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Abstract— Tumour identification is a critical step in robot-
assisted partial nephrectomy (RAPN) during which the surgeon
determines the tumour localization and resection margins. To
help the surgeon in achieving this step, our research work aims
at leveraging both pre- and intra-operative imaging modalities
(CT, MRI, laparoscopic US, stereo endoscopic video) to pro-
vide an augmented reality view of kidney-tumour boundaries
with uncertainty-encoded information. We present herein the
progress of this research work including segmentation of pre-
operative scans, biomechanical simulation of deformations,
stereo surface reconstruction from stereo endoscopic camera,
pre-operative to intra-operative data registration, and aug-
mented reality visualization.

I. INTRODUCTION

Surgery remains one of the primary methods for terminat-
ing cancerous tumours. Minimally-invasive robotic surgery,
in particular, provides several benefits including filtering of
hand tremor, offering more complex and flexible manipula-
tion capabilities that lead to increased dexterity and higher
precisions, three-dimensional view of the surgical scene, and
more comfortable seating for the surgeon. This in turn leads
to reduced blood loss, lower infection and complication rates,
less post-operative pain, shorter hospital stays and better
overall surgical outcomes [1].

Medical imaging plays an important role both before
and during surgeries. In image-guided interventions, pre-
operative 3D medical imaging modalities, mainly computed
tomography (CT) and magnetic resonance imaging (MRI),
are used for surgical planning [2]. During this stage, tumour
localization and resection margins are meticulously identified
to remove cancerous tissues while sparing healthy tissue.
However, transferring such plans from the pre-operative
frame-of-reference to the dynamic intra-operative scene re-
mains a necessary yet largely unsolved problem. To address
this problem, many state-of-the-art methods rely on man-
val rigid alignment of pre-operative segmentation to intra-
operative stereo data (after stereo surface reconstruction)
followed by motion tracking [3], [4], [5]. Other works
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Fig. 1: Overview of our proposed image-guided navigation
system for robot-assisted partial nephrectomy, in which
the stereo-endoscopic view of the surgeon is augmented
with kidney-tumour boundaries derived from pre- and intra-
operative imaging modalities.

focus on projecting 3D pre-operative data directly onto 2D
intra-operative data, especially with intra-operative 2D X-
ray and 2D ultrasound [6]. Recent methods incorporate
biomechanical models to predict realistic deformation for
use in non-rigid registration as this has proven to enhance
registration accuracy in large deformations [7]. In addition,
the use of biomechanical models can assist the registration of
organs’ internal structures such as vessels and tumours [8].
Augmenting the surgeons’ view with these registered images
is non-trivial, where some methods propose using a detailed
mesh of the pre-operative model [3], while more recent
works focus on selective visualization methods aimed at
minimizing information overload [5].

In this paper, we describe our team’s progress towards ad-
dressing the aforementioned issues in pre-operative surgical
planning, intra-operative image registration, and augmented
reality visualization for image-guided tumour identifica-
tion (Fig. 1 and 2), where we focused on kidney cancer cases
with robot-assisted partial nephrectomy (RAPN) performed
with a da Vinci surgical robot (Intuitive Surgical, Inc.).

II. PRE-OPERATIVE SURGICAL PLANNING

To help the surgeon during surgical planning, we de-
veloped a semi-automatic approach for kidney and tumour
segmentation in pre-operative CT scans, which are to be
transferred to the intra-operative frame-of-reference. We also
investigated the biomechanical simulation of kidney and tu-
mour deformations under external pressure load (e.g. during



patient insufflation) to minimize discrepancies between tissue
pre- and intra-operative shapes and relative positions.

A. Pre-Operative CT Segmentation

We perform pre-operative 3D image segmentation of the
tumour and surrounding healthy tissue in the CT scans using
an interactive version of the random walker algorithm [9],
[10], which provides a probabilistic labelling of tissues.

Let G = (V,E) be a graphical representation of the
pre-operative volume I,.. with vertices v € V' and edges
e € E C V xV. By placing a few seeds on the back-
ground and organs of interests, vertices are decomposed into
marked (seeded) Vs and unmarked Vi;. Having the labels
set L ={{y,---,£,}, where n is the number of labels, the
random walker method assigns a probability vector p, =
(z},---,2") to each pixel v; € V by solving the following
system of linear equations (see [10] for more details):

(LU +vZA%}> ajy = Ay — Bf°, )
r=1
here I = | P lis the [V| x |V| graph’s combi
where L = | pr ;= lis the |V| x |V graph’s combina-

torial Laplacian matrix, v is a positive constant, and A =
Aé” AOU}is a diagonal matrix with the values of A® that
represents the prior probability of a specific node (or voxel)
belonging to class ¢;. Both L and A are decomposed into
their marked (M) and unmarked (U) components. f° is an
|Var| x 1 indicator vector where fj = 1if x; belongs to £,
and f7 = 0 if it does not. The system of linear equations of
(1) is solved for xf, which is the probability of unmarked
nodes belonging to class ¢,. From these membership prob-
abilities, we extract 3D models of kidney and tumour used
in the succeeding steps.

B. Biomechanical Modeling of Tissue Deformations

To better model the intra-operative deformations, we up-
date the pre-operative segmentation using a biomechanical
model of kidney tissue and tumour that simulates defor-
mations under the exertion of different external forces (e.g.
pressure change during insufflation):

Mii+ Ci+ Ku=F )

where M, C' and K are the mass, damping and stiffness
matrices, respectively, F' is the external force matrix applied
to the system consisting of gravity and insufflation pressure
over the surface of the kidney, and u is the displacement.
The stiffness matrix K is built using the material parameters,
Young’s modulus and Poisson ratio, adopted from the liter-
ature [11]. The elements’ topology is obtained from kidney
and tumour 3D segmentations meshed using Gmsh'. We
use the SOFA platform? to build this biomechanical model
with the finite element method (FEM) using a corotational
tetrahedral formulation and a Eulerian implicit solver. The

Uhttp://geuz.org/gmsh/
Zhttp://www.sofa-framework.org/
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Fig. 2: Data processing and visualization workflow of our
proposed image-guided navigation system (future work in
grey dotted lines).

output of this simulation is a prediction of kidney and tumour
deformations between their pre- and intra-operative shapes
that help improve the pre- to inta-operative scene registration
step with a more realistic initialization [12].

III. PRE- TO INTRA-OPERATIVE IMAGE
REGISTRATION

We developed a technique for registering our pre-operative
CT segmentations to the intra-operative stereo endoscopic
video stream, which we use to extract the structures of the
visible surfaces in the surgical scene.

A. Stereo Surface Reconstruction

We reconstruct the surface of the surgical scene from
stereo endoscopic video using correlation-based dense
matching of left and right camera views [13]. We imple-
mented this step on the GPU for real-time processing [14].
The robustness of reconstruction is complicated by many
factors including a small baseline between the optical centres
of the cameras, presence of blood and smoke, specular high-
lights, occlusion, and smooth/textureless regions. In order
to improve accuracy, we also regularize the reconstructed
surface by incorporating pre-operative CT segmentations as
a pior [15].

This regularization is performed in the space of distance
maps (distance from camera to surface). The regularized
distance map d,.. is computed as a weighted average of
the distance map of the reconstructed surface from stereo
endoscopic video dgy with the distance map computed from
the pre-operative CT segmentation d,,. at each pixel v:

drec(V) = [1 — a(v)]dgy (v) + a(v)dpre(v) 3)
where

—p
[dpy (v) — dpre(v)]
is an outlier-sensitive regularizer and 5 > 0 is a free variable
that can be tuned to adjust the weight given to the pre-
operative volume. This formulation gives a higher weight

to dpr. when the difference between d.. and dgy is high
(outliers).

a(v) = exp
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Fig. 3: Probabilistic segmentation of pre-operative CT scans
of an ex vivo lamb kidney phantom with exophytic tumour:
(a) original CT slice, and (b) corresponding probabilistic map
of background (red), kidney (green), and tumour (blue).

B. Registration of Pre- and Intra-Operative Data

To register the pre-operative CT segmentation to the intra-
operative stereo endoscopic view, we first perform a pose es-
timation, by manually providing 6 corresponding landmarks,
which rigidly aligns the kidney and tumour segmented from
the CT to the endoscopic video. Initial pose estimation is
followed by an automatic registration step with rigid 7;.;4, and
deformable Tg. ¢ transformation components that matches the
probability map of the segmented pre-operative CT volume
DPpre (Section II-A) to the probability map of the 3D stereo
reconstructed surface p,.. (Section III-A) and of anatomical
structures in the stereo images Psierco- We calculate the
pre-operative to intra-operative spatial transformation 7" by
minimizing the following energy functional:

E(T;ppreyprecapstereo) = / Dl (precappre o T))
3D

+"€/ D2 <pstereo> 7) (ppre o T)) ) ) (4)
2D

where T' = T,y o T}, is the final transformation, D; and
Dy are dissimilarity measures between two probability maps,
respectively in 3D and 2D, and P is the 3D to 2D projection
function. k > 0 is a constant that balances the contribution
of image features and stereo reconstructed surface in the
registration task.

IV. AUGMENTED REALITY VISUALIZATION

Finally, we present to the surgeon an augmented reality
view showing an overlay of the tumour resection targets on
top of the endoscopic view, in a way that depicts uncertainty
in localizing the tumour boundary [16]. Our visual cues
are derived from shape boundary uncertainties in the prob-
abilistic segmentation of the pre-operative CT (Section II-
A). We present two complimentary visualization methods,
which give the surgeon the choice between a detailed view
of uncertainties or a condensed view with minimal occlusion.

V. EXPERIMENTS
A. Materials

To evaluate our methods, we used data acquired from in
silico and ex vivo phantoms for controlled experiments, as
well as from real patients undergoing RAPN. An in silico

(a) (b)

Fig. 4: Our simulated kidney model (a) without external
pressure, and (b) with simulated uniform external water
pressure. The endophytic tumour (purple mass) is depicted
inside the simulated kidney.

Fig. 5: Distance maps (from camera to surface in mm)
obtained from stereo surface reconstruction of a kidney
phantom (a) without and (b) with regularization based on
shape-prior.

cardiac phantom dataset® includes a low resolution stereo
video (360 x 288 pixels), CT scans (512 x 512 pixels with
0.414 mm pixel spacing and 0.5 mm slice thickness), and
ground truth data for stereo surface reconstruction [17],
[18]. For more realistic controlled experiments, we acquired
additional CT scans (512 x 512 pixels with 0.215 mm pixel
spacing and 0.6 mm slice thickness) and high resolution
stereo video (full HD 1080i resolution) of ex vivo lamb
kidneys with artificial tumours and fiducials [15], [16]. We
also collected patient data from 10 cases of RAPN including:
pre-operative patient CT scans (Siemens CT Sensation 16
and 64 slices), and stereo endoscopic video at full HD 10801
(da Vinci Si HD, Intuitive Surgical, Inc.).

B. Results

The probabilistic segmentation with three classes (back-
ground, kidney, and tumour) was applied to pre-operative
CT scans. An example result on an ex vivo lamb kidney
is shown in Fig. 3. The simulation of deformations due to
external pressure load showed a 29% improvement of tumour
localization with respect to the kidney surface (Fig. 4),
which we expect to significantly better estimate resection
margins after insufflation of the patient [12]. The proposed
stereo surface reconstruction method led to highly improved
results [15], especially in poorly textured regions that mislead
the dense matching (Fig. 5). The quality of the deformable
registration of pre- and intra-operative data is illustrated
in Fig. 6, showing the overlay of the kidney and tumour
silhouette on the stereo endoscopic view. Note that the initial
pose estimation does not need to be too close to the correct

3 Available online http://hamlyn.doc.ic.ac.uk/vision/



Fig. 6: Fusion of pre-operative CT segmentation and stereo
endoscopic view during RAPN (a) before and (b) after
registration (kidney and tumour respectively in green and
red).
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Fig. 7: (a) Detailed and (b) simplified uncertainty-encoded
visualization of endophytic (top) and exophytic (bottom)
tumour boundaries in an ex vivo lamb kidney phantom.

pose. In fact, a rough estimation (Fig. 6a) is enough for our
method to converge to a reasonable pose (Fig. 6b). As an
end result provided to the surgeon, we show an augmented
reality view of the kidney-tumour boundaries. Two solutions
were proposed: a detailed visualization with several contours
at different uncertainty levels (Fig. 7a) and a simplified
visualization with a single color-coded contour (Fig. 7b) that
provides similar information and does not obstruct too much
the original view of the surgical scene [16].

VI. CONCLUSION

We developed a novel proof-of-concept framework for
prior and uncertainty encoded augmented reality system
that fuses pre-operative patient specific information into the
intra-operative surgical scene. Preliminary studies and ini-
tial surgeons’ feedback on the developed augmented reality
system are encouraging. Our future work will focus on
investigating the use of intra-operative ultrasound data in our
system to leverage all imaging modalities available during
surgeries, and the use of enhanced biomechanical models to
better estimate soft tissue deformations that occur during the
surgery.
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