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An Adaptive Beamformer Based on Adaptive Covariance Estimator

Lay Teen Ong*

Abstract—Based on the Minimum Variance Distortionless Response-Sample Matrix Inversion (MVDR-
SMI) method, we propose a novel Adaptive Covariance Estimator (MVDR-ACE) beamformer for
adaptation to multiple interference environments. The MVDR-ACE beamformer iteratively determines
a minimum number of data samples required while maintaining its average signal-to-interference-noise
to be within 3 dB from the performance of a theoretical optimum MVDR beamformer and meeting an
instantaneous interference cancellation requirement. Finally, based on numerical simulations, we analyze
and validate the performance of the MVDR-ACE beamformer. We also compare its performance to the
conventional MVDR-SMI beamformer that uses a fixed data sample in its covariance estimator.

1. INTRODUCTION

Adaptive beamforming techniques have been widely used in adaptive array systems for radar, audio,
sonar, satellite and wireless communications applications. The Minimum Variance Distortionless
Response (MVDR) beamformimg is a classical technique used to achieve maximum signal-to-
interference-noise (SINR) in an adaptive array system [1, 2]. However, traditional MVDR beamforming
technique is known to experience performance degradation and increased computation complexity
when used in practical environments. For instance, any mismatch in sensor array responses, mutual
coupling of the array or imperfect array calibration would result in the beamformer to wrongly cancel
the desire signal due to look directions error. Many approaches have been proposed to improve the
robustness of the beamformer [3–8]. For example, the diagonal loading technique [3, 4] has been a
widespread approach to provide robustness but the choice of an optimum diagonal loading factor is
not clear in practice and is still being researched on [5]. Alternatively, variants of linearly constrained
minimum variance type beamformers researched on for beamforming robustness include work in [6, 7],
where addition linear constraints are imposed to broaden the main beam of the beampattern. In [8],
robust beamforming based on the multi-parametric quadratic programming for nulling level control
was proposed to control the interference angle spread areas within a prescribed threshold. On the
other hand, in applications where planar array of higher number of antenna elements are used, the use
of adaptive Genetic Algorithms for adaptively control the antenna elements had shown advantages in
terms of performance and computational complexity [9, 10].

To obtain the optimum weights of the array, an ideal MVDR beamformer requires an exact
covariance matrix of the data signal arriving at the array. In this case, apriori knowledge of the
signal environment of the MVDR beamformer is necessary. Subsequently, a best set of antenna weights
is computed based on the covariance matrix of the signal. In practice, it is not feasible to calculate
the exact covariance matrix so an estimate of the covariance matrix is used. In addition, as the signal
environment changes, the weight vectors must be updated or adapted to reflect the varying conditions.
This adaptive computation of covariance estimates results in a significant increase in the computational
load of the array processor. Therefore, the number of data samples used for the covariance matrix
estimate is usually small to ensure that the computational load is plausible. However, this results in some
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degradation in performance and the severity of degradation is dependent on whether the desired signal
is present or absent in the sampled data. When the desired signal is present, inaccurate estimations
from the limited data samples result in cancelling of the desired signal, resulting in sub-optimal SINR
and a signal with underestimated power [11]. In [12, 13], analytical and Monte-Carlo simulation results
showed that a higher number of data samples is required to approach SINR convergence when the desired
signal is present in the covariance matrix. On the other hand, when the desired signal is absent or when
interference signals dominate, interference suppression is one figure of merit to focus. [11, 14] have
shown that relatively fewer samples are needed for effective interference suppression, but the adaptive
algorithm generates a distorted array pattern with high sidelobe levels at angles where the interferences
are not present. This distorted pattern affects systems which are vulnerable to clutter signals in the
sidelobes and mainlobe.

In this work, we focus on the effect of data sample size on the interference cancellation capability
and the SINR of the MVDR beamformers. In particular, our interest is to perform beamforming and
at the pre-correlation stage of a spread spectrum system over multiple numbers of interferences. We
also consider an N -element circular array antenna before the beamformer. One specific application
of this beamformer design is as an interference cancellation appliqué in Global Navigation Satellite
System (GNSS) receivers. As the desired signal received is very weak when it arrives at the front-end
of the spread spectrum receiver, the system is very susceptible to interferences. Therefore, we study the
performance of the MVDR beamformers in an interference-dominance environment, and specifically,
when multiple uncorrelated interferences are present. In the second part of this work, we propose a
simple but novel algorithm that uses an Adaptive Covariance Estimator (ACE) to iteratively achieve a
sufficiently small data samples for adequate interference cancellation. In precise, the proposed MVDR-
ACE beamformer iteratively determines a minimum number of data samples to meet its instantaneous
interference cancellation requirement while maintaining its average SINR to be within a 3 dB ratio of
a theoretical MVDR beamformer. In comparison, several earlier works have researched on deriving, on
average, a fixed number of samples to achieve an average output SINR using Sample Matrix Inversion
(SMI) estimator [13, 15–17]. In [18], an iterative algorithm for MVDR filter through auxiliary vector
had been designed that generates a sequence of filter estimation over a finite sample size. However, to
the best of the author’s knowledge, no work has been published on algorithm to adjust the sample size
in accordance to variation in the interference environment.

The SMI approach has several advantages. It is well known for its speed advantage and is also noted
to be most value in complicated interference environments where the number of interference sources is
large. However, it is only appropriate for stationary environment and not for interference parameters
variation [19]. These imply a particular sample size determined for one channel condition may not be
appropriate for another channel condition. In the work, we employ a SMI based MVDR beamformer
for operation in complex interference environments. To address the variation of the interference or
channel conditions, we propose to adapt the SMI data samples in accordance to channel condition
but remains sufficient to maintain the required SINR performance of the beamformer. Finally, we use
Monte-Carlo simulations to validate the performance of our proposed algorithm and make comparisons
to the conventional MVDR-SMI that uses fixed data sample.

The remainder of this paper is organized as follows. In Section 2 we describe the system model of
an adaptive array system and the conventional MVDR beamformer. We propose an adaptive algorithm
using an Adaptive Covariance Estimator in Section 3. In Section 4, we evaluate the performance
of the conventional MVDR beamformer and validate the performance of our proposed MVDR-ACE
beamformer using numerical simulations. Finally, conclusions are drawn in Section 5.

2. THEORETICAL MODELS

2.1. Signal Model

Figure 1 shows the generic block diagram of an adaptive N -element array. We consider a uniform N -
element circular array with a radius r from the center of the circle shown in Figure 2. The N element
array receives one desired signal and M − 1 number of interference signals. The array observations
vector x(t) at time t can be written as

x (t) = A (θ, φ) s (t) + n (t) , (1)
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where s(t) = [s0(t), s1(t), . . . , sM−1(t)]T is an M × 1 signal vector whose row components are the
uncorrelated desired and interference signal sources and T denotes matrix transpose.

A(θ, φ) = [a(θ0, φ0), a(θ1, φ1), . . . ,a(θM−1, φM−1)] is an N ×M matrix whose columns. a(θi, φi) =
[1, ejβr sin(θi) cos(φi−φ1), ejβr sin(θi) cos(φi−φ2), . . . , ejβr sin(θi) cos(φi−φN−1)]T are steering vectors of the antenna
array, where i = 0, . . . , M − 1, θi and φi are the respective azimuth and elevation angle of the signal
si(t). β = 2π/λ defines the wave number where λ is the wavelength of the signal. n(t) is an N × 1
noise vector whose row components are independent additive white Gaussian noise with zero mean and
variance σ2

n. The output of the beamformer is

y (t) = w (t)H x (t) , (2)

where w(t) = [w1(t), w2(t), . . . , wN (t)]T is a 1×N weight vector whose components correspond to the
weights of the beamformer, and H denotes Hermitian transpose. The exact covariance matrix of the
total received signal is R = E(x(t)xH(t)), where E(·) denotes the expectation operator. When the
desired signal and the interference signals are uncorrelated with each other, x(t) = xD(t) +xI(t) +n(t)
where xD(t) = a(θ0, φ0)s0(t) and xI(t) =

∑
i=1:M−1

a(θi, φi)si(t) are the desired and interference signals

respectively. Note that R = RD +RI +Rn where RD = E(xD(t)xH
D(t)) is the desired signal covariance

matrix, RI = E(xI(t)xH
I (t)) and Rn = σ2

nI are the total interference and white noise covariance matrix
respectively. σ2

n and I denote the noise power and identity matrix. Here, we assume that the received
signal is significantly below the noise floor of the receiver so the RD term can be ignored and the
covariance matrix of the system is reduced to R = RI + Rn.

2.2. Theoretical MVDR Beamformer

MVDR beamforming is a classical method that minimizes the array output power subject to a constraint
of unity gain in the look direction of the array [1, 2]. Mathematically, this is expressed as

min
w

wHRw s.t. wHa (θ0, φ0) = 1, (3)

where a(θ0, φ0) is the steering vector of the desired signal. The solution to the optimization problem
can be shown to be

w =
R−1a (θ0, φ0)

a (θ0, φ0)
H R−1a (θ0, φ0)

. (4)

In general, the figure of merit of the beamformer can be obtained from its SINR and cancellation
capability. The SINR parameter at the output of the array can be computed as

SINR = wHRDw
/
wHRw. (5)
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Alternatively, the improvement factor (IF) of the beamformer can be represented via the SINR
parameter, and is expressed as, IF = SINR

SINRIN
, which defines the ratio of the SINR at the output of

the array (SINR) to the SINR measured at the input of an element of the array (SINRIN).
The cancellation capability of the beamformer can be determined through either the cancellation

ratio (CR), null-depth or array pattern of the beamformer. Commonly, CR is expressed as [20, 21],

CR =
Pnon adpt

Padpt
(6)

which defines the ratio of the output power of the non-adaptive (or quiescent state) array (Pnon adpt)
to the output power of the adapted array (Padpt). Alternatively, the interference cancellation capability
can be derived from the array pattern, and is measured by considering a unit amplitude test signal
propagating into the antenna array from angle (θt, φt) and measuring the array output signal power [22].
From the adapted pattern, the null-depth of the interferences can be determined from the depth of the
null placed at the interference location with respect to the peak of the pattern [21].

2.3. Sample Matrix Inversion for MVDR Beamformer

Sample Matrix Inversion (SMI) [15, 23] is a fast adaptive beamforming/nulling technique because it
directly calculates the covariance matrix, thereby avoiding the problem of eigenvalue spread, which often
limits the convergence rate for close-loop algorithms (such as the least mean square algorithm [24]). SMI
is based on the maximum likelihood estimate of the data covariance matrix and the numerical inversion
of the matrix to find optimum weight values. An estimate of the covariance matrix, R̂, can be derived
from [15],

R̂ = 1/K
K∑

k=1

x (k)x (k)H , (7)

where K is the number of snapshots observed every time instance t. Therefore, the weight vector at t
becomes

ŵ =
R̂−1a (θ0, φ0)

a (θ0, φ0)
H R̂−1a (θ0, φ0)

. (8)

Reed et al. [15] have shown that in order to achieve an average loss ratio of less than 3 dB in the output
SINR, K ≥ 2N − 3 samples of data are required. The threshold is obtained by comparing expected loss
in power to the optimum case and expressed as,

E
(
ρ

(
R̂

))
= (K + 2−N)/(K + 1), (9)

where ρ(·) is a random variable [15]. As this is a random variable, there is a probability that the loss
ratio will be more than or less than 3 dB from optimum. In practice, an exact number of snapshots
data is required. This can be determined using a computer simulation [15], where a range of snapshots
K ≥ 2N − 3 are used to compute the respective SINR values of the beamformer assuming a signal
environment. In general, as K gets large, R̂ approaches the optimum covariance matrix R. This means
that in a practical system, to derive an exact snapshot size, K has to be pre-determined through a
calibration process, and an apriori interference/channel condition has to be assumed in the calibration
process. Depending on the environments and applications, K would have to be updated as channel
condition varies. Therefore, an adaptive algorithm or a re-calibration process is required. In this work,
we propose an adaptive approach to determine K as the interference environment changes. In our
proposed algorithm, we aim to maintain smaller number of snapshots as channel condition changes but
remains sufficient to maintain the required SINR performance of the beamformer.
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3. ADAPTIVE BEAMFORMER BASED ON ADAPTIVE COVARIANCE
ESTIMATOR AND INTERFERENCE CANCELLATION

We propose an adaptive covariance estimator whose sample size is variable in accordance to certain
conditions. That is,

R̃ (t) = 1/L (t)
L(t)∑

l=1

x (l)xH (l), (10)

where L(t) denotes the sample size that is adaptive in time instance t. This is in contrast to the
conventional MVDR-SMI estimator (7) where the sample size is fixed at K. The corresponding adaptive
weight vector becomes

w̃ (t) =
R̃ (t)−1 a (θ0, φ0)

a (θ0, φ0)
H R̃ (t)−1 a (θ0, φ0)

. (11)

Note that t is included explicitly in the estimates (10) and (11) as they are obtained iteratively in time
instances. For example, in a block fading channel model, t will correspond to the time-state over a
block of sample size L(t). In the proposed algorithm, L(t) is adjusted in accordance to the following
conditions,

L (t + 1) =





L0, t = 0,

L (t) + ∆l, (γ (t) < CRT ) and (L (t) < Lmax) ,

L (t)−∆l, (γ (t) ≥ CRT ) and (L (t) > Lmin) ,

L (t) , otherwise.

(12)

The time instances t and t−1 denote, respectively, the current and previous time-state of the estimation.
∆l is the step-size change in the number of snapshot. The first condition in (12) initializes the iterative
loop at t = 0. For an invertible R̃(·), L0 is set a minimum value of 2N . The second and third
condition vary the adaptive snapshot size L(t+1) in accordance to an instantaneous cancellation ratio,
γ(t), meeting a pre-determined cancellation ratio target (CRT ). γ(t) defines a figure of merit for the
instantaneous interference cancellation capability of the beamformer and is expressed in (13). The
choice of the CRT value will depend on the system requirement on interference cancellation. When
an N -element array is used, the CRT is bounded by a theoretical limit of INR +10 × log 10(N) [20],
where INR denotes the interference to noise ratio at the input of an element of the array. The second
and third conditions also subject L(t + 1) to a maximum and minimum snapshot size constraints, Lmax

and Lmin respectively. We set Lmax to a sufficient large value so that the beamformer is on average
maintaining the 3 dB ranges of its optimum performance (see Section 2.3), and set Lmin to minimum of
2N for an invertible R̃(·). In other conditions, L(t + 1) remains unchanged.

As we consider that the desired signal is significantly below the noise floor level and that interference
signals are dominant, the ratio of the power measured at the output of the non-adapted and adapted
array, as expressed in (6), will form the interference cancellation ratio of the beamformer. Therefore,
we can compute γ(t) as

γ (t) =
Pnon adapt

Padapt
=

w̃H
Q R̃ (t) w̃Q

w̃ (t)H R̃ (t) w̃ (t)
, (13)

where R̃(t) and w̃(t) are iterative values obtained from (10) and (11) respectively. wQ is the weight
vector of the quiescent state of the array and can be computed initially during the calibration process.

In summary, we have proposed an adaptive covariance estimator with two primary characteristics.
First, a snapshot size that comprises of small number of data samples is adjusted iteratively. This
snapshot is sufficient for the beamformer to meet its interference cancellation ratio requirement while
maintaining its average SINR performance to be within a 3 dB performance of an optimum beamformer.
Second, a larger snapshot size will be set if, on average, the beamformer could not achieve its cancellation
ratio requirement. We expect this to happen when the beamformer exhausts it degree-of-freedoms when
dealing with a high number of interference signals.
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4. SIMULATIONS AND RESULTS ANALYSIS

We used Monte-Carlo simulations to verify the performance of the MVDR-SMI beamformers. An 8-
element circular array with radius half wavelength was used. We consider an 8-element array because
it is a realistic size in terms of compactness and interference mitigation performance when used for
GNSS applications [25, 26]. The desired signal was assumed to arrive from the broadside direction
(0◦, 0◦) and the signal power is 20 dB below the noise level. The interference environment considered
consists of one to seven uncorrelated signals with different Angle-of-Arrivals (AOAs), all having the
same interference-to-noise power ratio (INR) of 40 dB. The two interference scenarios considered are
summarized in Table 1 and Table 2. Scenario A emulates a situation where the interference signals arrive
only from the XZ plane of the top hemispherical (Figure 2) while scenario B is for the situation where the
interference signals arrive at arbitrary angles of the top hemispherical plane. We generated a sequence
of the desired and interference signal data, each consisting of M zero-mean complex Gaussian random
variables whose variance is its signal powers. We generated n(t) consisting of N zero-mean, unit variance
and independent complex Gaussian random variables. The simulation was repeated for T = 3000 trials
and each trial (every t instance) consists of K snapshot of signals data. The instantaneous parameters
(e.g., L(t), ICRm(t)) were computed at every t instance while their respective average parameters (e.g.,
SINR, IF) were computed as an ensemble average over the T trials.

Table 1. Interference setting for scenario A.

# of
interference

signals
(Elevation, Azimuth): (θ, φ)

1 (80◦, 0◦)
2 (80◦, 0◦), (60◦, 180◦)
3 (80◦, 0◦), (70◦, 0◦), (60◦, 180◦)

4
(80◦, 0◦), (70◦, 0◦),

(60◦, 180◦), (85◦, 180◦)

5
(80◦, 0◦), (70◦, 0◦), (60◦, 180◦),

(75◦, 180◦), (85◦,180◦)

6
(80◦, 0◦), (70◦, 0◦), (50◦, 180◦),

(60◦, 180◦), (75◦,180◦), (85◦,18 0◦)

7
(80◦, 0◦), (70◦, 0◦), (60◦, 0◦), (50◦, 180◦),

(60◦, 180◦), (75◦, 180◦), (85◦, 180◦)

Table 2. Interference setting for scenario B.

# of
interference

signals
(Elevation, Azimuth): (θ, φ)

1 (80◦, 0◦)
2 (80◦, 0◦), (70◦, 60◦)
3 (80◦, 0◦), (70◦, 60◦), (50◦, 300◦)

4
(80◦, 0◦), (70◦, 60◦),
(50◦, 300◦), (60◦, 0◦)

5
(80◦, 0◦), (70◦, 60◦), (50◦, 300◦),

(60◦, 0◦), (55◦, 60◦)

6
(80◦, 0◦), (70◦, 60◦), (50◦, 300◦),
(60◦, 0◦), (55◦, 60◦),(85◦, 120◦)

7
(80◦, 0◦), (70◦, 60◦), (50◦, 300◦), (60◦, 0◦),

(55◦, 60◦), (85◦, 120◦), (65◦, 210◦)

4.1. MVDR-SMI Beamformer of Finite Sample-size

First, we analyse the results of a conventional MVDR-SMI beamformer employed with a finite snapshot
size. We use K = [10, 20, 30, 40, 50, 100, 150, 200, 400, 3000] for all the interference cases of
scenario A and B. We are interested in determining the snapshot size that results in the beamformer
when, i) approaching its IF (correspondingly the SINR) convergence and ii) achieving within the 3 dB
of this converged value.

Figure 3 and Figure 4 show the average IF values for scenarios A and B, respectively. The results
show that the beamformer converges at K = 3000 for all interference cases. However, it is interesting
to note that at scenario A cases with 6 or 7 interference signal, the IF of the beamformer decreases
slightly (within 1 dB) as K increases. This reflects the random phenomena of the average SINR values
against the snapshots as expressed in (9), and that the IF ratio can be more than or less than 3 dB from
optimum. In scenario A (Figure 3), K = 20 is the minimum snapshot value required by the beamformer
to achieve a result that is within 3 dB of converged performance for all the interference cases. However,
in scenario B (Figure 4), a beamformer with K = 20 snapshots can maintain the IF to within a 3 dB
range for only a maximum of 3 interferences. To stay within the 3 dB range at all the interference cases,
the beamformer requires K = 200 snapshots.
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Figure 3. Scenario A: average improvement
factor versus the number of interferences for
MVDR-SMI at various snapshot sizes, K.

Figure 4. Scenario B: average improvement
factor versus the number of interferences for
MVDR-SMI at various snapshot sizes, K.

Figure 5. Scenario A: average improvement
factor for MVDR-ACE, MVDR-K20, MVDR-
K200 and MVDR-K3000 beamformers.

Figure 6. Scenario B: average improvement
factor for MVDR-ACE, MVDR-K20, MVDR-
K200 and MVDR-K3000 beamformers.

In summary, using the two multiple-interference scenarios, we have verified that a finite minimum
snapshot size, such as K ≈ 2N , can be used if the total number of interferences is less than half of the
degree-of-freedoms of an N -element array. If a severe interference environment is expected, such as when
the number of interference exceeds N/2, a significantly large snapshot size (K > 2N) is recommended.

4.2. The Proposed MVDR-ACE Beamformer

Next, we analyse the performance of the MVDR-SMI beamformer employed with our proposed
adaptive covariance estimator, denoted as MVDR-ACE beamformer. In the simulations, CRT is set
to INR +10 × log 10(N), which is the maximum cancellation ratio expected from an N -element array
antenna [20]. From the results in Section 4.1, Lmax, is set to 3000 to align with the K value required
for convergence and Lmin = 20. ∆l is set to 1 for convenience of illustration. We note the choice of ∆l
determines the update rate of L(t), and the choice will depend on the channel variation rates. As our
interest in this paper is to validate the performance of the algorithm for adaptation to different number
of interference signals, we chose ∆l = 1. We will investigate the update rate aspect for specific channel
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Figure 7. Scenario A: average number
of snapshots for MVDR-ACE, MVDR-K3000,
MVDR-K200 and MVDR-K20 beamformers.

Figure 8. Scenario B: average number
of snapshots for MVDR-ACE, MVDR-K3000,
MVDR-K200 and MVDR-K20 beamformers.

models as our future work.
Figure 5 and Figure 6 show the average IF of the MVDR-ACE beamformer for scenarios A and B,

respectively. The results for the MVDR-SMI beamformer with finite snapshot size, denoted as MVDR-
K20, MVDR-K200 and MVDR-K3000 for K = 20, K = 200 and K = 3000 respectively, are also included
for comparisons. The MVDR-K3000 result is considered as an approximation of the optimum MVDR
beamformer. For different number of interferences, the results confirm that the proposed MVDR-ACE
beamformer is able to maintain within a 3 dB optimum performance of the MVDR-K3000 beamformer.

The variation of the average snapshot size for scenarios A and B are shown in Figure 7 and Figure 8,
respectively. The snapshot values are normalized to K = 3000 for clear comparison. The figures validate
that the MVDR-ACE beamformer adapts its snapshot size in accordance to different interference cases.
When the number of interferences is not more than N/2, the MVDR-ACE beamformer adapts to ∼1%
snapshot size as compared to the MVDR-K3000 beamformer, and the value is somewhere between the
fixed snapshot sizes used in the MVDR-K20 and the MVDR-K200 beamformer. In severe interference
cases where the number of interferences exceeds ∼N/2, the MVDR-ACE beamformer’s snapshot size
increases and approaches to the 3000 snapshots limit.

4.3. Instantaneous Response of MVDR-SMI & MVDR-ACE Beamformers

Section 4.2 compares the performances of MVDR-SMI and MVDR-ACE beamformers in terms of the
average parameters. In this section, we compare the performance of the beamformers in terms of their
instantaneous cancellation performance, ICRm(t), and include the iterative snapshot variable, L(t),to
illustrate the adaptive characteristic of the MVDR-ACE beamformer over multiple interferences.

For conciseness, we will present only selected interference case of scenario B. In scenario B, we
recall that the MVDR-SMI beamformer in fixed snapshot size requires K = 20 snapshots to maintain
its average SINR to be within 3 dB of the optimum performance for a maximum of 3 interferences,
and it needs a higher snapshot size of K = 200 for the more severe interference cases. In the contrast,
the MVDR-ACE beamformer maintains within the 3 dB optimum performance for all the interference
cases. Therefore, we select the first severe case of four interferences and compare the performance of
the beamformers using MVDR-K20, MVDR-K200 and MVDR-ACE methods. The AOAs of the four
interferences are (80◦, 0◦), (70◦, 60◦), (50◦, 300◦), (60◦, 0◦). For clarity in presentation, we split the
results into Figure 9, Figure 10 and Figure 11.

The top two plots of Figure 9 show the instantaneous cancellation ratio of the first interference
signal, denoted as ICR1(t), that arrives at (θ, φ) = (80◦, 0◦). The bottom plot of Figure 9 shows the
snapshot variation of the MVDR-ACE beamformer. The figure shows that the MVDR-ACE beamformer
maintains its ICR1(t) to be no less than the cancellation ratio target (CRT = 49 dB) by adapting its
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Figure 9. Scenario B, four interferences case: instantaneous cancellation ratio on interference (80◦, 0◦)
of MVDR-ACE, MVDR-K20 and MVDR-K200. The snapshot variation of the MVDR-ACE beamformer
is included.

Figure 10. Scenario B, four interferences case: instantaneous cancellation ratio on all the four
interferences of MVDR-ACE and MVDR-K20 beamformer.
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Figure 11. Scenario B, four interferences case: instantaneous cancellation ratio on interference on all
the four interferences of MVDR-ACE and MVDR-K200 beamformer.

snapshot size from Lmin at the initial time instance to values around 200 snapshots at the later time
instance. The MVDR-K200 beamformer with a fixed 200 snapshots size is shown to achieve similar
cancellation performance as the MVDR-ACE beamformer. In comparison, the MVDR-K20 beamformer
of fixed 20 snapshot size achieves the worst interference cancellation.

Figure 10 compares the instantaneous cancellation ratio of all the interferences (ICR1(t)−ICR4(t))
for MVDR-ACE and MVDR-K20. In all cases, both beamformers achieve the same transient response
up to t = ∼10. This is when both beamformers use about the same snapshots size of 20. Beyond
t = ∼10, the MVDR-ACE beamformer always maintains better than the CRT while the MVDR-K20
beamformer obtains lower performance in several instances. The results validate that the MVDR-ACE
beamformer is able to maintain within the CRT for all the interferences.

Figure 11 compares the instantaneous cancellation ratios of all the interferences for MVDR-ACE
and MVDR-K200. For all interference cases, MVDR-ACE matches very well to MVDR-K200 at
t >∼350. This is the time when both beamformers use about the same snapshots size of 200. The
results show that the MVDR-ACE beamformer maintains the minimum number of snapshots required
for the four interference cases.

5. CONCLUSIONS

Based on the MVDR-SMI method, we have proposed an adaptive MVDR-SMI beamformer using an
Adaptive Covariance Estimator (ACE) to adapt to variations in the number of interference signals using
minimum number of data sample size. The proposed MVDR-ACE beamformer iteratively determines a
minimum number of data snapshots while maintaining its average SINR within a 3 dB performance of
an optimum MVDR-SMI beamformer and also meeting a defined interference cancellation requirement.

We used Monte-Carlo simulations to validate the performance of the MVDR-ACE beamformer for
an N -element uniform circular array over two sets of multiple-interference scenarios. The performances
of a conventional MVDR-SMI beamformer using finite snapshot sizes are compared. Our proposed
MVDR-ACE beamformer is able to iteratively determine sufficiently small data snapshots while
maintaining its SINR within a 3 dB range of an optimum performance for all the interference cases.
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In severe environment where the number of interferences approaches is very close to the degree-of-
freedoms of the N -element array, the MVDR-ACE beamformer converges to a higher snapshot size.
This is the same fixed snapshot size as would be used by the conventional MVDR-SMI beamformer to
achieve its optimum performance in the severe interference environment. However, when the number
of interference signals is less than ∼ N/2, the MVDR-ACE bemformer adapts to the changes and uses
about 1% to 10% snapshot size compared to the severe environment.

We will extend the study of the proposed algorithm to other applications and requirements as
future works. These include applying statistical analysis to access the computational complexity of the
algorithm and accessing the interference cancellation performance of other antenna geometry structures.

ACKNOWLEDGMENT

The author would like to thank Dr. Tan Huat Chio and Mr. Joseph Ting of Temasek Laboratories at
the National University of Singapore for the support and review of this paper.

REFERENCES

1. Capon, J., “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of the IEEE,
Vol. 57, No. 8, 1408–1418, 1969.

2. Haykin, S., Adaptive Filter Theory, 4th Edition, Prentice Hall, New Jersey, 2002.
3. Carlson, B. D., “Covariance matrix estimation errors and diagonal loading in adaptive arrays,”

IEEE Trans. Aerospace and Electronic Systems, Vol. 24, No. 4, 397–401, Jul. 1988.
4. Elnashar, A., S. M. Elnoubi, and H. A. El-Mikati, “Further study on robust adaptive beamforming

with optimum diagonal loading,” IEEE Trans. Antennas Propagat., Vol. 54, No. 12, 3647–3658,
Dec. 2006.

5. Besson, O. and F. Vincent, “Performance analysis of beamformers using generalized loading of the
covariance matrix in the presence of random steering vector errors,” IEEE Trans. Signal Process.,
Vol. 53, No. 2, 452–459, Feb. 2005.

6. Stocia, P., Z. Wang, and J. Li, “Robust capon beamforming,” IEEE Signal Processing Letters,
Vol. 10, No. 6, 172–175, May 2003.

7. Vorobyov, S. A., A. B. Gershman, and Z. Q. Luo, “Robust adaptive beamforming using worst-case
performance optimization,” IEEE Signal Processing Letters, Vol. 51, 313–324, Feb. 2003.

8. Liu, F., J. Wang, C. Y. Sun, and R. Du, “Robust MVDR beamformer for nulling level control
via multi-parametric quadratic programming,” Progress In Electromagnetics Research C, Vol. 20,
239–254, 2011.

9. De Natale, F., M. Donelli, S. Caorsi, D. Franceschini, and A. Massa, “A versatile enhanced genetic
algorithm for planar array design,” Journal of Electromagnetic Wave and Applications, Vol. 18,
No. 11, 1533–1548, 2004.

10. Massa, A., F. de Natale, S. Caorsi, M. Donelli, and A. Lommi, “Planar array control with genetic
algorithms and adaptive array theory,” IEEE Trans. Antenna Propagat., Vol. 52, No. 11, 2919–2924,
2004.

11. Widrow, B., K. Duvall, R. Gooch, and W. Newman, “Signal cancellation phenomena in adaptive
antennas: Causes and cures,” IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 469–478, May 1982.

12. Boroson, D. M., “Sample size considerations for adaptive arrays,” IEEE Trans. Aerospace and
Electronic Systems, Vol. 16, No. 4, 446–451, Jul. 1980.

13. Grantz, M. W., R. L. Moses, and S. L. Wilson, “Convergence of the SMI and the diagonally loaded
SMI algorithms with weak interference,” IEEE Trans. Antennas Propagat., Vol. 38, No. 3, 394–399,
Mar. 1990.

14. Brookner, E. and J. M. Howell, “Adaptive-adaptive array processing,” Proceedings of the Phased
Arrays Symposium, 133, 1985.

15. Reed, I. S., J. D. Mallett, and L. E. Brenna, “Rapid convergence rate in adaptive arrays,” IEEE
Trans. Aerospace and Electronic Systems, Vol. 10, No. 6, 853–863, Nov. 1974.



160 Ong

16. Hara, Y., “Weight-convergence analysis of adaptive antenna arrays based on SMI algorithm,” IEEE
Trans. Wireless Communications, Vol. 2, No. 4, 749–757, Jul. 2003.

17. Zhang, L., W. Liu, and L. Yu, “Performance analysis for finite sample MVDR beamformer with
forward backward processing,” IEEE Trans. Signal Process., Vol. 59, No. 5, 2427–2431, May 2011.

18. Pados, D. A. and G. N. Karystinos, “An iterative algorithm for the computation of the MVDR
filter,” IEEE Trans. Signal Process., Vol. 49, No. 2, 290–300, Feb. 2001.

19. Hudson, J. E., Adaptive Array Principles, Peter Peregrinus Ltd.-IET, 1981.
20. Farina, A., Antenna-based Signal Processing Techniques for Radar Systems, Artech House, Inc.,

Norwood, MA, 1992.
21. Baseri, R., K. B. Yu, and M. A. Hussain, “Testing adaptive jamming cancellation algorithms using

a digital beamforming array,” Proc. IEEE Nat. Radar Conf., 314–319, Syracuse, NY, May 1997.
22. Compton, R. T., Adaptive Antennas: Concepts and Performance, Prentice Hall, New Jersey, 1988.
23. Horowitz, L. L., H. Blatt, W. G. Brodsky, and D. K. Senne, “Controlling adaptive arrays with

the sample matrix inversion algorithm,” IEEE Trans. Aerospace and Electronic Systems, Vol. 15,
No. 6, 840–847, Nov. 1979.

24. Widrow B. and J. M. McCool, “A comparison of adaptive algorithms based on the methods of
steepest descent and random search,” IEEE Trans. Antennas Propagat., Vol. 24, No. 5, 615–637,
Sep. 1976.

25. Loecker, C., P. Knott, R. Sekora, and S. Algermissen, “Antenna design for a conformal antenna
array demonstrator,” 2012 6th European Conference on Antennas and Propagation (EUCAP),
151–153, 2012.

26. Kasemodel, J. A., C.-C. Chen, I. J. Gupta, and J. L. Volakis, “Miniature continuous coverage
antenna array for GNSS receivers,” IEEE Antennas And Wireless Propagation Letters, Vol. 7,
592–595, Dec. 2008.


