
1

Perception-based Visualization of Manifold-Valued
Medical Images using Distance-Preserving

Dimensionality Reduction
Ghassan Hamarneh, Senior Member, IEEE, Chris McIntosh, and Mark S. Drew, Member, IEEE

Abstract—A method for visualizing manifold-valued medical
image data is proposed. The method operates on images in
which each pixel is assumed to be sampled from an under-
lying manifold. For example, each pixel may contain a high
dimensional vector, such as the time activity curve (TAC) in a
dynamic positron emission tomography (dPET) or a dynamic
single photon emission computed tomography (dSPECT) image,
or the positive semi-definite tensor in a diffusion tensor magnetic
resonance image (DTMRI). A nonlinear mapping reduces the
dimensionality of the pixel data to achieve two goals: distance
preservation and embedding into a perceptual color space. We use
multi-dimensional scaling distance-preserving mapping to render
similar pixels (e.g. DT or TAC pixels) with perceptually similar
colors. The 3D CIELAB perceptual color space is adopted as the
range of the distance preserving mapping, with a final similarity
transform mapping colors to a maximum gamut size. Similarity
between pixels is either determined analytically as geodesics on
the manifold of pixels or is approximated using manifold learning
techniques. In particular, dissimilarity between DTMRI pixels
is evaluated via a Log-Euclidean Riemannian metric respecting
the manifold of the rank 3, 2nd order positive semi-definite
DTs, whereas the dissimilarity between TACs is approximated
via ISOMAP. We demonstrate our approach via artificial high-
dimensional, manifold-valued data, as well as case studies of
normal and pathological clinical brain and heart DTMRI, dPET,
and dSPECT images. Our results demonstrate the effectiveness
of our approach in capturing, in a perceptually meaningful way,
important features in the data.
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visualization; color; nonlinear dimensionality reduction; multi-
dimensional scaling; distance-preserving mapping; diffu-
sion tensor magnetic resonance imaging (DTMRI); dynamic
positron emission tomography (dPET); dynamic single photon
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I. INTRODUCTION

H IGH dimensional, manifold-valued data is becoming
more prevalent in medical imaging applications [1], [2],

[3]. This increase of data complexity is due to several rea-
sons, including advances in acquisition hardware that allows
for collecting more anatomical, functional, and hybrid data;
fusion of medical images from multiple sources to provide
complementary information; faster acquisitions that enable
reconstructing tracer dynamics in tissues, resulting in time
activity curves (TAC) captured at each pixel, as in dynamic
single-photon emission computed tomography (dSEPCT) and
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positron emission tomography (dPET); and new imaging
modalities designed from the outset to capture more exquisite
data about the living body, such as brain white matter or
cardiac muscle fiber organization obtained from diffusion
tensor MRI (DTMRI) or high angular resolution diffusion
imaging (HARDI).

For patient-specific diagnosis and therapy, as well as for
population studies, there is a need for accurate, repeatable,
and fast algorithms to analyze large numbers of complex
data with increasing dimensionality and resolution. Despite
commendable efforts towards automating the medical image
interpretation task, human intervention remains unavoidable
and intuitive image display methods persist in the clinical
workplace. In contrast to the ubiquitous display of 2D scalar
(grayscale) or true-color RGB images, developing methods
for the visualization of higher dimensional, manifold-valued
pixels and complex spatial fields remains an area of active
research [4]. The objective of this work is to develop a
visualization method for manifold-valued medical images that
is intuitive yet faithful to the underlying variability in the high-
dimensional image pixel data.

Medical image segmentation, a key image analysis task that
partitions an image into different regions, is often a neces-
sary precursor to the higher level understanding of images.
Segmentation methods typically rely on (i) identifying pixels
with similar properties (e.g. CT pixel intensity in Hounsfield
units, DT, or TAC) and grouping them into homogenous
regions; (ii) identifying local regions of pixel dissimilarities,
or edges, and linking them to form separating boundaries
between regions; and (iii) incorporating some form of prior
knowledge of the different structural or functional regions
to be segmented (e.g. prior knowledge of shape, appearance,
spatial relationships, or temporal dynamics, as well as expert
or domain-based knowledge). There are numerous techniques
that attempt to automate this important segmentation step [5],
and although a universal criteria for a correct segmentation is
likely impossible, almost all algorithms attempt to incorporate
(i-iii) in different forms. However, the majority of existing
segmentation methods and subsequent interpretation methods
rely on and are sensitive to user-initialized seeds, contours,
or gestures, setting of low level parameters, and/or on an
expert validated set of training data. Existing segmentation
algorithms are yet to achieve full automation while producing
completely correct results, and hence may not be relied upon
in clinical settings without user intervention. The fact remains
that expert human operators in the clinic (e.g. radiologists)
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continue to interpret medical images by depending largely
on visual assessment, in which image partitioning and pixel
grouping still rely on pixel dis/similarities and prior or expert
domain knowledge, i.e. i-iii above. It is therefore imperative to
provide experts with a medical image display or visualization
system that is faithful to the underlying structural or functional
data.

We argue that the expert’s image interpretation or diagno-
sis must not be affected by artificial manifestations of the
visualization system, e.g. using inappropriate pseudo color-
ing or other rendering effects, that may either camouflage
delicate information (false negatives, e.g. missing a tumour)
or artificially introduce information (false positives) thereby
misguiding their analysis. In this work we address these issues
by proposing a visualization approach for high-dimensional,
manifold-valued medical image data that (a) is faithful to the
underlying medical image data; (b) respects models of human
perception; and (c) relies on the essential information needed
for segmentation (i-iii above: pixel dis/similarity and domain
expertise). We display high-dimensional medical image data
to the domain expert as color images. The transformation
of the high-dimensional data to a form suitable for human
perception is facilitated via a nonlinear mapping that reduces
the dimensionality of the data to three color channels in a
way that preserves distances between pairs of pixels on high-
dimensional manifolds and at the same time ensures data em-
bedding into a perceptual color space. Our display method is
geared toward research clinicians and medical image analysis
researchers faced with the challenging task of distilling high
dimensional data to clinically relevant information.

II. RELATED WORK

In [6], Wong and Bergeron surveyed multidimensional
multivariate visualization techniques prior to 1997. In [7],
Keim explored the formal basis and design decisions for the
visualization of high-dimensional data using pixel-oriented
visualization, which describes how pixel data is arranged and
rendered on the screen. More recently, Peng and Laramee
surveyed a variety of approaches for visualization of high-
dimensional data [4]. We focus our review on approaches
related to using color to visualize medical or general high-
dimensional data.

Several methods have used color to visualize high-
dimensional data by forming color channel responses through
a linear projection of the original data onto basis functions. In
[8], hyperspectral image data1 was rendered through projection
on bases that reflect, through color-matching functions [9],
[10], what the human visual system would perceive had it been
able to cover the range of the hyperspectral data. Jacobson
et al. proposed a method to design fixed basis functions
mimicking human vision [11]. As early as 1973 [12], different
methods were proposed that rely on representing the three
color channels through the first three main data variation
modes obtained through principal component analysis (PCA)

1Whereas color images typically capture red, green and blue color channels
per pixel (i.e. three-channel multispectral image), hyperspectral images cap-
ture many more channels that may include electromagnetic radiation outside
the range of colors visible by humans (e.g. infrared or ultraviolet).

[13]. Other methods relied on PCA in conjunction with
wavelet methods, for example, by performing PCA on wavelet
sub-bands to enhance edges at specific levels of detail [14] or
to perform wavelet-based denoising followed by PCA [15]. As
an alternative to PCA, independent component analysis (ICA)
was performed as a means to reduce the dimensionality of
the high-dimensional data into three color channels [16], [17].
Other approaches for high-dimensional visualization relied on
providing iconic representation for each data point [18] or
multi-colored texture elements [19]. In [20], the mapping, from
high-dimensional pixel data to 3D color, which maximizes the
mutual information between the original hyperspectral bands
and the color channels was used. In [21], Fang et al. used
multi-dimensional scaling (MDS) as an alternative, nonlin-
ear approach to dimensionality reduction [22], where high-
dimensional pixels, representing samples of temporal activity,
are mapped to 2D in a way that preserves weighted distances
between pixel locations and pixel dissimilarity. The 2D embed-
ding is then used as a widget for specifying transfer functions
for volume rendering.

To the best of our knowledge, works most related to our
approach are those of Rasche et al. and Brun et al. In
[23], [24], color images (the higher-dimensional data in their
case), are reduced for color deficient, mono- and di-chromats
displays. They highlighted the importance of preserving con-
trast and maintaining luminance consistency by basing their
method on the premise that perceived color difference between
any pair of colors should be proportional to their perceived
gray difference. An MDS-inspired objective function capturing
this relationship was formulated and solved via constrained
majorization [24]. In [25], a method for visualizing DTMRI
fiber “traces” was proposed, in which a set of fiber traces is
mapped to lower dimensional Euclidean space using Laplacian
eigen-maps. The mapping was such that similar traces (defined
as those with similar endpoints) were mapped to similar points
in low-dimensional RGB color space. In contrast, our proposed
method is not specific to color images or fiber tracts, but rather
to generic high-dimensional image fields, with a focus in this
paper on medical image data (DTMRI, dPET, and dSPECT in
particular). More importantly, we map the high-dimensional
data, in a nonlinear, distance preserving way, into 3D percep-
tual color space and not to 1D or 2D and not to RGB. Further,
we utilize available knowledge of the manifold structure of the
underlying pixels, e.g. diffusion tensors dissimilarity between
pixels is evaluated via a Log-Euclidean Riemannian metric
respecting the manifold of DTs: rank 3, second order positive
semi-definite (PSD) with nonnegative eigenvalues. When such
knowledge about the manifold structure is absent, we resort to
manifold learning techniques to capture dissimilarity between
high-dimensional pixels.

Finally, we note that there exist approaches that produce
pseudo-color images, like our method does. However, these
approaches differ in two main aspects: the input to the algo-
rithm, and the criteria governing the creation of the output
image. Two examples of such methods stand out. Neophytou
and Mueller proposed a tool for manipulating regions of
color images by artists and designers who operate directly on
the color gamut of an image region by applying geometric
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transformations in the CIELAB perceptually uniform color
space [26]. Similar to our approach, Neophytou and Mueller
generate a pseudo-color image based on processing performed
in the CIELAB space. However, the input to their method
is a color image whereas the input to our method is an
image with high-dimensional (manifold-valued) pixels. An
input RGB color image is a special case in our technique, as
we accommodate (and focus on) higher dimensional pixels,
e.g. the 6 dimensions of DTMRI and the tens dimensions of
time activity curves in dPET, and others. Further, key to our
approach is the distance preserving dimensionality reduction
(from high-dimensional pixels to 3D color space) and the use
of geodesic distances on the manifold of pixel data (either
analytically or using manifold learning). In [27], Wang et al.
propose a different semi-interactive colorization technique, in
which the user chooses, based on personal preferences, the
hue of features in the image. Then, saturation and luminance
parameters are calculated based on aesthetic rules, such as
color harmony, user preferences, or scene parameters, e.g.
feature size. The calculations are done in CIELAB perceptual
color space. Although Wang et al. generate a pseudo color
image like we do, their method expects as input a segmented
image (i.e. pixels assigned to classes or labels), whereas our
method works with the original data and is geared specifically
towards high dimensional (manifold-valued) pixels and not an
image of scalar labels. Another important difference is that, in
[27], pixels with the same image values might receive different
colors if they belong to different classes. In our approach
this is unacceptable; pixels with the same high-dimensional
data values receive the same color. This is done to ensure
that the pseudo-color image faithfully reflects the underlying
data, and to avoid data misinterpretation. Furthermore, Wang
et al.’s method resorts to aesthetics and other cues to control
the resulting colors. Our strategy is different; our critical rule
is to be faithful to the underlying data as much as possible,
rendering similar high-dimensional pixels with perceptually
similar colors, regardless of the aesthetic appeal that is of
negligible importance in medical applications.

III. METHODS

A. Overview

Our objective is to present clinicians with images that are
displayed and perceived in a way that best reflects the underly-
ing medical image data. Given our focus on high-dimensional
medical image data (e.g. DTMRI or dPET), where the pixel
dimensionality is larger than the three color dimensions, we
need to employ dimensionality reduction. Our goal is that after
dimensionality reduction, pixels with similar DT or TAC pixels
should be rendered with colors that are perceived similarly, and
vice versa. More generally, we wish to display image pixels to
the user such that pixels with similar high-dimensional data are
rendered using perceptually similar colors (and different pixels
using perceptually different colors). This raises two questions:
(i) how to measure pixel dissimilarity and (ii) how to map
pixels (with known dissimilarities) to perceptually meaningful
colors. Our method addresses these two issues as follows.
First, we assume that the high-dimensional pixel values are

samples from an underlying manifold endowed with a distance
metric. The manifolds are either learned using manifold learn-
ing techniques (e.g. ISOMAP [28] or locally linear embedding
[29]), derived analytically, or approximated. Dissimilarity be-
tween any two high-dimensional pixels is measured as the
geodesic distance between the two corresponding points on
the manifold. We evaluate the similarity between DT pixels,
in particular, via the Log-Euclidean Riemannian metric, which
respects the rank 3 manifold of the DTs. For dPET, we use
ISOMAP to learn the underlying manifold and approximate
the distance between two TACs. Second, given known distance
or dissimilarity between any pair of data points, we rely on a
distance preserving mapping into perceptual color space. We
use MDS for distance-preserving mapping in order to render
similar DT or TAC pixels with perceptually similar colors. The
3D CIELAB perceptual color space is adopted as the range
of the MDS mapping. A final rotation, scaling, and translation
is still available without changing relative distance, and such
a similarity transform is chosen so as to maximize the color
gamut volume occupied.

B. High Dimensional Medical Image Data

We focus on 2D or 3D fields of N pixels, i.e. each N -pixel
image is represented as f(x) : x ∈ Rd → Rn, where d is the
spatial dimension 2 or 3, with x = (x, y) or x = (x, y, z),
respectively, and n is the dimensionality of the pixel data. At
each location a vector f(x) = [f1(x), f2(x), · · · , fn(x)] is
sampled. Note that the intrinsic dimensionality ñ of the data
can not be greater than n, i.e. ñ ≤ n. For cases when n = 1, 2,
or 3, then one, two or three color channels can be used without
the need for nonlinear dimensionality reduction.

As we focus on DTMRI, dPET and dSPECT images in this
paper, we provide a brief review of the basics of these image
modalities. DTMRI is a 3D medical imaging modality that
captures the probability of water diffusing in different spatial
directions. The diffusion properties are captured by assigning
at every voxel a DT, which is estimated from multiple diffusion
measurements along different directions, dictated by diffusion-
sensitizing gradients that are activated during the MR imaging
protocol. The resulting DTMRI image of tensors is useful for
understanding the underlying microstructure of fibrous tissues,
such as the white matter of the brain. DTs are symmetric
3× 3 matrices, or second-order rank 3 diffusion tensors, with
6 unique elements, i.e. n = 6 and f(x) : x ∈ R3 → R6.
Further, DTs must be PSD as they are interpreted as covariance
matrices of 3D Gaussian probability density functions (PDF).
The PDF models the probability of a water molecule diffusing
to a particular location in 3D in a given time due to the under-
lying Brownian motion of molecules [30], [31]. This positive
semi-definiteness, in turn, results in DTs being restricted to a
convex half cone in 6D [32]. For more information on DTMRI
we refer the reader to [33], [34].

In dSPECT medical imaging, radiopharmaceuticals carrying
gamma-emitting isotopes are injected into the body. A rotating
gamma camera collects the gamma photons from different
orientations and computed tomography image reconstruction
methods use this data to reconstruct a dynamic 3D image.
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In dPET positron-carrying radiopharmaceutical tracers are
injected in the body. The electron-positron annihilation causes
anti-parallel gamma photons to be emitted, which are captured
by the surrounding cylindrical gamma coincidence detector.
The data is collected in ‘list mode’ and reconstructed into time
activity curves assigned to different spatial positions. Both
dPET and dSPECT are functional medical imaging modalities
that capture the spatio-temporal patterns of the injected trac-
ers, which is important for revealing underlying physiology,
e.g. metabolic activity. dSPECT or dPET are represented as
f(x) : x ∈ R3 → Rn where, n is the number of the TAC
samples at each voxel. The reader may consult with [35], [36],
[37] for further details on dSPECT and dPET.

C. Dissimilarity Between High Dimensional Medical Image
Data: Manifold Learning and Distance Metrics

An important issue in dealing with high-dimensional data
is how to measure dissimilarity between observations. We
distinguish between two primary cases: (a) the space of n-
D observations forms a vector (linear) space and (b) when
the space is nonlinear. In the vector space case, Lp norms
such as L1 (Manhattan), L2 (Euclidean) or related Chebyshev
distance (Chessboard distance) can be used. In the nonlinear
case, the observed variables do not form a vector space
but rather their allowable values are governed by nonlinear
relationships forming an ñ-D subspace within the embedding
n-D space, with intrinsic dimensionality ñ ≤ n. For example,
in molecular dynamic imaging applications, such as dPET,
the TAC dimensionality n could be, say, 50 (i.e. 50 time
samples). Nevertheless, in molecular imaging studies it is
assumed that the underlying biological process can be modeled
by a few kinetic parameters (e.g. 4 in a 2-compartment model)
describing the partial differential equation of tracer transport,
tissue perfusion, or tracer binding [38]. In the nonlinear case,
we distinguish between two subclasses: (b1) the geodesic
distance on the nonlinear manifold (or dissimilarity between
data points) can be calculated analytically or approximated. In
the case of DTMRI, for example, the distance on the manifold
of PSD matrices is well defined and can be approximated
numerically [39], [40], [41], [42]. In dPET, the dissimilarity
may be formulated to reflect difference in functional behavior,
through difference between kinetic parameters or system re-
sponse or using other TAC dissimilarity metrics [21]. (b2) The
underlying manifold and geodesic distance (or dissimilarity
between points) are unknown, but many data samples are avail-
able. In this case, methods for learning the manifold structure
are needed in order to allow for estimating geodesic distances
and dissimilarity metrics. Given the locally Euclidean space
of a manifold, the geodesic distances between two distant
data points on the manifold can be approximated by the
smallest possible aggregate of Euclidean hops between pairs
of neighboring data points that connect the two distant points
from start to finish (i.e. geodesic distance approximated by the
shortest path made up of small Euclidean hops). This common
approach requires the construction of a graph whose vertices
represent the high-dimensional sample points and whose edge
weights are equal to the Euclidean distance between the two
high-dimensional points connected by the edge [28].

Given the set of N high-dimensional, n-D, pixels, such as
some or all of the pixels of a DTMRI or a dPET image, the
treatment of any of the above cases (a, b1, or b2) results in
an N ×N symmetric distance matrix D whose (i, j)th entry
Dij : Rn ×Rn → R+ stores the geodesic distance between
the two values f(xi) at pixel i and f(xj) at pixel j, i.e. Dij =
dgeodesic(f(xi), f(xj))

D. Distance Preserving Dimensionality Reduction into Color
Spaces

Given our goal of rendering pixels with similar high-
dimensional data using similar colors (e.g. pixels capturing
similar diffusion or metabolic processes, in DTMRI or dPET,
respectively), and given the typical 3-channel representation
of color spaces, the dimensionality of the data at each pixel
must be reduced to 3D in such a way that the distances Dij

between all pairs of pixels is maximally preserved. Clearly,
linear (such as PCA [43] or ICA [44]), or even nonlinear,
dimensionality reduction techniques that are not designed
from the outset to preserve distance will be a poor choice
towards achieving the aforementioned objective. The problem
of performing a distance-preserving, nonlinear transformation
of high-dimensional data points to lower dimension can be
formulated as an optimization problem seeking transformation
parameters and/or the new lower-dimensional representation
of the data points such that the discrepancy between pairs of
distances will be minimized. MDS is a well known approach
that does exactly this [22]. We provide MDS with the N high-
dimensional pixels, the geodesic distance matrix Dij or an
approximation thereof, and the target dimensionality: 3, to
obtain N new pixels each of dimensionality 3. Each pixel
can now be rendered in color, where the dissimilarity between
colors (be it measured in RGB, HSV, or other color spaces) is
equal (as much as possible) to the dissimilarity between the
original pixel data. Our goal, however, is not only to render
pixels with color, but rather to have equal differences between
pixels be perceived as equally different. For this we resort
to performing dimensionality reduction into a 3D perceptual
color space.

E. Distance Preserving Dimensionality Reduction into a
Perceptually-Uniform Color Space

To map high-dimensional pixels (such DTMRI or dPET
pixels) into 3D color pixels, to preserve the pair-wise dissim-
ilarity between pixels during such mapping, and to achieve a
perceptual stimulus in observers (such as clinicians and radi-
ologists), we must choose a perceptually uniform color space
as the 3D range (target) of such a mapping. In a perceptually
uniform color space, changes in color by a certain amount in
that color space produce a change in the visual stimulus that is
almost proportional to that amount. Hence, pairs of pixels with
dissimilarities Dij will be mapped to colors with perceptual
difference proportional to Dij . Therefore, pixels with similar
high-dimensional data will be perceived (in color) similarly:
our original objective. We choose the CIELAB perceptually
uniform color space as the range of the mapping [9], [10].
CIELAB is based on a one-third power law that closely
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resembles a logarithmic encoding of human-visual-system tri-
stimulus values. Consequently, CIELAB forms an expression
in terms of color vision of the well-known Weber’s law from
psychophysics, which attempts to describe the relationship
between the physical magnitudes of stimuli and the perceived
intensity of the stimuli, in order to formulate an approximately
perceptually uniform metric.

HSV is one of many color spaces that assign an axis to
brightness and two others axes effectively to hue and satura-
tion, which may be intuitively seen as a geometrically-derived
color space transformation that tilts the RGB cube such that
the “black-white” intensity axis aligns with the “Value” axis in
HSV. According to the encyclopedia article Color Perception
[45], HSV does correspond to the perceptual correlates of
hue, chroma, and lightness (human vision descriptors) but are
not meant to be understood as even approximately forming a
uniform measure. Instead, CIELAB color space is meant to
be a much better approximation of an isotropic perceptually
uniform metric color space.

Given a DTMRI image, for example, with N pixels, with
dissimilarity between pairs of pixels measured using an ap-
propriate DT dissimilarity metric dgeodesic(Ti, Tj) = Dij ,
where f(xi) = Ti is a diffusion tensor, the mapping from
6D (dimensionality of the extrinsic or ambient space of DTs)
to CIELAB’s 3D color space will result in corresponding
pairs of pixels assigned colors separated by kDij , where k
is a proportionality constant, i.e. perceived as similarly or as
differently according to the value of Dij . Clearly, the range of
dissimilarity values between pairs of high-dimensional pixels
in an image may be arbitrarily different than the range of
possible Euclidean distances in the CIELAB color gamut.
Therefore, a color normalization step must be performed.
Typically, CIELAB color difference thresholds are dependent
on the desired application; thresholds for perceptibility judg-
ments (just-noticeable difference in a laboratory setting) are
significantly lower than thresholds for acceptability judgments
(usability of colors for printing or viewing, compared to
target colors). To correlate with human visual performance,
differences in color are defined in terms of Euclidean distance
in CIELAB (or L∗a∗b∗) units. A CIELAB residual, or ∆E∗

ab,
corresponds approximately to human judgements of perceptual
difference, where CIELAB errors of 2 or 3 represent just
noticeable color differences detectable by humans [46]. A
difference of a few ∆E∗

ab is sometimes the tolerance used
for accepting or rejecting color tolerances in e.g. the dying of
colored fabrics. Here we are interested in using this perception
based measure to delineate difference in medical image data.
Since there is a standard transform from CIELAB to display-
device RGB color, we can indeed display colors according to
their discriminability and perceptual distance.

F. Perceptual Color Normalization

Given the difference between the range of Dij values and
the range of possible distances in the CIELAB gamut, a
color normalization step is performed to isotropically scale
the 3D points to new 3D points that, ideally, neither lie
outside the CIELAB gamut nor leave parts of the gamut

unutilized. The isotropy in the scaling is essential so as
to preserve the relative distances between pairs of points.
Isotropic scaling is not the only 3D-3D transformation that
can be performed on 3D points that will preserve the relative
pair-wise distances: translations and rotations in 3D can also
be performed. Therefore, we formulate the normalization of
the 3D points in the perceptual color space more generally
as follows: we seek the 3D isotropic scaling, translation, and
rotation transformation that best utilizes the CIELAB gamut.
There can be several ways to formulate an objective function
to capture this general criterion. The approach we adopt is
to specify three key data points (e.g. three DTs) and specify
which colors these three samples should be approximately
transformed to. This, actually, is related to the Procrustes
alignment or the absolute orientation problem for two sets
of points, which can be solved analytically in closed form to
find the rotation, translation, and isotropic scaling that, when
applied to transform one set of points, will yield the smallest
sum of squared distances between corresponding points [47].
Finally, we note that not all CIELAB colors map uniquely to
a reproducible RGB color. Since gamut mapping is therefore
involved [48], we can expect some clipping. We first address
any outliers in CIELAB space by applying a robust outlier
detection algorithm, in particular the least median of squares
(LMS) method in [49], which operates entirely automatically.
We then go on to clamp out-of-gamut colors to the closest
RGB color, as done in [26].

G. Algorithm

To summarize the proposed method, Algorithm 1 highlights
the steps of our algorithm for rendering images with high-
dimensional pixels such that pixels with similar physical
characteristics (e.g. Brownian motion or diffusion or tracer
dynamics) are perceived in color similarly.

H. Polynomial Regression for Non-Linear Dimensionality Re-
duction

MDS (and ISOMAP which utilizes MDS) operates on a
dissimilarity matrix D of dimensions equal to N ×N (where
N is the number of pixels in the image). Given that N can
be large when operating on 2D or 3D images (e.g. a small
1003-voxel volume or a large 10002-pixel 2D image will
result in a 1, 000, 000 × 1, 000, 000 dissimilarity matrix), it
is important to address the issues of MDS complexity. The
time complexity of MDS can be reduced to O(N logN) [50],
but at the price of increasing the space complexity to O(N2)
for the matrix of pre-computed distance values. Since this
matrix is generally non-sparse, main memory size becomes
a limiting issue. Therefore, we adopt a practical approach to
performing MDS dimensionality reduction as follows. Firstly,
we run MDS on a random subsample of the high dimensional
(e.g. diffusion tensor) data. Then, we calculate the mapping
according to Algorithm 1 for this subsample only. Afterwards,
we use the resulting mapping from high-dimensional n-D to
3D and formulate a polynomial regression fit over this smaller
data set. Finally, we apply the resulting regression from n-
D to 3D to all n-D pixel data points. In practice, we use
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Algorithm 1 Perceptual Visualization of High-Dimensional,
Manifold-Valued Medical Image Data
Input:

1) {f(xi)}Ni=1, where
f(xi) : xi ∈ Rd → [f1(xi), f2(xi), · · · , fn(xi)] ∈ Rn, i.e. N
n-D pixels forming a d-dimensional image; d=2 for 2D images with
xi = (xi, yi) or d=3 for 3D images with xi = (xi, yi, zi).

2) {(f(xi), C(xi))}Pi=1, P ≥ 3, i.e. at least 3 colors
C(xi) = [c1(xi), c2(xi), c3(xi)] (e.g. in RGB space
C(xi) = [R(xi), G(xi), B(xi)]) associated with at least three
different pixel values f(xi), i = 1, · · · , P, P ≥ 3. Without loss of
generality, we assume these are the first P elements in {f(xi)}Ni=1.

3) Optionally, dgeodesic(f(xi), f(xj)) : Rn ×Rn → R+; a helper
function that calculates the geodesic distance (or a meaningful
dissimilarity metric) between a pair of data points. For two DT pixels
we use the Log-Euclidean distance metric [39],
Dij = dTLE

(T1, T2) =
p
trace((logm(T1))− (logm(T2)))2,

where T1 and T2 are two DTs and logm is the matrix logarithm,
which is defined via the decomposition T = UΛUt as
logm(T ) = Udiag(log(diag(Λ)))Ut.

Output:
1) {g(xi)}Ni=1, where

g(xi) : xi ∈ Rd → [g1(xi), g2(xi), g3(xi)] ∈ R3, i.e. N 3-D
pixels forming a d-dimensional color (e.g. RGB) image, such that
perceptual color distance dperceptual(g(xi), g(xj)) ∝
dgeodesic(f(xi), f(xj))∀i, j ∈ {1, 2, · · · , N}, i.e. differences
between pixel values are mapped to proportional differences in
perception or visual stimulus.

Procedure:
• Step 1. If Dij = dgeodesic(f(xi), f(xj)) is known (e.g. dTLE

for
DTs) go to Step 4.

• Step 2. Calculate dEuclidean(f(xi), f(xj)) = |f(xi)− f(xj)|2
∀i, j ∈ 1, 2, · · · , N s.t. f(xi) is connected to f(xj) in n-D. One of
two connectedness criteria is applied: (i) |f(xi)− f(xj)|2 ≤ ε
(ε-ISOMAP); (ii) f(xi) is connected to its K-closest (using |.|2)
neighbors (K-ISOMAP) [28]. This generates a graph G(V, E) whose
N vertices (V) correspond to f(xi) and edges (E) connect vertices
that satisfy the connectedness criteria and are weighted by
dEuclidean.

• Step 3. Approximate Dij = dgeodesic(f(xi), f(xj)) as the shortest
path on the weighted graph (e.g. using Dijkstra’s algorithm).

• Step 4. Calculate {g(xi)}Ni=1, where
g(xi) : f(xi) ∈ Rn → [g1(xi), g2(xi), g3(xi)] ∈ R3, such that
d(g(xi), g(xj)) = dgeodesic(f(xi), f(xj))∀i, j ∈ {1, 2, · · · , N},
or make the difference as small as possible, i.e. perform Dij
distance-preserving dimensionality reduction to 3D using MDS [22].
The {f(xi)}Pi=1 samples (second input above) are now mapped to
{g(xi)}Pi=1 in 3D. All resulting g(xi) points are in perceptually
uniform CIELAB 3D space, however they have arbitrary scale,
rotation, and translation.

• Step 5. Convert C(xi) (second input above) to CIELAB coordinates
(e.g. RGB to CIELAB). Note that, generally, {g(xi)}Pi=1 will not
coincide with {C(xi)}Pi=1 as desired.

• Step 6. Transform {g(xi)}Ni=1 using rotation R = USV t, isotropic
scaling s = 1

σ2
g

Tr(DS), and translation t = µC − sRµG, which are

calculated such that {g(xi)}Pi=1 are as close as close as possible to
the corresponding {C(xi)}Pi=1, where [47]: µC = 1

P

PP
i=1 C(x)i,

µg = 1
P

PP
i=1 g(xi), σ2

g = 1
P

PP
i=1 ‖g(xi)− µg‖

2,
Σ = 1

P

P
i = 1P (C(xi)− µC) (g(xi)− µg)t, Σ = UDV t,

S =


I , |Σ| ≥ 0

diag(1, 1, ..., 1,−1) , |Σ| < 0
.

• Step 7. Perform LMS robust outlier detection in CIELAB space [49],
clamping outliers to the inlier boundary. Then, convert the resulting
{g(xi)}Ni=1 from CIELAB to the desired color space (e.g. RGB) for
display and clamp out-of-gamut colors to the closest allowable color
[26].

a degree-2 polynomial (with no constant term). In Section
IV, we demonstrate the effectiveness of this approach, by
reducing the computation time while still achieving an accurate
mapping on all pixels.

IV. RESULTS

In this section, we evaluate the accuracy of the polynomial
regression approximation. Then, we test our method on hand-
crafted synthetic images with three-dimensional pixel data
sampled from a variety of underlying distributions. Next,
we provide results on simulated DT data. We then test our
method on case studies of normal subjects demonstrating our
method’s ability to highlight several anatomical and functional
features in real medical images: the connectivity patterns
through the corpus callosum relative to the nearby fornix
assessed from brain DTMRI; the normal twisting pattern in
the laminar sheet in cardiac DTMRI; and the heterogeneous
putamen tracer distribution in a brain dynamic PET. We then
provide a hybrid real-simulated example, in which we implant
a simulated tumour into a real DTMRI image. Finally, through
three other case studies, we examine our methods ability
to highlight anatomical and functional pathologies: multiple
sclerosis lesions in brain DTMRI; brain tumour (glioblastoma)
in DTMRI; and renal functional abnormality in dynamic
SPECT.

A. Evaluation of Polynomial Regression and Distance Preser-
vation

A DTMRI display method should ideally preserve the
original DT distances between pixels. The scatter plots of
Figure 1 capture the disparity between original DT distances
and the distances obtained following different dimensionality
reduction operations. Pair-wise distances between all possible
pairs of 1173 tensors from a brain region of a mid-sagittal
DTMRI slice are used in this experiment. The original DT
distances are measured in the Log-Euclidean space. Reducing
the dimensionality of the DTs via MDS to 3D introduces
some disparity compared to the original DT distances, which is
captured by the spread of the scatter plot data points away from
the diagonal 1:1 line (Fig. 1(a)). The approximation via poly-
nomial regression also introduces some disparity compared
to the original DT distances (Fig. 1(b)). Figure 1(c) isolates
the disparity due to the polynomial regression approximation
alone. To further quantify the latter disparity, Fig. 1(d) shows
the error as a function of the percentage of data points (out of
the whole image data) used to learn the regression parameters
(Section III-H). We see from Fig. 1(d) that utilizing about 25%
of the data provides a reasonable balance between accuracy
and data size, in that the largest gain in accuracy is achieved
going from sampling at 15% of the data to just above 20%.
Therefore, the regression approach does adequately well in
representing a full MDS analysis. One commonly visualized
scalar image derived from DTMRI is the fractional anisotropy
(FA) image. At each pixel in the DT image, the FA is
proportional to the amount of anisotropy in DT at that pixel.
FA is a function of the DT eigenvalues λi, i = 1, 2, 3, and is

defined as FA =
√

3
2

√∑3
i=1 (λi − λ) 2/

√∑3
i=1 λ

2
i , where
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λ̄ = 1
3

∑3
i=1 λi is the mean diffusivity (MD). MD is another

scalar field derived from DTMRI data that is typically used to
explore DT data in clinical practice and constitutes an average
measure of diffusion at a particular DT pixel. Figures 1(e) and
(f) show the result of using the common MD and FA measures
to reduce the dimensionality of each DT to 1D. The large
spread of the scatter plot data points away from the 1:1 line is
a clear demonstration of the amount of information loss, i.e.
DT distances not preserved, when using MD or FA.
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Fig. 1. Evaluation of polynomial regression. (a) Scatter plot of distances
(between pairs of DT-pixels) after performing MDS (i.e. without the polyno-
mial regression) vs. the original tensor distances. The 1:1 line is shown along
the diagonal. (b) Scatter plot of the distances approximated via polynomial
regression vs. the original tensor distances. (c) Scatter plot of distances when
polynomial regression is used vs. when only MDS is used. (d) Error introduced
by the polynomial regression (i.e. approximating MDS on the whole data set
by polynomial regression on a subset of the data). The plot shows L2 error
versus percentage of pixels used in the approximation). A sample size of about
25% of the total number of pixels is employed in the polynomial regression
approximation. (f,e) Scatter plot of MD and FA differences vs. the original DT
distances. The large spread of the data points in (e) and (f) clearly demonstrate
inferior distance preservation. Note that the MD and FA distances have been
scaled to match the range of the original DT distances.

B. Synthetic Data with Pixel Dimensionality 3

We created 30 × 60-pixel 2D images, each divided into
two regions: right and left halves, R and L, each of size
30×30. Each pixel is a three-dimensional vector. Four types of
images were synthesized to produce different distributions of
the pixels (Fig. 2): (i) R and L 3D pixel vectors are sampled

from two different 3D Gaussian distributions with different
means and anisotropic covariance matrices, with the axes
of maximal variation extending parallel to the first extrinsic
dimension, i.e. the red channel (Fig. 2(a)); (ii) Same as (i) but
with an oblique axis of maximal variation (Fig. 2(b)); (iii) the
R and L pixels are sampled from two Gaussian distributions
that together form a nonlinear space of samples in 3D (Fig.
2(c)); and (iv) the 3D vectors of the image pixels form a “Swiss
roll” in 3D, where one half of the Swiss roll corresponds to
L pixels and the other half to R pixels (Fig. 2(d)). We show
in Fig. 3 the results of different approaches to coloring this
synthetic data. There are two issues to be examined here:
(i) how the images change as the method of mapping from
data space to color space is changed; (ii) how the images
change as the color space being mapped to is changed. As
expected, when the data is linearly separable, PCA methods
are able to display the main variability of the data. We find that
CIELAB colors do not provide any convincing advantage in
these cases. However, for the example of the more complicated
Swiss roll data, only manifold learning provides an acceptable
degree of visual separation between the two classes. Moreover,
in our method, difference is represented as color keyed to
perceptual difference, so the bottom-right image, displaying
the highest visual separation of complexly interwoven data,
provides convincing evidence justifying the suitability of the
proposed approach.
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(d) Swiss roll

Fig. 2. Different types of synthetic data with pixel dimensionality 3 used to
populate the right (R) and left (L) halves of images. Blue x’s correspond
to R pixels and green squares to L pixels. (a) Data sampled from two
Gaussians whose principal directions of variability align with the first extrinsic
dimension. (b) Data sampled from two Gaussians whose principal direction
of variability does not align with any of the extrinsic dimensions. (c) Data
sampled from two Gaussians forming a nonlinear subspace. (d) Data sampled
from a nonlinear Swiss roll.

C. Simulated DTMRI

Neuroradiologists typically resort to viewing scalar images
derived from the DTMRI field such as FA and MD. Clearly,
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(a)

(b)

(c)

(d)

Fig. 3. Coloring the 3D pixels using different approaches. The four rows
from top to bottom correspond to the four cases in Fig. 2. The four columns
correspond to coloring using (from left to right): (i) Extrinsic dimensions
as RGB; (ii) Principal components as RGB; (iii) Principal components as
CIELAB; and (iv) Intrinsic dimensions as CIELAB (i.e. our approach).

scalar images are not able to capture the variability of tensors
in 6D as seen in the two examples (I and II) in Fig. 4. In
Example I, our method clearly shows perceptual changes in
color along different directions in the image, and indeed the
simulated tensors do change in those directions. However, the
same DT field visualized via the commonly used FA and MD
maps is insensitive to the change in DTs that occurs as we
move vertically in the image (constant value in any column in
the FA or MD maps). In Example II of Fig. 4, our coloring
method clearly shows a gradual transition in the DTs as we
move vertically in the image, with the top half different from
the lower half. Although the FA is sensitive to DT changes as
we move vertically in the image, the top half of the FA map
appears symmetric to the bottom half. The MD, on the other
hand, is completely oblivious to the change in tensors. Note
that the colors used in our method to represent the DTs in
Example I and Example II of Fig. 4 follow the legend in Fig.
5. In fact, all of our DTMRI results, from here forward, use
the same color map to maintain a consistent representation of
the diffusion tensors.

D. Case Studies of Normal Anatomy and Function

1) Distinguishing the corpus callosum tissue from the fornix
in brain DTMRI: We start by showing in Fig. 6 qualitative
DTMRI results of axial brain images of 4 normal subjects.
Compared to MD and FA maps, note how our display method
reveals differences in the underlying DTs via vivid color
variations.

We turn our attention now to specific features in the brain;
the CC and the fornix (Fig. 7). In Fig. 8, we show a close
up of the visualization of of the CC region in a mid-sagittal
2D slice. Note that using our coloring method (Fig. 8(c)), the
CC body appears yellowish, whereas the fornix appears with
reddish hues. The perceptual difference in color capture the
difference in the underlying diffusion tensors, which in turn
reflect the difference in the underlying connectivity patterns
between these two regions: the corticocortical connections
through the CC in contrast to the fibres through the fornix
[51], where the latter connect the hippocamus to the septum,
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(a) MD (b) FA (c) Our method

Fig. 4. Display of two example synthetic DTMRI. (Example I): The FA and
MD images capture changes along the horizontal direction but fail to capture
changes along the vertical direction. Our approach captures changes in DT
along both directions. (Example II): Although the FA image captures changes
in DT along the vertical direction, it fails to distinguish between the top and
bottom halves of the image. MD fails to capture any change. Our method
is able to distinguish between the top and bottom halves. The coloring is
according to the legend in Fig. 5.
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Fig. 5. Legend for the DTMRI visualization experiments. (a) The 3 key
colors (c.f. Section III-F and Algorithm 1) with the following associated DTs:
Pink: DT1 = diag(ε, ε, 1); Green: DT2 = diag(1, ε, ε); Blue: DT3 =
diag(ε, 1, ε). (b) Three unit-square color palettes that act as a legend for
visualizing DTMRI using our method. The palettes (from left to right) depict
DT2 vs. DT1, DT3 vs. DT1, and DT3 vs. DT2. The color at coordinate
(0 ≤ α ≤ 1, 0 ≤ β ≤ 1) of the unit-square, corresponds to a DT interpolated
in the Log-Euclidean space, e.g. expm(αlogm(DT1) + βlogm(DT2)) for
the first palette.

anterior nucleus of the thalamus and the mamillary bodies
[52]. In contrast, the colors of the two regions are almost
indistinguishable in the MD and FA maps (Fig. 8(a)-(b)), as
well as in the structural MRI (Fig. 7).

2) Highlighting the twisting pattern in the laminar sheet in
cardiac DTMRI: In the following case study, we explore the
myocardial fibre microstructure. We compare MD, FA and our
method for displaying 2D short axis cardiac DTMRI slices2.
Using our approach, the visualization of Fig. 9(c) shows the
pixel colors changing as the myocardium is traversed from
the epicardial surface radially inward towards the enocardial
surface of the heart. The coloring is based on the underlying
diffusion tensor image of the myocardium. Different tensors
are colored with different colors. The key criterion of our
method is that the displayed colors are chosen such that per-
ceptual differences between the colors match the differences in
the underlying diffusion tensors (as measured using the Log-
Euclidean metric). The gradual epi- to endo-cardial change in

2The data was preprocessed using DTMRI bilateral filtering [53].
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(a) MD (b) FA (c) Our method

Fig. 6. Qualitative visualization of axial brain DTMRI slices of four subjects.
Note how, compared to MD and FA, our method reveals differences in the
underlying DTs via vivid color variations. The coloring is according to the
legend in Fig. 5.

 

Fig. 7. Corpus callosum (CC). (left) Mid-sagittal plane in brain MR with a
white box drawn around the CC. (right) The different anatomical parts of the
CC referred to elsewhere in the paper (anterior to posterior): genu, rostrum,
body, fornix, and splenium.

(a) MD (b) FA (c) Our method

Fig. 8. Close up on the CC. Note how the fornix appears with the same
color as the CC body when either MD or FA are used (as well as in the
structural MR image in Fig. 7). Using our method, the fornix appears with
a different (reddish) color, whereas the CC body appears yellowish reflecting
the differences in the underlying DTs and connectivity patterns. The coloring
is according to the legend in Fig. 5.

color indicates that diffusion tensors, and hence the diffusion
properties, of the myocardium are changing in a unique way.
Examining the results more carefully, we see that the colors
are changing from greenish to reddish. Consulting the legend
and key colors in Fig. 5, we note that the color green encodes
tensors that have a primary diffusion direction along the 3D
vector (1, 0, 0), whereas the reddish color reflects diffusion
close to the (0, 0, 1) axis (pink in the legend). Therefore, the
primary diffusion direction and, accordingly, the underlying
fibre direction are gradually rotating as the myocardium is
traversed. In fact, Tseng et al. [54] have observed a similar
rotation in bovine myocardium using conventional histology
with optical imaging (following fixing, sectioning and inking).
This transmural rotation that our method highlights using the
perceptual color mapping also agrees with other works that
demonstrated the laminar sheet twisting in the human heart,
including [55], [56].

(a) MD (b) FA (c) Our method

Fig. 9. Visualization of short axis cardiac DTMRI slices. MD, FD, and our
display method are compared in (a-c). The coloring is according to the legend
in Fig. 5.

3) Demonstrating heterogeneous putamen tracer distribu-
tion in a brain dynamic PET: The photon activity in dPET is
typically sampled non-uniformly with time. In the first frames,
the sampling interval is shorter to account for more rapidly
changing tracer dynamics. This results in a lower photon
count and therefore a lower signal to noise ratio (SNR). In
later frames, the tracer dynamics stabilize and longer sampling
intervals are used so that more photon counts are collected to
yield higher SNR [57]. Therefore, clinicians often examine the
last PET frame of a dynamic study. This can be misleading
because the activity in the last frame can be the same for
different tissues with very different dynamic behavior (i.e. they
just happen to have similar activity in the last frame). The
same is argued for the integral under the time activity curve;
clinicians sometimes look at a static scalar field with these
integral values reflected through the brightness of each pixel.
However, vastly different curves can have similar integrals,
and hence displaying these scalar fields can also be misleading
(Fig. 10(a)-(c)).

To better illustrate the point above, in Fig. 10(d), we
examine an axial brain dPET slice with a time activity
curve of dimensionality 27 at each pixel. We quantify the
number of pairs of neighboring pixels that are erroneously
visualized with a similar color when the scalar TAC integral
is used for visualization (i.e. the change in the TAC integral
is less than a threshold Tscalar), whereas visualizing them
using our method shows perceptual difference between pixels
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(larger than Tperceptual) as a result of the difference in their
underlying 27-D TACs.
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Fig. 10. Misleading brain dPET visualization. (a) Region of interest (ROI)
of a dPET image with the sum of time activity visualized at each pixel. (b)
The same ROI visualized using our method. (c) The distribution of TACs in
this ROI (each TAC contains n=27 time samples). (d) The number (along
the vertical axis) of neighboring pixel pairs (p, q) of which sub-figure (a)
generates misleading visualization. This number is equal to the number of
pixels pairs that satisfy the following criteria: the difference in the summation
of activity (values in (a)) is smaller than threshold Tscalar and at the same
time the CIELAB distance between p and q is larger than Tperceptual.

To further illustrate how our method can improve over the
standard visualization techniques for dPET, we provide results
on two additional dPET data sets in Examples I and II of
Fig. 11. The dPET in Example I is a Raclopride dPET, with
spatial dimensions 128×128×63, voxel size 2.11×2.11×2.43
mm3, a 26 time-step TAC sampled at each voxel using the
following non-uniform sampling: 6×30 s (i.e. 6 samples at
30 seconds sampling interval), 7×60 s, 5×120 s and 8×300
s. Example II has similar spatial dimensions and voxel size
but uses FDopa dPET with 27 time-step TACs sampled at
6×30 s, 7×60 s, 5×120 s , 4×300 s, and 5×600 s. The
similarity between two TACs, f(xi, t) and f(xj , t) at po-
sitions xi and xj , is measured using the weighted L2 dis-

tance d(f(xi, t), (xj , t))2 =
√∑T

t=1(f(, xi, t)− f(xj , t))2zt

where zt is a weight that accounts for the non-uniform time
sampling encountered in dPET [58]: shorter sampling intervals
with lower SNR are weighted less.

We compare the results of five visualization methods: the
last time frame of the TAC; the summation of the activity
over all dPET frames; a mapping of principal component (PC)
weights to the RGB color space; a mapping of PC weights to
perceptual CIELAB; and finally our method. Neither visual-
izing the last frame nor the sum-over-frames conveys the full
variability of the data. Using PCA allows us to map the 27-
D data to a 3D color spaces (RGB or CIELAB), but as the
data is non-linear in origin, PCA is not ideally suited for this
task. In our method, on the other hand, visual difference in
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Fig. 11. Visualizing dPET brain images. Two data sets are used: Example I
(a-f) and Example II (g-l). (a,g) An axial slice with the explored ROI outlined
in red. The different methods of visualization used are: (b,h) the time activity
in the last frame; (c,i) the summation of activity over all the TAC; (d,j) the
weights of the first 3 PC modes used as the R, G, and B color channels;
(e,k) the PC weights as CIELAB channels; and (f,l) our method. (m) and (n)
show the key TACs and corresponding colors used as a legend for visualizing
(f) and (l), respectively (as explained in Section III-F and the 2nd input of
Algorithm 1).

colors are optimally chosen to correspond to the underlying
differences in TACs. We note in Fig. 11(f) and (l) how our
approach not only highlights the putamen in the brain but also
shows different tracer uptake properties within the putamen
itself (dark to bright red in (f) and pink to white in (l)).

It is important to emphasize that since the image data
visualized contains, at each pixel, a 27-dimensional vector
sampling the TAC, the “ground truth” changes from pixel to
pixel can only be asserted by examining the changes in these
27-dimensional vectors. However, there is a tradeoff between
providing a display that is perfectly faithful to the underlying
changes in 27-dimensional space, and providing a display that
is simple and intuitive to examine. Our method displays color
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images that are as faithful to the high-dimensional changes
as much as possible given the 3 color channel limit, i.e.
our method can, at best, capture as much changes as the
3-color limit allows, not more. Nevertheless, our method is
the one most faithful to the underlying ground truth changes
when compared to other commonly used display methods
(displaying the last frame, the integration of activity), or
even linear or nonlinear dimensionality reduction based color
display methods (e.g. PCA or MDS) that do not utilize a
perceptual color space.

E. Real DTMRI Image with Simulated Pathology

Several clinical works have demonstrated that different
pathologies, such as tumor progression and growth, multiple
sclerosis lesions, and high grade gliomas are manifested as
changes in diffusion tensor properties [59], [60], [61], [62],
[63]. We performed the next experiment to mimic the existence
of a region of abnormality in a brain DTMRI. The DTs in
a particular region of interest (ROI) in the CC between the
rostrum and genu (Fig. 7) were manipulated to simulate a
pathological condition (Fig. 12). This implanted simulated
pathology is designed to be ‘transparent’ to classical display
techniques and, at the same time, be clearly picked up by our
coloring approach. The idea from this experiment is to show
a concrete (albeit hand-crafted) example, with valid diffusion
tensors, in which striking differences in diffusion tensors could
be completely unseen using traditional display methods. More
specifically, the tensors in that ROI are rotated and then the
eigenvalues of the DT are modified such that both MD and FA
remain the same. Fig. 12(c) shows the CC rendered with our
method (before and after simulating the pathology) compared
to displays using FA and MD maps (Fig. 12(a)-(b)). The
simulated pathology is clearly shown in the rendering with our
method whereas, as expected, the FA and MD maps remain
completely unchanged.
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(a) MD (b) FA (c) Our method

Fig. 12. Simulating pathology within a real brain DTMRI image. Before
(top) and after (bottom) pathology simulation. Left to right: MD, FA, and
our method. The pathology is clearly visible (in red) using our method. This
hand-crafted example of a simulated pathology, with valid diffusion tensors,
show how striking differences in diffusion tensors could be completely unseen
using traditional (MD and FA) display methods.

F. Case Studies of Pathology

1) Distinct appearance of multiple sclerosis lesions in brain
DTMRI: In this case study, we evaluate our method on a
DTMRI data of a multiple sclerosis patient. The original 3D
data is of dimensions 60×112×112, with 2.2 mm isotropic

resolution. A single acquisition with 32 gradient directions and
a B-value 750 s/mm2 was used. Fig. 13, shows an axial slice
in the DTMRI volume displayed using MD (Fig. 13(a)); FA
(Fig. 13(b)); and using our method (Fig. 13(c)). Note how the
lesion appears in blueish color in the close up shown in Fig.
13(d). We also note that our method preserved 6 times more
variations of the original DTMRI data compared to either MD
or FA.

(a) MD (b) FA

(c) Our method (d) Close up on lesion

Fig. 13. Brain DTMRI with multiple sclerosis lesions. Three display methods
are used: MD map in (a); FA map in (b); and using our proposed method in
(c). A close up on the ROI surrounding the lesion is shown in (d). The key
colors and the legend palettes of Fig. 5 are used for this figure as well. Note
the appearance of the lesion as a dark blue spot in (d).

2) Highlighting areas of edema and axonal disorganization
surrounding brain tumours: We now examine the appearance
of a frontal glioblastoma (a highly malignant brain tumor) in
DTMRI. The original 3D data is of dimensions 256×256×20,
with 0.86×0.86×5.0 mm3 voxel size, B-value 1000 s/mm2 and
6 gradient directions in a single acquisition [64]. In Fig. 14, we
display an axial slice in the DTMRI volume using an MD map
(Fig. 14(a)); an FA map (Fig. 14(b)); and using our method
(Fig. 14(c)). Close ups on the regions of the glioblastoma are
shown in Fig. 14(d-f). Note how using our method a blueish
hue appears around the area of the tumour (Fig. 14(f)) which
may reflect the axonal disorganization and edema surrounding
the tumour that affects the underlying fibre connections and
the measured DTs [65], [66]. We also note that our method
preserved 6 times more variations of the original DTMRI data
compared to MD, and 7.5 times more than FA.

3) Demonstrating areas of renal functional abnormality in
dynamic SPECT: We explore in this case study a kidney
dSPECT data set used to assess renal function. Every 2 mm
isotropic pixel stores a 48-sample TAC collected during the
acquisition of a dynamic 64×64×64 volume. Fig. 15 depicts
coronal slices through the field of view showing both the left
and the right kidneys using different display methods: integral
of TAC (Fig. 15(a)); the last (48th) frame of the dynamic
data (Fig. 15(b)); and the result of applying our visualization
method (Fig. 15(c)). Our display method highlights an abnor-
mality in the lower third of the left kidney (rendered in a
yellowish color). This abnormality was clinically verified in
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(a) FA (b) MD (c) Our method

(d) FA close up (e) MD close up (f) Close up on (c)

Fig. 14. Brain DTMRI of a frontal glioblastoma. Three display methods are
used: (a) MD; (b) FA; and (c) our proposed method. (d-f) Close ups on the
ROI surrounding the glioblastoma. The key colors and the legend palettes of
Fig. 5 are used for this figure as well. Note the textured blue region around the
tumour in (f), which may be attributed to the edema and axonal disorganization
which affect the fibre patterns.

[67].

(a) TAC integral (b) Last frame

(c) Our method
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(d) Legend

Fig. 15. Left and right kidneys shown in a coronal slice from a dSPECT
study of renal function. Three display methods are compared: (a) The integral
of the dSPECT TAC at every pixel; (b) the activity of the last frame in the
TAC; and (c) our method. Note how the pathological lower third of the left
kidney (in the right side of the image in (c)) stands out in bright yellow,
relative to the other regions of the kidneys. (d) The three key colors (brown,
orange, yellow) and corresponding TACs (Section III-F and Algorithm 1) used
to produce (c).

V. CONCLUSIONS

There is an increasing urgency for developing methods to in-
terpret high-dimensional, manifold-valued medical image (e.g.
DTMRI, dPET, or dSPECT). Popular methods for visualizing
these modalities rely on reducing the dimensionality without
minimizing the loss of the underlying information and/or
without taking into account perceptual factors. We propose a
display method whose key criterion is to color pixels such that
perceptual differences between the colors remain as faithful
as possible to the dissimilarities between the underlying high-
dimensional pixels. Our method relies on three key ideas: (i)
estimating geodesic distances on the manifolds of pixel data
(using analytical derivations or manifold learning methods);
(ii) reducing the dimensionality of the data to a 3-channel

color image via a distance-preserving transformation (using
MDS or ISOMAP); and (iii) mapping the high-dimensional
dissimilarities into perceptual color differences while maxi-
mizing the utilization of the color gamut (by operating in the
CIELAB color space). We presented results on several syn-
thetic, hand-crafted, and real (normal and pathological) case
studies (cardiac, neurological, and renal in DTMRI, dPET and
dSPECT), which demonstrated how standard display methods
fall short of reflecting the true underlying variability in the
data, while our coloring method highlights anatomical and
functional features of interest while being faithful (as much
as possible given the 3-color channel limit) to the underlying
data.

We anticipate improved display results from our method if,
in addition to 3D color, opacity is also used in the visualization
as a 4th degree of freedom. Further, more powerful visualiza-
tion may be obtained if the colors extracted at each datum
using our method are used to color different types of glyphs.
We also foresee no evident obstacles in using our method
to color other (possibly non-medical) high-dimensional data
fields or scattered data, e.g. geospatial data.

Visualization of multi-modal data at the same time (with a
single color image) is also an interesting application to explore
in future work. There are, however, two primary prerequisites
for this exploration: the need for proper spatial alignment
(registration) and the need for a proper distance dissimilarity
metric that combines both modalities. Registration of multi-
modal data is an actively pursued research area and we
can benefit from published results and available software to
perform the alignment. However, the latter problem requires
further exploration (e.g. is a weighted sum of multiple dissim-
ilarity metrics, one for each modality, justifiable?)

At the moment our approach is not used to directly sup-
port any specific clinical task. Nevertheless, our technique’s
ability to discern information that is otherwise lost using
the traditional display approaches will be used for in-depth
studies related to specific clinical application, e.g. the display
of multiple sclerosis lesions from DTMRI, appearance of
white matter injury in DTMRI of pre-term infants, and dPET
imaging for the study of Parkinson’s patients. An important
next step is therefore to collaborate closely with doctors
or radiologists to assess the objective clinical value of our
approach.

To perform gamut mapping [48], our algorithm included the
last step of LMS outlier detection [49] followed by clipping
out-of-gamut colors to the nearest reproducible color [26].
A potential alternative approach is to modify the criteria
we optimize such that it not only encodes high-dimensional
dissimilarity as perceptual differences, but also encourages the
resulting colors to be reproducible. A related potential exten-
sion could involve the adoption of automatic color scheme
selection algorithms, for example using the ColorBrewer [68],
[69].

Finally, we point out that we have made the implementation
of our algorithm available to the scientific community3. so that
other researchers can use our method to possibly gain further

3The software is available for download from http://perceptvis.cs.sfu.ca
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insight into their own data sets.
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