) questions. This extracted informa-
tion invariably has some form of certainty or probabil-
ity associated with it. Our extension of this approach,
more suited to complex querying, is to extract this
information, store it in a suitable (semi-) structured
form, and use this representation to evaluate queries.

> What is the name of the President of the United States?
George Bush (0.7); George W. Bush (0.4); Bill Clinton (0.2)

> How old is Bill Clinton?
55 (0.3)

Figure 1: Question Answering for Information Extrac-
tion

For information extraction, we use a question-
answering system, NSIR [22, 23], under development
at the University of Michigan. Given a question, NSIR
sends off an appropriate query to a standard search en-
gine, parses the retrieved documents to identify which
phrases are likely to be of a type compatible with
the question, and uses these to determine the answer.
Since there are many possible sources of error in the
process, NSIR makes available multiple possible an-
swers, along with a probability for each. By repeatedly
asking NSIR appropriate follow-up questions (see Fig-
ure 1 for a stylized sample of the dialog with NSIR),
we populated a probabilistic XML database, similar
to the small sample fragment shown in Figure 4. This
sample makes use of ProTDB constructs whose formal
definition will have to wait until Section 5.

2.2 Scientific Data Management

Scientific data is frequently obtained from experiments
that suffer from various forms of experimental error.
We have collaborated over the past two years with
experimental biochemists working in the area of pro-
teomics, and focus our discussion towards the specifics
of this case.

A central operation in proteomics is to understand
the differentiated production of proteins by organisms
under different conditions. There is substantial scope
for experimental inaccuracy in technologies used to
measure protein quantities. Even greater difficulties
arise in actually identifying individual proteins – there
are a variety of tools available with varying degrees of
reliability, and varying cost to run. There exists the
possibility that some proteins have been completely
misidentified. In other words, there are many sources
of uncertainty, and effective modeling of this uncer-
tainty can be crucial to the subsequent analysis tasks.

We expect that most readers of this paper will be
able to connect easier with an example involving infor-
mation extraction from web news articles. To conserve
space, we will say no more about the applicability of
our work to proteomics.

3 Related Work

In light of concerns such as those discussed above,
there is a large body of work that has studied the repre-
sentation of probabilistic data in relational databases.
Also, information retrieval (IR) has traditionally dealt
with issues of probability and ranking; so we briefly



Tuple President Age Spouse

t1 George W. Bush, 54, [.2, .25] Laura Welch,
[.4, .5] 55, [.3, .45] [.5, .6]

George Bush, 56, [.1, .1] Barbara Pierce,
[.2, .7] 77, [.1, .15] [.15, .2]

t2 Bill Clinton, [1, 1] 55, [.2, .5] NULL

Figure 2: ProbView’s “Conceptual” Probabilistic Re-
lation (non-first normal form)

outline recent work in IR that extends classical tech-
niques to semi-structured documents, rather than flat
text files.

Probabilistic Relational Databases:

The modeling of uncertain data has been consid-
ered in the relational context by several researchers
[4–7, 9, 11, 12, 19, 21, 25]. Crucial design decisions for
a probabilistic relational database are the unit with
which probabilities will be associated (whether at the
database, table, tuple, or attribute level), whether the
resulting database is to remain in first normal form
(1NF), and what probabilistic dependencies are al-
lowed (or assumed).

Applications attach probabilities with attribute val-
ues more frequently than with tuples, so associating
probabilities with attributes is often more natural than
associating the probabilities with tuples. In fact, there
can be information loss if attribute probabilities are
represented in terms of tuple probabilities (as will be
shown shortly). In addition, given multiple probabilis-
tic attributes, representation of probabilities at the
tuple level causes a combinatorial explosion of tuples
(as we will see in Figures 2 and 3). On the other
hand, there is no way to keep a relation in first normal
form if attributes can take multiple values with asso-
ciated probabilities. Unfortunately, non-first normal
form data models often lead to complicated algebras
and querying mechanisms.

Previous researchers have adopted many different
approaches with regards to the design decisions (and
tradeoffs) listed above. Notable work that maintains
1NF include [5, 6, 25]. Notable work that uses non-
1NF formulations include [4, 11, 12]. ProbView [19] is
an attempt to fuse the best of the two options.

ProbView represents data in first normal form, but
it assumes that the initial data input is in a non-first
normal form. ProbView never operates on this non-
first normal form other than to transform it into its
annotated 1NF model through the use of a linear pro-
gram. These two representations are shown in Fig-
ures 2 and 3, for the information extraction domain
introduced in Section 2.1.

As can be seen in Figure 3, there is a large amount
of redundant storage, even for this simple example1.

1In contrast, our XML representation (an example fragment
is shown in Figure 4) for probabilistic data mirrors the more
succinct structure seen in Figure 2.

President Age Spouse Lower Upper
Bound Bound

George W. Bush 54 Laura Welch 0 .25
George W. Bush 54 Barbara Pierce 0 .2
George W. Bush 55 Laura Welch 0 .4
George W. Bush 55 Barbara Pierce 0 .2
George W. Bush 56 Laura Welch 0 .1
George W. Bush 56 Barbara Pierce 0 .1
George W. Bush 77 Laura Welch 0 .15
George W. Bush 77 Barbara Pierce 0 .15

George Bush 54 Laura Welch 0 .25
George Bush 54 Barbara Pierce 0 .2
George Bush 55 Laura Welch 0 .4
George Bush 55 Barbara Pierce 0 .2
George Bush 56 Laura Welch 0 .1
George Bush 56 Barbara Pierce 0 .1
George Bush 77 Laura Welch 0 .15
George Bush 77 Barbara Pierce 0 .15
Bill Clinton 55 NULL .2 .5

Figure 3: ProbView’s Annotated 1NF Probabilistic
Relation

The second problem is related to the loss of infor-
mation when converting from the base probabilistic
relation to the annotated 1NF relation. In Figure 2
we see that Bill Clinton was a president (with 100%
certainty) but his current age can only be bounded by
.2 <= Prob(AgeBillClinton = 55) <= .5. After the
transformation to ProbView’s annotated 1NF (Figure
3), there is a probability range of [.2, .5] attached to the
entire tuple <Bill Clinton, 55, NULL>. If a subse-
quent selection query asks for the names of presidents,
Bill Clinton will be returned with probability in the
range [.2, .5]. This range should be [1, 1] since we
knew his name with certainty, while the uncertainty
was associated with his age, not his name.

Several approaches utilize a non-first normal form
model [9, 11, 12]. The approach followed in [9] gen-
eralizes ProbView to permit a tuple to be a complex
value (where attributes can actually contain relations).
Since this approach uses the same non-first normal
form to 1NF conversion process that ProbView uses,
it suffers from the same drawbacks as discussed above.
In [11,12] nested relations are used, and an associated
probabilistic algebra is developed for this data model.
Nested relations bear some resemblance to XML, how-
ever, XML is more flexible than nested relations, in
allowing greater heterogeneity of structure and incom-
pleteness of information.

Information Retrieval:

With the recent popularity of semi-structured mod-
els (and XML in particular), researchers in the IR
community have been exploring extensions of the tra-
ditional IR techniques and relevance ranking mecha-
nisms in order to apply these concepts to structured
documents [2, 3, 8, 10, 16, 20, 24]. Rather than return-
ing entire documents based on term occurrence, these
techniques often leverage structure to return only the
most relevant section/s of a document. A combina-



tion of XML querying mechanisms and IR relevance
ranking is used.

XIRQL [10] is a recent probabilistic query language
for information retrieval in XML documents. XIRQL
develops an algebra that implements the querying ca-
pabilities found in XPath [15], and performs the appro-
priate probabilistic manipulations. This approach is
presented in the context of information retrieval, and
the overall system includes various query (and associ-
ated matching) abstractions in order to simplify the
user’s interactions with the system.

The role of uncertainty in structured XML docu-
ments is also discussed in [24]. In this approach, the
probabilities arise due to imprecise matches of query
values with data values (rather than uncertainty with
the data itself). Also all probabilities are assumed to
be independent.

4 Representation Considerations

XML data is structured, and this structure is variable
(at least within limits). These features of XML allow
for a more natural representation of uncertain infor-
mation. But they also raise difficult questions with
respect to defining a well-founded probability model.
We discuss some of the issues below.

4.1 Multiple Granularity

Most relational probabilistic models are only able to
associate probabilities with individual tuples – the no-
tion of a tuple is the central “atom” in the relational
model, and a probability associated with a tuple is
naturally interpreted to mean the probability of the
tuple being a member of the corresponding relation
(set). In the case of XML, we may have probabilities
associated with elements – we have to interpret what
exactly this means given that elements can nest under
other elements, and more than one of these elements
may have an associated probability. We will deal with
this issue in the next subsection.

It is also possible to associate probabilities with at-
tribute values of elements, although not directly. XML
restricts attributes to have a unique single value. Our
approach is to modify the schema in XML to make any
attribute into a subelement. These new elements can
then be handled by our probabilistic system.

4.2 Structure and Probabilities

Given that a probability is being associated with an
element, what is the fact with which we are associ-
ating a probability? Presumably it is the probability
that the element “exists” in some collection. XML
elements are not objects, and may not have any real
world correspondence. Also, there is no natural no-
tion of a collection in XML that corresponds to a re-
lation in RDBMS. It is more appropriate to treat an

element, including the sub-tree rooted at it, as a struc-
tured “tuple” of values. In other words, the existential
probability associated with an element should be the
probability that the state of the world includes this
element and the sub-tree rooted at it.

Formally, the notion of context can be folded in by
treating each node not as an independent fact, but
rather each node as dependent upon its root to node
chain. Each probability in the source XML document
is assigned conditioned on the fact that the parent el-
ement exists (this happens to be a very natural way
of assigning probabilities in all of the applications that
we have explored). The single probability, Prob = p,
that is entered for each element is really a shorthand
for a conditional probability table where the element’s
conditional probability equals p when the parent ex-
ists, and the element’s probability equals 0 when the
parent does not exist.

Consider a chain A → B → C from the root
node A. The source XML document would con-
tain the probabilities Prob(C|B), Prob(B|A), and
Prob(A), associated with the nodes C, B, and A,
respectively2. In order to calculate Prob(B) (in re-
sponse to a query) we can use Bayes’ formula to
state Prob(B|A) = Prob(A|B)×Prob(B)

Prob(A) . But, in our
data model, a parent must exist with a probabil-
ity of 1.0 if its child exists with certainty. So,
Prob(A|B) = 1.0 and after some simple algebra we
get Prob(B) = Prob(B|A) × Prob(A). Similarly, we
get Prob(C) = Prob(C|B) × Prob(B|A) × Prob(A).
All values on the right hand side of these equations
can be obtained from the source XML document. In
general, the probability of an element e can be found
by multiplying the conditional probabilities found in
the source XML, along the path from e to the root,
and again, each of these conditional probabilities will
be available in the source XML file.

4.3 Dependence

Probabilities in an ancestor-descendant chain are re-
lated probabilistically, in the manner described above,
through conditioning. By default, all other probabil-
ities could be assumed to be independent. Clearly,
there are some situations in which this independence
assumption does not hold true. While it is possi-
ble to assert arbitrary dependence information be-
tween any pair (or larger set) of nodes, the general
case very quickly leads to computational intractability.
Moreover, as our work with example applications has
shown, there exist important applications where such
arbitrary dependence information is not required.

However, there is one important case of dependence
that turns out to be useful, and efficient, to model in
many scenarios – mutual exclusion. It is often the

2A is the root, so the initial assignment is not conditioned
upon any parent element of A.



case that some data item is known to have a single
unique value – this value may be unknown, and may be
specified probabilistically, but is nonetheless unique.
For instance, the age of a person in years is a unique
non-negative integer at any point in time: we may say
that George Bush is either 55 years old or 56 years old,
but the probability that he is both 55 years old and 56
years old should be equal to 0.

4.4 Incompleteness

An important characteristic of XML databases is that
they handle incomplete information gracefully. For in-
stance, consider a database with information regarding
customers maintained by a business. Suppose we do
not have the telephone number in this database for
some customer C. This missing number is interpreted
as “we have no knowledge of any telephone number for
customer C” rather than as “customer C does not have
a telephone”. Nonetheless, most queries are meaning-
fully answered despite this lack of complete knowledge.
When queried for “customers with telephone number
= 123”, the database returns exactly the set of cus-
tomers for whom the telephone number is known to
be 123. Customer C is not included in the returned
set, even though there exists the possibility that C has
a telephone number of 123 after all. When queried for
“customers with telephone number not equal to 123”,
customer C is not returned either. This concept is
carried through consistently even in more complex sit-
uations. For instance, items purchased by customer C
will not be included in sales aggregated by area code.

With probabilistic XML, we would like to continue
to handle incompleteness in the same spirit. In fact, in
many applications we examined with a need for prob-
abilistic data management, the probability specifica-
tions were frequently incomplete. As such, we do not
have any requirement that the sum of probabilities of
disjoint events add to one. Of course, even with this
liberal management of probabilities, the probabilities
must lie between 0 and 1, and disjoint probabilities
must not add up to more than 1. In order to calculate
the probability of negated events when using incom-
plete probability specifications, we make the additional
assumption that the probabilities that are given are
correct, and the “slack” probability applies to some
unspecified value/s. In other words, we can assume
that Prob(¬A) = 1− Prob(A).

5 Probability Representation Model

5.1 Simple Constructs

The obvious first step to take is to introduce a prob-
ability attribute, Prob, that takes a value between 0
and 1 (inclusive). It specifies the probability of a par-
ticular element existing in the XML database (at the
specified location).

Consider line 46 of Figure 4. It states that the prob-
ability of the given chief of state (the chief of state
corresponding to Bill Clinton) having an age of 55 is
equal to 0.3. If an element does not contain the Prob
attribute (such as the countryName element on line
54), then its probability is assumed to be equal to 1.

It is frequently important to express a probability
distribution for an element. Similarly, there may be
relationships between (sibling) element value proba-
bilities. These are captured by means of a probabilis-
tic construct called Dist (short for distribution). A
typical Dist element may have multiple Val (value)
elements as children, each with an associated proba-
bility. The probability distribution of each child ele-
ment is conditioned on the facts recorded in the an-
cestor chain of the element. Also, the Dist construct
can record dependencies between its values. Possible
distribution types include mutually-exclusive and
independent3.

In Figure 4, observe the mutually exclusive Dist
construct (line 29) for the ages of George Bush. We
can also have distributions and values over non-leaf
nodes, such as the mutually exclusive Dist construct
(line 19) pertaining to the two possible chiefs of state
for the United States. Both of these ChiefOfState
values are actually entire subtrees (one with a proba-
bility of 0.5, lines 20-42 in Figure 4, and one with a
probability of 0.2, lines 43-47). In contrast, lines 23-
26 indicate that the name element has an independent
distribution, and could have a value of George W. Bush
(with a conditional probability of 0.4), George Bush
(with a conditional probability of 0.7), or both (with
a conditional probability of 0.28).

5.2 DTD Adaptation

To accommodate these probabilistic constructs, the
DTD of the source XML document will have to be
adapted. To enable the use of the Prob attribute, for
each element:
<!ELEMENT elementName ...>, we must also define
the attribute
<!ATTLIST elementName Prob CDATA "1.0"> in the
DTD.
We define the initial Dist and Val elements as follows:

<!ELEMENT Dist (Val+)>
<!ATTLIST Dist type (independent |
mutually-exclusive) "independent">
<!ELEMENT Val (#PCDATA)>
<!ATTLIST Val Prob CDATA "1">

To enable the use of distributions (Dist) for all of
the elements, we modify each element definition, and
possibly the Val definition as well. If an element,
curElement is a leaf element (it contains only text,
or #PCDATA) then its definition in the DTD will be:

3In the future, we intend to explore other dependence types,
as well as functionally stated distributions such as Gaussians.



1.<countries>
2. <country Prob=’0.9’>
3. <countryName>United States</countryName>
4. <coordinates Prob=’.9’>
5. <latitude>
6. <direction>North</direction>
7. <degrees Prob=’.8’>38</degrees>
8. <minutes>00</minutes>
9. </latitude>
10. <longitude>
11. <direction>West</direction>
12. <degrees>97</degrees>
13. </longitude>
14. </coordinates>
15. <government>
16. <independenceDay Prob=’.85’>07/04/1776
17. </independenceDay>
18. <chiefOfState>
19. <Dist type="mutually-exclusive">
20. <Val Prob=’.5’>
21. <title Prob=’0.75’>President</title>
22. <name>
23. <Dist>
24. <Val Prob=’.4’>George W. Bush</Val>
25. <Val Prob=’.7’>George Bush</Val>
26. </Dist>
27. </name>
28. <age>
29. <Dist type="mutually-exclusive">
30. <Val Prob=’.2’>54</Val>
31. <Val Prob=’.35’>55</Val>
32. <Val Prob=’.1’>56</Val>
33. <Val Prob=’.15’>77</Val>
34. </Dist>
35. </age>
36. <spouse>
37. <Dist type="mutually-exclusive">
38. <Val Prob=’.5’>Laura Welch</Val>
39. <Val Prob=’.2’>Barbara Pierce</Val>
40. </Dist>
41. </spouse>
42. </Val>
43. <Val Prob=’.2’>
44. <title Prob=’0.65’>President</title>
45. <name>Bill Clinton</name>
46. <age Prob=’.3’>55</age>
47. </Val>
48. </Dist>
49. </chiefOfState>
50. </government>
51. </country>
52.
53. <country>
54. <countryName>Uruguay</countryName>
55. . . .
56. </country>
57.</countries>

Figure 4: A Fragment of an XML Document for Input
to the ProTDB System

<!ELEMENT curElement (#PCDATA)>
and it will be changed to:
<!ELEMENT curElement (#PCDATA|Dist)>
If curElement is not a leaf, we need to make two
changes to the DTD:

1. Change the element definition from:
<!ELEMENT curElement (prev-def)> to:
<!ELEMENT curElement ((prev-def)| Dist)>
(where prev-def is the original definition of
curElement)

2. and add this element’s previous definition to the
Val construct:
<!ELEMENT Val (X)> to be:
<!ELEMENT Val (X | (prev-def))>

The above modifications to a regular DTD, for non-
probabilistic data, will enable the creation of XML files
that conform to our probabilistic data model.

6 Query Evaluation

Since all probability information is encoded in XML, it
is accessible through normal XML query mechanisms.
However, manipulation of these probabilities is non-
trivial, and not something that a typical user would
wish to do directly. Rather, we would like to per-
mit the user to issue queries in the normal manner,
as if the queries were against a deterministic database
(with equivalent schema) – the user can ignore the
additional Dist and Val elements when querying the
data. We should then produce query responses that
take probabilistic information into account.

The query responses produced can be restricted to
only those with probability above some threshold, or
not. They can be sorted in descending order of prob-
ability, or not. We may wish to suppress probability
information in the result or expose it. Arguments can
be advanced in favor of any of the design choices men-
tioned above, and possibly others as well. One or the
other of these choices may be most appropriate in spe-
cific application scenarios.

Fortunately, all such choices are naturally imple-
mented as a simple post-processing step after the an-
swer to the query has been computed by the sys-
tem, but before the answer is presented to the user.
The computational cost in this post-processing step
is typically very small when compared to the cost of
query processing itself. As such, we can focus on the
same core probabilistic query processing functionality,
geared to producing the “most informative” answer,
with the expectation that this answer may be further
processed before presentation to the user.

The core query operation in XML is to find matches
of a specified query tree pattern (such as the ones in
Figure 5) in the data tree/s. Previous work [18] has
shown that a single such pattern-match can capture
multiple XPath [15] expressions within a single-block



XQuery [14] expression. In the next few subsections
we describe, by example, how this pattern-match spec-
ification can be executed against a probabilistic XML
database.

6.1 Single Node Queries

The query pattern in Figure 5(a) will match a data
element with tag independenceDay and with a value
of “07/04/1776”. Such an element occurs in line 16
of the source data (Figure 4), with a Prob value of
0.85. This probability is conditioned upon the ex-
istence of its parent, which in turn is conditioned
on its parent, and so on up the ancestor chain.
Thus, the probability of the element on line 16 ex-
isting (and hence matching the given query pat-
tern) equals Prob(independenceDay = 07/04/1776) =

Prob(independenceDay = 07/04/1776|government) ×
Prob(government|country) × Prob(country|countries) ×
Prob(countries) = 0.85× 1.0× 0.9× 1.0 = 0.765.

There is one result in the result set, and the prob-
ability that this result matches the query is equal to
0.765 as shown in Figure 6(a). Notice that the proba-
bility of the independenceDay node existing in this re-
sult has been updated to 1.0, from 0.85. In the result,
we update each node’s probability to be the probabil-
ity of that node, given that the query matches. In this
simple case, it is obvious that Prob(independenceDay =

07/04/1776|independenceDay = 07/04/1776) = 1.0. This
node probability updating is also done in the other
matching data trees in Figures 6(b, c, d, d’). This
approach of conditioning node probabilities upon the
matching query is detailed in Section 6.8.

6.2 Conjunctive Queries

Consider the pattern trees in Figures 5(b) and 5(c).
Both of these query pattern trees involve conjunctions
of constraints. The query pattern tree in Figure 5(b)
asks for “chiefs of state with an age equal to 55”, and
the pattern tree in Figure 5(c) asks for “chiefs of state
with a name equal to George Bush, and an age equal
to 55”. The matching data trees and their associated
probability calculations for these queries are shown in
Figures 6(b), 6(b’), and 6(c). Notice that some por-
tions of the matching data trees are “grayed out” in the
figure. The portions of the data trees that are mapped
to the nodes in the probabilistic version of the query
pattern tree are colored black, while the “non mapped”
nodes that are descendants of some matching node are
colored gray. The user may choose to return only the
matching (black) nodes, or the entire matching sub-
tree (both the black and gray nodes) . This second
option is more typical in the applications we have pur-
sued.

We start with an intuitive description of the prob-
ability calculations required for query pattern tree in
Figure 5(c). Similarly to the single node case in the
previous section, we will need to walk up the tree and

multiply probabilities along node to root paths. When
considering the first data tree match (shown in Fig-
ure 6(c)), the individual probabilities for each separate
condition would be calculated as follows:

1. Prob(name = GeorgeBush) = 0.7 × 0.5 × 0.9 =
0.315 (factoring in the name value probability at
line 25 of Figure 4, the chiefOfState value prob-
ability at line 20, and the country node probabil-
ity at line 2).

2. Prob(age = 55) = 0.35× 0.5× 0.9 = 0.1575.

3. Prob(chiefOfState) = 0.5× 0.9 = 0.45.

In order to calculate the probability of the con-
junctive event, (name = GeorgeBush) ∧ (age =
55) ∧ chiefOfState (as in Figure 6(c)), we need to
consider the common factors in the three computa-
tions above, and factor out the node to root paths
that are shared. In particular the ancestor path from
the chiefOfState node to the root is shared in com-
mon between all three computations – counting this
path only once results in the correct probability as-
sessment Prob((name = GeorgeBush) ∧ (age = 55) ∧
chiefOfState) = 0.7 × 0.35 × 0.5 × 0.9 = 0.11025.
In general, to calculate any simple conjunctive query4

we simply walk up the ancestor chains of each node
in the query, multiply in the current conditional prob-
ability, and stop traversing a given ancestor chain if
we encounter a node we have already factored into the
result.

6.3 Adding Disjunction

In order to compute the probability of any general
query we must be able to handle disjunctions as well.
After standard logic manipulations, we can convert a
query tree matching function to a formula F in dis-
junctive normal form, where F = C1 ∧ . . . ∧ Cn, and
each Ci is a sequence of conjunctions. Due to the stan-
dard set-based notion of factoring out intersections of
events5, we can convert F into a series of additions and
subtractions that will only involve the computation of
probabilities of conjunctions. Based on the previous
section, we know how to compute the probability for
each of these individual conjunctive formulas.

6.4 Probabilistic Accumulation

In a probabilistic context, some queries implicitly re-
quire the accumulation of probabilities. For example,
a query for “chiefs of state with an age ≤ 56” could

4By “simple” we mean a conjunctive query that contains only
equality conditions upon the tag names and content, no nega-
tion, and no mutually exclusive dependencies in the data. Ex-
tensions for these types of queries will be outlined in subsequent
sections.

5For example, Prob(C1 ∨ C2 ∨ C3) = Prob(C1) + Prob(C2) +
Prob(C3) − Prob(C1 ∧ C2) − Prob(C1 ∧ C3) − Prob(C2 ∧ C3) +
Prob(C1 ∧ C2 ∧ C3).
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Figure 6: Data trees matching the query pattern trees in figure 5.



yield four separate data tree matches for our data in
Figure 4 (corresponding to the matching ages on lines
30, 31, and 32 and on line 46). But the results would be
more meaningful if there was one resulting data tree
(corresponding to President Bush) for the matching
values on lines 30, 31, and 32, and another resulting
data tree (corresponding to President Clinton) for the
matching value on line 46. The probability calcula-
tion for the second of these result trees is the same as
in Figure 6(b’). The calculation for the first of these
result trees is only slightly more complex: we calcu-
late the probability of the disjunction of these three
conditions.

In general, we group multiple results by their com-
mon ancestor. The probability of the resulting tree is
computed as the disjunction of each individual tree’s
query formula.

The need for this probabilistic accumulation is ob-
vious when we utilize inequalities such as: <,>,≤,≥.
But, it may even be needed with simple equality
queries when there are duplicate values for a given ele-
ment (or when there are duplicate element names, and
the query is over element names and not their actual
content).

6.5 Handling Negation

Negation could be handled in the same manner as in-
equality queries in the previous section. For example,
a query for “chiefs of state with an age 6= 77” could
result in exactly the same computation as discussed
in the previous section for the “President Bush” sub-
tree. But, this is not the most computationally effec-
tive strategy: the number of disjunctive conditions is
based upon the number of possible values for an el-
ement, which could be quite large. Instead we take
advantage of the special property of negation, namely
that Prob(¬A) = 1− Prob(A).

If there exist some non-negated conjuncts in f we
perform a transformation so that we only need to
calculate the conjunctive probabilities of non-negated
conjuncts (as in Section 6.2). As an example, we can
compute Prob(A∧B∧¬C) as Prob(A∧B)−Prob(A∧
B ∧ C). The equation is derived by recognizing that
Prob(A∧B∧C)+Prob(A∧B∧¬C) = Prob(A∧B).

6.6 Handling Mutual Exclusion

Given a conjunction of events, it is quite simple to
handle mutual exclusion. If the conjunction contains
two non-negated events that are mutually exclusive,
then the probability of this conjunction is equal to
0. For example, a conjunctive query might require
that the president’s age be equal to both 54 and 55,
and results for this query should have a probability of
0 (if these values are mutually exclusive). Detection
of mutual exclusion between two nodes may involve
checking all ancestors of these two nodes up to the

document root (since mutual exclusion can be between
entire sub-trees, and not just simple values).

6.7 Computing Result Probabilities for Gen-
eral Queries

Given the procedures outlined previously, we can cal-
culate the probability of any query result, where the
query can contain conjunctive and disjunctive con-
straints, negated conditions, and mutually exclusive
data elements.

Theorem 1 (Probabilistic Computation) Given
our model’s constraints on conditional probabili-
ties, independence, and mutual exclusion, the above
procedures correctly compute the probability for a
Boolean formula F of node predicates, given that the
allowable Boolean connectives are ∧, ∨, and ¬. Al-
lowable predicates include (element.tag = value)
as well as (element.content θ value), where
θ ∈ {=, 6=, <,≤, >,≥}.

6.8 Computing Node Probabilities

As mentioned previously, we update each node’s prob-
ability in the result to be the probability of that
node, assuming that the query matches (the entire tree
probability is simply the probability that the query
matches). Given that the previous methods for com-
puting the probability of a result tree are in place, com-
puting this updated probability for each node in the
result is quite easy. The probability we wish to show
is the probability of a node, given that the overall tree
matching formula F is true. So, for each node nodei

in the result, we need to compute Prob(nodei|F ). But
Prob(nodei|F ) = Prob(nodei∧F )

Prob(F ) by the definition of
conditional probability. We know how to compute the
probability of both the numerator and denominator
based on the previous sections.

As an example, the pattern tree in Figure 5(d), re-
sults in the two matches shown in Figure 6(d) and
6(d’) when applied to the sample data. Working with
Figure 6(d), we see that the overall tree probability
will be equal to6:
Prob(F ) =
Prob((name = GeorgeBush) ∨ (age = 55)) =
Prob(name = GeorgeBush)+Prob(age = 55)−Prob((name =
GeorgeBush) ∧ (age = 55)) =
(0.7× 0.5× 0.9) + (0.35× 0.5× 0.9)− (0.7× 0.35× 0.5× 0.9) =
0.315 + 0.1575− 0.11025 = 0.36225

These single node and conjunctive node computa-
tions are the same as those shown in Section 6.2. Now,
we show an example of the updating of a single node’s
probability in the output. The probabilistic computa-
tion required to update the name node in Figure 6(d)

6As a notational convenience, we simply use name and age
in the equations, to refer to two specific nodes in the source
data. In actuality, internal node IDs are used, and there is no
ambiguity in the matching. Also, we simplify the probabilis-
tic computation by removing the chiefOfState node from the
formula F (although the result probabilities will be the same).
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(corresponding to name = ‘‘George Bush’’) is given
as:
Prob(name = GeorgeBush|F ) =
Prob((name = GeorgeBush)|(name = GeorgeBush) ∨ (age =
55)) =
Prob((name=GeorgeBush)∧((name=GeorgeBush)∨(age=55)))

Prob((name=GeorgeBush)∨(age=55))
=

Prob(name=GeorgeBush)
Prob((name=GeorgeBush)∨(age=55))

=
0.315

0.36225
= 0.869565 . . .

All of the node probabilities in Figure 6 have been
calculated as the conditional probability of the node
given the query condition.

6.9 Deterministic Default

Even in a probabilistic database, not all data will be
probabilistic. Our model permits the free intermix-
ture of both deterministic and probabilistic data. Any
element with a missing probability attribute can be as-
sumed to have a default probability value of 1. With
this default assumption, we can establish the following
theorem (the proof is omitted for lack of space):

Theorem 2 (Consistency) For every TAX query q,
its execution against a deterministic database produces
exactly the same results as the execution of q against
an equivalent probabilistic database with all probabili-
ties set to 1.

7 Experimentation

We wish to evaluate our system both in terms of
computational overhead (how much additional time
is required when comparing our system to a non-
probabilistic XML database system), and in terms of
the general “usefulness” of our system.

In many ways, “usefulness” is a rather ill-defined
metric. “Usefulness” (quality) of the results, and “use-
fulness” (applicability) of the overall system are both
important. Both of these senses of usefulness require a

qualitative assessment, in contrast to the purely quan-
titative assessment of computational costs. But, if the
system is not useful, then the fact that it performs
quickly is decidedly less exciting. To highlight the effi-
cacy of our approach we contrast basic sample queries,
and the corresponding results, from both our prob-
abilistic system and the underlying non-probabilistic
system.

7.1 System Design

Figure 7 shows the basic architecture of the ProTDB
system. The architecture of this system is exactly the
same as that of the Timber [17] native XML database
upon which it is based. All modules, other than the
two shaded boxes, are identical to the corresponding
modules in Timber. The query evaluator is enhanced
with the basic probabilistic machinery discussed in
Section 6. The parser module is changed so that a
normal user query (issued as if it were against non-
probabilistic data with an equivalent schema) is trans-
formed to account for the new Dist and Val elements.

The system is implemented in Microsoft Visual
C++ on a Pentium 4 machine running at 1.5 GHZ
with 256 MB RAM, and running the Windows 2000
Professional operating system.

7.2 Experimental Design

We extracted geopolitical information from the web
using the question answering system to produce an
XML file similar to that found in Figure 4, except
that our file had over 3,000,000 nodes and occupied
over 200 megabytes7.

7.3 Performance Results

Figure 8 shows query times for queries with a selectiv-
ity of .05% (50 “country” subtrees are returned out of
the 100,000 country subtrees in the input XML file).
We issue conjunctive and disjunctive queries where the
root of the pattern tree is a country node, and there
are n conjuncts or disjuncts that are descendants of
this country node. We show results for n equal to 2,
4, and 6 conjuncts/disjuncts. The overhead incurred
by the probabilistic computations is minimal.

Figure 8 shows the query times for queries with a se-
lectivity of 5% (5000 “country” subtrees are returned).
We see that the computational overhead for our proba-
bilistic manipulations is reasonable, for a small number
of query conditions.

7.4 Quality Assessment

To appreciate the benefits of a probabilistic database
system, consider the two results (shown in Fig-
ure 9(a)), for the query: “Who is the current head

7Some sub-trees in the extracted document were replicated
in order to produce a sufficiently large probabilistic document.
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Figure 9: Querying for the head of state of Russia

of state of Russia?” This is a question to which the
real answer may not be obvious to the average reader
of this paper. (Vladimir Putin is the chief of state
but not the head of state). The CIA World Fact-
book [1] lists each of the following individuals: Mikhail
Kasyanov, Aleksey Kudrin, Aleksey Gordeyev, Viktor
Khristenko, Ilya Klebanov, and Valentina Matviyenko
as heads of state of Russia.

We see in Figure 9(a) that Vladimir Putin actually
has a higher probability of matching the “head of state
of Russia” query, than Mikhail Kasyanov (an actual
head of state) does. Our probabilistic system allows
the user to see all the results, ranked by probability,
where a deterministic approach would simply display
one result, display all of them (unranked), or use some
threshold to remove low probability data during the
QA phase. But even this final option is not desirable.
In Figure 9(b), we see that if the user has some domain
knowledge (that a head of state of Russia is likely to
have the title of “Premier”) then they can get the cor-
rect result, with the highest ranking, by incorporating
this constraint into the query. If the “Kasyanov” re-
sult was pruned based on a threshold, it would have
been unavailable for such querying.

8 Conclusion

We have presented an overview of the ProTDB proba-
bilistic XML database system currently under develop-
ment at the University of Michigan. The probabilistic
constructs have been chosen with care to obtain rea-
sonable expressive power while allowing efficient prob-
abilistic computation. The model also allows conve-
nient intermixing of probabilistic and non-probabilistic
data.

Initial experiments with probabilistic information
extracted from the web are positive in showing both
efficiency of operation and the inherent value of these
probabilistic manipulations.

Finally, our probabilistic model and querying mech-
anisms result in correct probability computations
(based on the dependencies specified in the model) for
any query, or combination of queries. This is impor-
tant for many applications, and is an area where many
previous approaches have failed.
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