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Abstract

Hyperspectral imaging systems have gained a great attention from researchers
in the past few years. These systems use sensors, which acquire data mostly
from the visible through the middle infrared wavelength ranges and can si-
multaneously capture hundreds of (narrow) spectral channels from the same
area on the surface of the Earth. Thanks to the detailed spectral information
provided by hyperspectral sensors, the possibility of accurately discriminat-
ing materials of interest with an increased classification accuracy is increased.
Furthermore, with respect to advances in hyperspectral imaging systems, the
spatial resolution of recently operated sensors is getting finer, which enables
analysis of small spatial structures in images.

Without any doubt, classification (or mapping) can be considered as the
backbone of most image interpretation in remote sensing. In general, super-
vised classification approaches classify input data by considering the spectral
information (e.g., intensity value of each pixel for grayscale images or intensity
vector for RGB or high-dimensional images) of the data to produce a classi-
fication map in order to discriminate different classes of interest, by using a
set of representative samples for each class, referred to as training samples.
This way, by using a combination of training followed by classification, maps
are produced from imagery. However, most of the existing classification tech-
niques have been developed for the analysis of multispectral images, and con-
sequently, they are not usually efficient for the classification of hyperspectral
images, which can provide a detailed spectral information. This brings up the
question whether the currently available classification techniques will be able
to handle high-dimensional data.

The main objective of this thesis is the development of efficient spectral-
spatial classification approaches in terms of classification accuracies. Beside the
importance of classification accuracies, another critical issue for the purpose of
hyperspectral image classification is simplicity and speed of the applied ap-
proaches. Therefore, in this thesis, a special emphasis is given on proposing
robust techniques in terms of classification accuracies as well as being fast. In
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order to increase the efficiency of the existing techniques and reduce the labo-
rious task of user interaction, a further development of automatic techniques
plays a key role in remote sensing data analysis. Such techniques can be used
for handling real-time applications such as hazard monitoring and risk man-
agement. Three different strategies are considered in the thesis as described
below.

In the first strategy, a spectral-spatial classification approach, which is auto-
matic and provides good classification accuracies is proposed. This method is
based on integrating a Support Vector Machine (SVM) with Hidden Markov
Random Field (HMRF). SVM and HMRF are two powerful approaches for
high-dimensional data classification and spatial information extraction, respec-
tively.

In the second strategy, we propose to use adaptive neighborhood systems
by considering different approaches based on image segmentation and attribute
profiles. These techniques are considered in order to extract spatial informa-
tion for the purpose of spectral-spatial classification. In order to extract spec-
tral information, SVM and Random Forests are applied due to their good per-
formance in handling high dimensional data with limited number of training
samples.

Finally, due to the fact that hyperspectral remote sensors acquire a massive
amount of data and obtain many measurements, not knowing which data are
relevant for a given problem, the third strategy is using novel feature selec-
tion approaches in order to address the curse of dimensionality and reduce the
redundancy of high dimensional data.

Index Terms — Spectral-spatial classification, Hyperspectral data, hidden
Markov random field segmentation, Particle Swarm Optimization (PSO)-based
image segmentation, Darwinian PSO (DPSO)-based image segmentation, Frac-
tional Order DPSO (FODPSO)-based image segmentation, Morphological Pro-
file, Attribute Profile, Extended Attribute Profile, Extended Multi-Attribute
Profile, Support Vector Machine, Random Forest, Thresholding based image
segmentation, Feature selection, Feature Extraction, Principal Component Anal-
ysis, Kernel Principal Component Analysis, Independent Component Analy-
sis, Discriminant Analysis Feature Extraction, Decision Boundary Feature Ex-
traction, Nonparametric Weighted Feature Extraction, Genetic Algorithm (GA),
Binary Fractional Order Darwinian Particle Swarm Optimization, PSO-based
feature selection, FODPSO-based feature selection, GA-based feature selection,
Hybridization of GA and PSO feature selection.



Útdráttur

Kerfi sem notuð eru til að taka myndir af gríðarlega hárri vídd hafa notið mikil-
lar athygli rannsakenda á undanförnum árum. Þessi kerfi nota skynjara sem
safna gögnum einkum frá sýnilegu yfir miðinnrauða bylgjulengdarsviðið og
geta náð samtímis hundruð (þröngra) rófrása fyrir sama svæðið á yfirborði
jarðar. Vegna þessara nákvæmu rófupplýsinga sem fást með svona skynju-
rum er aukinn möguleiki á því að greina á milli þeirra efna á jörðinni sem eru
til athugunar hverju sinni, með aukinni flokkunarnákvæmni. Til viðbótar má
nefna varðandi þróunina að greinihæfni nýlegra skynjara af gríðarlegri vídd er
að verða meiri, sem býður upp á greiningu á litlum rúmfræðilegum hlutum í
myndum sem þessir skynjarar gefa.

Það er enginn vafi á því að telja má flokkun (eða kortlagningu) sem hrygg-
jarstykkið í túlkun fjarkönnunarmynda. Almennt eru leiðbeindar flokkunaraðfer-
ðir notaðar til að flokka inntaksgögn með því að vinna rófupplýsingar (þ.e.
gildi sérhverrar myndeiningar í gráskalamyndum eða gildi vigurs fyrir RGB
eða myndir af hárri vídd) gagnanna og búa til flokkunarkort til að aðgreina þá
flokka sem eru til skoðunar. Þá eru notuð svokölluð þjálfunargögn eða -sýni
sem eru fulltrúar hvers flokks fyrir sig. Á þennan hátt eru kort búin til úr myn-
dum með því að þjálfa fyrst flokkara og beita flokkaranum svo. Hins vegar
hafa flestar núverandi flokkunaraðferðir verið þróaðar fyrir greiningur á fjöl-
rása myndum (myndir sem hafa færri en 20 víddir) og henta því ekki endilega
fyrir flokkun mynda af gríðarlegri vídd (miklu fleiri víddir en 20) sem bjóða
upp á mjög nákvæmar rófupplýsingar. Þetta gefur tilefni til þess að spurt sé
hvort hægt sé að beita núverandi flokkunaraðferðum á gögn af mikilli vídd.

Meginverkefni þessarar ritgerðar er að þróa nákvæmar flokkunaraðferðir
sem taka tillit til bæði róf- og rúmupplýsinga. Til viðbótar við flokkunarnákvæmni
í flokkun mynda af gríðarlegri vídd þarf einnig að hafa í huga hversu einfaldar
og hraðvirkar aðferðirnar eru. Af þeim sökum er sérstök áhersla lögð í þessari
ritgerð á ónæmar aðferðir sem eru bæði nákvæmar og hraðvirkar. Til að gera
fyrirliggjandi aðferðir öflugri og til að minnka hina oft tímafreku gagnvirkni
við notendur, eru hér þróaðar sjálfvikrar aðferðir. Slíkar aðferðir má nota í
rauntímavinnslu, t.a.m. við eftirlit með umhverfisvá og til að minnka það tjón
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sem af getur hlotist. Þrjár meginaðferðir eru rannsakaðar í ritgerðinni.
Fyrst er þróuð sjálfvirk flokkunaraðferð fyrir flokkun á róf- og rúmgögnum.

Þessi aðferð byggist á því að tengja saman stoðvigravél (e. Support Vector
Machine, SVM) og hulin Markov slemibisvið (Hidden Markov Random Field,
HMRF). SVM og HMRF eru tvær öflugar aðferðir sem nota má til flokkunar
gagna af hárri vídd og til að draga fram rúmfræðilegar upplýsingar.

Önnur aðferð sem skoðuð er í ritgerðinni gengur út á að þróa kerfi sem no-
tar aðhæft nágrenni með því að velta upp mismunandi leiðum sem byggja á
myndbútun (e. image segmentation) og auðkennaprófílum (e. attribute pro-
files). Þessar aðferðir eru notaðar til að draga fram rúmfræðilegar upplýsingar
fyrir róf-rúm flokkun. Til að draga fram rófupplýsingar eru SVM og slembiskó-
gar notaðir vegna þess að báðar þær aðferðir hafa áður sýnt fram á notagildi
sitt þegar gögn af hárri vídd eru flokkuð og lítill fjöldi þjálfunarsýna er fyrirlig-
gjandi.

Að lokum má nefna að skynjarar með gríðarlega háa vídd safna bæði mjög
miklum gögnum og mörgum mælingum, án þess að ljóst sé hvaða gögn skipta
máli fyrir það vandamál sem leysa þarf hverju sinni. Af þessum sökum gengur
þriðja aðferðin sem rædd er í ritgerðinni út á þróun nýrrar einkennavalsaðfer-
ðar (e. feature selection) sem leitast við að koma í veg fyrir víddarbölvun (e.
curse of dimensionality) ásamt því að minnka umfremd í gögnunum.
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CHAPTER 1

Introduction

1.1 Introduction to Hyperspectral Imaging Systems

In the past decade, hyperspectral imaging systems have gained a great atten-
tion from researchers. Hyperspectral imaging systems use sensors that mostly
operate from the visible through the middle infrared wavelength ranges and
can simultaneously capture hundreds of (narrow) spectral channels from the
same area on the surface of the Earth. The hyperspectral sensors collect data
with pixels that are represented by vectors in which each element is a measure-
ment corresponding to a specific wavelength. The size of each vector is equal
to the number of spectral data channels that are collected by the sensor. For
hyperspectral images, several hundreds of spectral data channels of the same
scene are typically available, while for multispectral images up to ten data
channels are usually provided. The detailed spectral information provided by
hyperspectral sensors increases the possibility of accurately discriminating ma-
terials of interest with an increased classification accuracy. In addition, thanks
to advances in hyperspectral technology, the fine spatial resolution of recently
operated sensors enables analysis of small spatial structures in images. Several
operational imaging systems are currently available providing a large amount
of images for various thematic applications, such as:

• Ecological science: Hyperspectral images are used to estimate biomass and
carbon, biodiversity in dense forest zones and can be used to study land
cover changes.

• Geological science: It is possible to recover physico-chemical mineral prop-
erties such as composition and abundance.

• Mineralogy: By using hyperspectral data, not only a wide range of min-
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Figure 1.1: An example of a hyperspectral data cube.

erals can be identified but also their relation to the presence of valuable
minerals can be understood. Currently, researchers are investigating the
effect of oil and gas leakages from pipelines and natural wells on the
spectral signatures of vegetation.

• Hydrological science: Hyperspectral imagery is taken into account to de-
termine changes in wetland characteristics. Moreover, water quality, es-
tuarine environments and coastal zones can be investigated by using hy-
perspectral images as well.

• Precision agriculture: Hyperspectral data are considered as a powerful tool
in order to classify agricultural classes and to extract nitrogen content for
the purpose of precision agriculture.

• Military applications: The rich spectral-spatial information of hyperspec-
tral data can be also used for target detection. The intrinsic properties of
hyperspectral images need to be addressed specifically because conven-
tional algorithms made for multispectral images do not adapt well to the
analysis of hyperspectral images.

Hyperspectral images can be considered as a stack of images with different
wavelength interval (spectral channels) from the same scene on the surface of
the earth. Based on this interpretation, hyperspectral images can be referred
to hyperspectral data cubes. In other words, each spectral channel represents a
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gray scale image and all images make a three dimensional hyperspectral cube.
Figure 1.1 shows an example of hyperspectral data cube. A three dimensional
hyperspectral data cube consists of n1 × n2 × d pixels which n1 × n2 is the num-
ber of pixels in each spectral channel and d represents the number of spectral
channels. In greater detail, a hyperspectral image can be introduced from one
of the following perspectives:

1. Spectral perspective (or spectral dimension): In this case, a hyperspectral data
cube consists of several pixels and each pixel is a vector of d values. Each
pixel corresponds to the reflected radiation of the specific region of the
earth and has multiple values in spectral bands. This detailed spectral
information can be used in order to analyze different materials, precisely.
The right image of Figure 1.1 shows a histogram of the one pixel with
multiple values for each band in spectral dimension. In this domain, the
following points are of importance:

• In general, vectors of different pixels belonging to a similar material
have almost the same values. Different supervised and unsuper-
vised classification techniques are used in order to group the vectors
with almost the same characteristic.

• In general, in each vector, neighborhood pixels in different spectral
channels have a strong correlation. Different supervised and unsu-
pervised feature reduction techniques are used in order to reduce
the dimensionality of the hyperspectral data cube.

2. Spatial perspective (or spatial dimension): In this case, a hyperspectral data
cube consists of d gray scale images with a size of n1 × n2. The values
of all pixels in the one spectral band make a gray scale image with two
dimensions which are spatial and spatial and is shown in Figure 1.1.

• In the spatial dimension, adjacent pixels quite commonly belong to
the same object (in particular for Very High Resolution (VHR) data).
This dimension provides valuable information regarding the size
and shape of different structures and objects on the earth. There
are several ways to extract spatial information (e.g., segmentation)
which will be discussed in detail later in this thesis.

The first attempts to analyze hyperspectral images were based on tech-
niques that were developed for multispectral images which only have a few
spectral channels, usually less than seven. However, most of the commonly
used methods designed for the analysis of gray scale, color or multispectral
images are inappropriate and even useless for hyperspectral images. As a
matter of fact, with a limited number of available samples, the performance
of supervised classification in terms of accuracies will dramatically be down-
graded when the number of data channels increases. In addition, the Hughes
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phenomenon/curse of dimensionality [1] poses a problem for designing robust sta-
tistical estimations. As a result, based on the above characteristics of hyper-
spectral images, in order to make the most of the rich information provided by
the hyperspectral data, the development of new algorithms is required. In the
following section, we discuss the specific characteristics of hyperspectral data
in more detail. This section is very important for the discussion that follows in
the rest of the thesis. In addition, in the introduction part of this thesis, in or-
der to provide some illustrative examples, Pavia University hyperspectral data
set has been repeatedly used. This data set was captured on the city of Pavia,
Italy by the ROSIS-03 (Reflective Optics Spectrographic Imaging System) air-
borne instrument. The flight over the city of Pavia, Italy, was operated by the
Deutschen Zentrum für Luft- und Raumfahrt (DLR, the German Aerospace
Agency) within the context of the HySens project, managed and sponsored
by the European Union. The ROSIS-03 sensor has 115 data channels with a
spectral coverage ranging from 0.43 to 0.86 µm. Twelve channels have been
removed due to noise. The remaining 103 spectral channels are processed. The
data have been corrected atmospherically, but not geometrically. The spatial
resolution is 1.3 m per pixel. The data set covers the Engineering School at the
University of Pavia and consists of different classes including: trees, asphalt,
bitumen, gravel, metal sheet, shadow, bricks, meadow and soil. This data set
comprises 640× 340 pixels. Figure 1.2 presents a false color image of ROSIS-03
Pavia University data and its corresponding reference samples. These sam-
ples are usually obtained by manual labeling of a small number of pixels in
an image or based on some field measurements. Thus, the collection of these
samples is expensive and time demanding. As a result, the number of available
training samples is usually limited, which is a challenging issue in supervised
classification.

1.2 High Dimensional Data

Figure 1.3 shows the basic idea of the pixel-wise pattern recognition approach
which consists of feature extraction/selection and classification. In pattern
recognition, each image pixel is considered as a pattern and its spectrum (a
vector of different values of a pixel in different spectral channels) is considered
as the initial set of features. Since this set of features is often redundant, fea-
ture reduction (feature extraction and/or selection) step is performed aiming
at reducing the dimensionality of the feature set (from d1 dimensions in the
original data to d2 dimensions in a new feature space d2 < d1) and maximizing
separability between classes. The reason why we need to consider this step in
hyperspectral data processing will be discussed in subsection 1.2.1. The next
step (called classification) refers to partitioning the entire spectral domain into
K exhaustive, none overlapping regions, so that every points in this domain is
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Figure 1.2: ROSIS-03 Pavia University hyperspectral data. (a) Three band false
color composite, (b) Reference data and (c) Color code.

uniquely associated with one of the K classes. Once this step is accomplished,
each pixel is classified according to its feature set. The output of this step is a
one dimension image. The reason why we need to consider this step in hyper-
spectral data processing will be discussed in subsection 1.2.5.

In the following section, the geometrical and statistical characteristics of
hyperspectral data along with the shortcomings of conventional techniques for
analyzing of this sort of data have been investigated and possible solutions will
be described for each shortcoming.

1.2.1 Geometrical and Statistical Properties of High Dimen-
sional Data and the Need of Feature Reduction

At this point, we are in the era of massive automatic data collection, systemat-
ically obtaining many measurements, not knowing which data is appropriate
for a problem in hand. The trend of hyperspectral imagery is to record hun-
dreds of spectral channels from the same scene which can characterize chem-
ical composition of different materials and is potentially helpful in analyzing
different objects of interest. In the spectral domain, each spectral channel is
considered as one dimension and each pixel is represented a point in this do-
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Figure 1.3: The basic chain pixel-wise pattern recognition approaches.

main. By increasing the spectral channels in the spectral domain, theoretical
and practical problems may arise and conventional techniques which are ap-
plied on multispectral data are no longer appropriate for the processing of high
dimensional data. The increased dimensionality of such data is able to improve
data information content significantly, but provides a challenge to the conven-
tional techniques for accurate analysis of hyperspectral data. Human experi-
ence in three-dimensional (3-D) space misleads one’s intuition of geometrical
and statistical properties in high-dimensional space [2]. In other words, it is
difficult for humans get used to visualizing spaces with higher-dimension than
three. Sometimes, this misunderstanding of high dimensional spaces and con-
ventional spaces leads to the wrong choices in terms of data processing. As
a result, the main objective of the following sub-sections is to give a brief de-
scription of the properties of high dimensional spaces.

A. 1. As dimensionality increases, the volume of a hypercube concentrates in cor-
ners [3]

The volume of the hypersphere with radius r and dimension d is computed
by 1

Vs(r) = 2rd

d

πd/2

Γ( d
2 )

(1.1)

and the volume of a hypercube in [−r, r]d is calculated by

Vc(r) = (2r)d. (1.2)

The fraction of the volume of a hypersphere inscribed in a hypercube is

1Reminder: Γ is the gamma function, which is an extension of the factorial function, with its
argument shifted down by 1, to real and complex numbers. The main property of the gamma
function is xΓ(x) = Γ(x+1). As an example for the gamma function Γ( 5

2 ) = 3
2 Γ( 3

2 ) = 3
2

1
2 Γ( 1

2 ) =
3
4

√
π
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fd1 = Vs(r)
Vc(r) = πd/2

d2d−1Γ( d
2 )
. (1.3)

The above means that limd−→∞fd1 = 0, i.e., as d increases, the volume of
the hypercube is increasingly concentrated in the corners.

A. 2. As dimensionality increases, the volume of a hypersphere concentrates in an
outside shell [3, 4]

The fraction of the volume in a shell defined by a sphere of radius r − ε
inscribed inside a sphere with radius r is

fd2 = Vs(r)− Vs(r − ε)
Vs(r) = rd − (r − ε)d

rd
= 1− (1− ε

r
)d. (1.4)

The above means that limd−→∞fd2 = 1, here the volume of a hypersphere
is mostly concentrated in an outside shell. In the same way, it can be proven that
the volume of a hyperellipsoid concentrates in an outside shell [5].

Based on the above-mentioned properties, two important specifications for
high-dimensional data can be concluded:

• A high-dimensional space is almost empty, which implies that multivari-
ate data in IR is usually in a lower dimensional structure. As a result,
high-dimensional data can be projected into a lower subspace without
losing considerable information in sense of separability among the dif-
ferent statistical classes.

• Gaussian distributed data have a tendency to concentrate in the tails. In
the same way, uniformly distributed data have a tendency to be concen-
trated in the corners, which makes the density estimation more difficult.
In this space, local neighborhoods are almost surely empty which de-
mands the larger band-width of estimation and produces the effect of
losing detailed density estimation. For more information and the proof
of the claim, please see [5].

A. 3. As dimensionality increases, the diagonals are nearly orthogonal to all coor-
dinate axes [3]

The cosine of the angle between any diagonal vector and a Euclidean coor-
dinate axis is given by:

cos(θd) = ± 1√
d

(1.5)
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Here limd−→∞cos(θd) = 0, which implies that the diagonal is more likely to
become orthogonal to the Euclidean coordinates in high-dimensional space.

A. 4. The required number of labeled samples for supervised classification increases
as the dimensionality increases

As will be discussed later, supervised classification methods classify input
data by using a set of representative samples for each class, referred to as train-
ing samples. Training samples are usually obtained by the manual labeling of a
small number of pixels in an image or based on some field measurements.

Fukunaga [6] showed that there is a relation between the required num-
ber of training samples and the number of dimensions for different types of
classifiers. The required number of training samples is linearly related to the
dimensionality for linear classifiers and to the square of the dimensionality for
quadratic classifiers. For nonparametric classifiers, it has been shown that the
number of required samples exponentially increases as the dimensionality in-
creases.

It is expected that by increasing the dimensionality of data, more informa-
tion is required in order to detect more classes with more accuracy. At the same
time, the aforementioned characteristics show that conventional techniques,
which are based on the computation in full dimensional space, may not pro-
vide accurate classification results when the number of training samples is not
substantial. For instance, while keeping the number of samples constant, af-
ter a few features, the classification accuracy actually decreases as the number
of features increases [2]. For the purpose of classification, these problems are
related to the curse of dimensionality. In [2], Landgrebe shows that too many
spectral bands are undesirable from the standpoint of expected classification
accuracy. When the number of spectral channels (dimensionality) increases,
with a constant number of samples, a higher dimensional set of statistics must
be estimated. In other words, although higher spectral dimensions increase the
separability of the classes, the accuracy of the statistical estimation decreases.

A. 5. For most high-dimensional data sets, low linear projections have the tendency
to be normal (Gaussian), or a combination of normal distributions, as the dimension-
ality Increases

It has been shown in [7, 8], as the dimensionality tends to infinity, lower di-
mensional linear projections will approach a normality model with probability
approaching one. In this case, normality is regarded as a normal distribution
or a combination of normal distributions [5].

Due to the above-mentioned characteristics of high-dimensional spaces, one
can easily figure out that the high-dimensional space is completely different
from 3-D space. These particular behaviors of high-dimensional data have a
significant effect in the context of supervised classification techniques. In or-
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der to estimate class parameters, a large number of training samples is needed
(which is almost impossible) in order to make a precise estimation. This prob-
lem is more severe when dimensionality increases. In a nonparametric ap-
proach, in order to the satisfactory estimation of a class density, the number of
required training samples is even greater.

It is obvious that a high-dimensional space is almost empty and multivari-
ate data can be represented in a lower dimensional space. Consequently, it is
possible to reduce the dimensionality of high-dimensional data without sacri-
ficing significant information and class separability. Based on the difficulties
of density estimation in nonparametric approaches, parametric data-analysis
techniques may lead to a better performance, where only a limited number of
training samples is available to provide the required a priori information. As
a result, it is desirable to project the high-dimensional data into lower dimen-
sional subspace, where the undesirable effects of high-dimensional geometric
characteristics and the so-called curse of dimensionality are decreased.

Each spectral channel characterizes as one dimension in the spectral do-
main. By increasing the features in the spectral domain, theoretical and prac-
tical problems may arise. For instance, while keeping the number of train-
ing samples constant, the classification accuracy actually decreases when the
number of features becomes large [1]. For the purpose of classification, these
problems are related to the curse of dimensionality. In [2], Landgrebe showed
that too many spectral bands can be undesirable from the standpoint of ex-
pected classification accuracy because the accuracy of the statistical estimation
decreases (Hughes phenomenon). The aforementioned issue demonstrates that
there is an optimal number of bands for classification accuracy and more fea-
tures do not necessarily lead to better results. Therefore, use of feature reduc-
tion techniques may lead to a better classification accuracy. Figure 1.4 demon-
strates that with a limited number of training samples, as the number of fea-
tures increases, the class separability increases but the accuracy of the statistical
estimation decreases. Therefore, by keeping the number of samples constant,
after a few features, the classification accuracy actually decreases as the num-
ber of features increases. In general, feature reduction techniques can be divided
into feature selection and feature extraction techniques.

1.2.2 Feature extraction

Feature extraction can be explained as finding a set of vectors that represents an
observation while reducing the dimensionality. Feature extraction is the pro-
cess of producing a small number of features by combining existing bands. In
this line of thought, feature extraction techniques transform the input data lin-
early or nonlinearly to another domain and extract informative features in the
new domain. Feature extraction can be split into two categories; unsupervised
and supervised feature extraction where the former is used for the purpose
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Figure 1.4: Y-axis demonstrates the amount of separability, statistical estima-
tion and classification accuracy in (a), (b) and (c), respectively. X-axis demon-
strates dimensionality. With a limited number of training samples, as the num-
ber of features increases, the class separability increases but the accuracy of the
statistical estimation decreases. In this case, while keeping the number of sam-
ples constant, after a few features, the classification accuracy actually decreases
as the number of features increases.

of data representation and latter is considered for solving the so-called Hughes
phenomenon [1] and reducing the redundancy of data in order to improve clas-
sification accuracies. In pattern recognition, it is desirable to extract features
which are focused on the discrimination between classes of interest. Although
a reduction in dimensionality is of importance, the error rising from the re-
duction in dimension has to be without sacrificing the discriminative power
of classifiers [9]. In continue, a few well-known feature extraction techniques
which have been widely used in conjuction with spectral-spatial classifiers will
be elaborated.

1.2.2.1 Principal Component Analysis (PCA)

PCA is an unsupervised feature extraction technique. The general aim of PCA
is to transform the data into a lower dimensional subspace via a transforma-
tion that is optimal in terms of the sum-of-squared error [10]. PCA reduces
the dimensionality of a data set with interrelated variables, while retaining as
much as possible of the variation in the data set. The dimensionality reduction
is obtained by a linear transformation of the data into a new set of variables, the
PCs. The PCs are orthogonal to each other and are ordered in such a fashion
that the first PC corresponds to the greatest variance, the second component
corresponds to the second greatest variance and so on.

Each pixel in a d-bands image can be written as:
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Xd =


x1
x2
...
xd

 . (1.6)

In order to reduce the dimensionality of the input hyperspectral data, one
can estimate the eigenvalues of the covariance matrix as follows:

Cd,d =

σ1,1 . . . σ1,d

...
. . .

...
σd,1 . . . σd,d

 (1.7)

where σi,j is the variance for band i if i = j and otherwise σi,j = ρijσi σj for
each pair of different bands where ρij is the correlation coefficient between the
bands.

The eigenvalues (λ) of the variance-covariance matrix can be calculated as
the roots of the characteristic equation as follows:

det(C − λI) = 0, (1.8)

where C is the covariance matrix of the data and I is the diagonal identity ma-
trix.

With respect to the eigenvalues, one can calculate the percentage of original
variance explained by each PC. This percentage can be estimated with respect
to the ratio of each eigenvalue in relation to the sum of the all eigenvalues. In
this way, the PCs which contain minimum variance can be eliminated.

The principal component transformation can be expressed as follows:

Y =

y1
...
yd

 =

w1,1 . . . w1,d

...
. . .

...
wd,1 . . . wd,d


x1

...
xd

 , (1.9)

where Y is the vector in the mapped space, W is the transformation matrix and
X is the vector of the original data. The column vectors of W are the eigenvec-
tors of C, the covariance matrix of the input data, ordered in the same way as
the corresponding eigenvalues. These values give information on the relation
between the bands and each PC. From these values one can link a main com-
ponent with a real variable. The eigenvectors can be estimated from the vector
- matrix equation for each eigenvalue λd as follows:

(C − λdI)wd = 0, (1.10)

where C is the covariance matrix, λd is the dth eigenvalue, I is the diagonal
identity matrix, and wd is the dth eigenvector.
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(a) (c)(b)

Figure 1.5: The first three obtained PCs for the Pavia University data: a) The
first PC, b) the second PC and c) the third PC.

1.2.2.2 Discriminant Analysis Feature Extraction (DAFE)

DAFE is a parametric supervised feature extraction approach. This approach
has been extensively used for dimension reduction in classification problems
[11]. In this approach, within-class, between-class and mixture scatter matrices
are usually considered as the criteria of class separability. The within-class
scatter matrix of DAFE (SDA

w ) is estimated by:

SDA
w =

K∑
i=1

PiΣi, (1.11)

where Pi denotes the prior probability of class i where i = {1, ...,K} and Σi is
the class covariance matrix.

The between-class scatter matrix of DAFE (SDA
b ) is given by:

SDA
b =

∑
Pi(mi −m0)(mi −m0)T =

K−1∑
i=1

K∑
j=i+1

PiPj(mi −mj)(mi −mj)T , (1.12)

where mi is the class mean for class i. The parameter m0 is the expected vector
of the mixture distribution, which is is given by:
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m0 =
K∑

i=1
Pimi. (1.13)

In DAFE, The optimal features are extracted by optimizing the Fisher crite-
rion expressed by:

J = tr
[
(SDA

w )−1(SDA
b )

]
. (1.14)

The first row of Figure 1.6 demonstrates the first three components of DAFE
extracted from the Pavia University data set. DAFE is fast and works well
when the distribution of the data is normal (Gaussian), but its concept suffers
from the following shortcomings:

1. When the distribution of data is not normal (non-Gaussian), the perfor-
mance of DAFE will be downgraded and its results will not be promising.

2. When the difference in the mean vectors of the classes is small, the ex-
tracted features by DAFE will not be reliable. In the same manner, if one
class-mean vector is very different from others, its corresponding class
will dramatically influence on the other classes in the sense of computing
the between-class covariance matrix [12]. As a consequence, the feature
extraction process will be ineffective.

3. DAFE is based on computations at full dimensionality, which demands a
huge number of training samples in order to accurately estimate statistics
[13].

4. The main shortcoming associated with the concept of DAFE is that this
approach is not full rank and its rank at maximum is equal to K-1 where
K is the number of classes. In this way, if the rank of the within-class
scatter matrix is u, then DAFE only extracts min(K− 1, u) features. Since
in real situations, the data distribution is complicated, using only K-1
features usually is not sufficient [2].

1.2.2.3 Decision Boundary Feature Extraction (DBFE)

This method was proposed in [14] and relies on extracting informative fea-
tures from decision boundaries. DBFE considers training samples directly in
order to determine the location of the effective decision boundaries, which is
the boundary where different classes overlap [15].

For two Gaussian classes, the work flow of DBFE can be summarized as
follows 2:

1. Letmi and Σi be the class mean and class covariance matrix, respectively.
2The following steps of DBFE procedure was extracted from [14]
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2. Classify the whole bands of the input data by using the training samples.

3. Perform a chi-square threshold test to the correctly classified training
samples of each classes and delete outliers. To do so, for the class i, keep
X only if the following chi-square threshold test is satisfied:

(X −mi)T Σ−1
i (X −mi) < Rt1.

Let (X1, X2, ..., XL1) be only correctly classified training samples of class
w1 which satisfy the chi-square threshold test and (Y1, Y2, ..., YL2) be only
correctly classified training samples of class w2 which satisfy the chi-
square threshold test.

4. Perform a chi-square threshold test of class w1 to the training samples of
class w2, and keep Yj only if the following chi-square threshold test is
satisfied:

(Yj −m1)T Σ−1
i (Yj −m1) < Rt2.

If the number samples of class w2 which satisfy the chi-square threshold
test is less than Lmin, keep the Lmin samples of class w2 which provide
the smallest values.

5. For Xi of class w1, find the nearest samples of class w2 kept in step 3.

6. Find the point Poi where the straight line connecting the pair of samples
found in step 5 meets the decision boundary.

7. Find the normal unit vector Ni to the decision boundary at the point Poi

found in step 6 as follows:

N = ∇h(X) |X=Xi = (Σ−1
1 − Σ−1

2 )Xi + (Σ−1
1 m1 − Σ−1

2 m2).

8. By repeating steps 5-7 for Xi where i = {1, ..., L1}, L1 unit normal vec-
tors, calculate the estimate of the effective decision boundary feature ma-
trix (Σ1

EDBF M ) from class w1 which can be estimated as follows:

Σ1
EDBF M = 1

L1

L1∑
i

NiN
t
i .

Repeat steps 3-8 for class w2.

9. Calculate the final estimation of the effective decision boundary matrix
by using the following equation:

ΣEDBF M = 1
2
(
Σ1

EDBF M + Σ2
EDBF M

)
.
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This work flow can be easily extended for multiclass cases [14]. The sec-
ond row of Figure 1.6 demonstrates the first three components of DBFE
extracted from the Pavia University data set.

Some of main points of using DBFE are listed below:

1. Since DBFE considers directly the classification accuracies rather than
other metrics (e.g., statistical distances), it is based on both the mean sep-
aration and covariance differences. In this manner, this approach works
more efficient than some other feature selectors which are downgraded
when there is no mean separation.

2. DBFE is able to efficiently handle the problems of outliers [14].

3. Because DBFE works directly on training samples to determine the loca-
tion of effective decision boundaries, it demands many training samples.
In other words, in a case when we do not have enough training samples,
the efficiency of DBFE is downgraded which is not desirable.

4. Since DBFE works directly on training samples to determine the location
of effective decision boundaries, this approach can be computationally
intensive if the number of training samples is large.

5. Because DBFE works directly on training samples to determine the lo-
cation of effective decision boundaries, it suffers from the Hughes phe-
nomenon as the number of features increases [15].

1.2.2.4 Nonparametric Weighted Feature Extraction (NWFE)

In order to overcome the limitations of DAFE, NWFE was introduced in [13].
NWFE is a nonparametric supervised feature extraction technique. NWFE is
developed based on DAFE by focusing on samples near the eventual decision
boundary, rather than considering the same weight for all training samples as
with DAFE. The main ideas behind NWFE are to put different weights on dif-
ferent samples in order to compute ’weighted means’ and define new nonpara-
metric within-class and between-class scatter matrices. The main advantages
of using NWFE are as follows:

1. NWFE is generally of full rank. This advantage provides the possibility
of opting the number of desired features on the opposite way of DAFE
which usually can extract K-1 features (K is the number of classes) [2]. In
addition, this advantage helps to reduces the issue of singularity [2].

2. The nonparametric nature of between- and within-class scatter matri-
ces in NWFE makes this approach well-suited even for non-normal dis-
tributed data.
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In NWFE, the nonparametric between-class scatter matrix for K classes is esti-
mated as

SNW
b =

K∑
i=1

Pi

K − 1

K∑
j=1i 6=j

ni∑
l=1

λ
(i,j)
l (X(i)

l −Mj(X(i)
l ))(X(i)

l −Mj(X(i)
l ))T , (1.15)

where Pi denotes the prior probability of class iwhere i = {1, ...,K} andX(i)
l is

the l-th sample from class i. λ(i,j)
l presents scatter matrix weight. ni is training

sample size of class i. Mj(X(i)
l ) is regarded as the weighted mean of X(i)

l in
class j and is given below:

Mj(X(i)
l ) =

ni∑
k=1

W
(i,j)
lk Xj

k, (1.16)

in which W
(i,j)
lk is the weight for estimating weighted means, which is esti-

mated as follows:

W
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dist(X(i)
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(j)
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(i)
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(j)
k )−1
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where dist(a, b) means the distance from a to b. As it can be observed, the
weightW (i,j)

lk is a function ofX(i)
l andX(j)

k . In this case, if the distance between
X

(i)
l and X

(j)
k is small, the weight W (i,j)

lk goes to one, otherwise the weight
W

(i,j)
lk goes to zero.

The scatter matrix weight λ(i,j)
l is a function of X(i)

l and Mj(X(i)
l ). In this

case, for class i, if the distance between X(i)
l and Mj(X(i)

l ) is small, the scatter
matrix weight λ(i,j)

l goes to one otherwise the scatter matrix weight goes to
zero. The scatter matrix weight λ(i,j)

l is defined as:
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The nonparametric within-class scatter matrix SNW
w is estimated by

SNW
w =
L∑

i=1
Pi

ni∑
l=1

λ
(i,j)
l

ni
(X(i)

l −Mi(X(i)
l ))(X(i)

l −Mi(X(i)
l ))T , (1.19)
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The optimal features are extracted by optimizing the (SNW
w )−1(SNW

b ). The
general work flow of NWFE is as follows [14]:

1. Compute the distances between each pair of sample points and create
distance matrix

2. Compute the weightW (i,j)
lk by using the distance matrix produced in step

1.

3. Compute the weighted means Mj(X(i)
l ) by using W (i,j)

lk .

4. Compute the scatter matrix weight λ(i,j)
l .

5. Compute SNW
b and SNW

w .

6. Extract features by considering (SNW
w )−1(SNW

b ).

The third row of Figure 1.6 demonstrates the first three components of NWFE
extracted from the Pavia University data set. For detailed information regard-
ing NWFE see [13].

1.2.3 Feature Selection

Feature selection perhaps is the most straightforward way to reduce the di-
mensionality of a data set by simply selecting a subset of features from the set
of available features based on a criterion. As an example, imagine one wishes
to select the best five bands out of the ten available bands for the classification
of a data set with six classes, by using Bhattacharyya distance [6] feature se-
lection technique. To do so, one needs to compute the Bhattacharyya distance
between each pair of classes for each subset of size five out of the 10-band data
[2]. As output of this procedure, five features which provide the highest Bhat-
tacharyya distance in the feature domain, will be selected. Please note, feature
selection techniques do not make any changes on the specification of the in-
put data and just easily select the most informative bands out of the available
ones, by considering a criterion. On the contrary, feature extraction performs
a linear or nonlinear transformation to the input data, concentrating the infor-
mation into a smaller number of features. Therefore, feature extraction makes
changes on input data via a transformation.

From one point of view, feature selection techniques can be categorized into
two categories: unsupervised and supervised. Supervised feature selection
techniques aim at finding the most informative features with respect to prior
knowledge (e.g., training samples) and lead to better identification and classi-
fication of different classes of interest. On the contrary, unsupervised meth-
ods are used in order to find distinctive bands when a prior knowledge of
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DAFE

DBFE
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Figure 1.6: The first three components of DAFE, DBFE and NWFE, respectively,
for the Pavia University data.
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the classes of interest is not available. Information Entropy [16], First Spec-
tral Derivative [17] and Uniform Spectral Spacing [18] can be considered as
unsupervised feature selection techniques, while supervised feature selection
techniques usually try to find a group of bands achieving the largest class sepa-
rability. Class separability can be calculated with considering a few approaches
such as Divergence [19], Transformed divergence [19], Bhattacharyya distance
[6] and Jeffries-Matusita distance [19]. Although conventional feature selection
techniques have been used extensively in remote sensing for many years, they
suffer from the following shortcomings:

1. Most conventional feature selection techniques are based on the estima-
tion of the second order statistics (e.g., covariance matrix) and because
of that, they demand many training samples in order to estimate the
statistics accurately 3. Therefore, in a situation when the number of train-
ing samples is limited, the singularity of covariance matrices is possible.
In addition, since the existing bands in hyperspectral data usually have
some redundancy, the probability of the singularity of the covariance ma-
trix will even increase.

2. In order to select informative bands by using conventional feature selec-
tors, corrupted bands (e.g., water absorption and low SNR bands), are
usually pre-removed manually, which is a time-consuming task. In addi-
tion, conventional feature selection methods can be computationally de-
manding since they are based on exhaustive search techniques and they
require to calculate all possible alternatives in order to choose the most in-
formative features from the available ones. In this case, in order to select
an m features out of a total of n features, these methods must calculate
n!/(n−m)!m! alternatives, which is a laborious task and demands a sig-
nificant amount of high computational memory. In other words, the fea-
ture selection techniques are only feasible in relatively low dimensional
cases. In this case, as the number of bands increases, the CPU processing
time exponentially increases.

In order to address the above-mentioned shortcomings of conventional fea-
ture selection techniques, the new trend of feature selection methods is usually
based on the use of stochastic and evolutionary optimization techniques (e.g.,
Genetic Algorithms (GA) and Particle Swarm Optimization (PSO)). The main

3Reminder: The mean vector is considered as a first order statistic, since it involves only one
variable. On the contrary, covariance matrix is known as a second-order statistic, since it considers
the relationship between two variables. In the same way, correlation infers how two variables
are related to each other. Higher-order statistics are related to the relationships between more
variables. As the order of the statistic increases, the statistical estimation using a limited number
of training samples becomes more problematic [2]. This is the reason why we would generally
expect that the mean vector can be relatively well estimated with a smaller number of samples
compared to the covariance matrix.
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reasons behind this trend is that 1) in evolutionary feature selection techniques,
there is no need to calculate all possible alternatives in order to find the most
informative bands and 2) in evolutionary based feature selection techniques,
usually a metric is chosen as fitness function which is not based on the cal-
culation of the second order statistics, and, in this case, the singularity of the
covariance matrix is not a problem. Furthermore, despite the conventional fea-
ture selection techniques for which the number of required features need to be
set by the user, most of evolutionary-based feature selectors are able to auto-
matically select the most informative features in terms of classification accuracy
without requiring the number of desired features to be set a priori.

In order to make the most of the evolutionary-based feature selection tech-
niques, the use of an efficient metric (fitness function) is vitally important for
estimating the capability of different potential solutions. In this case, approaches
such as Divergence [19], Transformed divergence [19], Bhattacharyya distance
[6] and Jeffries-Matusita distance [19] can be taken into account as the fitness
function. However, as mentioned before, these metrics require many training
samples in order to estimate statistics accurately. In addition, these metrics are
based on the estimation of the second order statistics and when the number of
training samples is limited and the input features have a high correlation, the
singularity of the covariance matrix downgrades the efficiency of the feature
selection step and these metrics cannot lead to a conclusion.

For the purpose of hyperspectral image analysis, Support Vector Machine
(SVM) and Random Forests (RF) play an important role since they can handle
high dimensional data even if a limited number of training samples is avail-
able. In addition, SVM and RF are non-parametric classifiers and in this case,
they are suitable for non-Gaussian (non-normal) data sets. Therefore, the out-
put of these classifiers can be chosen as a fitness function. However, it should
be noted that either SVM or RF has its own shortcoming when it is consid-
ered as the fitness function. For instance, when RF is considered as the fitness
function, due to its capability to handle different types of noise, corrupted and
noisy bands cannot be eliminated even after high number of iterations. On the
contrary, since SVM is more sensible than RF to noise, SVM is able to detect
and discard corrupted bands after a few iterations, which can be considered
as a privilege for the final classification step. However, SVM needs a time de-
manding step, cross-validation, in order to tune the hyperplane parameters.
In this case, since most of the evolutionary-based feature selection techniques
are based on iterative process and producing many potential solutions, SVM
needs to be applied many times during the process and because of that, the
evolutionary-based feature selection approaches based on the SVM as the fit-
ness function demand a huge amount of CPU processing time, which is not
the case for RF. Another alternative would be to use SVM without the cross-
validation step and arbitrarily initialize the hyperplane parameters. In this
case, the algorithm is not automatic anymore and the obtained results might
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not be reliable. As a result, a careful choice of the fitness function is very much
of importance and we recommend the readers to choose the most appropriate
metric based on their problem and data set.

In the literature, there is a huge number of articles related to the use of evo-
lutionary optimization based feature selection techniques. These methods are
mostly based on the use of GA and PSO. For example, in [20], the authors de-
veloped a SVM classification system which allows the detection of the most
distinctive features and the estimation of the SVM parameters (e.g., regular-
ization and kernel parameters) by using a GA. In [21], PSO was considered in
order to select the most informative features obtained by morphological pro-
files for classification. In [22], a method was developed which allows to simul-
taneously solve problems of clustering, feature detection, and class number
estimation in an unsupervised way by considering a PSO.

Below, one of the best-known evolutionary-based feature selection tech-
niques (GA-based feature selection) is discussed in detail. In Chapter 5, a
detailed description is also provided for the PSO-based feature selection. In
addition, in Chapter 5, based on the shortcomings of GA and PSO, a few ad-
vanced evolutionary-based feature selection approaches will be proposed (i.e.,
the Hybrid GA-PSO (HGAPSO)- and FODPSO-based feature selection meth-
ods) [23, 24].

1.2.4 Genetic Algorithm (GA)-based feature selection

GA is inspired by the genetic process of biological organisms. GA consists of
several potential solutions; called chromosomes or individuals. Each chromo-
some in a binary GA includes several genes with binary values; 0 and 1, which
determine the attributes of each individual. A set of the chromosomes is made
up to form a population.

For the purpose of feature selection based on GA, the length of each chro-
mosome should be equal to the number of input features. In this case, the
value of each gene, 0 or 1, demonstrates the absence or the presence of the
corresponding band, respectively.

The merit of each chromosome is evaluated by using a fitness function. Fit-
ter chromosomes are selected through a selection step as parents for the gen-
eration of new chromosomes (offsprings). In that step, two fit chromosomes
are selected and combined through a crossover step. Then, mutation is per-
formed on the offsprings in order to increase the randomness of individuals
for decreasing the possibility of getting stucked in local optimum [25]. Below,
the main steps of the GA are briefly described.

Figure 1.7 shows the general idea of a simple GA. In each generation, first,
the fitness values of all the chromosomes in the same population are calculated
(e.g., the overall accuracy of SVM on validation samples). Then, the selection
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Figure 1.7: General idea of the conventional GA.

step is applied. The main idea behind the selection step is to give preference
to better individuals (those that have higher fitness value) by allowing them
to pass on their specification (genes) to the next generation and prohibit the
entrance of worst fit individuals into the next generations. As the generations
go on, the chromosomes should get fitter and fitter (i.e., closer and closer to
the desired solution). There is a wide variety of techniques for the selection
step, but Tournament selection [26] and Roulette Wheel selection [27] are the most
common ones.

Crossover is regarded as the process of taking more than one parent chro-
mosome and producing new offsprings from them. In the crossover step, gen-
erally, fitter chromosomes are selected based on their fitness value and recom-



1.2 High Dimensional Data 23

bined with each other in order to produce new chromosomes for the next gen-
eration. In this way, once a pair of chromosomes has been selected as parents,
crossover can take place to produce offsprings. A crossover probability of 1.0
indicates that all the selected chromosomes are used in reproduction i.e., there
are no survivors. However, empirical studies have shown that better results
are achieved by a crossover probability of between 0.65 and 0.85, which implies
that the probability of a selected chromosome surviving to the next generation
unchanged (apart from any changes arising from mutation) 4. There are a wide
variety of methods for performing crossover on the chromosomes, but the most
popular ones are one point, two points and uniform crossover [28]. A simple
scheme of different crossover methods is shown in Figure 1.8.

Mutation is used along with the crossover operation, in order to increase the
randomness of the population and add more diversity on the chromosomes in
order to avoid getting trapped in local optimum. Mutation is performed on the
chromosomes based on mutation probability. Mutation probability (or ratio) is
considered as a measure of likeness in which random genes of the chromosome
will be flipped into something else (in binary GA, the values are switched from
0 to 1 or 1 to 0). For example if a chromosome is encoded as a binary string of
length 100 and if the mutation probability is 0.01, it means that 1 out of the 100
bits (on average) picked at random and switched to another value (0 or 1). A
simple scheme of mutation with the probability of 0.1 is shown in Figure 1.9.

The GA is an iterative process, so it is iterated again and again until the stop
criterion is met. In this manner, there are different ways which can be consid-
ered as a stop criteria. For example, if the difference between the best fitness
value and the average of all fitness values in one iteration is less than a prede-
fined threshold value, the process can be terminated. In addition, the number
of iterations can be predefined by the user as an another way for terminating
the process.

The main shortcoming of the GA is that if a chromosome is not selected, the
information contained by that individual is lost. In addition, GA is slow and it
demands a high CPU processing time. That problem can get even worse when
the problem at hand is complicated. Same as other evolutionary techniques,
there is no absolute assurance that GA will be able to find a global optimum.

A detailed description regarding the PSO-, HGAPSO- and FODPSO- based
feature selection approaches is provided in Chapter 5.

1.2.5 Conventional spectral classifiers and the importance of
considering spatial information

As discussed before, a hyperspectral data cube consists of several pixels and
each pixel is a vector of d values which demonstrates the number of spectral

4http://www.optiwater.com/optiga/ga.html
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Figure 1.8: A simple scheme of different crossover methods. From top to down:
one point, two points and uniform crossover techniques.
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Why Spectral-Spatial Classification?

6/16

Conventional spectral classifiers 

consider the hyperspectral image

as a list of spectral measurements 

with no spatial organization

A joint spectral and spatial 

classifier is required in order to 

reduce the labeling uncertainty

Figure 1.10: An example of classification maps, with (the right image) and
without (the left image) considering spatial information. As can be seen, the
classification map obtained by considering the both spectral and spatial infor-
mation is much smoother than the classification map obtained by considering
only spectral information. Considering the spatial information can reduce the
labeling uncertainty that exists when only spectral information is taken into
account, and helps to overcome the salt and pepper appearance of the classifi-
cation map.

channels. Each pixel corresponds to the reflected radiation of the specific re-
gion of the earth and has multiple values in spectral bands. Vectors of different
pixels belonging to the similar material with high probability may have almost
the same values. Different supervised and unsupervised classification tech-
niques are used in order to group vectors with almost the same spectral char-
acteristic. The procedure of grouping different materials with almost the same
spectral characteristics can be considered as the fundamental meaning of im-
age classification. Remote sensing image classifiers try to discriminate different
classes of ground cover, for example, from categories such as soil, vegetation,
and surface water in a general description of a rural area, to different types of
soil, vegetation, and water depth or clarity for a more detailed description.

Hyperspectral imaging instruments are now able to capture hundreds of
spectral channels from the same area on the surface of the Earth. By providing
very fine spectral resolution with hundreds of (narrow) bands, accurate dis-
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crimination of different materials is possible. As a result, hyperspectral data
are a valuable source of information for the classifiers. The output of the clas-
sification step is a classification map. Figure 1.10 (the right image) shows an ex-
ample of a classification map consisting nine classes, including: trees, asphalt,
bitumen, gravel, metal sheet, shadow, bricks, meadow and soil.

In follows, a brief description of a few well-known classifiers is provided in
order to illustrate the pros and cons of these methods and the reason why spec-
tral and spatial classifiers have been gaining a great attention from different re-
searchers. Broadly speaking, classification techniques can be categorized into
two categories; supervised and unsupervised classifiers which can be briefly
described as follows:

• Supervised classifiers: These types of methods classify input data by con-
sidering its spectral information into a classification map in order to de-
termine classes of interests, by using a set of representative samples for
each class, referred to as training samples. In order to partition the fea-
ture space into decision regions, a set of training samples for each class is
used. Training samples are usually obtained by manually labeling a small
number of pixels in an image or based on some field measurements. In
other words, for a hyperspectral data cube with d-bands, which can be
represented as a set of n pixel vectors X =

{
Xj ∈ IRd, j = 1, 2, ...,n

}
,

supervised classifiers try to classify the data into a set of classes Ω =
{w1, w2, ..., wK}.

• Unsupervised classifiers: Another type of classifiers is based on unsu-
pervised classification or clustering. It is referred to as unsupervised be-
cause it does not use training samples, and classify the input data only
based on an arbitrarily number of initial "cluster centers" which may be
user-specified or may be quite arbitrarily selected. During the process,
each pixel is associated with one of the cluster centers based upon a sim-
ilarity criterion. Here, two best-known clustering techniques are briefly
described.

– K-means: This approach [29] is as one of the best-known clustering
methods which was introduced by MacQueen. This method starts
with a random initial partition of the pixel vectors into candidate
clusters and then reassigns these vectors to clusters by reducing the
squared error in each iteration, until a convergence criterion is met.

– ISODATA: This method was firstly introduced in [30] and it follows
the same trend with K-means clustering algorithm but with the dis-
tinct difference that the former assumes that the number of clusters
is known a priori, but latter allows for different number of clusters.

Supervised classification techniques play a key role in the analysis of hyper-
spectral images and a wide variety of applications can be handled by a good
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classifier, including: land-use and land-cover mapping, crop monitoring, forest
applications, urban development, mapping, tracking and risk management.

In the 1990s, neural network approaches attracted many researchers for
classifying hyperspectral images [31, 32]. The advantage of using neural net-
work models over the statistical parametric methods are that they are distri-
bution free and thus no prior knowledge about the statistical distribution of
classes is needed. A set of weights and non-linearities describe the neural net-
work, and these weights are computed via an iterative training procedure. The
main interest of using such approaches considerably increased in the 1990s be-
cause of recently proposed feasible training techniques for non-linearly sep-
arable data [33]. At this point, the use of neural networks for hyperspectral
image classification is limited, primarily due to their algorithmic and training
complexity [34] as well as the number of tuning parameters which need to be
selected.

RF was first introduced in [35] and it is an ensemble method for classifi-
cation and regression. Ensemble classifiers get their name from the fact that
several classifiers, i.e., an ensemble of classifiers, are trained and their individ-
ual results are then combined through a voting process. In order to classify an
input vector by RF, the input vector is run down each decision tree (a set of bi-
nary decisions) in the forest (the set of all trees). Each tree provides a unit vote
for a particular class and the forest chooses the class that has the most votes.
For example, if 100 trees are grown and 80 of them predict that a particular
pixel is forest and 20 of trees predict it is grass, the final output for that pixel
will be forest. Based on studies in [36], the computational complexity of the RF
algorithm is cT

√
MN log (N) where c is a constant, T denotes the number of

trees in the forest, M is regarded as the number of variables and N is the num-
ber of samples in the data set. It is easy to detect that RF is not computationally
intensive but demands a considerable amount of memory since it needs to store
an N by T matrix while running. RF does not assume any underlying proba-
bility distribution for input data and can provide a good classification result in
terms of accuracies, and can handle many variables and a lot of missing data.
Another advantage of RF classifier is that it is insensitive to noise in the train-
ing labels. In addition, RF provides an unbiased estimate of the test set error as
trees are added to the ensemble and finally it does not overfit.

SVMs are another example of supervised classification approach. The gen-
eral idea behind SVM is to separate training samples belonging to different
classes by tracing maximum margin hyperplanes in the space where the sam-
ples are mapped [37]. SVMs were originally introduced for solving linear clas-
sification problems. However, they can be generalized to non-linear decision
functions by considering the so-called kernel trick [38]. A kernel-based SVM
is being used to project the pixel vectors into a higher dimensional space and
estimate maximum margin hyperplanes in this new space, in order to improve
linear separability of data [38]. The sensitivity to the choice of the kernel and
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regularization parameters can be considered as the most important disadvan-
tages of SVM. The latter is classically overcome by considering cross-validation
techniques using training data [39]. The Gaussian radial basis function (RBF)
is widely used in remote sensing [38].

The both SVM and RF classification methods are comparable in terms of
classification accuracies and have been widely used for the purpose of hyper-
spectral image classification since they can handle high dimensionality of data
with limited number of training samples which is the common issue in remote
sensing. However, while both methods are shown to be effective classifiers for
non-linear classification problems, SVM requires a computationally demand-
ing parameter tuning in order to achieve optimal results, whereas RF does not
require such tuning process and is found to be more robust. In this sense, RF
is much faster than SVM and for volumetric data using RF instead of SVM is
favorable.

Conventional spectral classifiers consider the hyperspectral image as a list
of spectral measurements with no spatial organization [40]. However, in re-
mote sensing images, neighboring pixels are highly related or correlated since
remote sensors acquire significant amount of energy from adjacent pixels and
homogeneous structures in the image scene are generally larger than the size
of a pixel. This is especially evident for the image of high spatial resolution.
As an example, if a given pixel in an image represents the class "sea", its adja-
cent pixels belong to the same class with a high probability. As a result, spatial
and contextual information of adjacent pixels can provide valuable information
from the scene. Considering the spatial information can reduce the labeling un-
certainty that exists when only spectral information is taken into account, and
helps to overcome the salt and pepper appearance of the classification map.
Furthermore, other relevant contextual information can be extracted when the
spatial domain is considered. As an example, for a given pixel, it is possible to
extract the size and the shape of the structure to which it belongs. Therefore,
a joint spectral and spatial classifier is required in order to increase classifica-
tion accuracies and quality of the final classification map. Figure 1.10. (the
right image) shows an example regarding the quality improvement of con-
ventional spectral classification map by considering spatial information into
a classification framework. As a result, spectral-spatial classification methods
(or context classifiers) must be developed, which assign each image pixel to
one class based on: 1) its own spectral values (the spectral information) and
2) information extracted from its neighborhood (the spatial information) [41].
The use of spectral-spatial classification techniques is vitally important for pro-
cessing of high resolution images with large spatial regions in the image scene.
Broadly speaking, a spectral-spatial classification techniques consist of three
main stages:

1. Extracting spectral information.
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2. Extracting spatial information.

3. Combining the spectral information extracted from (1) and spatial infor-
mation extracted from (2).

In the following, we describe the existing methods for the spectral-spatial
classification of hyperspectral data.

In order to characterize the spatial information, two common strategies
are available: Crisp neighborhood system and adaptive neighborhood sys-
tem. While the first one mostly considers spatial and contextual dependencies
in a predefined neighborhood system, the latter is more flexible and it is not
confined to a given neighborhood system. In the following, existing methods
based on each neighborhood system will be briefly discussed.

i. Crisp neighborhood system

One well-known way for extracting spatial information by using a crisp
neighborhood system is the consideration of Markov Random Field (MRF)
modeling. MRF is a family of probabilistic models and can be explained as
a 2-D stochastic process over discrete pixels latices [42] and widely used to
integrate spatial context into image classification problems. In MRFs, it is as-
sumed that for a predefined pixel neighborhood of a given pixel, its closest
neighbors belong with a high probability to the same object. Four- and eight-
neighborhoods are the most frequently used in image analysis. By using this
approach, the pixel in the center can be classified by taking into account the
information from its neighbors according to one of those systems. MRFs are
considered as a powerful tool for incorporating spatial and contextual infor-
mation into the classification framework [43]. There is an extensive literature
on the use of MRFs for increasing the accuracy of classification. In [44], Jack-
son and Landgrebe introduced spectral-spatial iterative statistical classifiers for
hyperspectral data based on a MRF. Pixel-wise Maximum Likelihood classifi-
cation was first performed and the classification map was regularized using
the Maximum a Posteriori (MAP)-MRF framework. The spectral information
was extracted by the Maximum Likelihood classification, while the spatial in-
formation was derived over the pixel neighborhood. In [45], the result of the
Probabilistic SVM was regularized by a MRF. In [46], authors have further ex-
plored the MAP-MRF classification. They considered class-conditional PDFs
estimated by the Mean Field-based SVM regression algorithm. Also, in [43, 47–
50], MRFs were taken into consideration for modeling spatial and contextual
information for improving the accuracy of the classification. Furthermore, a
generalization of MRF, called conditional MRF, was investigated in [51] for the
spectral and spatial classification of remote sensing images. In [52], the concept
of Hidden Markov Model (HMM) was used for incorporating spectral and con-
textual information into a framework for performing unsupervised classifica-
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tion of remote sensing multispectral images. In [53, 54], Ghamisi et. al proposed
to use a generalization of MRF named Hidden MRF (HMRF) for the spectral
and spatial classification of hyperspectral data. In that work, spectral infor-
mation was extracted by using a SVM and spatial information was extracted
by using the HMRF and, finally, the spectral and spatial information were com-
bined by using majority voting within each object 5. In addition for the purpose
of segmentation and anomaly detection, in [55] Gaussian MRF was employed.

Another common way to include spatial information into a classification
technique is to consider texture measures. In [56, 57], authors have used texture
measures derived from the Gray Level Co-occurrence Matrix (GLCM) for in-
cluding the spatial information in order to classify hyperspectral data. In [56],
texture images are produced using four measurements to describe the GLCM:
Angular Second Moment, Contrast, Entropy and Homogeneity. Then, PCA is
applied on the obtained texture images, and the PCs are selected as features
for ML classification. In [57], authors have proposed to perform Non-negative
Matrix Factorization feature extraction first, then extract spatial information
using four measurements for the GLCM (Angular Second Moment, Entropy,
Homogeneity and Dissimilarity), and apply a SVM classification on a stack of
spatial and spectral features. The experimental results reported that, in most
cases, this method did not demonstrate an improvement over the pixel-wise
approaches. This may be explained by the fact that the hyperspectral remote
sensing images only contains limited textural information [41].

However, the main disadvantages of considering a set of crisp neighbors
are as follows:

• The crisp neighborhood system may not contain enough samples, which
downgrades the effectiveness of the classifier (in particular, when the in-
put data set is of high resolution and the neighboring pixels are highly
correlated [58])

• A larger neighborhood system may lead to intractable computational
problems [58]. Unfortunately, the closest fixed neighborhoods do not al-
ways accurately reflect information about spatial structures. For instance,
they provoke assimilation of regions containing only few pixels with their
larger neighboring structures and do not provide accurate spatial infor-
mation at the border of regions.

• In general, the use of a crisp neighborhood system leads to acceptable
results for big regions in the scene. Otherwise, it can disappear small
structures in the scene and merge them with bigger surrounded objects.

5For performing majority voting within each object on the output of the segmentation and clas-
sification steps, first, the number of pixels with different class labels in each object is counted. Then,
the set of pixels in each object is assigned to the most frequent class label.
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In Chapter 2, the proposed HMRF, which is based on the crisp neighbor-
hood system will be detailed in order to extract spatial and contextual infor-
mation for the purpose of spectral-spatial classification.

ii. Adaptive neighborhood system

In order to address the shortcomings of using a set of crisp neighborhoods,
an adaptive neighborhood system can be taken into account. One possible way
for considering an adaptive neighborhood system is to take the advantage of
different types of segmentation methods. Image segmentation is regarded as
the process of partitioning a digital image into multiple regions or objects. In
other words, in image segmentation a label is assigned to each pixel in the
image such that pixels with the same label share certain visual characteristics
[59]. These objects provide more information than individual pixels since the
interpretation of images based on objects is more meaningful than based on
individual pixels. Segmentation techniques extract large neighborhoods for
large homogeneous regions, while not missing small regions consisting of one
or a few pixels [58]. Image segmentation is considered as an important task
in the analysis, interpretation and understanding of images and is also widely
used for image processing purposes such as classification and object recogni-
tion [59, 60]. Image segmentation is a procedure which may lead to modify the
accuracy of classification maps [61]. To make such an approach more effective,
an accurate segmentation of the image is required [59]. There is an intensive
literature on the use of segmentation techniques in order to extract the spatial
information from remote sensing data (e.g., [62–64]).

In order to improve classification results, the integration of classification
and segmentation steps has recently been taken into account [58, 65]. In such
cases, the decision to assign a pixel to a specific class is simultaneously based
on the feature vector of this pixel and some additional information derived
from the segmentation step. A few methods for segmentation of multispectral
and hyperspectral images have been introduced in the literature. Some of these
methods are based on region merging techniques, in which neighboring image
segments are merged with each other based on their homogeneity. For exam-
ple, the multiresolution segmentation method in eCognition software uses this
type of approach [66]. Tilton proposed a hierarchical segmentation algorithm
[67], which alternately performs region growing and spectral clustering.

As mentioned in [63], image segmentation can be classified into four spe-
cific types including histogram thresholding based methods, texture analysis
based methods, clustering based methods and region based split and merging
methods. Thresholding is one of the most commonly used methods for the
segmentation of images into two or more clusters. Many algorithms have been
proposed in literature to address the issue of optimal thresholding (e.g., [68]
and [69]). While several research papers address bi-level thresholding, others
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have considered the multilevel problem. Bi-level thresholding is reduced to
an optimization problem to determine the threshold t that maximizes the σ2

B

(between-class variance) and minimizes σ2
W (within-class variance). For two

level thresholding, the problem is solved by finding the value T ∗ which re-
sults in max(σ2

B(T ∗)) where 0 ≤ T ∗ < L and L is the maximum intensity value.
This problem could be extended to n-level thresholding through satisfying max
σ2

B(T ∗1 , T ∗2 , ..., T ∗n−1) where 0 ≤ T ∗1 < T ∗2 < ... < T ∗n−1 < L. One way for finding
the optimal set of thresholds is by using exhaustive search. A commonly used
exhaustive search is based on the Otsu criterion [70]. That approach is easy to
implement, but it has the disadvantage that it is computationally expensive.
Exhaustive search for n − 1 optimal thresholds involves evaluations of fitness
of n(L − n + 1)n−1combinations of thresholds [71]. Therefore, that method is
not suitable from a computational cost point of view. The task of determining
n − 1 optimal thresholds for n-level image thresholding could be formulated
as a multidimensional optimization problem. To solve such a task, several bi-
ologically inspired algorithms have been explored in image segmentation (e.g.
[71–73]). Bio-inspired algorithms have been used in situations where conven-
tional optimization techniques cannot find a satisfactory solution or they take
too much time to find it, e.g., when the function to be optimized is discontinu-
ous, non-differentiable, and/or presents too many nonlinearly related param-
eters [73]. One of the best known bio-inspired algorithms is PSO [74]. The
PSO consists of a number of particles that collectively move in the search space
(e.g., pixels of the image) in search of the global optimum (e.g., maximizing
the between-class variance of the distribution of intensity levels in the given
image). However, a general problem with the PSO and similar optimization
algorithms is that they may be trapped in local optimum points, and the algo-
rithm may work in some problems but fail in others [59]. To overcome such a
problem, Tillett et al. [75] presented the Darwinian PSO (DPSO). In the DPSO,
multiple swarms of test solutions performing just like an ordinary PSO may
exist at any time with rules governing the collection of swarms that are de-
signed to simulate natural selection. In [61], DPSO was taken into account for
the segmentation of multispectral remote sensing images. Results confirmed
that DPSO outperforms the conventional PSO in terms of finding higher be-
tween class variance in less CPU processing time. More recently, in [76] and
[63], for the purpose of image segmentation, Ghamisi et. al introduced further
extension of the DPSO using fractional calculus to control the convergence rate
of the algorithm [59] and evaluate the capability of that in order to segment hy-
perspectral images in [63] and a classification framework was proposed based
on FODPSO based segmentation technique. The result of classification was
promising and FODPSO based segmentation improved DPSO- and PSO-based
segmentation techniques in terms of finding higher between class variance in
less CPU processing time. In [77], in order to address the shortcomings of hard
clustering approaches such as Kmeans, a new approach was proposed, i.e.,
fuzzy C-means which is optimized by FODPSO.
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(a) (b) (c) (d) (e)

Figure 1.11: a) Morphological closing; b) Closing by reconstruction; c) Origi-
nal VHR panchromatic image; d) Opening by reconstruction; e) Morphological
opening. As can be seen, morphological opening and closing have influences
on the shape of the structures and can introduce fake objects. However, open-
ing and closing by reconstruction preserve the shape of different objects bigger
than SE.

In Chapter 3, comprehensive information regarding the proposed thresholding-
based segmentation techniques is given.

In [65, 78–80], Watershed, partitional clustering, and Hierarchical Segmen-
tation (HSeg) have been considered in order to extract spatial information, and
SVM has been considered in order to extract spectral information. Then, the
spectral and spatial information have been integrated by using the majority
voting [78]. The described approach leads to an improvement in terms of clas-
sification accuracies compared to spectral and spatial techniques using local
neighborhoods for analyzing spatial information.

Another possible set of approaches which are able to extract spatial infor-
mation by using an adaptive neighborhood system relies on morphological
filters. Erosion and dilation are considered as the alphabet of mathematical
morphology. These operators are carried out on an image with a set of known
shape, called a Structuring Element (SE). Opening and closing are combina-
tions of erosion and dilation. These operators simplify input data by removing
structures with the size less than the SE. However, these operators have influ-
ences on the shape of the structures and can introduce fake objects in the image
[9]. One possible way in order to handle this issue is to consider opening and
closing by reconstruction [81]. Opening and closing by reconstructions are a
family of connected operators which satisfies the following criterion: If the SE
cannot fit the structure of the image, then it will be totally removed, otherwise
it will be totally preserved. Reconstruction operators remove objects smaller
than SE without altering the shape of those objects and reconstruct connected
components from the preserved objects. For gray scale images, opening by re-
construction removes unconnected light objects and in dual, closing by recon-
struction removes unconnected dark objects. Figure 1.11 illustrates an original
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φj
R(f) φi

R(f) f γi
R(f) γj

R(f)

(a) (b) (c) (d) (e)

Figure 1.12: A simple example of MP consisting two sequential opening and
closing by reconstruction.

VHR image along with its corresponding opening, opening by reconstruction,
closing and closing by reconstruction.

In order to fully exploit the spatial information, filtering techniques should
simultaneously attenuate the unimportant details and preserve the geometrical
characteristics of the other regions. Pesaresi and Benediktsson [82] used mor-
phological transformations to build a so-called Morphological Profile (MP).
They carried out a multiscale analysis by computing an anti-granulometry and
a granulometry, (i.e., a sequence of closings and openings with SE of increasing
size), appended in a common data structure named MP. Figure 1.12 illustrates
a simple example of MP consisting two sequential opening and closing by re-
construction.
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Another modification of using MP which was exploited for the classifica-
tion of VHR panchromatic images is Differential Morphological Profile (DMP).
DMP explains the residues of two successive filtering operations for two adja-
cent levels existing in the profile. The obtained map is generated by associating
each pixel to the level where the maximum of the DMP (evaluated at the given
pixel) occurs [83]. Figure 1.13 shows the examples of MP and DMP.

In [84], the MP generated by standard opening and closing was carried out
on a Quickbird panchromatic image captured on Bam which was hit by the
earthquake on 2003. In that work, the spatial features extracted by the MP were
considered for assessing the damages caused by the earthquake. The standard
opening and closing along with white and black top hat and opening and clos-
ing by reconstruction, were taken into account all together and classified by
a SVM for the classification of a Quickbird panchromatic image, [85]. An au-
tomatic hierarchical segmentation technique based on the analysis of the DMP
was proposed in [86]. The DMP was also analyzed in [87], by extracting a fuzzy
measure of the characteristic scale and contrast of each structure in the image.
The computed measures were compared with the possibility distribution pre-
defined for each thematic class, generating a value of membership degree for
each class used for classification. In [88], in order to reduce the dimensionality
of data and address the curse of dimensionality, feature extraction techniques
were taken into consideration for the DMP classified by a neural network clas-
sifier. In [89], the concept of MPs was successfully extended in order to han-
dle hyperspectral images. For doing that, first the input hyperspectral data
were transformed by using PCA and MPs have been performed on the PCs
of the data (which were called Extended Morphological Profiles (EMPs)). Fig-
ure 1.14 shows a stacked vector consisting of the profiles based on the first and
second PCs. Since the EMP do not fully exploit the spectral information and
PCA discards class information, in [9], instead of PCA, different supervised
feature extraction techniques were performed on the input data and the MP
and extracted features are concatenated into a stacked vector and classified by
an SVM.
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Some studies have been conducted in order to assess the capability of SEs
with different shapes for the extraction of spatial information. For instance,
MPs computed with a compact SE (e.g., square, disk, etc.) can be considered
for modeling the size of the objects in the image (e.g., in [58] this informa-
tion was exploited to discriminate small buildings from large ones). In [90], the
computation of two MPs was introduced in order to model both the length and
the width of the structures. In greater detail, one MP is built by disk-shaped
SEs for extracting the smallest size of the structures, while the other employs
linear SEs (which generate directional profiles [91]) for characterizing the ob-
jects maximum size (along with the orientation of the SE). This is appropriate
for defining the minimal and maximal length but, as all the possible lengths
and orientations cannot be practically investigated, such analysis is computa-
tionally intensive.

Based on the above-mentioned literature, it is easy to obtain that the com-
putation of a multiscale processing (e.g., by MPs, DMPs, EMPs) has proven
to be effective in extracting informative spatial features from the analyzed im-
ages. In order to characterize the shape or size of different structures present in
an image, it is vitally important to consider a range of SEs with different sizes.
MPs use successive opening/closing operations with an SE of an increasing
size. The successive usage of opening/closing leads to a simplification of the
input image and a better understanding of different available structures in the
image. Although MP is a powerful technique for the extraction of spatial infor-
mation, the concept of that is suffered by few limitations including:

1. The shape of SEs is fixed which is considered as a main limitation for the
extraction of objects within a scene.

2. SEs are unable to describe information related to the gray-level charac-
teristics of the regions such as spectral homogeneity, contrast and so on.

3. A final limitation associated with the concept of MPs is the computa-
tional complexity. The original image needs to be processed completely
for each level of the profile, which requires two complete evaluations of
the image; one performed by a closing transformation and the other by
an opening transformation. Thus, the complexity increases linearly with
the number of levels included in the profile [83].

A morphological Attribute Profile (AP) is considered as the generalization
of the MP which provides a multilevel characterization of an image by using
the sequential application of morphological Attribute Filters (AFs) [83]. Mor-
phological attribute opening and thinning are AFs which were introduced in
[92]. AFs are connected operators which process an image by considering only
its connected components. For binary images, the connected components are
simply the foreground and background regions present in the image. In order
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φT (PC1) PC1 γT (PC1) φT (PC2) PC2 γT (PC2)

AP(PC1) AP(PC2)

Figure 1.15: A simple example of EAP consisting four attributes on the first
second PCs.

to deal with gray scale images, the set of connected components can be ob-
tained by considering the image to be composed by a stack of binary images
generated by thresholding the image at all its gray-level values [93]. Thus, they
process the image without distorting or inserting new edges but only by merg-
ing existing flat regions [81]. AFs were employed for modeling the structural
information of the scene in order to increase the effectiveness of a classifica-
tion and building extraction in [83] and [94], respectively, where they proved
to be efficient for the modeling of structural information in VHR images. AFs
include in their definition, the morphological operators based on geodesic re-
construction [92]. Moreover, they are a flexible tool since they can perform a
processing based on many different types of attributes. In fact, the attributes
can be of any type. For example, they can be purely geometric, or related to
the spectral values of the pixels, or on different characteristics. Furthermore,
in [94], the problem of the tuning of the parameters of the filter was addressed
by proposing an automatic selection procedure based on a genetic algorithm.
Extended AP (EAP) is a stacked vector of different APs computed on the first
C features extracted from the original data set. Figure 1.15 shows an example
of an EAP for the first two PCs consisting of four attributes.

For the purpose of spectral-spatial classification of hyperspectral images,
four attributes have been widely used in literature including: 1) Area of the
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region (related the size of the regions), 2) standard deviation (as an index for
showing the homogeneity of the regions), 3) diagonal of the box bounding the
regions, and 4) moment of inertia (as an index for measuring the elongation
of the regions). When concatenation of different attributes, {a1, a2, ..., aM} are
gathered into a stacked vector, the Extended Multi-AP (EMAP) is obtained [95].
In [96], the fusion of hyperspectral and LiDAR data is taken into account in
order to develop a new classification framework for the accurate analysis of
urban areas based on EMAPs.

A comprehensive information related to APs along with all its modifications
and generalizations can be found in [97].

The application of the profiles for large volumes of data is computationally
demanding and that is considered to be one of the main difficulties in using
them. In order to solve this issue, the efficient implementation of attribute
filters was proposed in [98]. Salembier et al. in [98], introduced a new data
representation named Max-tree which has received much interest since it in-
creases the efficiency of filtering by dividing the transformation process into
three steps: 1) tree creation; 2) filtering; and 3) image restitution.

The main difficulties of using the EMAP are 1) to know which attributes
lead to a better discrimination for different classes, and 2) which threshold val-
ues should be considered in order to initialize each AP. In this case, a few pa-
pers have tried to solve these issues and introduced automatic techniques in
order to make the most of attribute profiles such as [99–101].

Chapter 4 provides a comprehensive survey regarding the use of AP in re-
mote sensing. The rest of Chapter 4 is devoted to the proposed spectral-spatial
classifiers, which consider AP for extracting spatial information.

1.3 Objectives

The main objective of this thesis is to develop spectral and spatial classifica-
tion techniques which are efficient in terms of classification accuracies and CPU
processing time. With respect to the above-mentioned description, the follow-
ing objectives can be defined:

1. Besides the importance of classification accuracies, other critical issues
for the purpose of hyperspectral image classification are simplicity and
speed of the approaches. Therefore, in this thesis, special emphasis is
given to proposing robust techniques that are accurate in classification as
well as being fast. This is these types of techniques which can be used
for handling real-time applications such as hazard monitoring and risk
management. This point can be observed in a few papers developed in
this PhD.

2. Most of the existing methods are not automatic and their performance is
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very dependent on the initialization of the algorithms. Therefore, the ex-
isting techniques demand a significant effort by users to initialize the pa-
rameters in a trial and error way and different steps need to be done man-
ually. This makes the existing techniques very time demanding which is
undesirable for a wide variety of applications such as flood monitoring
and bush fire management, which require a rapid response. In order to
increase the efficiency of the existing techniques and reduce the laborious
task of user interaction, a further development of automatic (or semi-
automatic) techniques plays a key role in remote sensing data analysis.
Consequently, this has been taken into consideration in most part of this
thesis.

3. In order to reduce the laborious task observed for existing feature reduc-
tion techniques as well as increasing the efficiency of those, a proposition
of powerful feature reduction approaches which are fast, robust against
noise, and capable of handling high dimensional data with only a limited
number of training samples would be of importance.

4. Conventional MRF techniques only consider spatial information in the
label image without getting any feedback from the original observed im-
age. In order to address this issue and increase the capability of conven-
tional MRF techniques, further modifications and alternations are crucial.

5. In order to address the main disadvantage of considering crisp neighbor-
hood systems as discussed in the introduction, a proposition of robust ap-
proaches based on adaptive neighborhood systems is highly demanded.

1.4 Main Contributions

The main contributions of this thesis are summarized in Figure 1.16, which
depicts the proposed segmentation techniques, spectral–spatial classification
approaches and feature reduction techniques. In order to achieve the objec-
tives defined in the previous section, we have proposed and developed three
general strategies for hyperspectral data classification. According to the figure,
these three strategies cover three important concepts associated with the clas-
sification of high-dimensional data including: 1) Spectral-spatial classification
using crisp neighborhood systems, 2) spectral-spatial classification using adap-
tive neighborhood systems as well as 3) feature reduction approaches. Below,
the three strategies will be described in more detail.

1. Strategy 1 (spectral-spatial classification using crisp neighborhood systems):
This strategy is detailed in Paper 1 (Chapter 2), which is related to the
proposition of a novel spectral-spatial classification approach using clos-
est fixed neighborhoods. This approach is based on the integration of the
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SVM classifier and HMRF segmentation method via majority voting. In
general, MRFs consider spatial information in the label image only, not
in the original observed image. In order to address this issue, HMRF is
defined with regard to a pair of random variable families (observation
random field and hidden random field) while MRF is only defined with
respect to hidden random field. To this extent, HMRF can provide more
accurate segmentation maps. In HMRF, model-fitting procedure involves
an initialization step and an iteration between two steps: maximum a
posteriori estimation of the class labels and an expectation maximization
algorithm for estimating the parameters of each Gaussian class. It should
be noted that in remote sensing, the concept of HMRF was used for the
first time in Paper 1 (Chapter 2).

2. Strategy 2 (spectral-spatial classification using adaptive neighborhood systems):
This strategy is detailed in papers 2, 3, 4, 5, 6 and 7. Although the first
strategy works well in terms of classification accuracies, it models the
spatial dependencies of adjacent pixels based on a crisp neighborhood
system. With respect to the general shortcomings of modeling spatial
information based on a crisp neighborhood system and in order to model
the spatial information in a more efficient way, in the second strategy, we
propose to use adaptive neighborhood systems by considering different
approaches based on image segmentation and APs. This strategy can be
split into three subsections:

(a) The first subsection is devoted to the proposition of a new thresh-
olding based segmentation technique. The proposed segmentation
method is based on a new optimization technique named FODPSO.
In general, FODPSO is proposed to address the main shortcoming
of PSO; the stagnation in local optimum by considering two main
novelties: 1) Using many swarms of test solutions which may exist
at any time, in which each swarm individually performs just like an
ordinary (PSO) algorithm with a set of rules governing the collection
of swarms that are designed to simulate natural selection; 2) using
the concept of fractional derivative to control the convergence rate
of particles. This work is mainly based on the segmentation of gray
scale images and detailed in paper 2 (Chapter 3). It should be noted
that FODPSO-based image segmentation was proposed in paper 2
(Chapter 3) for the first time in image processing and computer vi-
sion community.

(b) The second subsection is on the generalization of the FODPSO-based
segmentation technique from gray scale images to hyperspectral data
sets. To this extent, first, in paper 3 (Chapter 3), the concept of the
FODPSO is used for the segmentation of hyperspectral images and
then, a novel spectral–spatial classification approach is introduced
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based on the integration of SVM and FODPSO. In paper 4 (Chapter
3), the integration of mean shift segmentation and FODPSO is pro-
posed to use along with SVM for the spectral–spatial classification of
hyperspectral images in order to address the shortcoming of using
each of them individually.

(c) The third subsection is on the use of APs for the spectral–spatial
classification of hyperspectral data. To do so, first, paper 5 (Chap-
ter 4) is devoted to a comprehensive survey over all existing papers
in terms of the use of APs for the extraction of spatial information
from remote sensing data. The main contributions of this survey
paper are to recall the concept of the AP and its all modifications
and generalizations with special emphasis on remote sensing image
classification and summarize the important aspects of its efficient
utilization while also listing potential future works. Papers 6 and
7 (Chapter 4) propose new classification approaches by considering
EMAP and RF. Those papers introduce efficient classifiers in terms
of classification accuracies and CPU processing time. In addition,
those techniques are also automatic.

3. Strategy 3 (feature selection approaches): Finally, the third strategy is on
proposing novel feature selection approaches which are detailed in pa-
pers 8 and 9 (Chapter 5). Paper 8 is based on FODPSO and SVM, while
Paper 9 is based on the new integration of GA, PSO and SVM. For both
approaches, there is no need to set the number of output features manu-
ally, and the proposed approaches can automatically select the most in-
formative features in terms of classification accuracies. In addition, since
both approaches are based on evolutionary techniques, they are much
faster than other well-known feature selection techniques that demand an
exhaustive process to select the most informative bands. In this sense, the
new approaches can work appropriately in a situation when other feature
selection techniques are not applicable. Paper 8, also, solves the main
problem of using EMAP for classification; 1) Which attributes should be
used? and 2) what values should be used as threshold values?
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1.5 Thesis Outline

This thesis is composed as a collection of publications. To this extent, 10 journal
papers written during the PhD present the main findings of this thesis. The
papers are summarized bellow and detailed in the next chapters.

1.5.1 Paper 1

P. Ghamisi, J. A. Benediktsson and M. O. Ulfarsson, "Spectral-Spatial Classi-
fication of Hyperspectral Images Based on Hidden Markov Random Fields",
IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 5, pp. 2565-
2574, May 2014.

In this paper, a novel fully automatic spectral and spatial approach is intro-
duced for the classification of hyperspectral images. This approach is based on
the HMRF and SVM. In order to preserve the edges in the classification map,
a gradient step based on the Sobel edge detector is taken into account. In the
framework, SVM is used for the extraction of spectral information. In parallel,
HMRF is used for the extraction of spatial information. In the final step, those
results are combined by using majority voting. It should be noted that the con-
cept of HMRF is used for the first time in the field of remote sensing in this
paper, and the efficiency of that for the segmentation of hyperspectral images
is demonstrated. it is shown in this paper that the method performs well in
terms of classification accuracies. In addition, the proposed approach is fully
automatic and user friendly in contrast to most of the methods.

1.5.2 Paper 2

P. Ghamisi, M. S. Couceiro, J. A. Benediktsson and N. M. F. Ferreira, "An Ef-
ficient Method for Segmentation of Images Based on Fractional Calculus and
Natural Selection", Expert Systems With Applications, vol. 39, no. 16, pp. 12407-
12417, Nov. 2012.

This paper presents two novel thresholding based segmentation methods
based on the FODPSO and DPSO for determining the n-1 optimal n-level thresh-
old on a given image. The efficiency of the proposed methods is compared
with other well-known thresholding based segmentation methods such as GA-
, PSO- and Bacteria Foraging-based segmentation techniques. Results indicate
that FODPSO is able to find the better thresholds with more stability in less
CPU processing time.
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1.5.3 Paper 3

P. Ghamisi, M. S. Couceiro, F. M. L. Martins and J. A. Benediktsson, "Multilevel
Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Op-
timization", IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 5,
pp. 2382-2394, May 2014.

In this paper, a new method is proposed for the segmentation of multi-
spectral and hyperspectral images, which is based on FODPSO. Segmentation
methods were carried out on two different test cases. Experimental results in-
dicate that the FODPSO is more robust than the two other methods (PSO and
DPSO) and has a higher potential for finding the optimal set of thresholds with
more between-class variance in less computational time, especially for higher
segmentation levels and for images with a wide variety of intensities. In addi-
tion, to show the efficiency of the proposed segmentation method on the result
of classification, a novel classification approach based on the new segmenta-
tion method and SVM is proposed. Results confirm that the new segmentation
method improves on the SVM in terms of classification accuracies when com-
pared to the standard SVM classification of the raw image data.

1.5.4 Paper 4

P. Ghamisi, M. S. Couceiro, M. Fauvel and J. A. Benediktsson, "Integration
of Segmentation Techniques for Classification of Hyperspectral Images", IEEE
Geoscience and Remote Sensing Letters, vol. 11, no. 1, pp. 342-346, Jan. 2014.

In this letter, a new spectral–spatial classification approach is introduced for
the accurate classification of hyperspectral images. The approach is based on
the combination of FODPSO and MSS. In the proposed approach, the result of
FODPSO is used as the input to MSS to develop a pre-processing method for
the SVM classifier. Results indicate that the use of both segmentation methods
can overcome the shortcomings of each other and the combination can improve
the result of classification significantly.

1.5.5 Paper 5

P. Ghamisi, M. Dalla Mura and J. A. Benediktsson, "A Survey on Spectral–
Spatial Classification Techniques Based on Attribute Profiles," IEEE Transactions
on Geoscience and Remote Sensing, vol. 53, no. 5, pp. 2335-2353, May 2015.

The main objective of this survey paper is to recall the concept of the APs
along with all its modifications and generalizations. This paper emphasizes on
the use of APs for the classification of remote sensing data. Finally, this paper
summarizes the important aspects of APs along with all its efficient utilization
while also listing potential future works.
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1.5.6 Paper 6

P. Ghamisi, J. A. Benediktsson and J. R. Sveinsson, "Automatic Spectral-Spatial
Classification Framework Based on Attribute Profiles and Supervised Feature
Extraction", IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 9,
pp. 5771-5782, Dec. 2014.

In this paper, a new approach is proposed for the spectral-spatial classifica-
tion of hyperspectral images. The method can be implemented fully automat-
ically. In order to use the spatial information, APs are taken into account. For
reducing the redundancy of both the spatial information and the original spec-
tral data in order to provide more accurate classification results, a few super-
vised feature extraction methods are considered. The obtained results confirm
that considering spatial information by using APs in conjunction with spec-
tral information can significantly improve the classification accuracies of the
original data. In addition, by using supervised feature extractions, the classifi-
cation accuracies can be increased further. Furthermore, in order to avoid the
main difficulties of using APs, an automatic version of the proposed method is
introduced which only considers area and standard deviation attributes. The
automatic method obtained almost the same results as the manual method in
terms of the classification accuracies and CPU processing time and solved the
main difficulty of the manual method which is related to the initialization of
the parameters in the EMAP. The proposed method worked well in terms of
the classification accuracy and CPU processing time, which confirms the abil-
ity of the method to classify high-dimensional data sets.

1.5.7 Paper 7

P. Ghamisi, J. A. Benediktsson, G. Cavallaro and A. Plaza, "Automatic Frame-
work for Spectral–Spatial Classification Based on Supervised Feature Extrac-
tion and Morphological Attribute Profiles", IEEE Journal of Selected Topics in Ap-
plied Earth Observations and Remote Sensing, vol. 7, no. 6, pp. 2147 - 2160, Jun.
2014.

In this paper, we have developed a new automatic framework for the classi-
fication of hyperspectral images. Our framework uses both spectral and spatial
information. In order to include the spatial information, morphological APs are
taken into account. For reducing the redundancy of the extracted features and
deal with the curse of dimensionality introduced by the Hughes effect, para-
metric supervised feature extraction methods (DAFE and DBFE) are consid-
ered. The new approach achieves well classification accuracies with acceptable
CPU processing time in a fully automatic way.
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1.5.8 Paper 8

P. Ghamisi, M. S. Couceiro and J. A. Benediktsson, "A Novel Feature Selection
Approach Based on FODPSO and SVM," IEEE Transactions on Geoscience and
Remote Sensing, vol. 53, no. 5, pp. 2935-2947, May 2015.

A novel feature selection approach is proposed based on a new binary opti-
mization method inspired by FODPSO. A Support Vector Machine (SVM) clas-
sifier is used as a fitness function for cross validation samples and the overall
accuracy of the classification is selected to evaluate the group of bands. In or-
der to show the capability of the proposed method, two different applications
are considered. In the first application, the proposed feature selection approach
is directly carried out on the input hyperspectral data. The most informative
bands selected from this step are classified by SVM. In the second application,
the main shortcoming of using attribute profiles for spectral-spatial classifica-
tion is addressed. In this case, a stacked vector of the input data and an at-
tribute profile with all widely used attributes with wide ranges of thresholds is
created. Then, the proposed feature selection approach automatically chooses
the most informative features from the stacked vector. Experimental results
successfully confirm that the proposed feature selection technique works bet-
ter in terms of classification accuracies and CPU processing time than other
studied methods.

1.5.9 Paper 9

P. Ghamisi and J. A. Benediktsson, "Feature Selection Based on Hybridization
of Genetic Algorithm and Particle Swarm Optimization", IEEE Geoscience and
Remote Sensing Letter, vol. 12, no. 2, pp. 309-313, Jul. 2015.

A new feature selection approach which is based on the integration of a GA
and PSO is proposed. A SVM classifier is used as the fitness function and its
overall classification accuracy is considered as the fitness value. Results con-
firm that the new approach is able to automatically provide informative fea-
tures in terms of classification accuracy within an acceptable CPU processing
time. Furthermore, the usefulness of the proposed method is also tested for
road detection. Results confirm that the proposed method is capable of dis-
criminating between road and background pixels and performs better than the
other approaches used for comparison in terms of performance metrics.
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Spectral–Spatial Classification of Hyperspectral
Images Based on Hidden Markov

Random Fields
Pedram Ghamisi, Student Member, IEEE, Jón Atli Benediktsson, Fellow, IEEE, and

Magnus Orn Ulfarsson, Member, IEEE

Abstract—Hyperspectral remote sensing technology allows one
to acquire a sequence of possibly hundreds of contiguous spectral
images from ultraviolet to infrared. Conventional spectral classi-
fiers treat hyperspectral images as a list of spectral measurements
and do not consider spatial dependences, which leads to a dramatic
decrease in classification accuracies. In this paper, a new automatic
framework for the classification of hyperspectral images is pro-
posed. The new method is based on combining hidden Markov
random field segmentation with support vector machine (SVM)
classifier. In order to preserve edges in the final classification map,
a gradient step is taken into account. Experiments confirm that the
new spectral and spatial classification approach is able to improve
results significantly in terms of classification accuracies compared
to the standard SVM method and also outperforms other studied
methods.

Index Terms—Hidden Markov random field (HMRF), hyper-
spectral image analysis, image segmentation, support vector ma-
chine (SVM) classifier.

I. INTRODUCTION

DUE TO recent advances in hyperspectral sensor technol-
ogy, it is possible to capture hundreds of spectral channels

for each image pixel from ultraviolet to infrared. By increasing
the amount of spectral information, the accurate discrimination
of different materials of interest is possible. In addition, the fine
spatial resolution of the sensors enables the analysis of small
spatial structures in the image. Furthermore, the high spectral
resolution allows detailed physical analysis of the structures [1].

Classification plays a key role in the analysis of hyperspectral
images. Examples of applications where it plays a key role
are land-use and land-cover mapping, crop monitoring, forest
applications, urban development, mapping, tracking, and risk
management.

For hyperspectral images, several hundreds of spectral bands
of the same scene are typically available, while for multispectral
images, up to ten bands are usually available. By increasing the
dimensionality of the images in the spectral domain, theoret-
ical and practical problems arise. For instance, with a limited
training set, beyond a certain limit, the classification accuracy
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2013; accepted May 9, 2013. Date of publication June 14, 2013; date of current
version February 27, 2014. This work was supported in part by the Icelandic
Research Fund for Graduate Students.
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actually decreases as the number of features increases [2]. For
the purpose of classification, these problems are related to the
curse of dimensionality.

Conventional spectral classifiers treat hyperspectral images
as a list of spectral measurements [3]. For instance, support
vector machine (SVM) classifiers have received significant
attention lately because of their remarkable generalization ca-
pability for the classification of high dimensional data sets [4]
and their considerable capability for handling big data sets
with few number of training samples. The efficiency of SVM
classifiers has been shown in terms of achieving very accurate
results in a wide variety of applications [5], [6]. However, SVM
classifiers do not consider spatial dependences and classify
images only based on their spectral information. Therefore, this
approach discards information associated with the correlations
among distinct pixels in the image and is considered as the
most vital limitation of SVM classifiers for the analysis of
remote sensing images in which pixel neighborhoods provide
important information [7].

To address the aforementioned problem, joint spectral and
spatial classification techniques have recently received con-
siderable attention. Consideration of spatial information helps
us to overcome the salt and pepper appearance of the clas-
sification. More importantly, other relevant information can
be extracted from the spatial domain: For a given pixel, it
is possible to extract the size and the shape of the structure
to which it belongs. Therefore, the combination of spectral
information and spatial information can improve the result of
the classification stage. The goal of considering spatial context
in the classification step can partially be achieved by using
methods such as morphological filters (e.g., [1]), morpholog-
ical leveling (e.g., [8]), segmentation (e.g., [9]), and Markov
random fields (MRFs) (e.g., [10]).

MRFs are a family of probabilistic models that can be
described as 2-D stochastic processes over discrete pixel lattices
[11]. They can be considered as a powerful tool for incorpo-
rating spatial and contextual information into the classification
framework [12]. More recently [13], hidden MRF (HMRF)
was introduced as a special case of the hidden Markov model
(HMM). In HMRF, the underlying stochastic process is MRF,
instead of Markov chains in HMM. Therefore, HMRF is not
restricted to 1-D and can be used in order to extract spatial
information from 2-D and 3-D images.

There is extensive literature on the use of MRFs for increas-
ing the accuracy of classification. For instance, in [14], the

0196-2892 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Flowchart of the proposed method.

result of the probabilistic SVM was regularized by an MRF. In
[10], the mean field-based SVM regression was used for image
classification. Also, in [7], [12], and [15]–[17], MRFs were
taken into consideration for modeling spatial and contextual
information for improving the accuracy of the classification.
Furthermore, a generalization of MRF, called conditional MRF,
was investigated in [18] for the spectral and spatial classifica-
tion of remote sensing images. In [19], the concept of HMM
was used for incorporating spectral and contextual information
into a framework for performing unsupervised classification
of remote sensing multispectral images. In addition, Gaussian
MRF was employed in [20] for the purpose of segmentation and
anomaly detection.

Based on the previous discussion, the integration of SVM
classifiers and MRFs for the accurate classification of remote
sensing images by considering both spectral information and
spatial information into the same framework is completely ob-
vious. In this paper, a novel fully automatic spectral and spatial
approach is introduced for the classification of hyperspectral
images. The new approach is based on the HMRF and SVM.
In order to preserve the edges in the classification map (CM),
a gradient step based on the Sobel edge detector is taken into
account. In addition, to our knowledge, this is the first time that
HMRF is used in the field of remote sensing.

This paper is organized as follows. The proposed method-
ology is discussed in Section II. Then, Section III is devoted
to experimental results. Finally, Section IV outlines the main
conclusion.

II. METHODOLOGY

Fig. 1 illustrates the flowchart of the proposed method. In
the following, specific parts of the proposed framework will be
discussed in detail.

A. Notation

In the following, we let y = (y1, . . . , yN )T denote the first
principal component map, where N is the number of pixels and
S = {1, 2, . . . , N} is the set of pixel indices. Associated with

pixel i is a class label xi. A vector containing these labels is
denoted by x = (x1, . . . , xN )T .

B. HMRF-EM Segmentation by Preserving Edges

1) FGM: For better understanding of the concept of HMRF,
we begin with the finite Gaussian mixture (FGM) model. For a
pixel i, we have

q(l) = q(xi = l)

p(yi|l) = g(yi; θl)

where p(yi|l) is a conditional probability of the intensity yi

given the class label l (l ∈ L, and L is regarded as the set
of all possible labels). q(l) is the probability mass function
(pmf) of the class label, and g(yi; θl) is a Gaussian probabil-
ity density function (pdf) with parameter θl = (μl, σ

2
l ). The

marginal distribution of y = yi dependent on the parameter set
θ = {θl, l ∈ L} can be written as

p(y; θ) =
∑

l∈L

g(y; θl)q(l). (1)

Although the FGM model is mathematically simple, it is
not able to take the spatial information into consideration
since all the data points are considered individually and are
independent from the other neighborhood points. To overcome
this limitation, the HMRF was proposed in [13].

2) HMRF Model: HMRF is a generalization of HMM.
While HMM is based on 1-D Markov chains, HMRFs are based
on MRFs. Due to its ability to handle a 2-D structure, HMRF is
more suitable for image segmentation than HMM.

The Gaussian HMRF is given by

p(x, y; θ) = f(x)

N∏

i=1

p(yi|xi)

p(yi|xNi; θ) =
∑

l∈L

g(yi; θl)q(l|xNi) (2)

where f(x) is a pdf for x which follows the so-called Gibbs
densities [21] and q(l|xNi

) is a conditional pmf for the class
label l given that xNi

denotes a neighborhood for each pixel xi.
The difference between HMRF and FGM is the term q(l|xNi

)
in (2) and the term q(l) in (1). If we do not consider the
relationship between pixels in the neighboring system, HMRF
and FGM are the same. In other words, spatial dependences can
be modeled in HMRF, which are discarded in FGM. Therefore,
the FGM model is a special case of HMRF. As a result, it can
be concluded that HMRF is more flexible than FGM since it is
able to model both the statistical and spatial properties of the
image.

The model-fitting procedure [13] involves an initialization
and an iteration between two steps: maximum a posteriori
(MAP) estimation of the class labels and an expectation-
maximization (EM) algorithm [22] for estimating θ. Now, we
consider these three steps.

a) Initialization: The output of this step provides the
initial label x(0) and θ(0) for the MAP and EM algorithms,
respectively. In this paper, K-means was used to provide the
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Fig. 2. All possible cliques for the predefined neighborhood system.

initial labels, and initial parameters θ were computed for the
initialization step. The initial parameters are obtained by esti-
mating the mean and the standard deviation of the pixels within
each cluster.

K-means [23] is one of the best-known clustering methods
which was introduced by MacQueen. This method starts with
a random initial partition of the pixel vectors into candidate
clusters and then reassigns these vectors to clusters by reducing
the squared error in each iteration until a convergence criterion
is met.

b) MAP: From one point of view, image segmentation
can be split into two categories: structural and statistical. The
former is based on boundaries and regions. On the other hand,
the latter is mostly based on the probability distribution function
of image intensities and their associated class labels. Statistical
approaches try to find the class label x, when only the intensity
y for each pixel is given. MAP and maximum likelihood are
widely used criteria for this kind of estimation. Using the MAP
criterion, x̂ should be estimated based on

x̂ = arg max
x∈χ

{p(y|x; θ)f(x)} · (3)

It is assumed that yi and xi are pairwise independent, so

p(y|x, θ) =

N∏

i=1

p(yi|xi).

MRF can be completely explained by a Gibbs distribution using
the Hammersley–Clifford theorem which describes the relation
between MRF and Gibbs distribution [21]. Thus

f(x) =
1

Z
exp (−U(x))

where Z is a normalizing constant and

U(x) =
∑

c∈C

Vc(xi, xj)

where Vc(xi, xj) are the so-called clique potentials and C is
the set of all possible cliques (see more details in [21]). A
clique c is a subset of S where every pair of distinct sites
is neighbors, except for single-site cliques. Fig. 2 depicts all
possible cliques for the predefined neighborhood system. The
general idea behind the HMRF model is that, if a pixel has
a certain label, the pixels of its neighborhood system are also
of that type. In this paper, it is assumed that each pixel has at

most four neighbors in the image domain. Then, on pairs of
neighboring pixels, the clique potentials are calculated by

Vc(xi, xj) =
1

2
(1 − Ixi,xj

)

Ixi,xj
=

{
0 if xi �= xj

1 if xi = xj .
(4)

MAP can be rewritten as a minimization problem

x̂ = arg min
x∈χ

{U(y|x) + U(x)} (5)

where U(y|x)=
∑

i[((yi−μxi
)2/2σ2

xi
)+(1/2) log σ2

xi
] mea-

sures the fit and U(x) can be viewed as a penalty term that
encourages spatial smoothness. The iterative MAP algorithm
stops when the relative change in the cost function is below
a prespecified threshold. There exist efficient algorithms for
solving the MAP problem. Here, we use the same algorithms
as in [13].

c) EM Algorithm: A statistical model is complete if and
only if both its functional forms and parameters are determined.
In HMRF, the parameter set θ = {θl, l ∈ L} should be esti-
mated. If the Gaussian density function is assumed for the pixel
intensity value y, the parameters of each Gaussian class are
θl = (μl, σl). Since both the class labels and parameters are un-
known, the calculation of the parameters is not straightforward.
One reliable way to solve this issue is the EM algorithm [22].
We use the EM algorithm to estimate the parameters θ. In the
following discussion, the EM algorithm is briefly explained.

1) E-step: We compute the EM functional

Q
(
θ|θ(k)

)
= E

[
log p(y,x; θ)|y, θ(k)

]
. (6)

2) M-step: For obtaining the next estimate, we maximize the
EM functional

θ(k+1) = arg max
θ

Q
(
θ|θ(k)

)
. (7)

Then, let θ(k) −→ θ(k+1) and return to the E-step.
The EM functional can be written as

Q=
∑

i

∑

l

q(k)(j|yi)

{
ln q(l|xNi

)− 1

2
ln σ2

l − 1

2

(yi−μj)
2

σ2
l

}

(8)

where the posterior q(k)(j|yi) is obtained from the MAP step.
The M-step yields the following updates:

μ
(k+1)
l =

∑
i q(k)(j|yi)yi∑
i q(k)(j|yi)

(9)

σ
2(k+1)
l =

∑
i q(k)(j|yi)

(
yi − μ

(k+1)
l

)

∑
i q(k)(j|yi)

. (10)

The iterative algorithm will stop when the relative change in
the cost function is less than a predefined threshold.

C. Gradient

Image segmentation provides a smoothing process. Provided
that one image has strong discontinuities, MRFs may cause
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Fig. 3. Procedure of MV for combining the spectral information and spatial information (based on [1]).

oversmoothing [24]. One way to address this issue is to com-
bine the underlying label with an additional line process [24].
In order to preserve edges in the segmentation map (SM),
the input image is first transformed by principal component
analysis (PCA), and the PCs which have dominant variance
(more than 99% of the total variation) are kept. Sobel edge
detection is performed on each PC, and then, the output of Sobel
edge-detected PCs are summed together. Finally, the output is
transformed to a binary format. Let us assume that we have a
binary edge map z; zi = 1 if the ith pixel is edge, and zi = 0 if
not. In this case, (5) is modified to

x̂ = arg min
x∈χ

⎧
⎨
⎩U(y|x) +

∑

j∈Ni,zi=0

Vc

(
l,x

(k)
N

)
⎫
⎬
⎭ . (11)

This shows that the clique potentials are only estimated for the
pixels which are not edge pixels.

D. SVM

The general idea behind SVM is to separate training samples
belonging to different classes by tracing maximum margin
hyperplanes in the space where the samples are mapped [25].
SVMs were originally introduced for solving linear classifica-
tion problems. However, they can be generalized to nonlinear
decision functions by considering the so-called kernel trick
[26]. A kernel-based SVM is being used to project the pixel
vectors into a higher dimensional space and to estimate the
maximum margin hyperplanes in this new space in order to
improve linear separability of data [26]. The sensitivity to
the choice of the kernel and regularization parameters can be
considered as the most important disadvantages of SVM. The
latter is classically overcome by considering cross-validation
techniques using training data [27]. The Gaussian radial basis
function is widely used in remote sensing [26].

E. MV

In this paper, majority voting (MV) is used for combining
the result of the segmentation and classification steps. Fig. 3
shows the general idea of MV. The output of the segmentation
methods is a number of objects, where each object consists of
several pixels with the same label. In other words, pixels in each
object share the same characteristics. For performing MV on
the output of the segmentation and classification steps, first, the
number of pixels with different class labels in each object is
counted. Then, the set of pixels in each object is assigned to the
most frequent class label (coming from the classification step)
in the object. Thus, each region from the SM is considered as an
adaptive homogeneous neighborhood for all the pixels within
this region. The described technique leads to a considerable
improvement in terms of classification accuracies. In addition,
MV provides more homogeneous CMs in comparison with
classification methods which use local neighborhoods in order
to take into account spatial information in a classifier [28]. For
better understanding, the workflow of MV is given as follows.

1) The outputs of SVM (CM) and HMRF-EM (SM) are
considered as the inputs for MV. SM consists of several
objects (in Fig. 3, we have three different objects 1, 2,
and 3), and CM consists of different classes (in Fig. 3, we
have three different classes blue, gray, and white).

2) In each object, all of the pixels are assigned to the most
frequent class within this object.

III. EXPERIMENTAL RESULTS

Two hyperspectral data sets were used in the experiments.
They are described in the following discussion.

A. Data Description

1) Indian Pines data: The first data set is the well-known
AVIRIS data set captured on NW Indian Pines in 1992
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TABLE I
INDIAN PINES: THE NUMBER OF TRAINING AND TEST SAMPLES; CLASSIFICATION ACCURACIES OF TEST SAMPLES IN PERCENTAGE FOR SVM,

KMEANSSVM-16, HMRFSVM-NE-16, HMRFSVM-E-16, KMEANSSVM-20, HMRFSVM-NE-20, AND HMRFSVM-E-20

Fig. 4. Example of the Indian Pines test case. (a) Data channel 27. (b) Training samples. (c) Test samples. Each color represents a specific information class. The
information classes are listed in Table I.

presenting 16 classes, mostly related to land covers. The
data set consists of 145 by 145 pixels with a spatial
resolution of 20 m/pixel. In this paper, we used 200 data
channels, i.e., after the elimination of the bands affected
by atmosphere absorption. The number of training and
test samples is displayed in Table I. Fig. 4(a)–(c) illus-
trates one band of Indian Pines and its corresponding
training and test sets, respectively.

2) Salinas data: This data set was captured by AVIRIS over
Salinas Valley, CA, USA, and it is characterized by high
spatial resolution (3.7-m pixels) consisting of 512 by 217
samples. The original data set consists of 224 data chan-
nels, but here, 20 water absorption bands are discarded. It
includes vegetations, bare soils, and vineyard fields. The
Salinas reference data contain 16 classes. Fig. 5(a) and (b)
shows the Salinas data set and its corresponding refere-
nce map.

B. General Description

For the gradient step, the input image is transformed by
PCA, and the first PCs with cumulative variance more than
99% are selected as the most effective components since they
explain almost all of the variance in the data. Then, Sobel
edge detection is performed on each component. Following

Fig. 5. Example of the Salinas test case. (a) Data channel 57. (b) Training
samples. (c) Test samples. Each color represents a specific information class.
The information classes are listed in Table III.

that, the components are summed up, and the resulting image
is transformed to binary format in order to create the gradient
image.

Then, both data sets are classified by K-means, and 16 and
20 are selected as the number of clusters. Those numbers are
selected in such a fashion that the former is equal to the number
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Fig. 6. CMs of different methods for Indian Pines. (a) SVM. (b) KmeansSVM-16. (c) HMRFSVM-NE-16. (d) HMRFSVM-E-16. (e) KmeansSVM-20.
(f) HMRFSVM-NE-20. (g) HMRFSVM-E-20.

of classes in a reference map and the latter is superior to the
minimum number in order to compare the efficiency of different
methods in terms of different numbers of clusters in K-means.
Ten iterations are chosen for this step, and the output of this step
and the edge-detected image are regularized by HMRF-EM for
providing the spatial information.

In parallel, for extracting spectral information, the data sets
are classified by SVM with a Gaussian kernel. The hypertuning
parameters are selected using fivefold cross-validation. To make
the comparison as fair as possible, SVM is performed on each
data set only once, and the CM of this step is directly used for
other methods. In other words, the spectral part of all methods is
the same, and only the spatial part is changed for each method.

In the final step, the results of the spectral and spatial steps
are combined using the MV method, and the output of this step
is the final CM.

In this paper, we use McNemar’s test to assess our classifica-
tion result. The aforementioned test is calculated as follows:

M =
d12 − d21√
d12 + d21

(12)

where d12 is the number of pixels which are erroneously classi-
fied by the proposed method and not by the compared method
and d21 has a dual meaning [29]. The differences between the
proposed method and others are statistically significant at 5%
significant level if |M | > 1.96.

In this paper, SVM denotes the traditional SVM, and
HMRFSVM is the proposed method, which is the combination
of HMRF and SVM. HMRFSVM-E and HMRFSVM-NE are
HMRFSVM with and without including the gradient step,
respectively, and 16 and 20 depict the number of predefined
clusters for K-means clustering. KmeansSVM denotes a com-
bination of K-means and SVM by using MV.

C. Results

1) Indian Pines: For the classification of Indian Pines, all
of the available data channels are taken into consideration
without performing feature reduction. It should be noted
that all 16 classes were considered in order to evaluate the
efficiency of different methods. The result of the classification
for each class along with the overall accuracy and the kappa

TABLE II
INDIAN PINES: THE RESULT OF MCNEMAR’S TEST TO VALIDATE

WHETHER THE DIFFERENCE BETWEEN CLASSIFICATION ACCURACIES OF

THE PROPOSED METHOD WITH BOTH PREDEFINED 16 AND 20 CLUSTERS

IS SIGNIFICANTLY DIFFERENT FROM OTHER METHODS

coefficient is given in Table I. Fig. 6 shows the CMs for SVM,
KmeansSVM-16, HMRFSVM-NE-16, HMRFSVM-E-16,
KmeansSVM-20, HMRFSVM-NE-20, and HMRFSVM-E-20.

The low spatial resolution of this data set adds more com-
plexity since it leads to the presence of the highly mixed pixels.
In this case, the unsupervised clustering (or/and clustering-
based segmentation) might be degraded by spectrally mixed
pixels in the image. In addition, the significant differences in the
number of pixels in the reference data for different classes add
more complexities on the data set and make the classification
and the segmentation tasks more complicated [30].

As can be seen from Table I, the overall accuracy and kappa
coefficient increase when the number of clusters increases from
16 to 20. For instance, the overall accuracies of KmeansSVM,
HMRFSVM-NE, and HMRFSVM-E are improved by almost
1.9%, 1.1%, and 2.8%, respectively, when the number of
clusters increases from 16 to 20. The main reason behind is
undersegmentation which occurs when the number of prede-
fined clusters is not sufficient. In this case, several regions are
detected as one and merged together, which is not desired. This
issue is easily solved by increasing the number of predefined
clusters in the K-means.

Results confirm that the spectral and spatial classification
approach using MV is able to improve the pixelwise classifi-
cation accuracy considerably, particularly for the classification
of large spatial structures in the data set. This fact helps in
reducing the noisy behavior of the pixelwise classification
significantly. However, for small structures, when the spatial
information from adjacent neighbors is taken into account, the
small structures are in danger of disappearing and merging
with bigger structures. Accurate segmentation can improve the
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Fig. 7. Classification maps of different methods for Salinas: (a) SVM, (b) KmeansSVM-16, (c) HMRFSVM-NE-16, (d) HMRFSVM-E-16, (e) KmeansSVM-20,
(f) HMRFSVM-NE-20, and (g) HMRFSVM-E-20.

spatial part of the spectral and spatial classification techniques
and can help overcome the aforementioned problem.

Due to the fact that the data set contains large spatial struc-
tures and the reference data does not comprise region edges, the
advantage of considering the gradient step for HMRFSVM-E
compared to HMRFSVM-NE is not obvious. With reference to
Table I, HMRFSVM-E-16 improves SVM and KmeansSVM by
5.1% and 1.3%, respectively. In the same way, HMRFSVM-E-
20 increases the overall accuracy of the classification of SVM
and KmeansSVM by 8.2% and 2.2%, respectively.

Table II shows the results from McNemar’s test. As can be
seen from the table, the differences in classification accuracy
between the proposed method and others are statistically
significant using 5% level of significance. In this case,
HMRFSVM-20 is statistically different from SVM,
KmeansSVM-20, and HMRFSVM-NE-20 by almost 22.15,
7.11, and 4.71 respectively.

2) Salinas: Fig. 7 shows the CMs for SVM,
KmeansSVM-16, HMRFSVM-NE-16, HMRFSVM-E-16,
KmeansSVM-20, HMRFSVM-NE-20, and HMRFSVM-E-20.
Table III shows the classification accuracies for the approaches
applied to the Salinas data. As can be seen from the table,
HMRFSVM-E gives the best performance in terms of classi-
fication accuracies when compared with the other methods.
For 16 clusters, HMRFSVM-E-16 improves the classification

accuracies of KmeansSVM-16 and SVM by 5.7% and 2.7%,
respectively. In the same way, when the number of clusters
was selected as 20, the proposed method showed improvement
over all studied methods. Results confirm that considering MV
helps different methods to decrease the noisy behavior of the
traditional SVM. The main assumption behind HMRF is that,
in a predefined neighborhood structure, any given pixel is more
likely to be allocated to a given cluster type if its neighboring
pixels are also of that type. Therefore, it is easy to conclude that
HMRF can be effective for images containing big structures.

KmeansSVM-16 shows the worst performance in terms of
classification accuracies when compared to other methods. The
main reasons for the bad performance of KmeansSVM-16
might be the following: 1) the spectral signature of Grapes-
untrained and Vinyard-untrained are close to each other; in
particular, considering only 16 clusters leads to merging of
the clusters which have a close spectral response, and
2) KmeansSVM-16 does not consider spatial dependences of
the image, and clustering is done by only considering the
spectral information. In other words, since spatial dependences
are not taken into account and the number of predefined clusters
is not enough, MV is not able to determine the correct class
within each segment.

As can be seen from Table IV, the differences between
the proposed method which considers edges and others were
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TABLE III
SALINAS: THE NUMBER OF TRAINING AND TEST SAMPLES; CLASSIFICATION ACCURACIES OF TEST SAMPLES IN PERCENTAGE FOR SVM,

KMEANSSVM-16, HMRFSVM-NE-16, HMRFSVM-E-16, KMEANSSVM-20, HMRFSVM-NE-20, AND HMRFSVM-E-20

TABLE IV
SALINAS: THE RESULT OF MCNEMAR’S TEST TO VALIDATE WHETHER

THE DIFFERENCE BETWEEN CLASSIFICATION ACCURACIES OF THE

PROPOSED METHOD WITH BOTH PREDEFINED 16 AND 20 CLUSTERS

IS SIGNIFICANTLY DIFFERENT FROM OTHER METHODS

significantly different when the Salinas data were clustered with
16 and 20 clusters.

D. Comparison of the Proposed Method With the
State of the Art

In this section, the proposed method is compared with some
recent approaches in terms of classification accuracy in order to
provide a brief vision regarding the capability of HMRFSVM-
E. Since Indian Pines is considered as one of best known data
sets which many researchers have tested their algorithms on,
that data set is used here for comparison. Table V reports the
overall accuracy and kappa coefficient for the state of the art.
In the following, we only analyze methods which have shown
better classification accuracies than the proposed approach. The
methods with better results than the proposed approach are
shown in bold. For better understanding of the methods used
for comparison, we refer readers to the references which can be
found in front of each method in Table V.

As can be seen from Table V, the proposed method has
an acceptable result in comparison with the other methods. In
the following discussion, the proposed method is compared in
more detail to SVMMRF-E [14], SVMMSF + MV [31], and
MSSC-MSF [28].

1) HMRFSVM-E Versus SVMMRF-E: In SVMMRF-E, the
input data set is at first classified by a probabilistic SVM and
then regularized by MRF using a gradient step. The most impor-
tant disadvantage of SVMMRF-E is that the parameter β must

TABLE V
INDIAN PINES: COMPARISON WITH THE STATE OF THE ART.

THE METHODS WITH HIGHER ACCURACIES THAN THE

PROPOSED APPROACH ARE SHOWN IN BOLDFACE

be carefully set, but that parameter controls the importance of
the spatial energy terms versus the spectral energy term. With
reference to [14], different values of β can considerably change
the result of the classification, and that poses a problem for this
approach. In contrast, the method proposed in this paper is fully
automatic, i.e., there is no need to initialize the parameters in
order to achieve good results.

2) HMRFSVM-E Versus SVMMSF + MV: SVMMSF +
MV was proposed in [31]. In this method, the original data set
is initially classified by using a probabilistic pixelwise classifi-
cation technique. The output of this step provides both a CM
and a probability map. The outputs of the first step helps one to
select the most reliably classified pixels. For providing a map of
markers, the classification and probability maps are considered
to provide a connected component (CC) labeling of the CM.
Then, for each CC, the region is compared to a threshold M in
order to define whether the region is considered as being large
or small. The M parameter is initialized by considering the
resolution of the image along with typical sizes of the objects
of interest. If the region is considered as small, the marker is
the same with pixels of CC with probabilities more than S
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percent. The S parameter is set by considering the probability
of the presence of small structures in the image (which also
depends on the image resolution and the classes of interests).
If the region is considered as large, the marker is P (defining
the percentage of pixels within the large region to be used as
markers) percent of its pixels with the highest probabilities. The
output of this step is a map of markers. Furthermore, the result
of the previous step leads to the construction of a minimum
spanning forest. Finally, MV within the CCs provides the final
segmentation and CM. From the aforementioned description, it
can be observed that the method is not automatic. In addition,
in order to apply this method successfully, a comprehensive
knowledge regarding the different structures of the input data
is needed.

3) HMRFSVM-E Versus MSSC-MSF: The MSSC-MSF was
introduced in [28]. In this method, the input image is at
first classified by a pixelwise SVM. Second, The input image
is segmented with watershed segmentation, and the result is
combined with an SVM using MV. Third, the input data are
segmented by EM and are combined with SVM through MV.
Then, the input data set is segmented with recursive divide-and-
conquer approximation of HSEG and is combined with SVM
by using MV. Furthermore, the outputs of the three steps are
used for marker selection. The output of this step is then used
for the construction of a minimum spanning forest. Based on
the aforementioned workflow, it is easy to see that MSSC-MSF
is quite complicated and can become computationally very
demanding without parallel processing.

IV. CONCLUSION

In this paper, a fully automated framework which takes into
account both spectral information and spatial information has
been introduced for classification of hyperspectral images. In
the framework, SVM is used for the extraction of spectral
information. In parallel, HMRF-EM is used for the extraction
of spatial information. In the final step, those results are com-
bined by using MV. The efficiency of the proposed method
is tested in both situations with and without considering the
gradient step. The proposed method is evaluated on two data
sets (Indian Pines and Salinas). In both cases, the new approach
outperforms other studied methods. The classification of the
proposed method works better than SVM in terms of accuracies
and improves the results of overall accuracy by almost 8% and
3.2% for Indian Pines and Salinas, respectively. It should be
noted that the concept of HMRF is used for the first time in the
field of remote sensing in this paper, and the efficiency of that
for the segmentation of hyperspectral images is demonstrated.
Finally, it is shown in this paper that the method performs well
in terms of accuracies compared with the state of the art. In
addition, the proposed approach is fully automatic and user-
friendly in contrast to most of the methods.
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a b s t r a c t

Image segmentation has been widely used in document image analysis for extraction of printed charac-
ters, map processing in order to find lines, legends, and characters, topological features extraction for
extraction of geographical information, and quality inspection of materials where defective parts must
be delineated among many other applications. In image analysis, the efficient segmentation of images
into meaningful objects is important for classification and object recognition. This paper presents two
novel methods for segmentation of images based on the Fractional-Order Darwinian Particle Swarm
Optimization (FODPSO) and Darwinian Particle Swarm Optimization (DPSO) for determining the n-1 optimal
n-level threshold on a given image. The efficiency of the proposed methods is compared with other well-
known thresholding segmentation methods. Experimental results show that the proposed methods per-
form better than other methods when considering a number of different measures.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Image segmentation is the process of partitioning a digital im-
age into multiple regions. In other words, image segmentation
could assign a label to each pixel in the image such that pixels with
the same label share certain visual characteristics. These objects
contain more information than individual pixels since the interpre-
tation of images based on objects is more meaningful than that
based on individual pixels. Image segmentation is considered as
an important basic task in the analysis and understanding of
images, thus being widely used for further image processing
purposes such as classification and object recognition (Sezgin &
Sankur, 2004).

Image segmentation can be classified into four different types
including texture analysis based methods, histogram thresholding
based methods, clustering based methods and region based split
and merging methods (Brink, 1995). One of the most common
methods for the segmentation of images is the thresholding

method, which is commonly used for segmentation of an image into
two or more clusters (Kulkarni & Venayagamoorthy, 2010).

Thresholding techniques can be divided into two different
types: optimal thresholding methods (Kapur, Sahoo, & Wong,
1985; Kittler & Illingworth, 1986; Otsu, 1979; Pun, 1980; Pun,
1981) and property-based thresholding methods (Lim & Lee,
1990; Tsai, 1995 & Yin & Chen, 1993). The former group search
for the optimal thresholds which make the thresholded classes
on the histogram reach the desired characteristics. Usually, it is
made by optimizing an objective function. The latter group detects
the thresholds by measuring some selected property of the histo-
gram. Property-based thresholding methods are fast, which make
them suitable for the case of multilevel thresholding. However
the number of thresholds is hard to determine and needs to be
specified in advance.

Several algorithms have been proposed in literature that ad-
dressed the issue of optimal thresholding (Brink, 1995; Cheng,
Chen, & Li, 1998; Huang & Wang, 1995; Hu, Hou, & Nowinski,
2006; Kapur et al., 1985; Li, Zhao, & Cheng, 1995; Otsu, 1979;
Pun, 1980; Saha & Udupa, 2001; Tobias & Seara, 2002; Yin & Chen,
1993). While many of them address the issue of bi-level threshold-
ing, others have considered the multi-level problem. The problem
of bi-level thresholding is reduced to an optimization problem to
probe for the threshold t that maximizes the r2

B and minimizes
r2

W (Kulkarni & Venayagamoorthy, 2010). For two level threshold-
ing, the problem is solved by finding T⁄ which satisfies max
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r2
BðT

�Þ
� �

where 0 6 T⁄ < L and L is the maximum intensity value.
This problem could be extended to n-level thresholding through
satisfying max r2

B T�1; T
�
2; . . . ; T�n�1

� �
that 0 6 T�1 < T�2 < � � � <

T�n�1 < L. One way for finding the optimal set of thresholds is the
exhaustive search method. The exhaustive search method based
on the Otsu criterion (Otsu, 1979) is simple, but it has a disadvan-
tage that it is computationally expensive (Kulkarni & Venayaga-
moorthy, 2010). Exhaustive search for n � 1 optimal thresholds
involves evaluations of fitness of n(L � n + 1)n�1 combinations of
thresholds (Kulkarni & Venayagamoorthy, 2010) so this method
is not suitable from a computational cost point of view. The task
of determining n � 1 optimal thresholds for n-level image thres-
holding could be formulated as a multidimensional optimization
problem.

Alternative to the Otsu method, several biologically inspired
algorithms have been explored in image segmentation (Fogel,
2000; Kulkarni & Venayagamoorthy, 2010; Lai & Tseng, 2004;
Yin, 1999). Bio-inspired algorithms have been used in situations
where conventional optimization techniques cannot find a satis-
factory solution, for example when the function to be optimized
is discontinuous, non-differentiable, and/or presents too many
nonlinearly related parameters (Floreano & Mattiussi, 2008). The
Particle Swarm Optimization (PSO) is a machine-learning tech-
nique loosely inspired by birds flocking in search of food (Kennedy
& Eberhart, 1995). It basically consists of a number of particles that
collectively move in the search space (e.g., pixels of the image) in
search of the global optimum (e.g., maximizing the between-class
variance of the distribution of intensity levels in the given image).
However, a general problem with the PSO and other optimization
algorithms is that of becoming trapped in a local optimum, such
that it may work in some problems but may fail on others
(Couceiro, Ferreira, & Machado, 2011).

The Darwinian Particle Swarm Optimization (DPSO) was formu-
lated by Tillett et al. in 2005 (Tillett, Rao, Sahin, Rao, & Brockport,
2005) in search of a better model of natural selection using the
PSO algorithm. In this algorithm, multiple swarms of test solutions
performing just like an ordinary PSO may exist at any time with
rules governing the collection of swarms that are designed to sim-
ulate natural selection. More recently, an extension of the DPSO
using fractional calculus to control the convergence rate of the
algorithm was presented by Couceiro et al. in 2011 (Couceiro
et al., 2011), being denoted as fractional-order DPSO (FODPSO).
The novel algorithm was successfully compared with both the frac-
tional-order PSO from Pires, Machado, Oliveira, Cunha, and Mendes
(2010) and the traditional DPSO.

Significant progress has been made in the creative inspiration of
bio-inspired computer algorithms applied to optimization, estima-
tion, control and many others through the application of principles
derived from the study of biology (Floreano & Mattiussi, 2008).
Santana, Alves, Correia, and Barata (2010) presented a swarm-
based model for trail detection in real-time. Experimental results
on a large dataset revealed the ability of the model to produce a suc-
cess rate of 91% using a 20 Hz camera with a resolution of
640 � 480 that was carried through a scenario at an approximate
speed of 1 m s�1. The authors in Kulkarni and Venayagamoorthy
(2010) compared the PSO and Bacteria Foraging algorithm (BF) with
the Otsu method to determine the optimal threshold level for the
deployment of sensor nodes. It should be noted that all methods
were run offline and the PSO presented a superior performance
when compared to the Otsu and the BF. Omran (2004) presented
the application of the PSO to the field of pattern recognition and im-
age processing. He introduced a clustering algorithm based on PSO.
Further, he developed a dynamic clustering algorithm that could
find the ‘‘optimum’’ number of clusters in a dataset with minimum
user interference. Sathya and Kayalvizhi (2010) proposed a
multilevel thresholding method based on PSO and compared their

method with GA-based thresholding method. Results showed that
the PSO-based image segmentation executed faster and was more
stable than GA.

This paper mainly focuses on using one of the best performing
PSO main variants (cf., (Couceiro, Luz, Figueiredo, Ferreira, & Dias,
2010; Couceiro et al., 2011), created by Tillett et al. (2005)),
denoted as DPSO, and the recently fractional-order extension,
denoted as FODPSO (Couceiro et al., 2011). This is the first work
to verify and apply the FODPSO and DPSO to multilevel segmenta-
tion. Bearing this idea in mind, the problem formulation of image
n-level thresholding is presented in the following sub-sections.
Section 2 presents a brief review of particle swarm algorithms,
focusing on the strengths and weaknesses of the traditional PSO,
the DPSO and the FODPSO. In Section 3, several images used to
compare the PSO-based image segmentation variants with other
commonly used algorithm such as genetic algorithms (GA) and
BF. Finally, Section 4 outlines the main conclusions.

1.1. Image thresholding

Multilevel segmentation techniques provide an efficient way to
perform image analysis. However, the automatic selection of a ro-
bust optimum n-level threshold has remained a challenge in image
segmentation. This section presents a more precise formulation of
the problem, introducing some basic notation.

Let there be L intensity levels in each RGB (red-green–blue)
component of a given image and these levels are in the range
{0,1,2, . . . ,L � 1}. Then one can define:

pC
i ¼

hC
i

N
;
XN

i¼1
C¼fR;G;Bg

pC
i ¼ 1; ð1Þ

where i represents a specific intensity level, i.e., 0 6 i 6 L � 1,C rep-
resents the component of the image, i.e., C = {R,G,B},N represents
the total number of pixels in the image and hC

i denotes the number
of pixels for the corresponding intensity level i in the component C.
In other words, hC

i represents an image histogram for each compo-
nent C, which can be normalized and regarded as the probability
distribution pC

i . The total mean (i.e., combined mean) of each com-
ponent of the image can be easily calculated as:

lC
T ¼

XL

i¼1
C¼fR;G;Bg

ipC
i : ð2Þ

The 2-level thresholding can be extended to generic n-level thres-
holding in which n � 1 threshold levels tC

j ; j ¼ 1; . . . ;n� 1, are nec-
essary and where the operation is performed as expressed below:

FCðx; yÞ ¼

0; f Cðx; yÞ 6 tC
1

1
2 tC

1 þ tC
2

� �
; tC

1 < f Cðx; yÞ 6 tC
2

..

.

1
2 tC

n�2 þ tC
n�1

� �
; tC

n�2 < f Cðx; yÞ 6 tC
n�1

L; f Cðx; yÞ > tC
n�1

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3Þ

where x and y are the width (W) and height (H) pixel of the image of
size H �W denoted by fC(x,y) with L intensity levels in each RGB
component. In this situation, the pixels of a given image will be di-
vided into n classes DC

1 ; . . . ;DC
n , which may represent multiple ob-

jects or even specific features on such objects (e.g., topological
features).

The simplest and computationally most efficient method of
obtaining the optimal threshold is the one that maximizes the be-
tween-class variance which can be generally defined by:
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rC2

B ¼
Xn

j¼1
C¼fR;G;Bg

wC
j lC

j � lC
T

� �2
; ð4Þ

where j represents a specific class in such a way that wC
j and lC

j are
the probability of occurrence and mean of class j, respectively. The
probabilities of occurrence wC

j of classes DC
1 ; . . . ;DC

n are given by:

wC
j ¼

XtC
j

i¼1
C¼fR;G;Bg

pC
i ; j ¼ 1

XtC
j

i¼tC
j�1
þ1

C¼fR;G;Bg

pC
i ; 1 < j < n

XL

i¼tC
j�1
þ1

C¼fR;G;Bg

pC
i ; j ¼ n

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

; ð5Þ

The mean of each class lC
j can then be calculated as:

lC
j ¼

XtC
j

i¼1
C¼fR;G;Bg

ipC
i

wC
j
; j ¼ 1

XtC
j

i¼tC
j�1
þ1

C¼fR;G;Bg

ipC
i

wC
j
; 1 < j < n

XL

i¼tC
j�1
þ1

C¼fR;G;Bg

ipC
i

wC
j
; j ¼ n

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

; ð6Þ

In other words, the problem of n-level thresholding is reduced to an
optimization problem to search for the thresholds tC

j that maxi-
mizes the three objective functions (i.e., fitness function) of each
RGB component, generally defined as:

uC ¼ max
1 < tC

1 < . . . < tC
n�1 < L

C ¼ fR;G;Bg

rC2

B tC
j

� �
: ð7Þ

Computing this optimization problem involves a much larger com-
putational effort as the number of threshold levels increase. This
brings us to the question: which kind of method should be used
to solve this optimization problem for real-time applications?

Many methods have been proposed in the literature (Sezgin &
Sankur, 2004). However, more recently, biologically inspired meth-
ods have been used as computationally efficient alternatives to
analytical methods to solve optimization problems (Couceiro
et al., 2010; Couceiro et al., 2010).

1.2. Efficiency evaluation

The computational time is one of the most important indicators
along with fitness value which determine the ability of the algo-
rithm. Provided that the data is large, the efficiency of the method
is restricted to a great extent (Fan, Han, & Wang, 2009). For instance,
remote sensing (RS) data, in particular hyperspectral images, are
considerably large most of the time so using a high speed and effi-
cient algorithm is highly preferable. Moreover, in real-time applica-
tions, using a high-speed algorithm is the main objective (Kulkarni
& Venayagamoorthy, 2010). As a result, the evaluation of the CPU
process time and fitness value seems vitally important to show
the efficiency of the new method. In addition, since all bio-inspired
methods are random and stochastic, the results are not completely

the same in each run. Consequently, the stability of different
methods should be evaluated by an appropriate index such as stan-
dard deviation value which will be described in Section 3.

PSO-based segmentation algorithms have been one of the most
used in recent years. In fact, the traditional PSO-based segmenta-
tion has already been compared with GA-based algorithms or even
exhaustive ones and has been found to present better results and
being faster than both. In Hammouche, Diaf, and Siarry (2010),
PSO-based segmentation method was superior compared to other
algorithms such as GA, Differential Evaluation (DE), Ant Colony
Optimization (ACO), Simulated Annealing (SA) and Tabu Search
(TS) in terms of precision, robustness of the results and runtime.
In Sathya and Kayalvizhi (2010), the authors show that PSO outper-
forms GA in terms of CPU time and fitness value for Kapur’s and Ot-
su’s functions. In Jiang, Luo, and Yang (2007), results show that
PSO-family methods act better than GA with a learning operator
(GA-L) in different measures. As a result, it is easy to detect that
PSO-based segmentation methods are considered an efficient way
in terms of finding optimal thresholds in less CPU process time.
In Kulkarni and Venayagamoorthy (2010), PSO has been shown to
be significantly faster than BF and exhaustive methods. As a result,
comparison of the new methods with PSO in terms of CPU process
time can be completely satisfying.

In this paper, two novel methods for segmentation of images
based on DPSO and FODPSO are proposed. Both DPSO and FODPSO
were introduced by Tillett et al. (2005) and Couceiro et al. (2011),
respectively, for optimization of some primary test functions. We
herein extend the concept of the algorithms to image segmentation.
Therefore, they will be used to solve the Otsu problem for delineat-
ing multilevel threshold values. In other words, proposing a new
thresholding based segmentation method which is robust in terms
of the results and runtime, makes up our main goal. Further, in or-
der to show the advantages of the new methods, we compare both
algorithms with other algorithms that have been commonly used in
the literature to determine the n � 1 optimal n-level threshold on
given images.

2. A brief review of the algorithms

The original PSO algorithm was developed by Eberhart and Ken-
nedy in 1995 (Kennedy & Eberhart, 1995). The PSO basically takes
advantage of the swarm intelligence concept, which is the property
of a system whereby the collective behaviors of unsophisticated
agents that are interacting locally with their environment, create
coherent global functional patterns (Del Valle, Venayagamoorthy,
Mohagheghi, Hernandez, & Harley, 2008). Imagine a flock of birds
where each bird cries at an intensity proportional to the amount
of food that it finds at its current location. At the same time each
bird can perceive the position of neighboring birds and can tell
which of the neighboring birds emits the loudest cry. There is a
good chance that the flock will find a spot with the highest concen-
tration of food if each bird follows a trajectory that combines three
rules: (i) keep flying in the same direction; (ii) return to the loca-
tion where it found the highest concentration of insects so far;
and (iii) move toward the neighboring bird that cries the loudest
(Kulkarni & Venayagamoorthy, 2010).

2.1. Particle Swarm Optimization (PSO)

In the traditional PSO, the candidate solutions are called parti-
cles. These particles travel through the search space to find an opti-
mal solution, by interacting and sharing information with neighbor
particles, namely their individual best solution (local best) and
computing the neighborhood best. Also, in each step of the proce-
dure, the global best solution obtained in the entire swarm is
updated. Using all of this information, particles realize the loca-
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tions of the search space where success was obtained, and are
guided by these successes.

In each step of the algorithm (Table 1), a fitness function is used
to evaluate the particle success. To model the swarm, each particle
n moves in a multidimensional space according to position xn

t

� �
and velocity vn

t

� �
values which are highly dependent on local best

x
^n

t

� �
, neighborhood best n

^n
t

� �
and global best g

^n
t

� �
information:

vn
tþ1 ¼ wvn

t þ q1r1 g
^n

t � xn
t

� �
þ q2r2 x

^n
t � xn

t

� �
þ q3r3 n

^n
t � xn

t

� �
; ð8Þ

xn
tþ1 ¼ xn

t þ vn
tþ1: ð9Þ

The coefficients w, q1, q2 and q3 assign weights to the inertial influ-
ence, the global best, the local best and the neighborhood best when
determining the new velocity, respectively. Typically, the inertial
influence is set to a value slightly less than 1. q1, q2 and q3 are con-
stant integer values, which represent ‘‘cognitive’’ and ‘‘social’’ com-
ponents. However, different results can be obtained by assigning
different influences for each component. For example, some meth-
ods do not consider the neighborhood best and q3 is set to zero.
Depending on the application and the characteristics of the prob-
lem, tuning these parameters properly will lead to better results.
The parameters r1, r2 and r3 are random vectors with each compo-
nent generally a uniform random number between 0 and 1. The in-
tent is to multiply a new random component per velocity
dimension, rather than multiplying the same component with each
particle’s velocity dimension.

The particles in the PSO are evaluated for the fitness function,
which is defined as the between-class variance r2

B of the image-
intensity distributions previously represented in (7).

In the beginning, the particles’ velocities are set to zero and
their position is randomly set within the boundaries of the search
space. The search space will depend on the number of intensity
levels L, i.e., if the frames are 8-bit images then the particles will
be deployed between 0 and 255.

The local, neighborhood and global bests are initialized with the
worst possible values, taking into account the nature of the prob-
lem. The other parameters that need to be adjusted are population
size and stopping criteria. The population size is very important to
optimize to get an overall good solution in an acceptable time limit.
Stopping criteria can be a predefined number of iterations without
getting better results or other criteria, depending on the problem.

PSO reveals an effect of implicit communication between parti-
cles (similar to broadcasting) by updating neighborhood and global
information, which affect the velocity and consequent position of
particles. Also, there is a stochastic exploration effect due to the
introduction of the random multipliers (r1,r2 and r3).The PSO has
been successfully used in many applications such as robotics (Cou-
ceiro, Luz, Figueiredo, & Ferreira, 2012; Pires, Oliveira, Machado, &
Cunha, 2006; Tang, Zhu, & Sun, 2005), electric systems (Alrashidi &
El-Hawary, 2006; Del Valle et al., 2008) and sports engineering
(Couceiro et al., 2010).

2.2. Darwinian PSO

However, a general problem with the PSO and other optimiza-
tion algorithms is that of becoming trapped in a local optimum
such that it may work well on one problem but may fail on another
problem. In order to overcome this problem many authors have
suggested other adjustments to the parameters of the PSO algo-
rithm combining fuzzy logic (FAPSO) where the inertia weight w
is dynamically adjusted using fuzzy ‘‘IF–THEN’’ (Hammouche
et al., 2010) rules or Gaussian approaches (GPSO) where the inertia
constant w is no longer needed and the acceleration constants q1,
q2 and q3 are replaced by random numbers with Gaussian distribu-
tions (Jiang et al., 2007). More recently, Pires et al. used fractional
calculus to control the convergence rate of the PSO (Sabatier et al.,
2007). The authors rearrange the original velocity equation (8) in
order to modify the order of the velocity derivative. Alternatively,
many authors have considered incorporating selection, mutation
and crossover, as well as the DE, into the PSO algorithm. The main
goal is to increase the diversity of the population by either prevent-
ing the particles to move too close to each other and collide
(Machado et al., 2010; Ortigueira & Tenreiro Machado, 2003) or
to self-adapt parameters such as the constriction factor, accelera-
tion constants (Podlubny, 1999), or inertia weight (Debnath, 2003).

The fusion between GA and the PSO originated the GA-PSO (Cou-
ceiro, Ferreira, & Machado, 2010) which combines the advantages
of swarm intelligence and a natural selection mechanism, such as
GA, in order to increase the number of highly evaluated agents,
while decreasing the number of lowly evaluated agents at each
iteration step. Similar to this last one, the EPSO is an evolutionary
approach that incorporates a selection procedure to the original
PSO algorithm, as well as self-adapting properties for its parame-
ters. This algorithm adds a tournament selection method used in
evolutionary programming (EP) (Pires et al., 2010). Based on the
EPSO, a differential evolution operator has been proposed to im-
prove the performance of the algorithm in two different ways.
The first one (Yasuda, Iwasaki, Ueno, & Aiyoshi, 2008) applies the
differential evolution operator to the particle’s best position to
eliminate the particles falling into local minima (DEPSO) while
the second one (Venter & Sobieszczanski-Sobieski, 2002) applies
it to find the optimal parameters (inertia and acceleration con-
stants) for the canonical PSO (C-PSO).

In search of a better model of natural selection using the PSO algo-
rithm, the Darwinian Particle Swarm Optimization (DPSO) was for-
mulated (Tillett et al., 2005), in which many swarms of test
solutions may exist at any time. Each swarm individually performs
just like an ordinary PSO algorithm with rules governing the collection
of swarms that are designed to simulate natural selection. Despite the
similarities between the PSO and GAs, like randomly generated popu-
lation, fitness function evaluation, population update, search for opti-
mality with random techniques and not guaranteeing success; PSO
does not use genetic operators like crossover and mutation, thus

Table 1
The PSO algorithm.

Initialize swarm (Initialize xn
t ;vn

t ; x
^n

t ; n
^n

t and g
^n

t )
Loop:

for all particles
Evaluate the fitness uC of each particle

Update x
^n

t ; n
^n

t and g
^n

t

Update vn
t and xn

t

end
until stopping criteria (convergence)

Table 2
The DPSO algorithm.

Main program loop Evolve swarm algorithm

For each swarm in the collection For each particle in the swarm
Evolve the swarm (Evolve
Swarm Algorithm: right)

Update Particles’ Fitness

Allow the swarm to spawn Update Particles’ Best
Delete ‘‘failed’’ swarms Move Particle

If swarm gets better
Reward swarm: spawn particle:

extend swarm life
If swarm has not improved

Punish swarm: possibly delete
particle: reduce swarm life
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not being considered an evolutionary technique. On the other hand,
the Darwinian Particle Swarm Optimization (DPSO) extends the PSO
to determine if natural selection (Darwinian principle of survival of

the fittest) can enhance the ability of the PSO algorithm to escape from
local optima. The idea is to run many simultaneous parallel PSO algo-
rithms, each one a different swarm, on the same test problem and a

Fig. 1. Different test cases with their histograms.
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simple selection mechanism is applied. When a search tends to a local
optimum, the search in that area is simply discarded and another area
is searched instead. In this approach, at each step, swarms that get
better are rewarded (extend particle life or spawn a new descendent)
and swarms which stagnate are punished (reduce swarm life or delete
particles). To analyze the general state of each swarm, the fitness of all
particles is evaluated and the neighborhood and individual best posi-
tions of each of the particles are updated. If a new global solution is
found, a new particle is spawned. A particle is deleted if the swarm
fails to find a fitter state in a defined number of steps (Table 2).

Some simple rules are followed to delete a swarm, delete parti-
cles, and spawn a new swarm and a new particle: (i) when the
swarm population falls below a minimum bound, the swarm is de-
leted; and (ii) the worst performing particle in the swarm is de-
leted when a maximum threshold number of steps (search
counter SCmax

C ) without improving the fitness function is reached.
After the deletion of the particle, instead of being set to zero, the
counter is reset to a value approaching the threshold number,
according to:

SCCðNkillÞ ¼ SCmax
C 1� 1

Nkill þ 1

� �
; ð10Þ

where Nkill is the number of particles deleted from the swarm over a
period in which there was no improvement in fitness. To spawn a
new swarm, a swarm must not have any particle ever deleted and
the maximum number of swarms must not be exceeded. Still, the
new swarm is only created with a probability of p = f/NS, with f a
random number in [0,1] and NS the number of swarms. This factor
avoids the creation of newer swarms when there are large numbers
of swarms in existence. The parent swarm is unaffected and half of
the parent’s particles are selected at random for the child swarm
and half of the particles of a random member of the swarm collec-
tion are also selected. If the swarm initial population number is not
obtained, the rest of the particles are randomly initialized and
added to the new swarm. A particle is spawned whenever a swarm
achieves a new global best and the maximum defined population of
a swarm has not been reached. Like the PSO, a few parameters also
need to be adjusted to run the algorithm efficiently: (i) initial
swarm population; (ii) maximum and minimum swarm population;
(iii) initial number of swarms; (iv) maximum and minimum num-
ber of swarms; and (v) stagnancy threshold. In estimation problems
previously studied (Del Valle et al., 2008) and robotic exploration
strategies developed (Alrashidi & El-Hawary, 2006), the DPSO has
been successfully compared with the PSO showing a superior
performance.

2.3. Fractional-Order Darwinian PSO

The FODPSO presented in Couceiro et al. (2011) is an extension
of the DPSO in which fractional calculus is used to control the
convergence rate of the algorithm. Fractional calculus (FC) has
attracted the attention of several researchers (Machado et al.,
2010; Ortigueira & Tenreiro Machado, 2003; Sabatier et al.,
2007), being applied in various scientific fields such as engineering,
computational mathematics, fluid mechanics, among others (Cou-
ceiro et al., 2010; Debnath, 2003; Pires et al., 2010; Podlubny,
1999). The discrete time implementation of the Grünwald–Letnikov
definition based on the concept of fractional differential with a 2 C
of the signal x(t), is given by:

Da½xðtÞ� ¼ 1
Ta

Xr

k¼0

ð�1ÞkCðaþ 1Þxðt � kTÞ
Cðkþ 1ÞCða� kþ 1Þ ; ð11Þ

Table 3
Initial parameters of the PSO, DPSO and FODPSO.

Parameter PSO DPSO FODPSO

Num of Iterations 8 8 8
Population 200 30 30
q1 1.5 1.5 1.5
q2 1.5 1.5 1.5
W 1.2 1.2 1.2
Vmax 2 2 2
Vmin �2 �2 �2
X max 255 255 255
X min 0 0 0
Min population – 10 10
Max population – 50 50
Num of swarms – 4 4
Min swarms – 2 2
Max swarms – 6 6
Stagnancy – 10 10
Fractional coefficient – – 0.75

Table 4
Average ± STD fitness values of different methods for different test cases.

Test image Thresholds FODPSO DPSO BF PSO GA

Airplane 2 1837.7974 ± 0.0140 1837.7787 ± 0.0298 1837.7517 ± 0.1021 1837.7222 ± 0.0796 1837.7144 ± 0.8355
3 1911.6564 ± 0.0557 1911.5429 ± 0.1287 1910.7434 ± 1.5123 1905.7664 ± 1.2742 1844.5642 ± 2.0290
4 1954.7374 ± 0.1624 1954.5612 ± 0.3566 1954.2480 ± 1.8991 1953.8872 ± 2.6057 1950.5919 ± 5.2334
5 1979.6190 ± 0.2067 1978.7698 ± 0.5637 1978.4335 ± 2.1062 1977.9742 ± 3.1647 1973.0894 ± 7.4164

Hunter 2 3064.2066 ± 0.0292 3064.1684 ± 0.0470 3064.1188 ± 0.0322 3064.0688 ± 0.2534 3064.0156 ± 0.3781
3 3213.2101 ± 0.1217 3212.9363 ± 0.1930 3213.4460 ± 0.9627 3212.0585 ± 1.5406 3211.7947 ± 2.0141
4 3269.0574 ± 0.3526 3268.4573 ± 0.6478 3266.3504 ± 2.2936 3257.1767 ± 3.2342 3231.1313 ± 5.0298
5 3307.5841 ± 0.7660 3305.6159 ± 1.6202 3291.1339 ± 3.6102 3276.3173 ± 4.1811 3244.7387 ± 9.7412

Butterfly 2 1553.0732 ± 0.0010 1553.0615 ± 0.0426 1553.0734 ± 0.0643 1553.0687 ± 0.0846 1552.4129 ± 1.5470
3 1669.1929 ± 0.0706 1669.0419 ± 0.3586 1667.2801 ± 1.2113 1665.7589 ± 2.6268 1662.6963 ± 3.4022
4 1710.6595 ± 0.4651 1709.9903 ± 0.6253 1707.0994 ± 2.2120 1702.9069 ± 3.7679 1696.6940 ± 5.3135
5 1735.8941 ± 0.5968 1734.4957 ± 1.4495 1733.0317 ± 3.5217 1730.7879 ± 6.0747 1716.0428 ± 7.5842

Road 2 1321.3721 ± 0.0083 1321.3351 ± 0.0202 1321.3366 ± 0.0386 1321.1132 ± 0.0969 1320.7661 ± 0.8599
3 1433.8901 ± 0.1036 1433.7674 ± 0.1643 1430.8712 ± 0.7123 1425.3853 ± 1.0941 1418.4695 ± 3.6425
4 1490.1314 ± 0.2609 1489.5771 ± 0.9921 1488.2286 ± 1.9801 1483.1709 ± 2.8351 1476.7349 ± 5.8790
5 1519.7184 ± 0.3494 1518.8896 ± 1.1087 1518.3493 ± 2.2354 1511.7474 ± 4.0074 1500.8104 ± 8.2580

Map 2 2340.3950 ± 0.0000 2340.3950 ± 0.0000 2340.3950 ± 0.0026 2340.3950 ± 0.0000 2252.3864 ± 1.2171
3 2529.9384 ± 0.0000 2529.9384 ± 0.0000 2529.9348 ± 0.0548 2526.3034 ± 1.1180 2503.7932 ± 2.1368
4 2621.1476 ± 0.0000 2621.1476 ± 0.0000 2621.1476 ± 0.3710 2618.4894 ± 2.9722 2617.9534 ± 3.7246
5 2670.0640 ± 0.0000 2670.0640 ± 0.1969 2668.0699 ± 1.2189 2665.4116 ± 3.8519 2660.8599 ± 5.4901
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where C is the gamma function, T is the sampling period and r is the
truncation order.

An important property revealed by the Grünwald–etnikov is that
while an integer-order derivative just implies a finite series, the
fractional-order derivative requires an infinite number of terms.
Therefore, integer derivatives are ‘local’ operators while fractional
derivatives have, implicitly, a ‘memory’ of all past events. However,
the influence of past events decreases over time.

The characteristics revealed by fractional calculus make this
mathematical tool well suited to describe phenomena such as irre-
versibility and chaos because of its inherent memory property. In
this line of thought, the dynamic phenomena of particle’s trajec-
tory configure a case where fractional calculus tools fit adequately.

Considering the inertial influence of (8) as w = 1, assuming T = 1
and similarly to Pires et al. (2010) work, the following expression
can be defined:

Da vn
tþ1

� 	
¼ q1r1 g

^n
t � xn

t

� �
þ q2r2 x

^n
t � xn

t

� �
þ q3r3 n

^n
t � xn

t

� �
: ð12Þ

Preliminary experimental tests in Couceiro et al. (2011) presented
similar results for r P 4. Furthermore, the computational require-
ments increase linearly with r, i.e., the FODPSO present a OðrÞmem-
ory complexity. Hence, using only the first r = 4 terms of differential
derivative given by (11) and (8) can be rewritten as (13):

vn
tþ1 ¼ avn

t þ
1
2
avn

t�1 þ
1
6
að1� aÞvn

t�2 þ
1

24
að1� aÞð2� aÞvn

t�3

þ q1r1 g
^n

t � xn
t

� �
þ q2r2 x

^n
t � xn

t

� �
þ q3r3 n

^n
t � xn

t

� �
: ð13Þ

The DPSO is then considered as being a particular case of the FOD-
PSO when a = 1 (without ‘memory’). Hence, the value of a greatly af-
fect the inertial particles. With a small a, particles will ignore their
previous activities, thus ignoring the system dynamics and being
susceptible to get stuck in local solutions (i.e., exploitation behav-
ior). On the other hand, with a large a, particles will present a more
diversified behavior which allows exploring new solutions, thus
improving the long-term performance (i.e., exploration behavior).
However, if the exploration level is too high, then the algorithm
may take too much time to find the global solution. Based on the
experimental results from Couceiro et al. (2011), it will be used a
fractional coefficient of a = 0.6, thus resulting in a balance between
exploitation and exploration.

3. Experimental results

DPSO- and FOPSO-based image segmentation which proposed in
this paper was programmed in MATLAB on a computer having Intel
Core 2 Duo T5800 processor (2.00 GHz) and 3GB of memory. The
proposed methods are tested on a few common images including:
Airplane, Hunter, Butterfly, Road and Map. Fig. 1 illustrates different
test cases along with the histograms of the images. The efficiency
of the proposed methods is evaluated by comparing their results
with a few popular methods such as GA, BF and PSO.

The PSO, DPSO and FODPSO methods are parameterized algo-
rithms. Therefore, one needs to be able to choose the parameter
values that would result in faster convergence (Table 3). The cog-
nitive, social and inertial weights were chosen taking into account
several works focusing on the convergence analysis of the tradi-
tional PSO (cf., Jiang et al. (2007) and Couceiro et al. (2011)).

Table 5
Average thresholds of different segmentation algorithm.

Image Thresholds FODPSO DPSO BF PSO GA

Airplane 2 116, 174 116, 174 117, 175 117, 174 116, 175
3 93, 145, 190 95, 148, 193 91, 147, 190 99, 158, 193 86, 133, 204
4 88, 132, 175, 203 88, 132, 174, 204 84, 127, 169, 202 84, 125, 168, 201 71, 119, 164, 200
5 70, 106, 144, 180, 205 74, 109, 148, 181, 205 71, 110, 138, 175, 203 60, 101, 138, 177, 204 84, 124, 164, 188, 204

Hunter 2 51, 116 51, 116 51, 117 52, 116 51, 115
3 35, 86, 134 35, 87, 134 36, 86, 135 39, 86, 135 36, 89, 133
4 31, 72, 110, 146 26, 63, 102, 141 31, 80, 120, 152 36, 84, 130, 157 39, 93, 142, 163
5 21, 53, 89, 122, 152 22, 52, 90, 118, 149 31, 73, 109, 141, 178 37, 85, 125, 154, 177 39, 94, 130, 169, 204

Butterfly 2 99, 151 98,151 99, 151 99, 150 100, 151
3 82, 119, 159 81, 119, 160 78, 117, 162 79, 119, 164 74, 115, 155
4 69, 98, 126, 162 71, 100, 130, 163 75, 105, 135, 165 80, 113, 145, 177 82, 119, 154, 184
5 72, 98, 125, 150, 180 74, 103, 126, 153, 179 76, 104, 129, 154, 180 75, 106, 129, 157, 180 77, 107, 134, 171, 185

Road 2 90, 154 90, 154 90, 155 91, 155 90, 151
3 86, 129, 186 86, 130, 187 89, 133,180 85, 127, 169 77, 121, 184
4 72, 105, 135, 190 72, 106, 139, 193 78, 111, 139, 189 78, 114, 147, 205 74, 97, 139, 205
5 69, 98, 124, 151, 202 73, 102, 124, 155, 205 70, 102, 128, 159, 211 71, 103, 134, 173, 225 79, 109, 142, 179, 204

Map 2 110, 186 113, 177 109, 176 113, 177 81, 173
3 95, 148, 201 95, 140, 197 98, 146, 189 81, 145, 197 83, 132, 181
4 81, 122, 169, 218 88, 122, 173, 224 88, 134, 173, 222 92, 133, 162, 206 90, 110, 158, 204
5 80, 112, 140, 179, 218 76, 120, 145, 186, 221 80, 109, 135, 165, 224 79, 116, 139, 162, 204 68, 106, 138, 170, 214

Table 6
The average CPU process time of different segmentation methods.

Test image No. of thresholds FODPSO (S) DPSO (S) PSO (S)

Airplane 2 0.4221 0.4382 0.4127
3 0.4623 0.4844 0.4936
4 0.5438 0.5516 0.6057
5 0.5890 0.6065 0.7020

Hunter 2 0.3871 0.3966 0.3927
3 0.4544 0.4761 0.4941
4 0.5479 0.5517 0.5973
5 0.5913 0.6031 0.6956

Butterfly 2 0.3661 0.3805 0.3854
3 0.4483 0.4689 0.4925
4 0.5038 0.5235 0.6018
5 0.5731 0.5811 0.7001

Road 2 0.3674 0.3875 0.3903
3 0.4569 0.4726 0.4896
4 0.5071 0.5241 0.5949
5 0.5680 0.5696 0.6930

Map 2 0.3542 0.3463 0.3828
3 0.4214 0.4366 0.4858
4 0.4907 0.5047 0.5877
5 0.5589 0.5621 0.6869
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3.1. Fitness evaluation

Since all the optimization methods are stochastic and random
population-based, each of them runs 20 times and the average
and standard deviation fitness values are brought in Table 4. All fit-
ness values are calculated for 2, 3, 4, 5 thresholds. It is noteworthy
that, despite small differences, all algorithms seem to reach the
vicinities of the optimal solution, i.e., higher between-class

variance. Nevertheless, those differences are more evident in most
situations as the number of thresholds increase. The FODPSO leads
with a slightly higher fitness value than the DPSO.

Note that they both use natural selection in order to avoid stag-
nation. However, the FODPSO has a fractional order mechanism
that allows controlling the convergence rate of particles, thus pre-
senting a more exploiting behavior when near the solution vicini-
ties. In regards to the differences of PSO family and GA, the PSO

Fig. 2. The result of segmentation with 2, 3, 4, 5 thresholds, respectively (from left to right).
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family is an inherently continuous algorithm where as a GA is an
inherently discrete algorithm (Venter & Sobieszczanski-Sobieski,
2002) and experiments conducted by Veeramachaneni, Peram, Mo-
han, and Osadciw (2003) showed that a PSO performed better than
GAs when applied on some continuous optimization problems. In
addition, PSO family was compared with a GA by Eberhart and
Shi (1998) and Kennedy and Spears (1998). The results showed
that PSO is generally faster and more robust to local solutions than
GAs, especially when the dimension of a problem increases. As a re-
sult, when the number of dimension increases, a significant differ-
ence between the fitness values of the PSO family and GA happens
and the PSO family shows better results than GA in higher dimen-
sions. However, the tradition PSO suffers from premature conver-
gence. Consequently, BF acts better than PSO in most cases. Table
5 demonstrates the optimal threshold values for the different
methods.

3.2. CPU processing time

With regard to the CPU processing time, the PSO has been pro-
ven in the literature to require less CPU processing time for finding
thresholds in comparison to GA and BF (e.g., Sathya & Kayalvizhi,
2011). Therefore, we only compare the CPU time of PSO, DPSO
and FODPSO. That brings us to Table 6 in which the FODPSO pre-
sents the best processing time, i.e., it is able to reach its solution
in less CPU time than PSO and DPSO. The DPSO still presents a lower
CPU time than the PSO especially for higher threshold numbers.
Nevertheless, it still needs more time to reach its solution than
the DPSO. This is a small repercussion of having an exploitation
activity when near the solution – a high level of exploitation allows
a good short-term performance but slows down the convergence in
order to reach a more feasible solution.

To visually compare the segmented results of different test
cases by FODPSO, the segmented images with various threshold
levels are given in Fig. 2. As can be seen from the figure, images
with higher level of segmentation have more detail than the other
images. In contrast, the 3 level segmented image is considered as
the roughest image in different test cases. It is easy to conclude
that by increasing the level of segmentation, the segmented image
includes more detail. As a result, the 6-level segmented image in
different test cases is smoother than the 3-level one.

3.3. Stability of different methods

Since almost all evolutionary methods are stochastic and ran-
dom, the results are not completely the same in each run. Conse-
quently, their results are affected by the nature and ability of the
method. As a result, it seems necessary to evaluate the stability
of the population-based algorithms. The comparison of the outputs
gives us valuable information in terms of the stability of different
algorithms, and which thresholding method is more suitable for
segmentation of the images.

To evaluate the stability of the algorithm, the following index is
used:

STD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðri � lÞ2

N

vuut ð14Þ

where STD is the standard deviation, ri is the best fitness value of
the ith run of the algorithm, l is the average value of r and N is
the repeated times of each algorithm (N = 20). It is easy to detect
that the higher amount of STD represent more instability of the
algorithm. The standard deviation of the different evolutionary
algorithms for 20 runs, with 2, 3, 4, 5 thresholds are given in Table
4. From the Table 4, it can be seen that the FODPSO is the most sta-
ble evolutionary algorithms in comparison with others.

To improve the understanding of Table 4, Fig. 3 shows the stan-
dard deviation fitness values for the several algorithms in face of
different test cases with different levels. As can be seen, in all
experiments, GA shows the least stability among other bio-inspired
method. According to the result, FODPSO is the most stable algo-
rithm since illustrates the least STD values in comparison with
other methods. DPSO and BF make up the second and third orders
in terms of stability. In other words, the FODPSO-based segmenta-
tion is able to converge in approximately the same amount of time
regardless on the image and the initial condition of particles.

Despite the observation that both FODPSO and DPSO present
similar results, it is noteworthy that the fractional order algorithm
is able to reach a slightly better fitness solution in less time. This
should be highly appreciated as many applications require real-
time segmentation methods such as the autonomous deployment
of sensor nodes in a given environment or the detection of flaws
in quality inspection of materials. In addition, FODPSO is slightly

Fig. 3. Different STD values for different algorithms in face of different test cases (for each test case, 2, 3, 4, 5 thresholds, respectively (from left to right)).
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faster than DPSO since fractional calculus is used to control the con-
vergence rate of the algorithm. As described in Yasuda et al. (2008),
a swarm behavior can be divided into two activities: (i) exploitation;
and (ii) exploration. The first one is related with the convergence of
the algorithm, thus allowing a good short-term performance. How-
ever, if the exploitation level is too high, then the algorithm may be
stuck on local solutions. The second one is related with the diversi-
fication of the algorithm which allows exploring new solutions,
thus improving the long-term performance. However, if the explo-
ration level is too high, then the algorithm may take too much time
to find the global solution. In the DPSO, the trade-off between
exploitation and exploration can only be handled by adjusting the
inertia weight. While a large inertia weight improves exploration
activity, the exploitation may be improved using a small inertia
weight. Since the FODPSO presents a fractional calculus strategy
to control the convergence of particles with memory effect, the
coefficient a allows providing a higher level of exploration while
ensuring the global solution of the algorithm.

4. Conclusion

In this paper, two new methods for segmentation of images
were proposed which is based on Fractional-Order Darwinian Parti-
cle Swarm Optimization (FODPSO) and Darwinian Particle Swarm
Optimization (DPSO). The new methods were used for solving the
Otsu problem for delineating multilevel threshold values and to
overcome the disadvantages of previous evolutionary methods in
terms of trapping in local optimum and high CPU process time. In
this paper, the fitness value, STD and CPU process time were se-
lected as the measures for comparing the output of different meth-
ods. Results indicate that FODPSO is more efficient than other
methods in particular, when the level of segmentation increases,
thus being able to find the better thresholds with more stability
in less CPU processing time. As future research direction, the FOD-
PSO will be evaluated in remote sensing applications and further
compared with exhaustive methods. Moreover, due to the low com-
putational complexity of the algorithm, a future direction may be
the use of the FODPSO method in image segmentation applications
for the real-time autonomous deployment and distributed localiza-
tion of sensor nodes from an unmanned aerial vehicle (UAV).
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Abstract—Hyperspectral remote sensing images contain hun-
dreds of data channels. Due to the high dimensionality of the
hyperspectral data, it is difficult to design accurate and efficient
image segmentation algorithms for such imagery. In this paper,
a new multilevel thresholding method is introduced for the seg-
mentation of hyperspectral and multispectral images. The new
method is based on fractional-order Darwinian particle swarm
optimization (FODPSO) which exploits the many swarms of test
solutions that may exist at any time. In addition, the concept
of fractional derivative is used to control the convergence rate
of particles. In this paper, the so-called Otsu problem is solved
for each channel of the multispectral and hyperspectral data.
Therefore, the problem of n-level thresholding is reduced to an
optimization problem in order to search for the thresholds that
maximize the between-class variance. Experimental results are
favorable for the FODPSO when compared to other bioinspired
methods for multilevel segmentation of multispectral and hyper-
spectral images. The FODPSO presents a statistically significant
improvement in terms of both CPU time and fitness value, i.e., the
approach is able to find the optimal set of thresholds with a larger
between-class variance in less computational time than the other
approaches. In addition, a new classification approach based on
support vector machine (SVM) and FODPSO is introduced in this
paper. Results confirm that the new segmentation method is able
to improve upon results obtained with the standard SVM in terms
of classification accuracies.

Index Terms—Classification, image processing, multilevel seg-
mentation, swarm optimization.
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I. INTRODUCTION

IMAGE segmentation is regarded as the process of parti-
tioning a digital image into multiple regions or objects. In

other words, in image segmentation, a label is assigned to each
pixel in the image such that pixels with the same label share
certain visual characteristics [1]. These objects provide more
information than individual pixels since the interpretation of
images based on objects is more meaningful than the interpre-
tation based on individual pixels only. Image segmentation is
considered as an important task in the analysis, interpretation,
and understanding of images and is also widely used for image
processing purposes such as classification and object recogni-
tion [1]–[3].

Image segmentation plays a key role in the field of remote
sensing image analysis. For example, in order to improve
classification results, the integration of classification and seg-
mentation steps has recently been taken into account [4], [5].
In such cases, the decision to assign a pixel to a specific class
is simultaneously based on the feature vector of this pixel and
some additional information derived from the segmentation
step. To make this approach effective, an accurate segmentation
of the image is needed. A few methods for segmentation of mul-
tispectral and hyperspectral images have been introduced in the
literature. Some of these methods are based on region-merging
techniques, in which neighboring image segments are merged
with each other based on their homogeneity. For example, the
multiresolution segmentation method in eCognition software
uses this type of approach [6]. Tilton proposed a hierarchical
segmentation algorithm [7], which alternately performs region
growing and spectral clustering. There are an extensive num-
ber of segmentation methods that have been proposed in the
literature that exploit mathematical morphology approaches
[8]–[16], for segmentation of multispectral and hyperspectral
images.

Image segmentation can be classified into four specific types
including histogram-thresholding-based methods, texture-
analysis-based methods, clustering-based methods, and region-
based split and merging methods [17]. Thresholding is one
of the most commonly used methods for the segmentation of
images into two or more clusters [18]. Thresholding techniques
can be divided into two different types: optimal thresholding
methods [19]–[23] and property-based thresholding methods
[24]–[26]. Algorithms in the former group search for the
optimal thresholds which make the thresholded classes on the

0196-2892 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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histogram reach the desired characteristics. Usually, thresh-
olds are selected by optimizing an objective function. The
latter group detects the thresholds by measuring some selected
property of the histogram. Property-based thresholding methods
are fast, which makes them suitable for multilevel thresholding.
However, the number of thresholds for these approaches is
hard to determine and needs to be specified in advance.

Many algorithms have been proposed in literature to ad-
dress the issue of optimal thresholding (e.g., [19], [21], [22],
and [26]–[30]). While several research papers address bilevel
thresholding, others have considered the multilevel problem.
Bilevel thresholding is reduced to an optimization problem
to determine the threshold t that maximizes σ2

B (between-
class variance) and minimizes σ2

W (within-class variance) [18].
For two-level thresholding, the problem is solved by finding
the value of T ∗ which satisfies max(σ2

B(T ∗)), where 0 ≤
T ∗ < L and L is the maximum intensity value. This prob-
lem could be extended to n-level thresholding by satisfy-
ing max σ2

B(T ∗
1 , T ∗

2 , . . . , T ∗
n−1), where 0 ≤ T ∗

1 < T ∗
2 < · · · <

T ∗
n−1 < L. One way to find the optimal set of thresholds is by

using exhaustive search. A commonly used exhaustive search
is based on the Otsu criterion [21]. That approach is easy to
implement, but it has the disadvantage that it is computationally
expensive. Exhaustive search for n − 1 optimal thresholds in-
volves evaluations of fitness of n(L − n + 1)n−1 combinations
of thresholds [18]. Therefore, that method is not suitable from
a computational cost point of view. The task of determining
n − 1 optimal thresholds for n-level image thresholding could
be formulated as a multidimensional optimization problem.
To solve such a task, several biologically inspired algorithms
have been explored in image segmentation [18], [31]–[34].
Bioinspired algorithms have been used in situations where
conventional optimization techniques cannot find a satisfactory
solution or they take too much time to find it, e.g., when the
function to be optimized is discontinuous and nondifferentiable
and/or presents too many nonlinearly related parameters [35].

One of the best known bioinspired algorithms is particle
swarm optimization (PSO) [36]. The PSO consists of a number
of particles that collectively move in the search space (e.g.,
pixels of the image) in search of the global optimum (e.g.,
maximizing the between-class variance of the distribution of
intensity levels in the given image). However, a general problem
with the PSO and similar optimization algorithms is that they
may get trapped in local optimum points, and the algorithm may
work in some problems but may fail in others [37]. To overcome
such a problem, Tillett et al. [38] presented the Darwinian
PSO (DPSO). In the DPSO, multiple swarms of test solutions
performing just like an ordinary PSO may exist at any time,
with rules governing the collection of swarms that are designed
to simulate natural selection. More recently, Couceiro et al.
[35] have further extended the DPSO using fractional calcu-
lus to control the convergence rate of the algorithm. In [37],
fractional-order DPSO (FODPSO) was successfully compared
to both the fractional-order PSO (FOPSO) from Pires et al. [39]
and the traditional DPSO.

The main goal of this paper is to propose a computationally
efficient bioinspired segmentation method, which is robust for
partitioning remote sensing images into multiple regions. For

this purpose, a new method for segmentation of multispectral
and hyperspectral images based on the FODPSO is proposed.
To demonstrate the performance of this new method, a me-
thodical and statistical comparison with two other methods for
thresholding segmentation of images, namely, the well-known
PSO and the DPSO, is carried out. In summary, the main
contributions of this paper are as follows:

1) formal presentation of the FODPSO algorithm for image
segmentation;

2) evaluation of this novel algorithm using more complex
data sets (i.e., multispectral/hyperspectral) and compari-
son with other thresholding-based segmentation methods;

3) proposition of a novel classification approach based on
the concept of the new segmentation method to improve
the classification accuracy of the traditional support vec-
tor machine (SVM) method.

It should be noted that this is the first time that the concept of
FODPSO is used in remote sensing, thus showing the potential
of its use in efficient image segmentation to determine broad
groups of objects. The current paper partially builds on [36]
with an important study on how FODPSO performs for remote
sensing images while the segmentation level for such images
is changed. Moreover, a deep statistical analysis is conducted
so as to further sustain the proposed approach when compared
to others. Many problems in remote sensing have been solved
by considering optimization methods such as genetic algorithm
(GA) and PSO. Therefore, this paper introduces a very power-
ful optimization method, both in terms of speed and optimal
convergence, which can be considered for a wide variety of
problems in remote sensing. Some optimization methods are
fast but not efficient (for finding the global optimum) and vice
versa. It has been recently proved in [37] for benchmarking
optimization problems that the FODPSO is faster than the PSO
(the most well-known optimization algorithm in terms of speed)
and more efficient than the DPSO (in order to find the global
optimum while avoiding local optima). Therefore, applying the
FODPSO to the segmentation of images may allow achieving
both vital important goals at once. More specifically, due to its
convergence speed, this optimization method may present itself
as a potential solution to a wide variety of complex problems
in remote sensing such as hyperspectral image analysis—a
problem that many researchers are struggling with since hyper-
spectral images in remote sensing are very volumetric.

Bearing these ideas in mind, the problem formulation of im-
age n-level thresholding is presented in the following sections.
Section II presents a brief review of PSO and DPSO algorithms
and focuses on their strengths and weaknesses, thus paving the
way for a detailed description on the method that is proposed
in this paper. In Section III, two different remote sensing data
sets are considered, and the performances of the three different
methods are compared. In Section IV, the proposed segmenta-
tion approach is extended and applied for classification. Finally,
the main conclusion is outlined in Section IV.

II. METHODOLOGY

Multilevel segmentation techniques provide an efficient way
to perform image analysis. However, the automatic selection
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of a robust optimum n-level threshold remains a challenge
in segmentation of remote sensing images. In the following
discussion, a more precise formulation of the problem is intro-
duced along with the basic notation used in this paper.

A. Problem Formulation

Let there be L intensity levels in each component, e.g., three
color components for RGB images, of a given image, and
these levels are in the range {0, 1, 2, . . . , L − 1}. Then, one can
define

pC
i =

hC
i

N

L−1∑

i=0

pC
i = 1 (1)

where i represents a specific intensity level, i.e., 0 ≤ i ≤ L − 1;
C represents the component of the image, e.g., C = {R, G, B}
for RGB images; N represents the total number of pixels
in the image; and hc

i denotes the number of pixels for the
corresponding intensity level i in component C. In other words,
hc

i represents an image histogram for each component C, which
can be normalized and regarded as the probability distribution
pc

i . The total mean (i.e., combined mean) of each component of
the image can be easily calculated as

μC
T =

L−1∑

i=0

ipC
i = 1. (2)

The n-level thresholding presents n − 1 threshold levels tcj ,
j = 1, . . . , n − 1, and the operation is performed as

FC(x, y) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, fC(x, y) ≤ tC1
1
2

(
tC1 + tC2

)
, tC1 < fC(x, y) ≤ tC2

...
1
2

(
tCn−2 + tCn−1

)
, tCn−2 < fC(x, y) ≤ tCn−1

L − 1, fC(x, y) > tCn−1
(3)

where x and y are the width (W ) and height (H) of the pixel of
the image of size H × W denoted by f c(x, y) with L intensity
levels for each component. In this situation, the pixels of a
given image will be divided into n classes Dc

1, . . . , D
c
n, which

may represent multiple objects or even specific features for
such objects (e.g., topological features). The probabilities of
occurrence wc

j of classes Dc
1, . . . , D

c
n are given by

wC
j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑tC
j

i=0 pC
i , j = 1

∑tC
j

i=tC
j−1

+1
pC

i , 1 < j < n
∑L−1

i=tC
j−1

+1 pC
i , j = n.

(4)

The mean of each class μc
j can then be calculated as

μC
j =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑tC
j

i=0
pC

i

wC
j

q
, j = 1

∑tC
j

i=tC
j−1

+1

pC
i

wC
j

, 1 < j < n

∑L−1
i=tC

j−1
+1

pC
i

wC
j

, j = n.

(5)

The simplest and computationally most efficient method of
obtaining the optimal threshold is the one that maximizes
the between-class variance of each component which can be
generally defined by

σc2

B =

n∑

j=1

wC
j

(
μC

j − μC
T

)2
(6)

where j represents a specific class in such a way that wc
j and

μc
j are the probability of occurrence and the mean of class j,

respectively.
In other words, the problem of n-level thresholding is re-

duced to an optimization problem to search for the thresholds
tcj that maximize the objective functions (i.e., fitness function)
of each image component C, generally defined as

ϕC = max
1<tC

1 <···<L−1
σc2

B

(
tCj

)
. (7)

Computing the aforementioned optimization problem in-
volves high computational complexity as the number of thresh-
old levels and image components increases. Many optimization
methods have been proposed in the literature [2]. However,
more recently, biologically inspired methods, such as the well-
known PSO, have been used as computationally efficient alter-
natives to analytical methods to solve optimization problems
[18], [19].

B. General Approach

The original PSO1 algorithm was developed by Eberhart
and Kennedy in 1995 [36]. The PSO basically takes advantage
of the swarm intelligence concept, which is the property of
a system whereby the collective behaviors of unsophisticated
agents that are interacting locally with their environment create
coherent global functional patterns. More recently, based on
the concepts inherent to the PSO, the DPSO [38], and the
FOPSO [39], an extended version denoted as FODPSO has
been presented in [37], in which several swarms compete
using Darwin’s survival-of-the-fittest principles and fractional
calculus to control the convergence rate of the algorithm.
Using those principles, the FODPSO enhances the ability of
the PSO algorithm to escape from local optima by running
several simultaneous parallel PSO algorithms, each being a
different swarm, on the same test problem and applies a simple
selection mechanism. When a search tends to a local optimum,
the search in that area is simply discarded, and another area
is searched instead. In this approach, at each step, swarms
that show improvement are rewarded (extend particle life or
spawn a new descendent), and swarms which stagnate are
punished (reduce swarm life or delete particles). Moreover,
the approximate Grünwald–Letnikov FC definition allows us to
use the concept of fractional differential with α, 0 ≤ α ≤ 1, to
control the convergence rate of particles.

Table I presents the FODPSO algorithm applied to image
segmentation. Each particle a within each different swarm
s moves in a multidimensional space according to position

1The software including PSO-, DPSO- and FODPSO-based segmentation
methods are available on request by sensing an email to the authors.
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TABLE I
FODPSO SEGMENTATION ALGORITHM

(xa[t]), 0 ≤ xa[t] ≤ L − 1, and velocity (va[t]). The position
and velocity values are highly dependent on the local best
(x̆a[t]) and global best (ğa[t]) information. The coefficients
w, ρ1, and ρ2 are assigned weights, which control the inertial
influence, i.e., according to “the globally best” and “the lo-
cally best,” respectively, when the new velocity is determined.
Typically, the inertial influence is set to a value slightly less
than 1. ρ1 and ρ2 are constant integer values, which repre-
sent “cognitive” and “social” components. However, different
results can be obtained by assigning different influences for
each component. Depending on the application and the charac-
teristics of the problem, tuning these parameters properly will
lead to better results. The parameters r1 and r2 are random
vectors, with each component generally a uniform random
number between 0 and 1. The intent is to multiply a new random
component per velocity dimension, rather than multiplying the
same component with the velocity dimension of each particle.

It is noteworthy that the α value greatly affects the in-
ertial particles. With a small α, particles ignore their previ-
ous activities, thus ignoring the system dynamics and being
susceptible to get stuck in local solutions (i.e., exploitation
behavior). On the other hand, with a large α, particles will

TABLE II
COMPUTATIONAL AND MEMORY COMPLEXITIES

OF PSO, DPSO, AND FODPSO

present a more diversified behavior, which allows exploration
of new solutions and improves the long-term performance (i.e.,
exploration behavior). However, if the exploration level is too
high, then the algorithm may take too much time to find the
global solution. Based on the experimental results from [37], a
fractional coefficient of α = 0.6 will be used, thus resulting in
a balance between exploitation and exploration.

One may summarize both computational and memory com-
plexities as Table II depicts.

Note that the memory complexity of the FODPSO is larger
than the alternatives since it intrinsically has memory properties
related to the fractional extension. In other words, due to the
truncation order of the approximate fractional derivative, it
needs to track the last four steps of each particle’s velocity that
depends on the number of components C (i.e., bands) of the
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image. The computational complexity of the algorithms was
considered, excluding the initial computation of (1) and (2).
Note that this may be accomplished since the three algorithms
require the same initial computation that depends on the size of
the image. After that initial setup, the three algorithms may be
adjusted in such a way to ensure a similar computational com-
plexity. Likewise, the computational complexity of the three al-
gorithms will increase with the number of desired thresholds n.
Nevertheless, while the PSO depends on the number of particles
NP within the population, the DPSO and FODPSO depend on
the accumulated number of particles within each swarm, i.e.,∑

∀s NS . In other words, one may ensure that the computa-
tional complexity of both DPSO and FODPSO will be inferior
to the PSO by defining the maximum number of particles within
each swarm as Nmax ≤ NP /Ns

max, wherein Ns
max represents

the maximum number of allowed swarms. It is, however,
noteworthy that one may avoid holding this assumption since
the evolutionary features of both DPSO and FODPSO are
stochastic and depend on uniformly distributed variables. In
other words, by setting an adequate combination between the
minimum and maximum acceptable numbers of particles to
form a swarm Nmin and Mmax and the minimum and maximum
numbers of swarms within the population Nmin and Nmax, one
may ensure that O(n

∑
∀s NS) ≤ O(nNP ) for a steady-state

regime. Such a condition may be achieved by adhering to the
following condition: NP ≥ (Ns

minNmin + Ns
maxNmax/2).

C. Algorithm Evaluation

The computational time is one of the most important indica-
tors, along with the fitness value, to determine the performance
of the algorithm. Provided that the data are large, the efficiency
of the method is restricted to a great extent [46]. For instance,
hyperspectral images are, in general, large, so using a high-
speed and efficient algorithm is highly preferable. Moreover,
in real-time applications, using a high-speed algorithm is the
main objective [18]. As a result, the evaluation of the CPU
processing time and the fitness value seems vitally important
to show the efficiency of the new method. In addition, since all
bioinspired methods are random and stochastic, the results are
not completely the same in each run. Consequently, the stability
of different methods should be evaluated by an appropriate
index such as standard deviation value.

PSO-based segmentation algorithms have been widely used
in recent years. In fact, the ability of the traditional PSO-
based segmentation has already been compared with other
thresholding-based methods such as GA-based algorithms and
exhaustive ones. Results confirm that the PSO-based method
presents better results in terms of fitness value and CPU pro-
cessing time. In [47], authors illustrated that the PSO-based
segmentation method acted better than other methods such as
GAs, differential evaluation, ant colony optimization, simulated
annealing, and tabu search in terms of precision, robustness of
the results, and runtime. In [28], PSO outperforms GA in terms
of the CPU time and the fitness value for Kapur’s and Otsu’s
functions. In [48], results indicate that PSO family methods act
better than GA with a learning operator (GA-L) from different
points of view. Consequently, it is easy to detect that PSO-based

Fig. 1. Our test case study site (data channels 5, 3, and 2 are mapped to the R,
G, and B channels).

segmentation methods are considered an efficient way to find
optimal thresholds in short CPU processing time.

III. EXPERIMENTAL RESULTS

To compare the performance of the proposed FODPSO
method with the PSO and DPSO approaches, all methods are
tested on two different types of images, i.e., multispectral and
hyperspectral images. In all cases, the image segmentation
approaches were programmed in MATLAB on a computer
having Intel Core 2 Duo T5800 processor (2.00 GHz) and
3 GB of memory.

A. Description of Data Sets

1) First Test Case—Multispectral Worldview Image: The
first data set is an 8 × 8 km multispectral Worldview satel-
lite image consisting of eight bands captured at Tamworth,
Northern New South Wales, Australia (Fig. 1). The pixel size
was 2.4 × 2.4 m. The image covered large sections of pine
plantations, interspersed with native vegetation, grasslands,
logged areas, barren soil, and roads. This introduced a high
level of natural variability to the segmentation problem. Un-
like artificial objects, natural vegetation has multiple levels of
variation. For example, within the pine plantation class, there
are age differences and differences in reflectance due to slope,
aspect, sun position, soil types, etc., and all of these cause
added complexities in the segmentation scheme. Fig. 1 shows
an image of the data where data channels 5, 3, and 2 are used
in showing R, G, and B components, respectively, while Fig. 2
depicts the histogram for all eight data channels.

Table III gives the initial parameters of the PSO, the DPSO,
and the proposed FODPSO-based methods for the first test case.
The PSO, DPSO, and FODPSO methods are parameterized
algorithms. Therefore, one needs to be able to choose the
parameter values that would result in faster convergence. The
cognitive, social, and inertial weights were chosen by tak-
ing into account several works focusing on the convergence
analysis of the traditional PSO (cf., [1], [37], and [48]).
For instance, to guarantee the convergence of the process,
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Fig. 2. Histograms of different data channels (data channel number inserted
in each figure). Gray values on the x-axis and value count on y-axis.

TABLE III
INITIAL PARAMETERS OF THE PSO, DPSO,

AND FODPSO FOR THE FIRST DATA SET

Jiang et al. [48] presented a set of attraction domains that
altogether present a relation between ρ1, ρ2, and w, wherein
0 ≤ w < 1 and ρ1 + ρ2 > 0. Based on the attraction domain
in [4], if one would choose an inertial coefficient w = 0.8,
the sum between the cognitive and social components would
need to be less than 7, i.e., ρ1 + ρ2 < 7. The parameters in
Table II were selected by considering that many works present
a larger cognitive coefficient (cf., [48]). Note that the threshold
velocities of particles and the maximum number of particles
within each swarm in the DPSO are smaller than the PSO
algorithm. This was experimentally adjusted to provide swarms
of 20 particles with the same level of diversity (i.e., exploration
and exploitation) than swarms of 150 particles.

2) Second Data Set—Hyperspectral ROSIS Image: The sec-
ond test case is a hyperspectral data set which was captured
on the city of Pavia, Italy, by airborne data from the Reflec-

Fig. 3. Image of the second test case.

TABLE IV
INITIAL PARAMETERS OF THE PSO, DPSO,
AND FODPSO FOR THE SECOND DATA SET

tive Optics System Imaging Spectrometer (ROSIS-03). The
ROSIS-03 sensor has 115 data channels with a spectral cov-
erage ranging from 0.43 to 0.86 μm. In our experiments, we
eliminate 12 noisy data channels and use 103 data channels for
processing. The spatial resolution is 1.3 m per pixel. The origi-
nal data set is 610 by 340 pixels. This data set is captured on the
Engineering School, University of Pavia, Pavia, consisting of
different classes including trees, asphalt, bitumen, gravel, metal
sheet, shadow, bricks, meadow, and soil. Fig. 3 shows an image
of the second test case.

The proposed multilevel thresholding techniques based on
PSO, DPSO, and FODPSO were implemented with the specific
parameters shown in Table IV for the second test case. Table III
presents the initial parameters of the PSO- and DPSO-based
methods for the second test case. The main differences here
in comparison to Table II are that the maximum velocity of
particles and the capacity of each swarm, in the case of the
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TABLE V
AVERAGE AND STD CPU PROCESSING TIMES (IN SECONDS) OF EACH ALGORITHM FOR DIFFERENT LEVELS

TABLE VI
AVERAGE FITNESS VALUES FOR ALL BANDS AT EACH LEVEL

FOR THE FIRST TEST CASE

DPSO and FODPSO algorithms, need to be increased in order
to overcome the increased complexity of using data.

B. Results and Discussion

1) First Test Case— Multispectral Image: The CPU average
processing times of the PSO, DPSO, and FODPSO for six-,
eight-, and ten-level thresholding are presented in Table V, and
they were calculated over 40 different runs. PSO is referred to
as a fast optimization algorithm. However, as can be seen from
Table V, the computation time for PSO-based segmentation
was significantly higher than that for both the FODPSO and
DPSO methods. The main reason for this is that the PSO has
a fixed population of 150 particles, which, in other words,
means that 150 different solutions are needed to be evaluated
within the same swarm. The FODPSO and DPSO, on the other
hand, are composed of multiple smaller swarms (between 2 and
6 swarms of 10 and 30 particles each), being faster than the PSO
even with an equal or larger number of particles in the whole
DPSO and FODPSO. The dynamical clustering of particles
inherent to both FODPSO and DPSO allows releasing most of
the processing effort necessary to compute the local and global
solutions. In other words, the CPU processing time decreases
as the number of particles within the same swarm decreases.
The difference percentages of CPU processing time between
FODPSO and DPSO remain almost the same regardless of the
segmentation level in the range of 2%–5%. Although the dif-
ference may be considered small to justify the choice between
the FODPSO and the DPSO, it still represents an improvement
that can be highly pondered depending upon the fitness value
of the algorithms. Moreover, the stability of the traditional PSO
highly deteriorates for a segmentation level of 10, contrary to
both FODPSO and DPSO.

The fitness and optimal threshold values were calculated for
all different data channels separately. The average and standard
deviation fitness values of all data channels were calculated
for each level of segmentation, and the obtained results are
presented in Table VI. FODPSO generally performed slightly
better than other methods in terms of fitness value. An excep-
tion may be observed for a segmentation level of 6 in which
the DPSO presented a slightly better result than the FODPSO.
It is noteworthy that such behavior should be expected for
specific situations since the DPSO is a particular case of the
FODPSO. In general, both DPSO and FODPSO give a better

fitness because the PSO may get stuck in the vicinities of the
global solution, while both FODPSO and DPSO use natural
selection in order to avoid stagnation (cf., [37] and [38]). Hence,
it can be concluded that both Darwinian algorithms are able to
find better thresholds in less CPU time than the traditional PSO.
Fig. 4 shows ten-level segmented image based on FODPSO and
their histograms.

Despite the minor differences in fitness values between the
FODPSO and the DPSO with respect to the between-class
variance, one should note that the FODPSO-based thresholding
is able to achieve segmentation of the image faster than both
DPSO and PSO. Consequently, the proposed FODPSO method
is very attractive for image segmentation, especially for more
complex images and/or high segmentation levels.

Fig. 5 shows a subset of the main image and six-level and
ten-level FODPSO-based segmented images zoomed by 200%.
As can be seen from the figure, the main image [Fig. 5(c)] has
more details than the other images. In contrast, the six-level
segmented image [Fig. 5(a)] is the roughest image. It is easy
to conclude that, by increasing the level of segmentation, the
segmented image includes more details. As a result, the ten-
level segmented image [Fig. 5(b)] is smoother than the six-level
one. Our segmented image is also less pixelated compared to
the original image.

To further improve the comparison between the three algo-
rithms, the significance of the segmentation method and the
segmentation level (independent variables) on the fitness value
and the CPU processing time (dependent variables) was ana-
lyzed using the two-way MANOVA technique after checking
the assumptions of multivariate normality and homogeneity of
variance/covariance [50], [51]. The assumption of normality for
each of the univariate dependent variables was examined using
univariate tests of Kolmogorov–Smirnov (p-value < 0.05). The
univariate normality of each dependent variable has not been
verified. However, since n ≥ 30, the multivariate normality
was assumed based on the central limit theorem [50]–[52].
Furthermore, the assumption of multivariate normality was
validated [50], [51]. The assumption about the homogene-
ity of variance/covariance matrix in each group was exam-
ined with the Box’s M test (M = 605.13, F (24; 376576.64) =
24.693; p-value = 0.001). Although the homogeneity of vari-
ance/covariance matrices has not been verified (i.e., p-value =
0.001), the MANOVA technique is robust to this violation
because all the samples have the same size [50], [51]. When
the MANOVA detected significant statistical differences, we
proceeded to the commonly-used ANOVA for each dependent
variable followed by the Tukey’s HSD post hoc. The classi-
fication of the size effect (i.e., measure of the proportion of
the total variation in the dependent variable explained by the
independent variable) was done according to Maroco [50] and
Pallant [51]. This analysis was performed using the IBM SPSS
Statistics software with a significance level of 5%.
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Fig. 4. Ten-level segmented image (data channels 5, 3, and 2 are mapped to the R, G, and B channels of the display) based on FODPSO and the histograms of
all data channels.

Fig. 5. Subset of (a) six-level, (b) ten-level, and (c) input images zoomed
by 200%.

TABLE VII
TUKEY’S HSD POST HOC TEST TO THE

MAXIMUM COMMUNICATION DISTANCE

A two-way MANOVA analysis was carried out to assess
whether the algorithms used on this study have statistically
significant differences with respect to the segmentation process.
The MANOVA analysis revealed that the type of algorithm
had a large and significant effect on the multivariate compos-
ite (Pillai′s Trace = 0.973; F (4; 702) = 166.19; p-value =
0.001; Partial Eta Squared η2

p = 0.486; Power = 1.0). The
segmentation level had a very large and significant effect on the
multivariate composite (Pillai′s Trace = 1.847; F (4; 702) =
2116.515; p-value = 0.001; η2

p = 0.923; Power = 1.0). Fi-
nally, the interaction between the two independent variables had
a moderate and significant effect on the multivariate compos-
ite (Pillai′s Trace = 0.469; F (8; 702) = 26.901; p-value =
0.001; η2

p = 0.235; Power = 1.0).
After observing the multivariate significance for different al-

gorithm types and segmentation levels, a univariate ANOVA for

Fig. 6. Estimated marginal means of the (a) fitness value and (b) CPU
processing time. (Dashed line) Leve 6. (Dotted line) Level 8. (Solid line)
Level 10.

each dependent variable followed by the Tukey’s HSD test was
carried out. For the type of algorithm, the dependent variable
fitness value presents statistically significant differences (F (2,
351)=469.97; p-value=0.001; η2

p =0.728; Power=1.0), as
well as the dependent variable CPU processing time (F (2,
351)=2138.04; p-value=0.001; η2

p =0.92; Power=1.0). For
the segmentation level, the dependent variable fitness value also
demonstrates statistically significant differences (F (2, 351)=
2445064.03; p-value=0.001; η2

p =1; Power=1.0), as well
as the dependent variable CPU processing time (F (2, 351)=
1864.22; p-value=0.001; η2

p =0.99, Power=1.0).
Using the Tukey’s HSD post hoc, it is possible to verify the

differences between the algorithms. Analyzing the fitness value
and the CPU processing time, there are statistically significant
differences between the obtained experimental results using the
PSO, DPSO, and FODPSO segmentation algorithms.

It is noteworthy that the FODPSO produces better solutions
than both the PSO and the DPSO. As expected, the FODPSO
algorithm produces better solutions than the DPSO, and on the
other hand, this last one produces better solutions than the PSO.
In fact, using the PSO segmentation algorithm proves to be the
“worse” segmentation method.

As shown in Table VII, which is based on Tukey’s HSD post
hoc test, the FODPSO is able to reach a slightly better fitness
solution in less time. Nevertheless, the differences between the
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TABLE VIII
AVERAGE AND STD CPU PROCESSING TIMES FOR EACH ALGORITHM AND DIFFERENT LEVELS

TABLE IX
AVERAGE AND STD FITNESS VALUES AT EACH LEVEL

algorithms are not clearly seen in Fig. 6. Although it is possible
to observe significant differences in the global CPU processing
time between the FODPSO and the other algorithms, the im-
provement of the solution is not perceptible. Hence, in the next
section, the same analysis will be performed on a hyperspectral
image.

2) Second Data Set— Hyperspectral Image: As for the first
data set, the CPU processing times in the second test case for
each algorithm for 10-, 12-, and 14-level thresholding were cal-
culated as the average value of 40 different runs, and the results
are being presented in Table VIII. According to Table VIII, the
FODPSO-based method has the least CPU processing time in
comparison with other studied methods as was observed for
the first data. On the contrary, PSO is the worst method among
others in terms of CPU processing time. As can be seen from
Table VIII, FODPSO significantly outperforms the PSO-based
method, in particular, when the level of segmentation increases.
FODPSO improves the result of the PSO-based segmentation
method by 119.6% and 65.1% in the best and worst cases,
respectively. In the same way, the CPU processing time of the
FODPSO is considerably less than that for the DPSO and shows
an improvement by 7.4% and 31.5% for the best and worst
cases, respectively.

Table IX gives information regarding the average fitness
values of 103 data channels in 40 different iterations. As in the
case of the first multispectral data set, in the hyperspectral test
case, FODPSO finds optimal threshold values which are better
than that for the other methods. This shows that FODPSO is
able to find optimal thresholds with better fitness values in less
CPU processing time compared to the other studied methods.
The fitness value of the FODPSO-based method is followed
by DPSO, which is more efficient than the conventional PSO.
As can be seen from the table, by increasing the level of
segmentation, the fitness of FODPSO increases more than the
fitness of the other methods. PSO gives almost the same fitness
for 10, 12, and 14 levels of segmentation since it is not endowed
with any kind of mechanism to improve the convergence of
particles when in the vicinities of the optimal solution.

Fig. 7 shows 10-level and 14-level FODPSO-based seg-
mented images using a 200% zoom. As can be seen from the
figure, the 14-level-based segmented image [Fig. 7(b)] provides
more details than the 10-level segmentation.

Similar to the first data set, the assumption of normality
for each of the univariate dependent variables was exam-
ined using univariate tests of Kolmogorov–Smirnov (p-value <

Fig. 7. Subset of (a) 10-level and (b) 14-level FODPSO-based segmented
images zoomed by 200%.

TABLE X
TUKEY’S HSD POST HOC TEST TO THE

MAXIMUM COMMUNICATION DISTANCE

0.05) [50]–[52]. The assumption about the homogeneity of
variance/covariance matrix in each group was examined with
the Box’s M test (M = 1239.38, F (24; 376576.64) = 50.58;
p-value = 0.001). When the MANOVA detected significant
statistical differences, we proceeded to the commonly-used
ANOVA for each dependent variable followed by the Tukey’s
HSD post hoc.

The MANOVA analysis revealed that the algorithm type had
a very large and significant effect on the multivariate compos-
ite (Pillai′s Trace = 1.40; F (4; 702) = 405.97; p-value =
0.001; Partial Eta Squared η2

p = 0.698; Power = 1.0). The
segmentation level also had a large and significant effect on the
multivariate composite (Pillai′s Trace = 0.97; F (4; 702) =
165.03; p-value = 0.001; η2

p = 0.49; Power = 1.0). Finally,
the interaction between the two independent variables had a
very large and significant effect on the multivariate composite
(Pillai′s Trace = 1.02; F (8; 702) = 91.82; p-value = 0.001;
η2

p = 0.51; Power = 1.0).
After observing the multivariate significance in the type of

algorithm and the segmentation level, a univariate ANOVA for
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Fig. 8. Estimated marginal means of the (a) fitness value and (b) CPU
processing time. (Dashed line) Level 10. (Dotted line) Level 12. (Solid line)
Level 14.

each dependent variable followed by the Tukey’s HSD test
was carried out. For the type of algorithm, the dependent vari-
able fitness value presents statistically significant differences
(F (2, 351) = 1066.64; p-value = 0.001; η2

p = 0.86; Power =
1.0), as well as the dependent variable CPU processing time
(F (2, 351) = 2309.24; p-value = 0.001; η2

p = 0.93; Power =
1.0). For the segmentation level, the dependent variable fit-
ness value also presents statistically significant differences
(F (2, 351) = 3907.10; p-value = 0.001; η2

p = 0.96; Power =
1.0), as well as the dependent variable CPU processing time
(F (2, 351) = 77.58; p-value = 0.001; η2

p = 0.66, Power =
1.0).

Using the Tukey’s HSD post hoc, one can observe that there
are statistically significant differences between experiments
using the PSO, DPSO, and FODPSO segmentation algorithms,
for both CPU processing time and fitness function.

Once again, the FODPSO produces better solutions than both
the PSO and the DPSO in terms of fitness value. Furthermore,
as expected, the DPSO produces better solutions than the PSO.
As shown in Table X (also shown in Fig. 8), based on Tukey’s
HSD post hoc test, the fractional-order algorithm is able to once
again reach a better fitness solution in less time. Moreover, the
differences between the FODPSO and the other algorithms are
more evident as the segmentation level increases. This should
be highly appreciated as many applications require real-time
multisegmentation methods (e.g., autonomous deployment of
sensor nodes in a given environment).

In summary, it is possible to observe that the FODPSO
is faster than the DPSO since fractional calculus is used to
control the convergence rate of the algorithm. As described
in [49], a swarm behavior can be divided into exploitation
and exploration. The exploitation behavior is related with the
convergence of the algorithm, allowing a good short-term per-
formance. However, if the exploitation level is too high, then the
algorithm may be stuck on local solutions. On the other hand,
the exploration behavior is related with the diversification of
the algorithm which allows exploring new solutions, thus im-
proving the long-term performance. However, if the exploration
level is too high, then the algorithm may take too much time
to find the global solution. In the DPSO, the tradeoff between
exploitation and exploration can only be handled by adjusting
the inertia weight w. While a large inertia weight improves
exploration activity, the exploitation may be improved using a
small inertia weight. Since the FODPSO presents a fractional

Fig. 9. Illustrative flowchart of the new classification approach.

Fig. 10. Integration of the classification and segmentation steps using MV [4].

calculus strategy to control the convergence of particles with
memory effect, the coefficient α allows providing a higher
level of exploration while ensuring the global solution of the
algorithm (cf., [38]).

IV. CLASSIFICATION

Although the main idea behind this paper is to introduce
a thresholding-based segmentation technique, it is of inter-
est to see the effectiveness of the new segmentation method
on classification. In this way, this section presents a novel
framework to prove the efficiency of the proposed method for
classification. The proposed classification method is based on
the FODPSO and the SVM classifier. Since we do not have
reference samples for the first data set, the classification is only
performed on the second data set. Fig. 9 shows the general idea
of the proposed classification approach. As can be seen, the
data have been first classified with SVM and a Gaussian kernel.
The hyperparameters have been selected using five-fold cross
validation. Each variable has been scaled between −1 and 1.
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Fig. 11. Classification map of the standard SVM and the proposed classification method with 10-, 12-, and 14-level segmentation by FODPSO.

To carry out a fair evaluation, the input is classified only once,
while the output of this step is used for all different levels.
By doing that, the accuracy of the classification for different
methods is only dependent on the effect of the segmentation
method. In parallel, the input data are transformed using the
principal component analysis (PCA), and the first principal
component (PC) is kept since most of the variance is provided
by that. The output of this step is segmented by the proposed
FODPSO method. In the final step, the results of the SVM and
the FODPSO are combined by using majority voting (MV).

Fig. 10 depicts the general idea of the proposed approach
with MV. The output of the segmentation methods is a few
number of objects, and each object consists of several pixels
with the same label. In other words, pixels in each object share
the same characteristics. To perform the MV on the output of
the segmentation and classification steps, counting the number
of pixels with different class labels in each object is first carried
out. Subsequently, all pixels in each object are assigned to the
most frequent class label for the object. In the case where two
classes have the same (most frequent) proportions in one object,
the object is not assigned to any of those classes, and the result
of the traditional SVM is considered for each pixel in the object
directly.

The procedure of the new classification approach is described
step by step as follows:

1) The input data are classified by SVM.
2) The input data are transformed by PCA, and the first PC

is kept.
3) The output of step 2 is segmented by FODPSO.
4) The results of steps 1 and 2 are combined using MV.
Fig. 11 illustrates the classification map of the standard

SVM and the proposed classification method with 10-, 12-, and
14-level segmentation by FODPSO. The output of the SVM
presents a lot of noisy pixels which decrease the accuracy of
the classification. The results of the overall accuracy and kappa
coefficient for the SVM and the new method with 10, 12, and
14 levels are shown in Table XI. For a better understanding,
the classification accuracy for each class is also included in the
table. All three segmentation levels improve the result of the
SVM classification. The accuracy increases when the number
of levels increases from 10 to 14. The main reason behind that

phenomenon is denoted as under segmentation in which several
objects are merged into a single one. This problem can be easily
solved by increasing the number of levels. SVM + FODPSO
with 10, 12, and 14 levels improves the overall accuracy of
SVM by almost 0.7, 1.7, and 2 percent.

V. CONCLUSION

In this paper, a novel multilevel thresholding segmentation
method has been proposed for grouping the pixels of multi-
spectral and hyperspectral images into different homogenous
regions. The new method is based on FODPSO which is used
in finding the optimal set of threshold values and uses many
swarms of test solutions which may exist at any time. In
the FODPSO, each swarm individually performs just like an
ordinary (PSO) algorithm with a set of rules governing the
collection of swarms that are designed to simulate natural se-
lection. Moreover, the concept of fractional derivative is used to
control the convergence rate of particles. Experimental results
compare the FODPSO with the classical PSO and DPSO within
multilevel segmentation problems on remote sensing images
from different points of view such as CPU time and correspond-
ing fitness value. Segmentation methods were carried out on
two different test cases. The first test case was a multispectral
image related to native vegetation, grasslands, logged areas, and
barren soil. The second test case was a hyperspectral image
which is from an urban area, showing a wide variety of human
artifacts. Experimental results indicate that the FODPSO is
more robust than the two other methods and has a higher
potential for finding the optimal set of thresholds with more
between-class variance in less computational time, especially
for higher segmentation levels and for images with a wide
variety of intensities. In addition, to show the efficiency of the
proposed segmentation method on the result of classification,
a novel classification approach based on the new segmentation
method and SVM is proposed. Results confirm that the new seg-
mentation method improves the SVM in terms of classification
accuracies when compared to the standard SVM classification
of the raw image data. It should be noted that this is the first time
that the concept of FODPSO is used in remote sensing, thus
showing the potential of its use in efficient image segmentation
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TABLE XI
RESULTS OF THE STANDARD SVM AND THE PROPOSED CLASSIFICATION METHOD WITH 10, 12, AND 14 LEVELS

OF SEGMENTATION BY FODPSO. CLASSIFICATION ACCURACIES ARE GIVEN IN PERCENTAGE

to determine broad groups of objects. As future work, due to the
low computational complexity of the algorithm, the FODPSO
will be evaluated in image segmentation applications for the
real-time autonomous deployment and distributed localization
of sensor nodes. The objective is to deploy the nodes only
in the terrains of interest, which are identified by segmenting
the images captured by a camera onboard an unmanned aerial
vehicle using the FODPSO algorithm. Such a deployment has
importance for emergency applications, such as disaster mon-
itoring and battlefield surveillance. In addition, finding a way
for the estimation of the number of thresholds (parameter n)
and joint multichannel segmentation instead of segmenting data
set band by band would be of interest.
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Integration of Segmentation Techniques for
Classification of Hyperspectral Images

Pedram Ghamisi, Student Member, IEEE, Micael S. Couceiro, Student Member, IEEE, Mathieu Fauvel, and
Jon Atli Benediktsson, Fellow, IEEE

Abstract—A new spectral–spatial method for classification of
hyperspectral images is introduced. The proposed approach is
based on two segmentation methods, fractional-order Darwinian
particle swarm optimization and mean shift segmentation. The
output of these two methods is classified by support vector
machines. Experimental results indicate that the integration of
the two segmentation methods can overcome the drawbacks of
each other and increase the overall accuracy in classification.

Index Terms—Hyperspectral image analysis, mean shift seg-
mentation, multilevel segmentation.

I. Introduction

ACCURATE classification of remote sensing images plays
a key role in many applications, including crop moni-

toring, forest applications, urban development, mapping and
tracking, and risk management. One way for achieving this
goal would be to use the spectral and the spatial information
sequentially [15]. The goal of considering spatial context
in the classification step can be partially achieved by using
some specific methods, such as morphological filters [15]
and Markov random fields [4]. The above-mentioned methods
significantly increase the accuracy of the classification by
incorporating spatial and spectral information. Another way
for considering the spatial structures would be to perform
image segmentation.

Image segmentation is a procedure that can be used to
modify the accuracy of classification maps. To make such an
approach effective, an accurate segmentation of the image is
needed. A few methods for segmentation of multispectral and
hyperspectral images have been introduced in the literature.
Some of these methods are based on region merging methods,
where neighboring segmented regions are merged with each
other according to their homogeneity criterion, for instance
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multiresolution segmentation method in the eCognition soft-
ware is used this type of approach [5]. In [6], hierarchical
segmentation algorithm is proposed, which performs region
growing and spectral clustering alternately.

One of the best known methods for image segmentation is
thresholding. Different types of optimal thresholding methods
have been proposed in the literature (e.g., [16]). One strategy
to find the optimal set of thresholds is to take into account
an exhaustive search. A commonly used exhaustive search
method is based on the Otsu criterion [1]. However, exhaustive
search to find n − 1 optimal thresholds involves evaluation of
the fitness for n(L − n + 1)n−1 combinations of thresholds
and L is the intensity level in each component [9]. Therefore,
this method is not desirable from a computational point of
view. Alternatively, the issue of determining n − 1 optimal
thresholds for n-level image thresholding can be formulated
as a multidimensional optimization problem. To solve the
aforementioned issue, several biologically inspired algorithms
have been explored in image segmentation [9].

One of the most commonly used methods based on split
and merging segmentation is mean shift segmentation (MSS)
that is widely used in image processing. MSS is a nonpara-
metric clustering technique, which does not need embedded
assumptions on the shape of the distribution and the number
of clusters compared with the classic K-means clustering. MSS
is a powerful method for segmentation of images with high
redundancy [10], such as remote sensing images.

Fractional-order Darwinian particle swarm optimization
(FODPSO) segmentation (as all thresholding-based methods
in general) suffers from the following disadvantages: 1) It
cannot handle inhomogeneity; 2) it fails when the intensity of
object of interest does not appear as a peak in the histogram;
and 3) the traditional FODPSO-based segmentation takes into
account only the between-class variance, thus disregarding any
feedback from the within-class variance. In the MSS method,
a kernel size needs to be tuned by the user. The tuning may
be a difficult task and the final results may be affected by that
dramatically.

In this letter, a new spectral–spatial classification approach
is introduced for accurate classification of hyperspectral im-
ages. First, an input image will be segmented by FODPSO.
Then, the output of this step will be segmented again by MSS.
At the end, the segmented image will be classified by support
vector machine (SVM). The letter is organized as follows:
Methodology is discussed in Section II. Then, Section III is

1545–598X c© 2013 IEEE
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Fig. 1. Flowchart of the proposed methodology.

devoted to experimental results. Finally, in Section IV the main
conclusions are outlined.

II. Methodology

The flowchart of the proposed method is illustrated in Fig. 1.
The segmentation part consists of two different approaches: 1)
multilevel thresholding method based on FODPSO; and 2)
MSS. Then, the output of the segmentation methods will be
classified by SVM. The following sections present a brief
description of both segmentation methods.

A. Multilevel Thresholding Method Based on Fractional Order
Particle Swarm Optimization (FOPSO)

Multilevel segmentation techniques provide an efficient way
to carry out image analysis. However, the automatic selection
of a robust optimum n-level threshold has remained a chal-
lenge in remote sensing image segmentation.

Let L represents the intensity levels in each component of
a given image, where a component is defined in the range
{0, 1, 2, . . . , L − 1}. Then, one can calculate the probability
distribution pC

i as

pC
i =

hC
i

N
,

N∑

i=1

pC
i = 1 (1)

where i represents a specific intensity level, i.e., 0 ≤ i ≤
L − 1, C represents the component of the pixel, e.g., C =
{R, G, B} for RGB images, N represents the total number of
pixels in the image, and hC

i denotes the number of pixels for
the corresponding intensity level i in the component C. In other
words, hC

i represents an image histogram for each component
C, which can be normalized and regarded as the probability
distribution pC

i .
Hence, the n-level thresholding presents n − 1 threshold

levels tCj , j = 1, . . . , n − 1, and the operation is performed as

FC(a, b) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, fC(a, b) ≤ tC1
1
2

(
tC1 + tC2

)
, tC1 ≤ fC(a, b) ≤ tC2

...
...

1
2

(
tCn−2 + tCn−1

)
, tCn−2 < fC(a, b) ≤ tCn−1

L, fC(a, b) > tCn−1

(2)

where a and b are the width (W ) and height (H) pixel of
the image of size H×W represented by f C(a, b). The pixels

of a given image will be divided into n classes DC
1 , . . . , DC

n ,
which may represent multiple objects or even specific features
on such objects (e.g., topological features).

The simplest method of obtaining the optimal threshold is
the one that maximizes the between-class variance of each
component, which can be generally defined by

σc2

B =
n∑

j=1

wC
j (μC

j − μC
T )2 (3)

where j represents a specific class in such a way that wC
j

and μC
j are the probability of occurrence and mean of class

j, respectively. The total mean value of a component is
represented by μC

T .
For classes DC

1 , . . . , DC
n , the probabilities of occurrence wC

j

and the means μC
j can be defined by (4) and (5), respectively

wC
j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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i=1

pC
i , j = 1

tCj∑

i=tCj−1

pC
i , 1 < j < n,

L∑

i=tCj−1

pC
i , j = n

(4)

μC
j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tCj∑

i=1
C

ipC
i

wC
j

, j = 1

tCj∑

i=tCj−1+1
C

ipC
i

wC
j

, 1 < j < n

L∑

i=tCj−1+1
C

ipC
i

wC
j

, j = n

. (5)

The problem of n-level thresholding is reduced to an optimiza-
tion problem to search for the thresholds tCj that maximize
the objective functions of each image component C, generally
defined as

ϕC = max
1<tC1 <···<tCn−1<L

C

σC2

B (tCj ). (6)

Computing this optimization problem involves a huge com-
putational effort because the number of threshold levels and
image components increases. Recently, biologically inspired
methods, such as the well-known particle swarm optimization
(PSO), have been used as computationally efficient alternatives
to analytical methods to solve optimization problems [13].

An example of such methods is the FODPSO recently
presented in [16]. This method is a natural extension of the
Darwinian particle swarm optimization (DPSO) presented by
Tillett et al. [14] using fractional calculus to control the
convergence rate and was extended for the classification of
remote sensing images in [8].

As in the classical PSO, particles within the FODPSO
travel through the search space to find an optimal solution
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by interacting and sharing information with other particles.
In each step of the algorithm t, a fitness function is used to
evaluate the success for a particle. To model the swarm s,
each particle n, moves in a multidimensional space according
to a position xs

n[t], 0 ≤ xs
n[t] ≤ L − 1, and velocity vs

n[t].
The position and velocity values are highly dependent on the
individually best x̆s

n[t] and the globally best ğs
n[t], information

vs
n[t + 1] = αvs

n[t] +
1

2
αvs

n[t − 1] +
1

6
α(1 − α)vs

n[t − 2]

+
1

24
α(1 − α)(2 − α)vs

n[t − 3] + ρ1r1(ğs
n − xs

n[t])

+ρ2r2(x̆s
n − xs

n[t]) (7)

xs
n[t + 1] = xs

n[t] + vs
n[t + 1]. (8)

The coefficients ρ1 and ρ2 are weights, which control the
global and individual performance, respectively. Within the
FODPSO algorithm, the inertial influence of particles depends
on the fractional coefficient. The parameters r1 and r2 are
random vectors with each component is generally a uniform
random number between 0 and 1. The parameter α, commonly
known as the fractional coefficient, will weigh the influence
of past events in determining a new velocity, 0 < α < 1.

When applying the FODPSO to multilevel thresholding of
images, the particles’ velocities are initially set to zero and
their position is randomly set within the boundaries of the
search space, i.e., vs

n [0] = 0 and 0 ≤ xs
n [0] ≤ L − 1.

In other words, the search space depends on the number of
intensity levels L, i.e., if one wishes to perform a segmentation
of a 8-bit image, then particles will be deployed between
0 and 255. Hence, associated to each particle, a possible
solution ϕc will be found and compared between all particles
of the same swarm. The particle that has found the higher
between-class variance ϕc so far will be the best performing
particle (i.e., ğs

n), thus luring other particles toward it. It is
also noteworthy that when a particle improves, i.e., when a
particle is able to find a higher between-class variance from
one step to another, the fractional extension of the algorithm
outputs a higher exploitation behavior. This allows achieving
an improved collective convergence of the algorithm, thus
allowing a good short-term performance.

FODPSO is a promising method to specify a predefined
number of clusters with a higher between-class variance.
In [9], the authors demonstrated that the FODPSO-based
segmentation method performs considerably better in terms of
accuracies than genetic algorithm, bacterial algorithm, PSO,
and DPSO, thus finding different number of clusters with
a higher between-class variance and more stability in less
computational processing time. For further information on the
FODPSO algorithm, please refer to [9] and [16].1

B. Mean Shift Segmentation

MSS is a nonparametric clustering technique, which re-
quires neither embedded assumptions on the shape of the
distribution nor the number of clusters in comparison to the
classic K-means clustering approach. Mean shift was firstly

1MATLAB code is available upon request from the authors.

Fig. 2. Example of our test cases. (a) False color composition of Pavia
dataset. (b) Reference map where each color represents a specific class.
(c) Salinas dataset. (d) Reference.

TABLE I

Initial Parameters of the FODPSO for Our Datasets

IT N ρ1, ρ2 �v Nmin Nmax Ns Ns
min Ns

max Nkill α

100 30 0.8 5 10 50 4 2 6 10 0.6

introduced in [11]. This approach has been more recently
developed for different purposes of low-level vision problems,
including adaptive smoothing and segmentation [10].

The most important limitation of the standard MSS is that
the value of the kernel size is unspecified. More information
regarding the MSS can be found in [10].

III. Experimental Results

A. Description of Datasets

1) Pavia Data: The first test case is a hyperspectral dataset
captured on the city of Pavia, Italy, by airborne data from the
ROSIS-03. In our experiments, 12 noisy bands were eliminated
and 103 bands were processed. The spatial resolution is 1.3 m
per pixel. The original dataset is 610 × 340 pixels. This dataset
consisted of different classes, including trees, asphalt, bitumen,
gravel, metal sheet, shadow, bricks, meadow, and soil. Fig. 2(a)
and (b) depicts Pavia dataset and its reference map.

2) Salinas Data: This scene was captured by AVIRIS
sensor over Salinas Valley, CA, USA, and is characterized
by high-spatial resolution (3.7-m pixels) consisting 512 lines
and 217 samples. It includes vegetables, bare soils, and vine-
yard fields. The Salinas reference data contains 16 classes.
Fig. 2(c) and (d) shows the Salinas dataset and its correspond-
ing reference map.

The datasets have been classified with SVM and a Gaussian
kernel. The hyper parameters have been selected using fivefold
cross validation. The training set was randomly composed
of 12.5% of the referenced set, the experiments have been
repeated 20 times, and the mean accuracy and the standard
deviation have been reported in Table II and IV.

The proposed multilevel thresholding techniques based on
FODPSO were implemented with the specific parameters
shown in Table I for our test cases. These parameters are
chosen based on some studies from [3], [16].

Since the MSS approach is very dependent on the kernel
size, two different kernel sizes were selected (5 and 20) in
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TABLE II

The κ Coefficient and Overall Test Accuracy of Different

Methods for the Pavia Dataset

Method Kernel size Mean(OA) Mean (κ coefficient)
FODPSO + SVM 90.8 ± 0.192 0.887 ± 0.003
MSS (R = 5) + SVM R = 5 98.84 ± 0.079 0.985 ± 0.001
FODPSO + MSS
(R = 5) + SVM

R = 5 98.92 ± 0.106 0.986 ± 0.001

MSS (R = 20) + SVM R = 20 97.72 ± 0.120 0.970 ± 0.002
FODPSO + MSS
(R = 20) + SVM

R = 20 98.04 ± 0.128 0.974 ± 0.002

SVM 94.32 ± 0.174 0.925 ± 0.002

TABLE III

MANOVA Results for the Pavia Dataset

Method κ coefficient OA
FODPSO + MSS (R = 20) + SVM vs 0.004* 0.003*
MSS (R = 20) + SVM

All p-values corresponding to the mean differences are equal to 0.001.
∗The corresponding mean difference is significant at the 0.05 level.

TABLE IV

The κ Coefficient and Overall Test Accuracy of Different

Methods for the Salinas Dataset

Method Kernel Mean Mean
size (OA) (κ coefficient)

FODPSO + SVM 91.97 ± 0.17 0.91 ± 0.0020
MSS (R = 5) + SVM R = 5 99.14 ± 0.05 0.99 ± 0.0005
FODPSO + MSS (R = 5) + SVM R = 5 99.13 ± 0.03 0.99 ± 0.0004
MSS (R = 20) + SVM R = 20 94.76 ± 0.19 0.94 ± 0.0021
FODPSO + MSS (R = 20) + SVM R = 20 96.27 ± 0.11 0.958 ± 0.0013
SVM 94.06 ± 0.13 0.93 ± 0.0014

the experiments. The experimental evaluation will demonstrate
whether the proposed method is highly dependent on the size
of kernel or not.

B. Results and Discussion

1) Pavia Dataset: Table II illustrates the κ coefficient and
overall accuracy (OA) for different methods for the Pavia
dataset. As can be observed from Table II, FODPSO + SVM
gave comparatively the worst performance in terms of accu-
racies. In histogram-based methods, the spatial information of
data such as size and shape are not taken into consideration,
and the final result is spatially independent and can be deter-
mined by considering only the histogram of the data. On the
contrary, the MSS + SVM outperforms the FODPSO + SVM in
terms of accuracies because it does not suffers from the above-
mentioned disadvantages and can handle images with more
complexity such as remote sensing images in a significant
way. As can be seen in the table, FODPSO + MSS + SVM gave
comparatively the best accuracies. Fig. 3 shows the output of
classification for different methods.

To further improve the comparison between MSS + SVM
and FODPSO + MSS + SVM, the significance of the method
on the OA and the κ coefficient (dependent variables) was an-
alyzed using the multivariate analysis of variance (MANOVA)
technique after checking the assumptions of multivariate nor-
mality and homogeneity of variance/covariance. This is a
statistical test procedure that allows comparing multivariate

Fig. 3. Pavia classification result for (a) original image, (b) FODPSO,
(c) MSS, and (d) FODPSO + MSS.

Fig. 4. Salinas classification result for (a) original image, (b) FODPSO,
(c) MSS, and (d) FODPSO + MSS.

means of several groups. In other words, it allows comparing
different methods (as it is the case) with more than one depen-
dent variable (i.e., OA and the κ coefficient). In other words,
the MANOVA merges the multiple dependent variables, thus
creating a single dependent variable. For more information
regarding MANOVA, it is referred to [2].

The assumption of normality for each of the univariate
dependent variables was examined using univariate tests of
Kolmogorov–Smirnov (p < 0.05). When the MANOVA de-
tected significant statistical differences, we proceeded to the
commonly used ANOVA for each dependent variable followed
by the Tukey’s HSD post hoc. The classification of the size
effect (i.e., measure of the proportion of the total variation in
the dependent variable explained by the dependent variable)
was done according to Maroco [7] and Pallant [2]. This
analysis was carried out using IBM SPSS Statistics for a
significance level of 5%.

A two-way MANOVA analysis was carried out to assess
whether the algorithms used in this letter have statistically
significant differences with respect to the classification pro-
cess. The MANOVA analysis revealed that the dependent
variable κ coefficient presents statistically significant differ-
ences with large effect [F(1,38) = 66.656; p = 0.001; η2

p =
0.637; power = 1.0], as well as the dependent variable OA
[F(1,38) = 66.491; p = 0.001; η2

p = 0.636; power = 1.0] (see
Table III).

2) Salinas Dataset: For the Salinas dataset,
FODPSO + SVM gave the worst accuracies (Table IV).
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TABLE V

MANOVA Results for the Salinas Dataset

Method κ OA
FODPSO + MSS (R = 5) + SVM vs MSS −9.258E-5 −8.023E–5
(R = 5) + SVM
FODPSO + MSS (R = 20) + SVM vs 0.017* 0.015*
MSS (R = 20) + SVM

All p-values corresponding to the mean differences are equal to 0.001.
∗The corresponding mean difference is significant at the 0.05 level.

Furthermore, the overall classification accuracy by
MSS + SVM dropped from 99.14% to 94.76% when the
kernel size was increased from 5 to 20. This dramatic
decrease in accuracy shows that the result of the classification
by using MSS is highly dependent on the kernel size. The
kernel size must still be tuned by user who might find
the task difficult since the size can dramatically influence
the final result. A larger or smaller kernel may influence
the result of the segmentation and considerably reduce the
efficiency of the MSS method. Mode candidates with a
distance that is less than the kernel size are merged and
may cause to lose information on an image. In contrast, a
small kernel size may cause a high increase on the CPU
processing time. As the FODPSO is able to find modes with
maximum between-class distance, the influence of tuning
the size of the kernel size is significantly reduced. In other
words, the two methods can solve each other’s problems and,
thus, complement each other. Fig. 4 illustrates the result of
the classification for the different methods. Compared with
the MSS + SVM, the FODPSO + MSS + SVM increased the
accuracy from 94.76% to 96.27% with the kernel size of
20. Considering both kernel sizes (R = 5 and 20), it can be
stated that the FODPSO + MSS + SVM shows more stability.
FODPSO + MSS + SVM improved the result of the traditional
SVM by almost 5% and 2% by considering kernels with the
size of 5 and 20, respectively (Table IV).

For the Salinas dataset, the MANOVA was sepa-
rately carried out on MSS (R = 5) + SVM, FODPSO + MSS
(R = 5) + SVM and MSS (R = 20) + SVM, FODPSO + MSS
(R = 20) + SVM (Table V). The MANOVA analysis revealed
that the κ coefficient does not present statistically signif-
icant differences (F(1,38) = 0.415; p = 0.523; η2

p = 0.011;
power = 0.96). A similar result was observed for the OA
(F(1,38) = 0.386; p = 0.538; η2

p = 0.010; power = 0.93).
For R = 20, the MANOVA analysis depicted that the de-

pendent variable κ coefficient presents statistically signifi-
cant differences with large effect (F(1,38) = 1111.827; p = 1.00;
η2

p = 0.967; power = 1.00), as well as the dependent variable
OA (F(1,38) = 1112.876; p = 0.001; η2

p = 0.967; power = 1.00).
Results show that by increasing the size of the kernel, the pro-
posed method works better than others in terms of accuracies.

IV. Conclusion

In this letter, a new spectral–spatial classification approach
is introduced for accurate classification of hyperspectral im-
ages. The approach is based on the combination of FODPSO

and MSS. FODPSO is a very powerful approach for finding
the predefined number of clusters with the highest between-
class value. In the proposed approach, the result of FODPSO
is used as the input to MSS to develop a pre-processing
method for classification. Tuning the size of the kernel can
be considered as the main difficulty of MSS and the obtained
result may considerably be affected by the kernel size. The
SVM is used for classification on the outcome of these
two segmentation methods. Results indicate that the use of
both segmentation methods can overcome the shortcomings
of each other and the combination can improve the result of
classification significantly.
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Abstract—Just over a decade has passed since the concept
of morphological profile was defined for the analysis of remote
sensing images. Since then, the morphological profile has largely
proved to be a powerful tool able to model spatial information
(e.g., contextual relations) of the image. However, due to the short-
comings of using the morphological profiles, many variants, exten-
sions, and refinements of its definition have appeared stating that
the morphological profile is still under continuous development. In
this case, recently introduced theoretically sound attribute profiles
(APs) can be considered as a generalization of the morphological
profile, which is a powerful tool to model spatial information
existing in the scene. Although the concept of the AP has been
introduced in remote sensing only recently, an extensive literature
on its use in different applications and on different types of data
has appeared. To that end, the great amount of contributions in
the literature that address the application of the AP to many
tasks (e.g., classification, object detection, segmentation, change
detection, etc.) and to different types of images (e.g., panchromatic,
multispectral, and hyperspectral) proves how the AP is an effective
and modern tool. The main objective of this survey paper is to
recall the concept of the APs along with all its modifications and
generalizations with special emphasis on remote sensing image
classification and summarize the important aspects of its efficient
utilization while also listing potential future works.

Index Terms—Attribute profile (AP), hyperspectral image
analysis, morphological attribute filters (AFs), spatial features,
spectral–spatial classification.

I. INTRODUCTION

SUPERVISED classification is an important process in
remote sensing image analysis. A wide range of appli-

cations such as crop monitoring, forest applications, urban
development, mapping and tracking, and risk management can
be handled by using appropriate data and efficient classifiers.
A large amount of data with different spectral, spatial, and
temporal resolutions are currently being made available for
different applications. Hyperspectral imaging sensors are able
to capture hundreds of narrow spectral channels with a very
fine spectral resolution, which is helpful for detailed physical
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analysis of structures in the captured image [1]. In addition,
due to recent advances in remote sensing technologies, spatial
resolution of sensors is also improving [1], which has led to a
better identification of relatively small structures.

Conventional spectral classifiers consider the image as an
ensemble of spectral measurements without exploiting their
spatial arrangement. In other words, the spatial organization of
distinct pixels is not considered in spectral classification [2]. In
order to make use of the spatial organization, a joint spectral and
spatial classifier is required to reduce the labeling uncertainty
that exists when only spectral information is taken into account.
Furthermore, more spatially homogeneous classification maps
are produced. Moreover, spatial information provides addi-
tional discriminant information related to the shape and size of
different structures, which, if properly exploited, leads to more
accurate classification maps.

In order to model the spatial information of a scene, two
common strategies are available: a crisp neighborhood system
and an adaptive neighborhood system [1]. While the first one
mostly relies on considering spatial and contextual dependence
relations in a predefined neighborhood system, the latter shows
more flexibility and is not confined to a given neighborhood
system.

One well-known way for extracting spatial information by
using a crisp neighborhood system is the use of Markov
Random Field (MRF) modeling1 (see the list of abbreviations
shown in Table I). MRF is a family of probabilistic models
and can be explained as a 2-D stochastic process over discrete
pixel lattices [3]. MRF is considered to be a powerful tool
for incorporating spatial and contextual information into the
classification framework [4]. There is a considerable literature
on the use of MRFs in classification. For example, in [5], the
result of the probabilistic support vector machine (SVM) was
regularized by an MRF. In [6], a fully automated framework for
the spectral and spatial classification of hyperspectral (multi-
spectral) data was proposed, which was based on the integration
of a modification of MRF (hidden MRF) and SVM. However,
the main disadvantages of considering a set of crisp neighbors
are as follows.

1) The standard neighborhood system may not contain
enough samples to characterize the object of interest,
and this downgrades the effectiveness of the classifier (in

1Please note that, here, we are discussing the most well-known MRF model,
which models the spatial information of adjacent pixels by considering a crisp
neighborhood system. However, MRFs based on an adaptive neighborhood
system can be found in the literature as well.

0196-2892 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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TABLE I
LIST OF ABBREVIATIONS

particular, when the input data set is of high resolution
and the neighboring pixels are highly correlated [1]).

2) A larger neighborhood system leads to intractable com-
putational problems [1].

In order to address the aforementioned issues, an adaptive
neighborhood system can be considered. One possible way for
considering the adaptive neighborhood system is to utilize dif-
ferent types of segmentation methods. Segmentation of images
into spatially homogenous regions may improve the accuracy
of classification maps [7]. To make such an approach more
effective, an accurate segmentation of the image is required [8].
There is an extensive literature on the use of segmentation tech-
niques in order to extract the spatial information (e.g., [9]–[12]).

Another possible set of approaches that are able to extract
spatial information by using an adaptive neighborhood system
relies on the concept of the morphological profile (MP). An
MP is constructed based on the repeated use of openings and
closings by reconstruction with an structuring element (SE) of
increasing size, applied to a scalar image. MPs simultaneously
attenuate some spatial details and preserve the geometrical
characteristics of the other regions. Pesaresi and Benediktsson
[13] used morphological transformations to build the so-called
MP. In [14], the MP generated by morphological opening
and closing operations was used for classifying a Quickbird
panchromatic image captured over Bam, Iran, which was hit by
an earthquake in 2003. To do so, the spatial features extracted
by the MP were considered for assessing the damages caused
by the earthquake. The standard opening and closing along
with white and black top hat [15] and opening and closing

by reconstruction were computed, and the resulting features
were classified using an SVM classifier for the classification
of a Quickbird panchromatic image in [16]. An automatic
hierarchical segmentation technique based on the analysis of
the differential morphological profile (DMP) (the derivative of
the MP) was proposed in [17]. The DMP was also analyzed
in [18], by extracting a fuzzy measure of the characteristic
scale and contrast of each structure in the image. The com-
puted measures were compared with the possibility distribu-
tion predefined for each thematic class, generating a value of
membership degree for each class used for classification. In
[19], in order to reduce the dimensionality of data and address
the so-called curse of dimensionality [20], feature extraction
(FE) techniques were taken into consideration for the DMP
classified by a neural network classifier. In [21], the concept
of MPs was successfully extended to handle hyperspectral
images, resulting in the extended morphological profile (EMP).
The EMP is obtained by first reducing the dimensionality of
the hyperspectral image with a principal component analysis
(PCA) and by computing an MP on each of its first few
components.

Some studies have been conducted in order to assess the ca-
pability of SEs with different shapes for the extraction of spatial
information. For instance, MPs computed with a compact SE
(e.g., square, disk, etc.) can be considered for modeling the size
of the objects in the image (e.g., in [1], this information was
exploited to discriminate small buildings from large ones). In
[22], the computation of two MPs was introduced in order to
model both the length and the width of the structures. In more
detail, one MP is built using disk-shaped SEs for extracting the
smallest size of the structures, whereas the other employs linear
SEs (which generate directional profiles [23]) for characterizing
the object’s maximum size (along with the orientation of the
SE). This is appropriate for defining the minimal and maximal
length. However, such analysis is computationally intensive as
all the possible lengths and orientations cannot be practically
investigated. Moreover, in [22], Bellens et al. proposed the
use of operators based on “partial reconstruction” instead of
the conventional geodesic reconstruction in order to reduce the
“leakage effect.” In [24], a new binary optimization method
inspired by the fractional-order Darwinian particle swarm op-
timization (PSO) [8] is introduced in order to select the most
informative features extracted by MP.

Based on the aforementioned literature, it is easy to infer that
multiscale processing based on morphological filters (e.g., by
MPs, DMPs, and EMPs) has proven to be effective in extracting
informative spatial features from the images to be analyzed.
Although MP is a powerful technique for the extraction of
spatial information, the concept has a few limitations: 1) The
shape of SEs is fixed; and 2) SEs are unable to character-
ize information related to the gray-level characteristics of the
regions. To overcome this, the morphological AP has been
proposed as the generalization of the MP, which provides a
multilevel characterization of an image by using the sequential
application of a morphological attribute filter (AF) [25]. AFs
are connected operators that process an image by considering
only its connected components. For binary images, the con-
nected components are simply the foreground and background
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regions present in the image. In order to deal with grayscale
images, the set of connected components can be obtained by
considering the image to be composed by a stack of binary
images generated by thresholding the image at all its gray-
level values [26]. Thus, they process the image without distort-
ing or inserting new edges but only by merging existing flat
regions [15]. AFs were employed for modeling the structural
information of the scene in order to increase the effectiveness
of a classification and building extraction in [25] and [27],
respectively, where they proved to be efficient for the modeling
of structural information in very high resolution (VHR) images.
In [28], AFs were used in a scheme for building height retrieval
by considering VHR images acquired on the same area with
different acquisition angles. That is, the filters were used for
reducing the complexity of the images in order to isolate
regions that correspond to the rooftops of buildings. A neural
network was used to find correspondences between the ex-
tracted regions in the different images by considering moment
invariant descriptors as features. After finding correspondences
and since the building considered had a flat roof, the horizontal
displacement of matching regions was converted in height by
trigonometry.

AFs include in their definition the morphological operators
based on geodesic reconstruction [29]. Moreover, an AP is a
flexible tool since images can be processed based on many
different types of attributes. In fact, the attributes can be of any
type. For example, they can be purely geometric, related to the
spectral values of the pixels, or on different characteristics such
as spatial relations to other connected components. Further-
more, in [27], the problem of tuning the parameters of the filters
was addressed by proposing an automatic feature selection (FS)
procedure based on a genetic algorithm (GA). In [30], it was
proved that the automatic method with considering only two
attributes (area and standard deviation) is comparative with a
manual technique with four attributes in terms of classification
accuracy and CPU processing time. In [31], a topographic
map of the image was used, which is autodual (it is invariant
to contrast inversion) and does not require any SE in order
to extract the profiles. In addition, the concept of MPs was
extended to the profiles of other features (e.g., perimeters,
scales, and total variations).

This work presents a survey over the existing papers re-
lated to AP with special emphasis on multispectral and hy-
perspectral image classification, while still providing a general
framework for other types of data. The rest of this survey
paper is organized as follows: First, a few primary concepts
related to morphological profiles will be disscused in Section II.
Then, the concept of AP and its extension for hyperspectral
data will be explained in Section III. Then, Section IV is
devoted to spectral and spatial classification of remote sens-
ing data by considering AP. Section V is on the use of AP
for other types of applications such as change detection and
other types of data such as LiDAR. In Section VI, the main
obtained points, the advantages and disadvantages of different
techniques, and the survey of existing experiments with re-
spect to classification results will be briefly discussed. Finally,
Section VII outlines the main conclusions and possible future
works.

II. MORPHOLOGICAL PROFILE

Here, first, we recall a few primary concepts such as con-
nected components, basic morphological operators, and mor-
phological profile and their modifications.

A. Connected Components

A connected component is regarded as a group of isolevel
pixels that are connected according to a predefined connectiv-
ity rule. The most well-known connectivity rules are 4- and
8-connected, where a pixel is considered as adjacent to four or
eight of its neighboring pixels, respectively.

B. Basic Morphological Operators

Erosion and dilation are considered as the basic building
blocks of mathematical morphology. These operations are car-
ried out on an image with a set of known shape, which is called
an SE. Opening and closing are combinations of erosion and
dilation. These operators simplify the input data by removing
structures with size less than that of the SE. However, they can
influence the shape of the structures and can introduce fake
objects in the image [32]. One way to handle this issue is to
consider opening and closing by reconstruction [15].

Opening and closing by reconstruction filters are a family
of connected operators that satisfy the following criterion: If
the SE cannot fit in an object, then it will be totally removed;
otherwise, it will be totally preserved. Reconstruction opera-
tors remove objects smaller than the SE without altering the
shape of those objects and reconstruct connected components
from the preserved objects. For gray-scale images, opening by
reconstruction removes unconnected light objects, and in dual,
closing by reconstruction removes unconnected dark objects.
Fig. 1 illustrates the different results that are obtained when
considering operators with or without geodesic reconstruction.

C. Morphological Profile and Its Modifications

In order to characterize the scale of different structures
present in an image, it is very important to consider a range of
SEs with different sizes. MPs use successive opening/closing
operations with an SE of increasing size. The successive ap-
plication of opening/closing leads to a simplification of the
input image and a better understanding of different available
structures in the image. An MP consists of an opening profile
and a closing profile. In order to fully exploit the spatial infor-
mation, filtering techniques should simultaneously attenuate the
unimportant details and preserve the geometrical characteristics
of the other regions. In [13], morphological transformations
were used to build an MP. They carried out a multiscale analysis
by computing an antigranulometry and a granulometry (i.e., a
sequence of closing and opening with an SE of increasing size),
appended in a common data structure named MP.

Another modification of using MP, which was exploited
for the classification of VHR panchromatic images, is DMP.
DMP is composed of the residues of two subsequent filtering
operations for two adjacent levels existing in the profile. Since
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Fig. 1. (a) Morphological closing. (b) Closing by reconstruction. (c) Original VHR panchromatic image. (d) Opening by reconstruction. (e) Morphological
opening. As can be seen, morphological opening and closing have influences on the shape of the structures and can introduce fake objects. However, opening and
closing by reconstruction preserve the shape of different objects bigger than the SE. The disk-shaped SE with a radius size of three pixels is taken into account.

Fig. 2. Example of a simple EMP consisting of two PCs.

the DMP is the derivative of the MP, it has a number of levels,
which is one less than the number of levels in the MP.

In [21], the concept of MPs was successfully extended to
handle hyperspectral images by using PCA for reducing the
dimensionality of the hyperspectral data. The dimensionality
is reduced by only considering the few first components of
the transformation, which retain most of the information (here
expressed by the variance) of the original data. MPs were
generated for the selected PCs of the data and stacked into
a single profile named EMP. Fig. 2 shows a stacked vector
consisting of the profiles based on the first and second PCs.
Since the EMP does not fully exploit the spectral information
and PCA does not consider class information, in [32], different
supervised FE techniques are used instead of PCA, and the
EMP stacked along with other extracted features is classified
using an SVM.

Although MP is a powerful technique for the extraction of
spatial information, the concept suffers from a few limitations
as follows.

1) The shape of SEs is fixed, which is considered as a main
limitation for the extraction of objects within a scene.

2) SEs are unable to describe information related to the
gray-level characteristics of the regions such as spectral
homogeneity, contrast, and so on.

3) A final limitation associated with the concept of MPs is
the computational complexity. The original image needs
to be completely processed for each level of the profile,
which requires two complete evaluations of the image:
one performed by a closing transformation and the other
by an opening transformation. Thus, the complexity lin-
early increases with the number of levels included in the
profile [25].

To address the aforementioned issues, the concept of attribute
profile (AP) was proposed in [25].

III. AP

A. Morphological AFs

Morphological AFs are connected filters [33]; hence, they
process an image by only merging its connected components.
We will now detail how such set of connected components can
be derived from an image.

Let us consider a discrete 2-D image f : E → T , with E
as the discrete image domain (E ⊆ Z2) and T ⊆ Z as the
set of possible scalar values associated to the elements (i.e.,
pixels) of E. It is well known that it is possible to decompose
a scalar image into a set of binary images by the so-called
threshold decomposition principle (i.e., f =

∑
t ft with ft :

f ≥ t and t ∈ T ) [34], [35]. Using the analogy of an image
with a topographic surface in which the elevation of the map
corresponds to the intensity of the gray level, the image can
be seen as a superposition of all the isolevel maps (i.e., slices
of the 3-D map at all the possible height levels). Each binary
image is composed of connected components, and in this repre-
sentation, by varying the threshold’s value (i.e., the height of the
plane), connected components can merge, enlarge, shrink, split,
appear, or disappear according to the spatial organization and
the intensity values of the pixels in the image. Since elements of
T are ordered, f can be equivalently decomposed into an upper
or a lower level set, which are defined as the sets of binary maps
obtained by considering the upper (i.e., ≥ t) or the lower (i.e.,
< t) threshold for all the possible values of the pixels [36].

AFs operate through a transformation based on a predicate P
(i.e., P : S → {false, true}, with S as a generic set of values),
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Fig. 3. Illustrative example for attribute filtering. (a) Binary image in which
two different attributes were computed for each connected component of the
image upper level set. Only connected components of the foreground are
considered in this example. Attribute A1 is a scale-dependent measure (i.e.,
the area in number of pixels for each region), and A2 is a shape index invariant
to scale and rotation (i.e., the moment of inertia multiplied by a factor 102

was considered as measure). (b) Result of a thinning with predicate A1 > 25.
(c) Result of a thinning with predicate A2 > 30.

which is evaluated on each connected component (obtained
by the image decomposition). Different filtering effects are
obtained by considering either the components of the upper
or the lower level set. The predicates implement a comparison
between the value of a generic attribute A computed on a
component C and a predefined threshold value λ, e.g., P (C) =
A(C) ≥ λ. Any measure that can be computed for an image
region can act as an attribute [33]. Moreover, even multiple
attributes can be considered in the same transformation if they
are evaluated in a single joint predicate. The filtering operates
on each connected component according to the output of the
predicate: If P is fulfilled, the component is preserved; other-
wise, it is merged to one of its adjacent components (i.e., setting
its gray level to the gray level of the component to whom it will
be merged to). An important property of P is increasingness.
A criterion is said to be increasing when it is verified for
a connected component, then it will be also true for all the
components in which the component is nested. This property
leads to have, for example, P (Cj) = true when also P (Ci) =
true for any Cj ⊆ Ci. Examples of increasing criteria involve
increasing attributes (e.g., area, volume, size of the bounding
box, etc.) and an inequality relation (e.g., ≥). In contrast,
nonincreasing attributes, such as scale-invariant measures (e.g.,
gray-level homogeneity, shape descriptors, region orientation,
etc.), lead to nonincreasing criteria.

When considering the components of the set, the result of the
filtering is a thinning, which is denoted by γ, since the transfor-
mation obtained in this case is idempotent and antiextensive.2

If the predicate is increasing, the filter also increases, leading
to an opening. Analogous considerations can be done for the
dual transformation by considering the lower level set. The
transformation is a thickening, which is denoted by φ, and if
the criterion is increasing, it becomes a closing. Fig. 3 shows an
example of attribute filtering on a binary image. Two attributes,
namely, A1 based on the size and A2 based on the shape of the
regions, were computed on the connected components of the
image [see Fig. 3(a)]. The results of two thinning operators,
i.e., one based on A1 and another on A2 (with an arbitrary
predicate), are shown in Fig. 3(b) and (c). It is worth noting
that it is not possible to achieve the result in Fig. 3(c) (i.e.,
removing all the foreground objects with a compact shape) with
a single filtering based on A1. In the same way, the removal
of objects based on their scale cannot be obtained considering
A2. Furthermore, when considering connected operators based
on SEs (such as opening and closing by reconstruction), the
result in Fig. 3(b) can be equivalently obtained with any SE
that is not contained in the foreground objects of smaller scale
(but contained in the three largest objects). However, as in
Fig. 3(c), the result cannot be straightforwardly achieved with a
single filtering based on an SE due to the different scale of the
structures meant to be preserved.

There is an inclusion relations between the connected com-
ponents in the image (obtained from the upper or the lower
set), which means that any two components are either nested
or disjoint. Due to this, the set of connected components can
be represented by a tree, its nodes being the components and
the links between nodes being the inclusion relations between
components. The tree derived by the components in the upper
(resp., lower) level set is called max-tree (resp., min-tree) [37].3

Another representation of a gray-scale image as a hierarchy
of regions is the inclusion tree. Here, the set of connected
components is obtained by progressively “filling” regions inter-
nal to others (i.e., considered as “holes”), and the connections
in the tree are determined by the considered region-filling
operator [39].

Such hierarchical representations of an image can be effec-
tively exploited for the computation of morphological AFs [37],
[40]. Thinnings and thickenings will be obtained from a max-
tree and a min-tree, respectively. The image transformation
done by the filter on the image is equivalent to a pruning of
the tree, i.e., the removal of single nodes or branches.

Different pruning strategies exist depending on whether the
predicate evaluated by the AF is increasing or not [40]. The
increasingness of a predicate leads to the removal of entire
branches (i.e., a node with all its descendants up to their
leaves) from the tree. Conversely, for nonincreasing predicates,
intermediate nodes in a branch can either fulfill the predicate or

2We recall that for a generic transformation ψ on an image f (and
g), idempotence means ψ(ψ(f)) = ψ(f), increasingness f ≤ g ⇔ ψ(f) ≤
ψ(g) ∀ f, g, and antiextensivity (resp., extensivity) refers to f ≥ ψ(f) (resp.,
f ≤ ψ(f)).

3In [38], min- and max-trees are called component trees.
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Fig. 4. Example of max-tree. (a) Gray-scale image with intensities rang-
ing from 0 to 3. (b) Image in (a) with its connected components labeled.
(c) Max-tree of (a). This shows the relations between the nodes associated to
the connected components in (b) [42].

not. For that case, different filtering rules have been defined in
the literature [37], [41].

An example of max-tree is shown in Fig. 4. As one can see in
Fig. 4(b), the image is composed by connected components of
isointensity pixels. The max-tree maps each of all the connected
components of the image to a node organized in a hierarchical
tree structure [see Fig. 4(c)]. The root node of the tree represents
the whole image at his lowest gray level. The tree grows by
connecting the nodes of the progressively nested connected
components in the image up to the leaves of the tree that
correspond to the regional maxima in the image.

B. AP and Its Extension to Vectorial Images

Although this section should be considered self-sufficient
for understanding the concept of AP, extended AP (EAP), and
extended multiattribute profile (EMAP), for more information
regarding the aforementioned concepts, please refer to [25] and
[42]. More useful references can be found throughout the paper.

APs are obtained by the outputs of a sequence of thin-
ning and thickening transformations applied on a scalar image
[25]. APs can be seen as a generalization of MPs since both
opening and closing by reconstruction can be implemented
as AFs [33]. The motivation for using AFs is to overcome
the limitation of the conventional operators based on geodesic
reconstruction in defining a decomposition of the image based
on characteristics different from the scale [43]. In fact, MPs
naturally perform a multiscale decomposition of an image,
since structuring elements of a fixed shape and an increasing
size are employed. However, trying to compute an MP based
on the shape cannot be easily achieved since scale-invariant
characteristics are poorly modeled by SEs (it would require a
very large set of SEs, since the analysis should be scale invariant
and many different shapes of the SE should be considered).
Instead, by using AFs, the image decomposition can be based
on the scale (as for MP), shape, texture, etc., according to the
type of attribute considered.

Fig. 5. Example of the general architecture of AP.

More formally, an AP is defined as in (1), shown at the
bottom of the page [25], with Pλ : {Pλi

} (i = 1, . . . , L) as a set
of L ordered predicates (i.e., Pλi

⊆ Pλk
, i ≤ k). The sequence

of criteria considered for constructing the profile has to be
ordered for guaranteeing the fulfillment of the absorption prop-
erty, which might not be verified for nonincreasing predicates.
Thus, the AP can be seen as a stack of thickening and thinning
profiles. The thickening profile is considered in reversed order,
such that the coarser image appears first and the original
image last. The original image f also appears in the profile
since it can be considered as the level zero of both the thicken-
ing and thinning profiles (i.e., φPλ0 (f) = γPλ0 (f) = f , where
Pλ0

is a predicate that is fulfilled by all the components in
the image, leading to no filtering). According to the attribute
and criterion considered, different information can be extracted
from the structures in the scene leading to different multilevel
characterizations of the image. [25]. We refer the reader to [25]
for further details. Fig. 5 shows an example for the general
architecture of AP.

We recall also that in [45], an inclusion tree was used for
computing the AP instead of the min-tree and max-tree data
representation, leading to a self-dual AP. In that work, the
application of self-dual connected operators led to an image
simplification characterized by more homogeneous regions
with respect to the results obtained by extensive or antiextensive
connected operators.

When dealing with vectorial images (f : E → T , with E ⊆
Z2 and T ⊆ Zn, n > 1 and f = {f1, f2, . . . , fn}) such as
multispectral and hyperspectral images (where n is the number

AP (f) =

⎧
⎪⎨
⎪⎩

φPλL (f), φPλL−1 (f), . . . , φPλ1 (f)︸ ︷︷ ︸
thickening profile

, f, γPλ1 (f), . . . , γPλL−1 (f), γPλL (f)︸ ︷︷ ︸
thinning profile

⎫
⎪⎬
⎪⎭

(1)
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Fig. 6. General architecture of EAP.

of spectral bands), the application of morphological filters
(here specifically APs) is not straightforward since there is no
unique approach for extending them to vectorial images [46–50,
Ch. 11]. A possible way of applying the concept of the pro-
file to vectorial images was proposed in [21] and [42] and
recalled in Section II-B. The proposed approach is based on
the reduction of the dimensionality of the image values from T
to T ′ ⊆ Zm (m ≤ n) with a generic transformation Ψ : T →
T ′ applied to an input image f (i.e., g = Ψ(f)) and then on
the application of the AP to each gi (i = 1, . . . , m) of the
transformed image. This can be formalized as

EAP (g) = {AP (g1), AP (g2), . . . , AP (gm)} . (2)

Fig. 6 shows the general architecture of EAP.
It can be convenient to compute multiple EAPs considering

different attributes in order to derive a more complete descriptor
of an image. This is the underlyining idea of the EMAP
[42] (see Fig. 7), which is consequently defined considering k
different attributes as

EMAP (g) =
{
EAPA1

(g), EAP ′
A2

(g), . . . , EAP ′
Ak

(g)
}

(3)

where EAPAi
is an EAP built with a set of predicates eval-

uating the attribute Ai and EAP ′ = EAP \ {gi}i=1,...,m in
order to avoid redundancy since the original components {gi}
are present in each EAP. Fig. 7 shows the general architecture
of EMAP. The following attributes have been widely used in
literature in order to produce EMAP:

1) area of the region (related to the size of the regions);
2) standard deviation (as an index for showing the homo-

geneity of the regions);
3) diagonal of the box bounding the regions;
4) moment of inertia (as an index for measuring the elonga-

tion of the regions).

Fig. 8 shows an example of different APs (area, moment of
inertia, and standard deviation) with different threshold values.

IV. SPECTRAL–SPATIAL CLASSIFICATION

BASED ON THE AP

Although this section should be considered self-sufficient
for understanding the concept of spectral–spatial classification
based on the AP, for more information regarding the afore-
mentioned concepts, please refer to [30], [51], and [52]. More
references can be found throughout the paper.

This section aims at reviewing the main steps composing
the techniques based on APs for land cover classification.
We will focus on the classification of hyperspectral images
(thus considering EAPs/EMAPs) since most of those tech-
niques were proposed for this imagery. It is underlined that
this choice is done without loss of generality since all the
classification architectures proposed for other types of data
(e.g., panchromatic images in [53]) can be reconducted to the
general scheme presented in this section. A general workflow
of the spectral–spatial classification with EMAP is shown in
Fig. 9. First, FE/FS is performed on remote sensing data, and
the resulting features are used as bases to build the EMAP.
It should be noted that FE/FS are mostly taken into account
for hyperspectral images in order to reduce the redundancy of
the data and address the so-called curse of dimensionality. For
other types of data, this step can be discarded. In [54], it has
been noted that a prior spectral decomposition based on kernel
FE before building the APs can lead to better classification
results. The FE/FS can either be supervised or unsupervised.
A further FE/FS operation applied to the EMAP can both
reduce the effect of the Hughes phenomenon [20] and the
redundancy in the profiles for classification. The classification
is usually performed using nonlinear classifiers due to the fact
that the resulting EMAP is characterized by highly nonlinear
class distributions. In the following, the main components of the
flowchart in Fig. 9 (FS/FE and classification) will be discussed
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Fig. 7. General architecture of EMAP.

Fig. 8. Example of different APs (area, moment of inertia, and standard deviation) with different threshold values.

in detail. Furthermore, at the end of this section, the automatic
generation of EMAP for the accurate classification of remote
sensing data will be discussed.

A. FE and FS

In the spectral domain, each spectral channel is considered
as one dimension. By increasing the features in the spectral
domain, theoretical and practical problems may arise. For in-
stance, while keeping the number of training samples constant,
the classification accuracy actually decreases when the number

of features becomes large [20]. For the purpose of classification,
these problems are related to the curse of dimensionality. In
[55], it was shown that too many spectral bands can be unde-
sirable from the standpoint of expected classification accuracy
because the accuracy of the statistics estimation decreases
(Hughes phenomenon). The aforementioned issue demonstrates
that there is an optimal number of bands for classification
accuracy, and more features do not necessarily lead to better
results. Therefore, the use of feature reduction techniques may
lead to better classification accuracy. The Hughes phenomenon
highly influences parametric classifiers where the higher set of
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Fig. 9. General workflow of spectral–spatial classification with EMAP. The dotted lines indicate the possibility of switching between supervised and unsupervised
feature reduction. An optional feature reduction step can be used to reduce the dimensionality of EMAP before classification [51].

statistical estimations needs to be estimated, and their classi-
fication accuracy values are dramatically downgraded by that
effect. However, this issue has less influence on nonparametric
classifiers such as SVM [56] and random forest (RF) [57].

In order to fully exploit spatial information from different
structures in the scene, different attributes with a considerable
range of threshold values should be considered. Nevertheless,
considering many attributes with many threshold values can
result in hyperdimensional profiles and, thus, hyperdimensional
feature vectors that can lead to the Hughes phenomenon [20]
(i.e., the curse of dimensionality) and high redundancy since fil-
ters with slightly different parameters may produce similar re-
sults. The issue of the high dimensionality of the profile can be
addressed by considering feature reduction techniques. How-
ever, the selection of appropriate filter parameters is an essential
step in order to guarantee a good tradeoff between the descrip-
tive power of the profile and its redundancy [58]. In this case, FS
and FE techniques have been gaining significant considerations
in order to select the most effective features of the APs.

FS methods choose features from the original data set based
on a criterion that is used to filter out unimportant or redundant
features. FE can be explained as finding a set of vectors that
represents an observation while reducing the dimensionality by
transforming data to another domain. FE/FS can be split into
two categories, namely, unsupervised and supervised FE/FS,
where the former is used for the purpose of data representation,
and the latter is considered for solving the Hughes phenomena
[20] and reducing the redundancy of data in order to improve
classification accuracy values by getting feedback from a set
of available training samples. Although a reduction in dimen-
sionality is of importance, the error arising from the reduction

in dimension has to be without sacrificing the discriminative
power of classifiers [32].

As shown in Fig. 9, FE/FS can be performed on the input
data (in order to reduce the redundancy of the input data and
select informative features as basis for producing APs) or on
the obtained APs (in order to reduce the redundancy of obtained
features by APs and increase the classification accuracy values).
It should be noted that FE/FS can as well be used for both steps
in one classification framework.

1) FE: PCA, KPCA (Kernel PCA), and independent com-
ponent analysis (ICA) are the most commonly used unsuper-
vised FE, which are used along with the concept of EMAP
(e.g., [30], [51], and [59]). Moreover, Discriminant analysis
feature extraction (DAFE), decision boundary FE (DBFE),
and nonparametric weighted feature extraction (NWFE) are
considered as the best known supervised FE, which are taken
into account along with the concept of EMAP (e.g., [51]). It
should be noted that the unsupervised FEs are mostly applied in
order to extract informative features as the basis for producing
APs. However, the supervised FEs can be performed on either
the input data or the features obtained by APs.

The choice of the FE method has also been found to greatly
influence the classification results using EMAPs. In [51], var-
ious supervised and unsupervised FE methods were compared
when EMAPs were built using corresponding features and clas-
sified using RF and SVM classifiers. It has been concluded that
kernel FE methods (in this case, kernel PCA) provides more
consistent performance even if supervised FE (e.g., DBFE,
NWFE, etc.) produces more accurate maps when a sufficient
number of training samples are available. Furthermore, it has
been noted in [54] that a prior FE from multispectral data
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using kernel methods to build the EMAP produces significantly
improved classification maps.

In order to classify informative features produced by super-
vised FE, the first features with cumulative eigenvalues above
99% are retained. In the case of DAFE and NWFE, the criterion
is related to the size of the eigenvalues of the scatter matrices.
In the case of DBFE, the criterion is related to the size of the
eigenvalues of the decision boundary feature matrix. For PCA,
the first PCs with a cumulative variance of more than 99% are
kept, since they contain almost all the variance in the data.
However, different percentages can be used for different data.

Very recently in [60], it has been proposed to compute
multiple profiles composed of APs built on different base
images obtained by linear, nonlinear, manifold learning-based,
and multilinear transformations of the original hyperspectral
image. The individual APs computed on the extracted features
(obtained by the different strategies) are either considered
separately or jointly in a stacked vector. In order to deal with
the high dimensionality of the profile, it was proposed to use a
decision fusion approach or a sparse-based classifier.

2) FS: In [58], an automatic method was introduced for
the classification of hyperspectral data, which is based on the
FS step. In order to reduce the number of features by only
keeping those that are important, GAs based on a measure of
the relevance of the features were used. The main idea here is to
construct a large profile from input hyperspectral data, which is
called the EEMAP, that covers all the reasonable range of values
for the filter parameters in order to provide a complete and
detailed characterization of the spatial information of the scene.
Then, for reducing the number of features by only keeping those
that are important, GAs based on a measure of the relevance of
the features are taken into account.

In [61], a new FS technique was proposed, which is based
on the integration of GA and PSO. Then, the FS technique was
applied on several features produced by EMAP for selecting the
most informative features in order to detect road networks.

In [62], a new FS technique is introduced, which is based on a
new binary optimization method named binary fractional order
Darwinian particle swarm optimization (BFODPSO). In that
method, SVM is used as the fitness function, and its correspond-
ing classification overall accuracy is chosen as the fitness value
in order to evaluate the efficiency of different group of features.
In that paper, first, an AP feature bank is built consisting of
different attributes with a wide range of threshold values. Then,
BFODPSO-based FS is performed on the feature bank. In this
case, SVM is chosen as the fitness function. The fitness of each
particle is evaluated by the overall accuracy of SVM over the
validation samples. After a few iterations, the BFODPSO-based
FS approach finds the most informative features (resulted by
EMAP) with respect to the overall accuracy of SVM over the
validation samples.

In [63], a strategy for the selection of spatial features (among
those APs were considered) relevant for classification was
proposed. The relevance of the features is determined with
respect to their capability in maximizing the SVM margin in
the separation of classes. A research procedure based on the
random generation of spatial filter banks and use of an active set
criterion to rank the candidate features according to their bene-

fits to margin maximization is proposed. This way, it is possible
to explore the virtually infinite feature space (constituted by all
the possible spatial features that could be computed) in order
to retain the relevant ones for guaranteeing a final classification
scheme, which is compact (uses as few features as possible),
discriminative (enhances class separation), and robust (works
well in small-sample situations).

B. Classification Using Different Methods

As discussed above, APs have been successfully exploited
as efficient tools for spectral–spatial classification of remote
sensing data. APs are inherently characterized by large dimen-
sionality and high redundancy. This poses a great challenge for
classification particularly to counter the Hughes phenomenon
[20]. Due to highly nonlinear characteristics of the class distri-
butions in the APs, the classification should be performed using
nonlinear classifiers. A majority of the studies on classification
of APs employed SVM [56] and RF [57] classifiers (e.g., [51],
[58], and [64]).

SVM is a well-known classifier that separates training sam-
ples of different classes by tracing maximum margin hyper-
planes in the space where the samples are mapped [65]. SVMs
were originally introduced to solve linear classification prob-
lems. However, they were generalized for solving nonlinear
decision functions by using the so-called kernel trick [66]. A
kernel-based SVM is used to project the pixel vectors into
higher dimensional space and estimate maximum margin hy-
perplanes in the new space, for improving linear separability of
data [66]. The two main critical aspects of SVMs are sensitivity
to the choice of the kernel and selection of the regularization
parameters. The second issue can be classically overcome
by considering cross-validation techniques using training data
[67]. However, that can be computationally expensive [51]. The
Gaussian radial basis function (RBF) is the most widely used
kernel in remote sensing [66]. The cross validation explores an
appropriate bandwidth parameter that provides the minimum
error when the kernel-based SVM classifier is applied on the
training data set. The main shortcomings of the cross validation
are that 1) the bandwidth parameter needs to be discretized
between a minimum and a maximum value, and the SVM
classifier has to be trained and tested in a fivefold way for each
of the discrete values of the bandwidth parameter. By increasing
the number of discrete levels, the probability of finding the
best parameter increases, which leads to higher computational
time. On the contrary, by decreasing the number of levels,
a suboptimal bandwidth parameter might be selected [68].
2) In most of data sets, the cross-validation procedure does
not consider a convex error curve over the selected discrete
bandwidth parameter values, which makes the selection of dis-
crete bandwidth parameter values a difficult task [68]. In order
to tackle the aforementioned problems, in [69], a gradient-
based method was proposed to minimize the upper bound of
the leave-one-out generalization error of SVM over the set of
full-diagonal bandwidth parameters. In [68] and [70], the upper
bound was estimated based on the radius margin bound.

RF is an ensemble method for classification and regression.
Ensemble classifiers get their name from the fact that several
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classifiers, i.e., an ensemble of classifiers, are trained, and
their individual results are then combined to provide a final
classification. For the purpose of classification of an object from
an input vector, the input vector is run down each tree in the
forest. Each tree provides a single vote for a particular class,
and the forest chooses the classification label having the most
votes (based on studies in [71]).

RF is not computationally intensive but demands a consid-
erable amount of memory. RF can provide a good classifica-
tion result in terms of accuracy values and does not assume
any underlying probability distribution for input data. Another
advantage of the RF classifier is that it is insensitive to noise in
the training labels [71]. In addition, RF provides an unbiased
estimate of the test set error as trees are added to the ensemble,
and finally, it is less prone to overfit.

Apart from using SVM and RF classifiers, a composite
kernel framework for spectral–spatial classification using APs
has been recently investigated. In [72], a linearly weighted
composite kernel framework with SVMs has been used for
spectral–spatial classification using APs. A linearly weighted
composite kernel is a weighted combination of different kernels
computed using the available features [73]. For classification
using APs, probabilistic SVMs were employed to classify the
spectral information to obtain different rule images. The kernels
are computed using the obtained rule images and are combined
using the weighting factor. The choice of the weighting factor
can be subjectively given or estimated using cross validation.
However, classification using composite kernels and SVMs
require a convex combination of kernels and a time-consuming
optimization process. To overcome these limitations, a gener-
alized composite kernel framework for spectral–spatial classifi-
cation using APs has been proposed in [72]. MLR ([74]–[76])
has been employed instead of an SVM classifier and a set of
generalized composite kernels, which can be linearly combined
without any constraint of convexity, were proposed.

Very recently, sparse representation classification (SRC)
techniques have been proposed for the classification of EMAPs
[77]. SRC relies on the concept that an unknown sample can be
represented as a linear combination of a set of labeled ones (i.e.,
the training set), called the dictionary. The representation of the
samples is cast as an optimization problem in which the weights
of each sample of the dictionary should be estimated with a
constraint enforcing sparsity on the weights (i.e., limiting the
contribution in the representation to only few samples). After
representation, the sample is assigned to the class that shows
the minimum reconstruction error when considering only the
samples of the dictionary belonging to that class.

The importance of sparse-based classification methods has
been further confirmed in [74] where a sparse-based MLR
efficiently proved to effectively handle the very high dimen-
sionality of the AP-based features used as input to the classifier.

In [78], a new technique was introduced for the combined
classification of a high spatial resolution color image and a
lower spatial resolution hyperspectral image of the same scene.
To this extent, 1) contextual information is extracted from the
high spatial resolution color image by transforming the image
into CIE-Lab space. In the new space, instead of working on
the “R,” “G,” and “B” bands separately, APs are carried out on

the “L” band, which corresponds to the luminance, whereas the
“a” and “b” bands (which contain the color information) are
kept intact. Finally, the resulting images are transformed back
into RGB space. 2) In parallel, the spectral information is ex-
tracted from the low spatial resolution hyperspectral data. 3) Fi-
nally, a composite decision fusion technique was investigated
for combining the result of spectral and spatial information.

C. Automatic Scheme for EMAP

Although this section should be considered self-sufficient for
understanding the concept of automatic EMAP, for more infor-
mation regarding the aforementioned concepts, please refer to
[30], [52], and [58]. More references can be found throughout
the paper.

In order to tackle the main difficulties of using the EMAP,
namely, 1) which attributes lead to a better discrimination
for different classes and 2) which threshold values should be
considered in order to initialize each AP, automatic schemes
of using EMAP have been investigated. While the APs can
be constructed by using different attributes, in the automatic
scheme, generally the area and standard deviation attributes are
only used, since these attributes can be adjusted in an automatic
way and are well related to the object hierarchy in the images
[30], [52], [58].

The standard deviation is adjusted with respect to the mean
of the individual features, since the standard deviation shows
dispersion from the mean [64]. Therefore, λs is initialized in a
way to cover a reasonable amount of deviation in the individual
feature and can be mathematically given by

λs(PCi) =
μi

100
{σmin, σmin + δs, σmin + 2δs, . . . , σmax}

(4)

where μi is the mean of the ith feature, and σmin, σmax, and δs

are the inner bound, the upper bound, and the step size for the
standard deviation attribute, respectively.

With regard to adjusting λa for the area attribute, the res-
olution of the image should be taken into account in order to
construct an EAP [58]. The automatic scheme of the attribute
area is given as

λa(PCi) =
1000

υ
{amin, amin + δa, amin + 2δa, . . . , amax}

(5)

where amin and amax are considered as the inner and upper
bounds, respectively, with a step size increase δa, and υ shows
the spatial resolution of the input data.

Here, “automatic” means that the framework only needs to
establish a range of parameter values in order to automatically
obtain a classification result with high accuracy for different
data sets, instead of adjusting different thresholds with crisp
values. More information regarding appropriate values for inner
bound, upper bound, and step sizes can be found in [30], [52],
and [58].

In [30], a spectral–spatial classification approach was intro-
duced [please see the general idea of the model in Fig. 10(a);
here, this method is called MANUAL, since the threshold
values for EMAP are manually adjusted]. Then, in that paper,
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Fig. 10. (a) Flowchart of the method introduced in [30] for the MANUAL classification of hyperspectral images using AP and FE techniques. (b) General idea
of the AUTOMATIC scheme of the method introduced in [30]. The main idea here is that since PCA cannot consider the class specific information for producing
EMAP, supervised FE is carried out on both the input data and features obtained by EMAP. The main difference of this figure with Fig. 9 is that in this method,
features obtained by performing a supervised FE on both the EMAP and the input data are concatenated into a stacked vector and classified by RF. In this case,
first, PCA is performed on the input data, and first PCs with a cumulative variance of more than 99% are kept. Then, AParea,STD including area and standard
deviation attributes with respect to (4) and (5) are built for each PC. Furthermore, the AParea,STD of different PCs are concatenated into a stacked vector. The
output of this step provides spectral information. After that, the supervised FE is carried out on the stacked vector, and the first features corresponding to the top
few eigenvalues, which account for 99% of the total sum of the eigenvalues, are kept. The output of this part provides the spatial information of the method. In
parallel, the supervised FE is performed on the input data, and the first features corresponding to the top few eigenvalues, which account for 99% of the total sum
of the eigenvalues, are selected. The output of this step is considered as spectral information. As the last stage, the spectral and spatial information is concatenated
in a stacked vector, and the stacked vector is classified by RF [30].

the automatic scheme of that method is developed [please see
the general idea of the model in Fig. 10(b); here, this method is
called AUTOMATIC, since the threshold values for EMAP are
automatically adjusted with respect to (4) and (5)]. Results re-
ported in [30] for both schemes (MANUAL and AUTOMATIC)
are very close in terms of classification accuracy values. The
little difference obtained in the classification accuracy values
between the MANUAL and AUTOMATIC schemes can show
that the use of only two attributes, i.e., area and standard
deviation, can model the spatial information on the used data
sets considerably, and other attributes (diagonal of the box
bounding the region and the moment of inertia) cannot add sig-
nificant improvement to classification accuracy values although
they carry information on the shape of regions. It is generally
accepted that the use of different attributes will lead to the
extraction of complementary (and redundant) information from
the scene leading to increased accuracy values when used in
classification (provided the Hughes effect is efficiently solved
by only keeping those features that are most informative). In
summary, it can be inferred that the AUTOMATIC can provide
classification maps comparable with the MANUAL in terms of
both classification accuracy values and CPU processing time
when only two attributes (area and standard deviation) are used
instead of four (area, standard deviation, moment of inertia,
and diagonal of the box). However, the whole procedure in
AUTOMATIC, as the name indicates, is automatic, and there
is no need for any parameters to be set.

In [64], the automatic generation of standard deviation at-
tributes was introduced. As it was mentioned there, features
commonly follow different statistics, and also, the individual
classes have different statistics for different features. Therefore,
different thresholds are needed to build the standard deviation
profiles from different features. This way, the thresholds for
the standard deviation attribute are estimated based on the

statistics of the classes of interest. The general idea behind that
paper was that the standard deviation of the training samples of
different classes of interest is related to the maximum standard
deviation of the pixel values within individual segments of the
corresponding classes of interest. The obtained results infer
that the automatic method with only one attribute (standard
deviation) along with supervised feature reduction can provide
good results in terms of classification accuracy values.

V. USE OF THE AP FOR DIFFERENT TYPES

OF DATA AND APPLICATIONS

Although the concept of AP was introduced in order to
extract spatial information from optical data (e.g., multispec-
tral and hyperspectral data), this concept recently has been
successfully exploited for characterizing spatial information of
different types of data.

In [79] and [80], the effectiveness of using EMAP for the
classification of the joint use of optical and LiDAR data has
been investigated. In [79], first, the hyperspectral data were
transformed by using PCA, and the first effective PCs were used
as the base images for building EMAP. In parallel, different the
intensity and the first return of LiDAR data were considered
as inputs for building AParea,STD. Then, all obtained profiles
are concatenated into a stacked vector and classified by using
either SVM or RF. Good classification accuracy values obtained
in that paper confirmed that APs can be effectively applied to
LiDAR data, since they provide a simplification of the image
reducing the noise caused by the irregular spatial sampling
of the LiDAR pulse and the interpolation phase. To show the
effectiveness of using AP, a comparison considering texture
features computed on gray-level co-occurrence matrix (GLCM)
has been taken into account. The results obtained by consid-
ering FE techniques along with the introduced technique have
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outperformed those achieved with GLCM features. Finally, in
all the experiments, the application of EMAP on both optical
and LiDAR data led to the best classification accuracy values.
Based on the results obtained in [80], the use of automatic
EMAP can extract valuable information from LiDAR data by
simultaneously filtering the unnecessary details and preserve
the geometrical characteristics of the other regions.

In [53], FE was carried out on polarimetric synthetic aperture
radar images based on the decomposition of the covariance
matrix, and the corresponding features are used for building the
APs. In the paper, the standard deviation is used as the attribute
to build the EAP. The classification results show that there is an
improvement when the EAP is used, and a smoother classifica-
tion result is obtained for visual examination of results.

The concept of the AP has been also used for different appli-
cations such as change detection. Although the main objective
of this paper is to investigate the usefulness of the AP for remote
sensing image classification, other applications of the AP are
briefly discussed below.

In [81], APs were employed for detecting changes occurred
on the ground by analyzing two images acquired over the
same areas before and after the occurred event. APs computed
on each of the two images were compared in order to detect
differences in the geometrical and morphological characteris-
tics of the underlining structures present in the two images in
corresponding zones. The reason motivating the use of APs
for the detection of changes relies on the fact that if an abrupt
change has occurred in the scene (e.g., a man-made change or a
natural disaster), it will be likely that the spatial characteristics
of the affected areas will have changed too. Thus, detecting
differences in the behaviors of the APs in corresponding po-
sitions in the image can be useful for spotting a modification
in the spatial arrangement of the pixel values between the two
images. The change detection technique was based on three
main steps: 1) application of the APs to each image; 2) region
extraction and reliable level selection by analyzing the DAPs;
and 3) comparison of the APs and generation of the change-
detection map.

VI. DISCUSSION

As shown in Fig. 9, the use of appropriate FE/FS techniques
and efficient classifiers can significantly influence the obtained
classification accuracy values and the quality of the classifica-
tion map. Therefore, here, leveraging the outcomes presented
in the literature, the capability of different FE/FS techniques as
well as different classifiers will be investigated.

A. Influence of Different FE/FS Along With AP on the
Classification Accuracy Values

Although this section should be considered self-sufficient
for understanding the influence of different FE/FS along with
AP on the classification accuracy values, for more information
regarding the aforementioned concepts, please refer to [30],
[51], and [52]. More references can be found throughout the
paper.

1) When only spectral information derived by NWFE, DAFE,
and DBFE is used, the result of the classification is almost

the same. However, when the corresponding EMAP
based on DAFE, DBFE, and NWFE is made, the accuracy
values are quite different, which shows that the classifi-
cation with EMAPs does not necessarily follow the trend
of classification with spectral information only [51], [52].

2) When the number of training samples is limited, a super-
vised FE leads to less accurate results in terms of classifi-
cation accuracy compared with unsupervised techniques.
In [54], it was mentioned that the combination of KPCA
and EMAPs can be a simple and even powerful strategy
to perform spectral–spatial classification of data sets with
limited spectral resolution (RGB and multispectral im-
ages). With reference to [51], in general, EMAP based
on KPCA can be found more consistent even though it
sometimes produces slightly inferior accuracy values in
comparison with the supervised FE techniques. However,
it is difficult to anticipate which supervised FE technique
is appropriate for a problem at hand, and the performance
of that is highly dependent on the number of available
training samples.

3) In a case when the number of training samples is suffi-
cient, according to the experiments shown in [51], DBFE
seems to be able to provide better results in terms of
classification accuracy values than DAFE and NWFE in
order to produce EMAP.

4) Based on the results reported in [30], the CPU processing
time for both schemes (MANUAL and AUTOMATIC)
is almost the same. For AUTOMATIC, there is no need
to adjust the initial parameters for the APs, which is
considered as the main shortcoming of the usage of AP.

5) The results obtained in [63] show that the selection stra-
tegy is able to retrieve for each class its optimal discrim-
inant features. Remarkably, that technique effectively
handled different types of spatial features (e.g., textural
features and APs). In addition, it was shown that the
models trained on the features discovered reached, at
worst, the same performances as considering predefined
filter banks (i.e., manual selection of the filter parameters
requiring prior knowledge).

6) In [52], a spectral–spatial classification framework was
developed, which is specifically related to the use of
parametric supervised FE techniques (DAFE and DBFE)
and EMAP. Results show that when different parametric
supervised FE techniques are used for the first and second
steps (e.g., DBFE is applied on the input data, and DAFE
is carried out on the features extracted by EMAP, or vice
versa) and the first features corresponding to the top few
eigenvalues of both steps are concatenated into a stacked
vector, the result of the classification is good, and RF can
classify the stacked vector of features accurately.

B. Comparison of Different Classifiers Used With EMAP

Although this section should be considered self-sufficient
for understanding the influence of different classifiers on the
classification accuracy values for the features produced by AP,
for more information regarding the aforementioned concept,
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Fig. 11. Classification maps for Indian Pines data with RF classifier (with 200 trees) using EMAPs of (a) PCA (OA = 92.83%), (b) KPCA (OA = 94.76%),
(c) DAFE (OA = 84.33%), (d) DBFE (OA = 87.23%), and (e) NWFE (OA = 95.06%) and feature reduction applied on EMAP using (f) NW-NW (OA =
91.03%) and (g) KP-NW (OA = 90.36%) [51].

please refer to [30], [51], and [52]. More references can be
found throughout the paper.

Below, the main points regarding the applicability of SVM
and RF are listed.

1) While both SVM and RF classification methods are
shown to be effective classifiers for nonlinear classifica-
tion problems, SVM requires a computationally demand-
ing parameter tuning process (cross validation) in order
to tune hyperplane parameters and consequently achieve
optimal results, whereas RF does not require such tuning
process. In this sense, RF is much faster than SVM,
and for volumetric data, using RF instead of SVM is
favorable.

2) The effect of the Hughes phenomenon is more evident
when the number of dimensionality is high and the data are
classified by SVM. Better accuracy values are achieved
with SVM only after further feature reduction [51].

3) RF is more stable when limited training samples are
available. Even when a sufficient number of training
samples are available, the SVM classifier required further
feature reduction of the profile to achieve acceptable
classification accuracy [64].

4) Based on the results reported in [51], [52], and [64], RF
provides higher classification accuracy values compared
with SVM when it is directly performed on EMAP;
however, SVM performs better in terms of classification
accuracy values when further FE is performed on EMAP.
This shows the capability of RF in order to handle higher
dimensional space as an input to the classifier. On the
contrary, the second FE on EMAP downgrades the clas-
sification accuracy values of the RF classifier. The reason
might be that the RF classifier is based on a collection
of weak classifiers, which can statistically take advantage
of a large set of redundant features. In contrast, the
SVM classifier seems to be more effective in designing

a discriminant function when a subset of nonredundant
features defines a highly nonlinear problem.

5) The experiments in [74] showed significant improvement
in classification accuracy values when the generalized
composite kernel framework is used compared with the
regular composite kernel framework.

6) From the result obtained with SRC coupled with EMAPs
[72], it can be stated that SRC outperforms other clas-
sifiers such as SVM and SVM with composite kernels
particularly when the number of training samples is small.

C. Comparison of Different Classification Maps
Obtained by EMAP

This section is based on the comparison of different classi-
fication maps obtained by EMAP and different FEs. In order
to precisely evaluate different classification maps, two different
scenarios are taken into account. The first scenario is devoted
to a situation when the number of training samples is not
sufficient. For this purpose, a frequently used Indian Pines data
set is used. For more information related to the number of
training and test samples, please see [51]. The second scenario
is devoted to a situation when the number of training samples is
sufficient. For this purpose, a frequently used Pavia University
data set is used. For more information related to the number of
training and test samples, please see [30].

Scenario (1) When the number of training samples is limited:
By visually comparing the classification maps shown in

Figs. 11 and 12, the following points can be obtained.
1) When the number of training samples is limited, features

obtained by NWFE can be considered as good bases
in order to produce EMAP. In this case, NWFE may
outperform other FE techniques such as PCA, KPCA,
DAFE, and DBFE in terms of classification accuracy
values, when it is considered for building EMAP.
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Fig. 12. Classification maps for Indian Pines data with SVM (with fivefold cross validation and RBF kernel) classifier using EMAPs of (a) PCA (OA = 86.53%),
(b) KPCA (OA = 90.20%), (c) DAFE (OA = 70.69%), (d) DBFE (OA = 78.39%), and (e) NWFE (OA = 81.85%) and feature reduction applied on EMAP
using (f) NW-NW (OA = 94.17%) and (g) KP-NW (OA = 93.75%) [51].

Fig. 13. Classification results of Pavia University with RF classifier (with 200 trees) using EMAPS of (a) KPCA (OA = 92.37%), (b) DBFE (OA = 95.83%),
and (c) NWFE (OA = 92.19%) and feature reduction applied on EMAP using (d) DB-DB (OA = 96.81%) [51].

2) In order to produce EMAP, when the number of training
samples is too small, supervised FE techniques lead to
salt-and-pepper effects, and the object cannot be prop-
erly exploited after performing a classification. In other
words, the shape of different objects may not be properly
preserved when a supervised FE method is taken into
account even while APs are used. In this case, the use
of unsupervised feature reduction (in particular, KPCA),
can extract the shape of the object in a better way.

3) As it was mentioned before, RF shows more stability
when limited training samples are available.

4) RF is able to provide higher classification accuracy values
compared with SVM when it is directly performed on
EMAP. However, SVM performs better in terms of clas-
sification accuracy values when further FE is performed
on EMAP.

5) The overall accuracy of Indian Pines when it is classified
by RF (with 200 trees) and SVM (with fivefold cross
validation) is 65.6% and 69.70%, respectively. Based on
classification accuracy values reported in Figs. 11 and 12,
one can easily obtain that the use of AP can significantly
improve the classification results.

Scenario (2) When an adequate number of training samples
is available:

By visually comparing the classification maps shown in
Figs. 13–15, the following can be concluded.

1) When an adequate number of training samples is avail-
able, DBFE seems to be able to provide better results in
terms of overall classification accuracy.

2) Based on the experiments reported in [30], when the
number of training samples is adequate, the use of DAFE
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Fig. 14. Classification maps of Pavia University with SVM classifier (with fivefold cross validation and RBF kernel) using EMAPS of (a) KPCA (OA =
91.52%), (b) DBFE (OA = 91.64%), and (c) NWFE (OA = 89.27%) and feature reduction applied on EMAP using (d) DB-DB (OA = 97.89%) [51].

Fig. 15. Comparison between classification maps obtained by (a) DAFE
(OA = 97.00%) and (b) NWFE (OA = 97.58%) by using RF classifier (with
200 trees) based on Fig. 10(a) [30].

may lead to better classification accuracy values by using
the frameworks developed in [30]. In this case, the use
of DAFE improves the overall accuracy of NWFE by
almost 2.5%. Fig. 15 shows that not only the number
of training samples is important on the efficiency of
DAFE and NWFE, but also the distribution of training
samples on the whole data set is of importance. As an
example, the black boxes in Fig. 15 shows two parts of the
input data, which do not contain training samples. In this
case, although the overall accuracy of DAFE (97.00%) is
significantly higher than the overall accuracy of NWFE
(94.58%), some objects are missing in the classification
map obtained by DAFE because the data do not have
training samples in that regions. On the other hand, for
the region where there is an adequate number of training
samples (the red box), DAFE leads to a comparatively
smoother classification map.

3) The overall accuracy of Pavia University when it is classi-
fied by RF (with 200 trees) and SVM (with fivefold cross

validation) is 71.57% and 81.44%, respectively. Based
on classification accuracy values reported in Figs. 13–15,
one can easily obtain that the use of AP can significantly
improve the classification results.

VII. CONCLUSION AND FUTURE WORKS

In this paper, a survey of recent works dealing with APs has
been presented. From the various contributions in the literature
dealing with APs, the effectiveness of using APs for modeling
the spatial information of an image can be assessed.

Indeed, the AP, being based on an attribute that models some
regional characteristics (e.g., scale, shape, and contrast), pro-
vides a multilevel decomposition of an image. As shown by many
works referred to in this paper, the sequence of filtered images
composing the AP can be employed for classification in a simple
yet effective architecture by considering it as a set of features
feeding a classifier (as complement of the original spectral data).

We have focused this survey on the classification of remotely
sensed images with particular attention to the hyperspectral data
for which extensions of the AP have been proposed (i.e., EAP
and EMAP).

From the analysis, it emerged that APs can extract spatial
features useful for classification but present some aspects that
might be critical. As clearly seen by the achievements reported
in many works, AP provides features that can greatly improve
the discriminability of the samples in classification. Despite
their usefulness, we recall that the AP, being composed of
attribute thinnings and thickenings, relies on a representation
of the image as a min-tree and a max-tree. Thus, these filters
can only process image extrema. This can be a limitation when
the image structures do not correspond to regional extrema such
as for noisy or highly textured images. Further research should
be addressed to a deeper investigation of the extension of APs
for the analysis of images different from the optical ones (e.g.,
SAR data).

Many works in the literature address the classification
of hyperspectral images. In this context, since AFs cannot
be uniquely extended to multivariate images (e.g., multi- or
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hyperspectral images), different strategies can be considered.
The mostly used architecture relies on a reduction of the
dimensionality of the data, followed by the application of an
AP to each component (leading to an EAP) after the reduction.
Although this strategy has the great advantage of dealing with
only few components, the resulting profile heavily relies on the
transformation employed. Several supervised and unsupervised
FE techniques have been proposed in the literature showing
the criticality of this step, which still presents margins of
improvement.

The selection of attributes and their related thresholds is also
another aspect of utmost importance. Strategies for the selection
of the attribute thresholds have been proposed in order to
automatically perform this task, proving to achieve results that
are comparable to those obtained by manual tuning. However,
the proposed techniques are specific to some attributes (i.e.,
area and standard deviation) and might not be applicable to
others, thus opening the need for developing more generic
selection strategies for the filter parameters.

Although informative, APs are typically a set of highly di-
mensional and redundant features. Consequently, these aspects
should be properly handled in order to a make full exploitation
of the informative content of the profiles. Thus, the selection
of the classifier is another key aspect to consider. Nonpara-
metric classifiers such as SVMs and RF have largely proven
to deal well with the high dimensionality of the profiles. More
recently, SVM with composite kernels and sparse representa-
tion classification have been proposed, leading to accurate and
robust results even in cases of a reduced number of training
samples.

In order to reduce the redundancy of the APs, particu-
larly when considered in their extended architecture (i.e., the
EMAP), it has been proposed to use dimensionality reduction
techniques. Conventional FE techniques (e.g., DAFE, DBFE,
and NWFE) have been considered proving their usefulness.
Alternatively, FS techniques (e.g., based on evolutionary al-
gorithms such as GAs and PSO) have also been proposed to
address this task.

In conclusion, although the concept of AP and its extensions
EAP and EMAP have proven to be effective in the analysis
of remote sensing images particularly for classification, many
lines of research remain open.
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Abstract—A robust framework for the classification of hyper-
spectral images which takes into account both spectral and spatial
information is proposed. The extended multivariate attribute pro-
file (EMAP) is used for extracting spatial information. Moreover,
for solving the so-called curse of dimensionality, supervised feature
extraction is carried out on both the original hyperspectral data
and the output of the EMAP. After performing the dimensionality
reduction, two output vectors of the original data and attributes
are concatenated into one stacked vector. The final classification
map is achieved by using a random-forest classifier. The main dif-
ficulties of using an EMAP is to initialize the attribute parameters.
Therefore, a fully automatic scheme of the proposed method is
introduced to overcome the shortcomings of using EMAP. The
proposed method is tested on two widely known data sets. Ex-
perimental results confirm that the proposed method provides an
accurate classification map in an acceptable CPU processing time.

Index Terms—Attribute profile (AP), automatic classification,
feature extraction (FE), hyperspectral image analysis, random
forest (RF) classifier, spectral–spatial classification.

I. INTRODUCTION

SUPERVISED classification plays a key role in remote
sensing image processing and is important in many appli-

cations, including crop monitoring, forest applications, urban
development, mapping and tracking, and risk management.
Owing to recent advances in remote sensing technologies, the
spatial resolution of the sensed images has increased. This has
led to a better identification of relatively small structures such
as roads and houses. Hyperspectral sensors capture hundreds of
spectral bands from ultraviolet to infrared for each image pixel,
which is helpful for the detailed physical analysis of structures
in the captured image [1].

In the spectral domain, each spectral channel is considered
as one dimension. By increasing the features in the spectral
domain, theoretical and practical problems may arise. For in-
stance, while keeping the number of training samples constant,
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the classification accuracy actually decreases when the number
of features becomes large [2]. For the purpose of classification,
these problems are related to the curse of dimensionality. In
[3], Landgrebe shows that too many spectral bands can be
undesirable from the standpoint of expected classification accu-
racy because the accuracy of the statistics estimation decreases
(Hughes phenomenon). The aforementioned issue demonstrates
that there is an optimal number of bands for classification
accuracy, and more features do not necessarily lead to better
results. Therefore, the use of feature reduction techniques may
lead to a better classification accuracy [4].

Conventional spectral classifiers consider the hyperspectral
image as a list of spectral measurements with no spatial orga-
nization [5]. A joint spectral and spatial classifier is required
in order to reduce the labeling uncertainty that exits when
only spectral information is taken into account and helps to
overcome the salt-and-pepper appearance of the classification
map. Furthermore, other relevant contextual information can
be extracted when the spatial domain is considered. As an
example, for a given pixel, it is possible to extract the size and
the shape of the structure to which it belongs. Therefore, using
a combination of spectral and spatial information can improve
the accuracy of the classification.

In order to extract the spatial information, two neighborhood
systems are available: crisp neighborhood system and adaptive
neighborhood system. One way for extracting spatial informa-
tion by using crisp neighbors is to consider the Markov random
field (MRF) modeling. MRF is a family of probabilistic models
that can be described as 2-D stochastic processes over discrete
pixel latices [6]. They can be considered as a powerful tool
for incorporating spatial and contextual information into the
classification framework. There is an extensive literature on the
use of MRFs in classification such as [7]–[12]. Texture analysis
is another way of considering a crisp neighbor system to extract
spatial information. That approach is widely used in remote
sensing (e.g., in [13]). However, the main shortcoming of con-
sidering a set of crisp neighbors is the following: 1) The stan-
dard neighborhood system may not contain enough samples,
which decreases the effectivity of the classifier, particularly
when the input data set is of high resolution and the neighboring
pixels are highly correlated [1], and 2) a larger neighborhood
system leads to intractable computational problems [1].

To solve the aforementioned problem, an adaptive neigh-
borhood system can be taken into account. One way for

0196-2892 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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considering the adaptive neighborhood system is to use dif-
ferent types of segmentation methods. Image segmentation is
a procedure which can be used to modify the accuracy of
classification maps [14]. To make such an approach effective,
an accurate segmentation of the image is needed [15]. An
extensive literature is available on the extraction of spatial
information using segmentation techniques (e.g., [16]–[18]).

Another set of methods which can extract spatial infor-
mation by using an adaptive neighbor system is based on
morphological filters. Pesaresi and Benediktsson [19] used
morphological transformations to build a morphological profile
(MP). In [20], the concept of MP was extended in order to
handle hyperspectral images, and the extension was named the
extended MP (EMP). In [21], EMP was used along with the
support vector machine (SVM) classifier in order to perform
spectral and spatial classification on hyperspectral images.
The attribute profile (AP) is another extension of MP and
provides a multilevel characterization of an image by using
the sequential application of morphological attribute filters
(AFs) which can be considered for modeling different spec-
ifications of the structural information [22]. AP is a pow-
erful tool to increase the discrimination of different classes
[22], [23].

In this paper, a new automatic approach is proposed for
the accurate classification of remote sensing images. Although
the method can be used for the classification of multispectral
images with a coarse spectral resolution, it is used here for the
spectral and spatial classification of hyperspectral images. The
spatial part of the method consists of both the unsupervised
and supervised feature extraction (FE) and the extended mul-
tivariate AP (EMAP). Supervised FE is applied on the spectral
part. Furthermore, the results of the spatial and spectral features
are gathered into a stacked vector. In the field of hyperspectral
image analysis, the most widely used classifiers are random
forest (RF) and SVM classifiers. These two methods are com-
parable in the sense of classification accuracies. However, while
both methods are shown to be effective classifiers for nonlinear
classification problems, SVM requires an exhaustive (compu-
tationally intensive) parameter tuning (e.g., model selection
performed on a grid) for optimal results, whereas RF does not
require any such tuning. In addition, the overall accuracy (OA)
is not the only critical issue for the purpose of hyperspectral
image classification. Another critical index which can evaluate
the efficiency of a classifier is the CPU processing time. In
this sense, RF is faster than SVM, and therefore, we prefer
using RF instead of SVM in the final step, where the produced
stacked vector is classified. The proposed method is performed
in experiments on two well-known data sets. Results confirm
that the new method is able to effectively classify hyperspectral
images both in terms of classification accuracies and CPU
processing time. To make the new approach as efficient as
possible, an automatic scheme for the new method is introduced
in this paper in order to solve the main difficulties in using the
EMAP.

This paper is organized as follows. The proposed method-
ology is discussed in Section II. Then, Section III is devoted
to experimental results. Finally, Section IV outlines the main
conclusions.

Fig. 1. Flowchart of the proposed method.

II. METHODOLOGY

In the proposed method, supervised FE is performed initially
on the input data. In parallel, the input data are transformed
by principal component (PC) analysis (PCA), and the most
important PCs are used as base images for the EMAP. Then, the
supervised FE is performed on the output of the EMAP. Further-
more, the most important features with cumulative eigenvalues
of more than 99% are selected as the output of the supervised
FE. Finally, the spatial and spectral features are gathered into
a stacked vector and classified by the RF classifier, and a final
classification map is achieved. Fig. 1 illustrates the flowchart of
the new method. In the following, specific parts of the proposed
framework will be discussed in detail.

A. FE

FE can be explained as finding a set of vectors that represents
an observation while reducing the dimensionality. From one
point of view, FE can be classified into two categories: unsuper-
vised and supervised FE, where the former is used for the pur-
pose of data presentation and latter is considered for solving the
so-called Hughes phenomena [2] and reducing the redundancy
of data in order to improve classification accuracies. In pattern
recognition, it is desirable to extract features which are focused
on the discrimination between classes of interest. Although a
reduction in dimensionality is of importance, the error rising
from the reduction in dimension has to be without sacrificing
the discriminative power of classifiers [21]. In this paper, PCA
is used for the purpose of unsupervised FE, and discriminant
analysis FE (DAFE), decision boundary FE (DBFE), and non-
parametric weighted FE (NWFE) are taken into consideration
for the purpose of supervised FE. Below, PCA, DAFE, DBFE,
and NWFE are described in more detail.

1) PCA: The general aim of PCA is to transform the data
into a lower dimensional subspace which is optimal in terms of
sum of squared error [24]. PCA reduces the dimensionality of
a data set with interrelated variables while retaining as much
as possible the variation in the data set. The dimensionality
reduction is obtained by a linear transformation of the data
into a new set of variables, the PCs. The PCs are orthogonal
to each other and are ordered in such a fashion that the first
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PC corresponds to the greatest variance, the second component
corresponds to the second greatest variance, and so on.

2) DAFE: This approach is widely used for dimension re-
duction in classification problems [25]. Since DAFE uses the
mean vector and the covariance matrix of each class, it is
considered as supervised FE. In DAFE, within-class, between-
class, and mixture scatter matrices are usually considered as the
criteria of class separability. DAFE is fast and works well when
the distribution of data is normal. Otherwise, the performance
of DAFE may not be satisfactory. Another problem associated
with this method is that, if the difference in the class mean vec-
tors is small, the feature chosen will not be reliable. In the same
way, if one class mean vector is very different from others, its
class will eclipse the others in the computation of the between-
class covariance matrix [26]. As a consequence, the FE process
will be ineffective. In addition, DAFE performs the computa-
tions at full dimensionality, which requires a large number of
training samples in order to accurately estimate parameters. The
main shortcoming of DAFE is that DAFE is not full rank, but
its rank at maximum is equal to L − 1, where L is the number
of classes. Assuming that the rank of the within-class scatter
matrix is u, then only min(L − 1, u) features are selected by
using DAFE. Since, in real situations, the data distribution is
complicated, using only L − 1 features usually is not sufficient.

3) DBFE: This method was proposed in [27] where it was
shown that both discriminantly informative features and re-
dundant features can be extracted from the decision bound-
ary between two classes. The features are extracted from the
decision boundary feature matrix (DBFM). In order to obtain
the same classification accuracy as in the original space, keep-
ing the eigenvectors of the DBFM corresponding to nonzero
eigenvalues is crucial. The performance of this method does
not deteriorate even when there is no difference in the mean
vectors or the covariance matrices, and the approach does not
rely on the number of classes in the same way as the DAFE. The
efficiency of DBFE is highly dependent on training samples,
which is not desirable. Another shortcoming of DBFE is that it
can be computationally intensive.

4) NWFE: In order to overcome the limitations of DAFE
and DBFE, NWFE was introduced in [28]. NWFE is developed
based on DAFE by focusing on samples near the eventual
decision boundary. The main ideas behind NWFE are to put
different weights on different samples in order to compute
“weighted means” and define new nonparametric within-class
and between-class scatter matrices.

B. EMAP

1) Connected Components: A connected component is re-
garded as a group of iso-level pixels which are connected
according to a predefined connectivity rule. Two pixels are
connected based on a connectivity rule. The most well-known
connectivity rules are 4- and 8-connected, where a pixel is
considered as adjacent to four or eight of its neighboring pixels,
respectively.

2) Basic Morphology Operators: Erosion and dilation are
considered as the alphabets of mathematical morphology. These
operators are performed on an image with a set of known shape,

called a structuring element (SE). Opening and closing are
combinations of erosion and dilation. These operators simplify
the input image by removing structures with size less than the
SE. However, these operators make changes on the shape of the
structures which are still present in the image after the opening/
closing. Therefore, they can introduce fake objects in the image
[21]. One way to solve this issue is to consider opening and
closing by reconstruction. Opening and closing by reconstruc-
tions are connected operators that satisfy the following crite-
rion: If the SE cannot fit the structure of the image, then it
is totally removed; otherwise, it is totally preserved. Recon-
struction operators remove objects smaller than the SE without
altering the shape of those objects and reconstruct connected
components from the preserved objects. For grayscale images,
opening by reconstruction removes unconnected light objects,
and in dual, closing by reconstruction removes unconnected
dark objects.

C. MP

To determine the shape or size of all structures present in
an image, it is crucial to use a range of different SE sizes for
the better analysis of structures in the image. MPs are defined
using successive opening/closing operations with an SE of an
increasing size. The successive usage of opening/closing leads
to a simplification of the input image and a better understanding
of different structures in the image. An MP is composed of
the opening profile and the closing profile. Although MP is a
powerful tool for the extraction of spatial information, it suffers
by few limitations such as the following.

1) The shape of SEs is fixed which is considered as a main
limitation for the extraction of objects within a scene.

2) SEs are unable to describe information related to the gray-
level characteristics of regions such as spectral homo-
geneity, contrast, and so on.

3) A final limitation associated with the concept of MPs is
the computational complexity. The original image needs
to be completely processed for each level of the pro-
file, which demands two complete processings of the
image: one performed by a closing transformation and
the other performed by an opening transformation. Thus,
the complexity increases linearly with the number of
levels included in the profile [22].

D. AP

A morphological AP is considered as the generalization of
the MP which provides a multilevel characterization of an
image by using the sequential application of morphological AFs
[22]. Morphological attribute opening and thinning are mor-
phological AFs which were introduced in [29]. AFs are con-
nected operators which process an image by considering only
its connected components. For binary images, the connected
components are simply the foreground and background regions
present in the image. In order to deal with grayscale images, the
set of connected components can be obtained by considering
the image to be composed by a stack of binary images gener-
ated by thresholding the image at all its gray-level values [30].
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AFs process an image based on a given criterion. AFs keep
or merge the connected component CCi based on a logical
predicate T if a given attribute is greater/lower than an arbitrary
reference, such as T a

κ (CCi) = a(CCi) > κ, where a is an
attribute and κ is an arbitrary reference value [23]. The criterion
is evaluated on all the connected components of the image, and
if the criterion is not met, the region is merged to the adjacent
region with a closer gray-level value. If the regions with lower
(greater) gray-level values are taken into account in the merging
process, then the transformation is considered as antiextensive
(extensive) [22]. The transformation is idempotent if the result
of the transformation is not dependent on the number of times
that a transformation with the same parameter is performed. A
transformation with the aforementioned specifications is called
thinning (thickening).

An AP is obtained by the sequence of attribute thinning
and thickening transformations defined with a sequence of
progressively stricter criteria [22]. Let φκ and γκ be the at-
tribute thickening and attribute thinning, respectively. The AP
of the image f with the set of N criteria is shown by AP(f).
Mathematically, AP(f) can be expressed as

AP(f) = {φκN (f), φκN−1(f), . . . , φκ1(f), f, γκ1(f), . . . ,

γκN−1(f), γκN (f)} . (1)

To handle hyperspectral images, the extension of AP was
proposed in [31]. The extended AP (EAP) is a stacked vector of
different APs computed on the first C features extracted from
the original data set (ID with D dimensions), and fe shows a
feature. EAP is given by

EAP(ID) =
{

AP
(
fe1(I

D)
)
, AP

(
fe2(I

D)
)
, . . . ,

AP
(
feC(ID)

)}
. (2)

During the concatenation of different attributes, a1, a2,
. . . , aM are gathered into a stacked vector, and the EMAP is
obtained [31] and is given mathematically by

EMAP(ID) =
{

EAṔa1
(ID), EAṔa2

(ID), . . . , EAṔaM
(ID)

}

(3)

where EAṔ = EAP{PC1, . . . , PCc} and ai is a generic
attribute.

The application of the profiles for large volumes of data is
computationally demanding, and that is considered to be one
of the main difficulties in using them. In order to solve this
issue, the efficient implementation of AFs was proposed in [32].
Salembier et al. in [32] introduced a new data representation
named Max-tree which has received much interest since it
increases the efficiency of filtering by dividing the transforma-
tion process into three steps: 1) tree creation; 2) filtering; and
3) image restitution [22].

E. Fusion of Extracted Features via Vector Stacking

As can be seen from Fig. 1, the original data are transformed
by a supervised FE approach in order to provide a few effective
features that contain the spectral information of the input data.
Let ζϕ be the features associated with the spectral bands.

With reference to Fig. 1, the input data are transformed by
PCA, and the first effective PCs are used in order to reduce the
redundancy in the data but keeping most of the variation. Then,
EMAP is computed by using only the first effective PCs that
correspond to 99% of the cumulative variance. Afterward, each
AP is composed of n thickening and n thinning transformations
of the corresponding PC for each attribute. In order to produce
the MAP for each PC, depending on the number of attributes
(e.g., m different attributes), we come up with m(2n) + 1
number of features in each MAP. Finally, the number of features
in the EMAP by considering P PCs is equal to P (m(2n) + 1).
Let ζω be the features associated to the EMAP. Finally, the
obtained stack vector is ζ = [ζϕ, ζω]T .

F. RF

RF was first introduced in [33] and is an ensemble method
for classification and regression. Ensemble classifiers get their
name from the fact that several classifiers, i.e., an ensemble
of classifiers, are trained and their individual results are then
combined through a voting process. For the purpose of classifi-
cation of an object from an input vector, the input vector is run
down each tree in the forest. Each tree provides a unit vote for a
particular class, and the forest chooses the classification having
the most votes. Based on studies in [34], the computational
complexity of the RF algorithm is cT

√
MN log(N), where c

is a constant, T denotes the number of trees in the forest, M
is regarded as the number of variables, and N is the number
of samples in the data set. It is easy to detect that RF is not
computationally intensive but demands a considerable amount
of memory since it needs to store an N -by-T matrix while
running. RF can provide a good classification result in terms of
accuracies and does not assume any underlying probability dis-
tribution for input data. Another advantage of the RF classifier
is that it is insensitive to noise in the training labels. In addition,
RF provides an unbiased estimate of the test set error as trees
are added to the ensemble, and finally, it does not overfit.

G. Automatic Scheme for EMAP

The main difficulties of using the EMAP are as follows:
1) to know which attributes lead to a better discrimination for
different classes and 2) to know which threshold values should
be considered in order to initialize each AP. In this section,
an automatic scheme of the proposed method is introduced
in order to solve the latter problem. While the APs can be
constructed by using a wide variety of attributes, in the au-
tomatic scheme, the area and standard deviation attributes are
only used since the aforementioned attributes can be adjusted
in an automatic way and are well related to the object hierarchy
in the images. The standard deviation is adjusted with respect to
the mean of the individual features since the standard deviation
shows dispersion from the mean [35]. Therefore, λs is initial-
ized in a fashion to cover a reasonable amount of deviation in
the individual feature, which is mathematically given by

λs(PCi) =
μi

100
{σmin, σmin + δs, σmin + 2δs, . . . , σmax}

(4)
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Fig. 2. General idea of the AUTOMATIC scheme of the proposed method. First, PCA is performed on the input data, and first PCs with a cumulative variance
of more than 99% are kept. Then, MAP including area and standard deviation attributes with respect to (4) and (5) is built for each PC. Furthermore, the MAPs of
different PCs are concatenated into a stacked vector. After that, the supervised FE is carried out on the stacked vector, and first features with cumulative eigenvalues
of more than 99% are kept. The output of this part provides the spatial information of the method. In parallel, the supervised FE is performed on the input data,
and first features with cumulative eigenvalues of more than 99% are selected. The output of this step is considered as spectral information. As the last stage, the
spectral and spatial information are concatenated in a stacked vector, and the stacked vector is classified by RF.

where μi is the mean of the ith feature and σmin, σmax, and
δs are 2.5%, 27.5%, and 2.5%, respectively, which leads to
11 thinning and 11 thickening operations.

With regard to adjusting λa for the area attribute, the res-
olution of the image should be taken into account in order to
construct EAP [23]. The automatic scheme of the attribute area
is given as follows:

λa(PCi) =
1000

υ
{amin, amin + δa, amin + 2δa, . . . , amax}

(5)

where amin and amax are initialized by 1 and 14, respectively,
with a step increase δa equal to 1 and υ shows the spatial
resolution of the input data. The EAP for the area attribute
includes 14 thinning and 14 thickening operations for each
feature. Each level is provided in square meters by considering
the resolution of the image υ in meters. As an example, for an
image with a spatial resolution of 1 m per pixel, each profile
covers structures in the range of 1000–14 000 m2, which might
be a reasonable range of sizes for different structures in both
urban and rural cases in remote sensing images [23]. However,
different ranges can be considered for different applications. It
should be noted that the aforementioned parameters have been
tested on other well-known data sets such as the Indian Pines
in [23], and results show that these parameters are data set
distribution independent and can provide excellent results in
terms of classification accuracies. In the introduced framework,
one only needs to establish a range of parameter values in
order to automatically obtain a classification result with high
accuracy for different data sets.

Fig. 2 shows the general idea of the automatic scheme of
the proposed method. First, the input data are transformed via
PCA, and the first PCs with a cumulative variance of more than
99% are kept since they provide most of the data variation.
Then, MAP including area and standard deviation attributes
with respect to (4) and (5) is built for each PC. Furthermore, the
MAPs of different PCs are concatenated into a stacked vector.

Fig. 3. ROSIS data. (a) University. (b) Center. Data specifications are detailed
in Tables I and IV.

Finally, in order to extract spatial information, the stacked
vector is transformed by a supervised FE, the first features with
cumulative eigenvalues more than 99% are kept, and ζω is the
output of this step. In parallel, in order to provide the spectral
information, a supervised FE is performed on the input data set,
and ζϕ is the output of this step. The final classification map is
provided by performing RF on the output of the stack vector,
ζ = [ζϕ, ζω]T .

III. EXPERIMENTAL RESULTS

A. Data Description

The test cases are hyperspectral data sets which were cap-
tured of the city of Pavia, Italy, by airborne data from the
ROSIS-03 (Reflective Optics System Imaging Spectrometer).
The ROSIS-03 sensor has 115 data channels with a spectral
coverage ranging from 0.43 to 0.86 μm. The data have been
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TABLE I
PAVIA UNIVERSITY: NUMBER OF TRAINING AND TEST SAMPLES. CLASSIFICATION ACCURACIES OF TEST SAMPLES IN PERCENTAGE.

THE NUMBER OF FEATURES IS GIVEN IN BRACKETS. THE BEST ACCURACY IN EACH ROW IS SHOWN IN BOLD

atmospherically corrected but not geometrically corrected. The
spatial resolution is 1.3 m per pixel.

1) Pavia University: The first data set is of the Engineering
School at the University of Pavia and consists of different
classes including the following: trees, asphalt, bitumen, gravel,
metal sheet, shadow, bricks, meadow, and soil. In the exper-
iments, 12 noisy data channels are eliminated, and 103 data
channels are used for processing. The original data set is 610 by
340 pixels. Fig. 3(a) shows a false color composite of the Pavia
University scene. The available test and training samples are
listed in Table I.

2) Pavia Center: The second data set is captured of the
center of Pavia. The original data set is 1096 by 1096 pixels.
A 381-pixel-wide black stripe in the left part of the data set was
removed, leading to 1096 by 715 pixels. Thirteen data channels
were removed due to the noise, and 102 bands were processed.
This data set consists of nine classes, i.e., water, trees, mead-
ows, bricks, soil, asphalt bitumen, tiles, and shadows. Fig. 3(b)
depicts a false color composite of Pavia Center. The available
test and training samples are listed in Table IV.

B. General Information

The input image is transformed by PCA, and the first PCs
with a cumulative variation of more than 99% are kept since
they contain almost all of the variance in the data sets. For
Pavia University, three PCs are necessary to retain 99% of
the variance criterion (the cumulative sum of eigenvalues in
percentage is 99.55%). In the same way, for Pavia Center, three
PCs are necessary to retain 99% of the variance criterion (the
cumulative sum of eigenvalues in percentage is 99.47%). In
the same fashion, for all supervised FEs (DAFE, DBFE, and
NWFE), the first features with cumulative eigenvalues of more
than 99% are selected. The number of trees for the RF classifier
is equal to 200.

In this paper, Spectral refers to when only spectral informa-
tion is classified by RF. In the same way, when only spatial
information is taken into account, it is called AP. AP+Spectral
is referred to the classification of the stacked vector includ-
ing both spectral and spatial information without performing
feature reduction. For simplification, the proposed approaches
using DAFE, DBFE, and NWFE are called DAFE, DBFE, and
NWFE, respectively.

For the MANUAL scheme of the proposed method, four
attributes are considered:

1) (a) area of the region (related the size of the regions);
2) (s) standard deviation (as an index for showing the homo-

geneity of the regions);
3) (d) diagonal of the box bounding the regions;
4) (i) moment of inertia (as an index for measuring the

elongation of the regions).

The values of each attribute are adjusted based on studies in
[31] and given as follows:

λa = {100, 500, 1000, 5000};
λs = {20, 30, 40, 50};
λd = {10, 25, 50, 100};
λi = {0.2, 0.3, 0.4, 0.5}.

As mentioned before, in the AUTOMATIC scheme of the pro-
posed method, the area (a) and standard deviation (s) attributes
are only used in constructing our APs since these attributes can
be adjusted automatically and are well related to the object
hierarchy in the images. It should be noted that, in order to
provide a comparative evaluation of the results, the results of
the MANUAL scheme and AUTOMATIC scheme are evaluated
separately.

The following measures are used in order to evaluate the
performance of different classification methods.

1) Average Accuracy (AA): This index shows the average
value of the class classification accuracy.

2) OA: This index represents the number of samples which
is classified correctly divided by the number of test samples.

3) Kappa Coefficient: This index provides information re-
garding the amount of agreement corrected by the level of
agreement that could be expected due to chance alone.

4) McNemar’s Test: This test is used to assess classification
results and is calculated by

M =
d21 − d12√
d12 + d21

(6)

where d12 is the number of samples that are incorrectly clas-
sified by a first classifier but not the second one and d21 has
a dual meaning [36]. The difference between the proposed
method and others is statistically significant at 5% significant
level if |M | > 1.96. It should be noted that, in each comparison,
the method which provides a better OA has been considered
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Fig. 4. Classification maps of different methods for Pavia University. (a) Spectral. (b) AP. (c) Spectral+AP. (d) DAFE. (e) NWFE.

as classifier 1 and the other method has been considered as
classifier 2.

5) CPU Processing Time: This measure shows the speed
of different algorithms. It should be noted that, since, in all
algorithms (except Spectral), EMAP is carried out, the CPU
processing time of this step is discarded from all methods.
Hence, the CPU processing time is only provided for AP,
AP+Spectral, DAFE, and NWFE. All methods used were pro-
grammed in MATLAB on a computer having an Intel Pentium 4
3.20-GHz CPU and 4 GB of memory.

C. Results

1) MANUAL Scheme:
a) Pavia University: As can been seen in Table I,

DAFE gives the highest classification accuracy compared to
other methods used and improves the OA of Spectral, AP,
Spectral+AP, DBFE, and NWFE by almost 25%, 6%, 6%,
2.5%, and 2.5%, respectively. This shows that when a suffi-
cient set of training samples is available, DAFE leads to more
discriminant features in comparison with those achieved by
DBFE and NWFE. The main reason for that might be that the
number of selected features used by DBFE and NWFE is not
sufficient. As a result, more features need to be considered in
order to provide more promising results in the case of NWFE
and DBFE.

AP shows a better performance than Spectral in terms of
accuracies and improves the OA by almost 19%. Spectral
has better class accuracies for classes Trees and Soils where
spectral information can lead to better discrimination of those
classes than the spatial information. According to Fig. 4, by
considering the spatial dependences using AP, the noisy behav-
ior of classified pixels by RF has been decreased significantly.

As can be seen from the table, by considering both Spectral
and AP in the same stacked vector (Spectral+AP), the OA of
the classification is improved by only 0.2% (see Table I), and
the CPU processing time is increased by 63 s (see Table II).
This infers that having both the spectral and AP features in the
same vector and using more features (202 features instead of
99 features) do not necessarily lead to better classification re-

TABLE II
PAVIA UNIVERSITY: CPU PROCESSING TIME IN SECONDS FOR

DIFFERENT METHODS OF THE GENERAL METHOD. SINCE AP IS USED

FOR ALL METHODS, THE CPU PROCESSING TIME FOR MAKING AP IS

DISREGARDED. FOR DAFE AND NWFE, THE CPU PROCESSING TIME

IS THE SUMMATION OF THE FE PART AND THE CLASSIFICATION STEP

TABLE III
PAVIA UNIVERSITY: RESULT OF MCNEMAR’S TEST TO VALIDATE

WHETHER THE DIFFERENCE BETWEEN CLASSIFICATION

ACCURACIES OF THE PROPOSED METHOD IS SIGNIFICANTLY

DIFFERENT FROM OTHER METHODS

sults. Spectral+AP improves the class accuracies of Meadows,
Trees, and Metal Sheets in comparison with the cases when
Spectral and AP have been classified separately and degrades
the class accuracies of Asphalt, Gravel, and Bricks compared
with AP and the class accuracy of Soil compared with Spectral.
In other words, the consideration of the full features obtained
by AP along with the input data (Spectral) sometimes can lead
to a better discrimination of different classes and sometimes
downgrades class accuracies in comparison with the individual
use of either AP or Spectral.

Table II shows that DAFE has the least CPU processing time
in comparison with the other methods used. DAFE is a very
fast FE method and is able to find more effective features in
less CPU processing time than NWFE.

In Table III, the difference in classification accuracy between
the DAFE and others is statistically significant using the 5%
level of significance. In the same way, in comparison with
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TABLE IV
PAVIA CENTER: NUMBER OF TRAINING AND TEST SAMPLES. CLASSIFICATION ACCURACIES OF TEST SAMPLES IN PERCENTAGE.

THE NUMBER OF FEATURES IS GIVEN IN BRACKETS. THE BEST ACCURACY IN EACH ROW IS SHOWN IN BOLD

other methods used, NWFE is statistically significant when
considering the 5% level of significance. As can be seen from
Table III, the difference between NWFE and DBFE is not
statistically significant at the 5% significance level.

b) Pavia Center: In Table IV, it can be seen that NWFE
works better than DAFE in terms of the classification accura-
cies. The main reason for that might be the following: 1) The
between-scatter matrix in DAFE is not full rank, its rank is
equal to L − 1, and only L − 1 features are selected when using
DAFE; as it was mentioned before, since, in real situations, the
data distribution is complicated, using only L − 1 features is
not enough; and 2) DAFE works well when the distribution
of data is normal. Otherwise, the performance of DAFE is
not satisfactory. As also can be seen, NWFE improves the
result of DAFE by 1% in terms of OA. NWFE improves the
OA of the classification obtained by DBFE. That infers that,
for Pavia Center, NWFE which is a nonparametric FE can
discriminate different classes of interest in comparison with
DAFE and DBFE which are parametric and based on a normal
distribution.

AP works better than Spectral+AP in terms of the OA and
Kappa coefficient. The number of features in Spectral+AP
is 201, which increases the possibility of the problems with
the curse of dimensionality. In other words, by increasing the
dimensionality of the data set, although class separability in-
creases, the accuracy of the class statistics estimation decreases,
which means a higher dimensional set of statistics must be
estimated with a fixed number of samples.

The classification of AP also works better than the classifi-
cation of Spectral in terms of the classification accuracies. One
reason for that would be that, since this data set contains a very
dense urban area, AP can provide discriminative information
which might be more useful than spectral information.

The CPU processing time for different methods is given
in Table V. DAFE has the lowest CPU processing time. The
main reasons can be the following: 1) DAFE is a very fast
FE approach, and 2) only 15 features are classified by RF.
Spectral+AP has the worst performance in terms of CPU pro-
cessing time since 201 features need to be classified by RF.

Fig. 5 shows the classification map for different classifiers.
As can be seen, spectral–spatial methods improve the noisy
behavior of using RF on the original data since those methods
consider spatial dependences as well.

TABLE V
PAVIA CENTER: CPU PROCESSING TIME IN SECONDS FOR DIFFERENT

METHODS OF THE GENERAL METHOD. SINCE AP IS USED FOR

ALL METHODS, THE CPU PROCESSING TIME FOR MAKING AP IS

DISREGARDED. FOR DAFE AND NWFE, THE CPU PROCESSING TIME

IS THE SUMMATION OF THE FE PART AND THE CLASSIFICATION STEP

As can be seen from Table VI, the difference in classifi-
cation accuracy between the proposed method using NWFE
and the others is statistically significant using the 5% level of
significance.

Based on the results given in this section, it is obvious that
the importance of including the spatial information leads to
an increase in classification accuracies when compared to the
classification of the original data set. Moreover, considering
EMAP allows us to obtain a representation of the image based
on complementary characteristics, which helps to a great extent
in improving the result of the classification in terms of accura-
cies. Furthermore, the redundancy of the AP and the original
data set can be easily solved by using supervised FE.

2) AUTOMATIC Scheme: Table VII shows the result of
the classification in terms of the accuracies for the automatic
schemes of the proposed method for both test cases. As can
be seen from Table VII, the achieved accuracies are almost the
same as the accuracies reported in Tables I and IV. However,
for the automatic scheme, there is no need to adjust the ini-
tial parameters for the APs, which is considered as the main
shortcoming of the usage of AP. The little difference obtained
in the classification accuracies between the MANUAL and
AUTOMATIC settings of the proposed method can show that
the use of only two attributes—area and standard deviation—
can model the spatial information on the used data sets con-
siderably and other attributes (diagonal of the box bounding
the region and the moment of inertia) do not add significant
improvement to classification accuracies, although they carry
information on the shape of regions. It is generally accepted
that the use of different attributes will lead to the extraction
of complementary (and redundant) information from the scene,
leading to increased accuracies when used in classification
(provided that the Hughes effect is efficiently solved by only
keeping those features which are most informative).
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Fig. 5. Classification maps of different methods for Pavia Center. (a) Spectral. (b) AP. (c) Spectral+AP. (d) DAFE. (e) NWFE.

TABLE VI
PAVIA CENTER: RESULT OF MCNEMAR’S TEST TO VALIDATE

WHETHER THE DIFFERENCE BETWEEN CLASSIFICATION

ACCURACIES OF THE PROPOSED METHOD IS SIGNIFICANTLY

DIFFERENT FROM OTHER METHODS

TABLE VII
RESULT OF THE CLASSIFICATION IN TERMS OF THE ACCURACIES

FOR THE AUTOMATIC SCHEMES FOR THE PROPOSED

METHOD FOR BOTH TEST CASES. THE BEST ACCURACY

IN EACH ROW IS SHOWN IN BOLD

As can be seen in Table VII, for Pavia University, DAFE
works better than the other methods used in the experiment
in terms of accuracies and improves the OA of DBFE and
NWFE by almost 2% and 2.5%, respectively. It should be noted
that DAFE provides very good accuracies by considering only
14 features. DBFE works slightly better than NWFE in terms
of accuracies but with a higher number of features.

For Pavia Center, NWFE works better than others in terms of
accuracies. Furthermore, DAFE is more accurate than DBFE
with a less number of features. It should be noted that both

TABLE VIII
PAVIA CENTER AND PAVIA UNIVERSITY: CPU PROCESSING TIME

OF THE AUTOMATIC SCHEME OF THE PROPOSED METHOD IN SECONDS

FOR DIFFERENT METHODS PER SECOND. SINCE AP IS USED FOR

ALL METHODS, THE CPU PROCESSING TIME FOR MAKING AP IS

DISREGARDED. FOR DAFE AND NWFE, THE CPU PROCESSING TIME

IS THE SUMMATION OF THE FE PART AND THE CLASSIFICATION STEP

data sets follow the same trend as both the AUTOMATIC and
MANUAL schemes.

Table VIII shows the CPU processing time of the AUTO-
MATIC scheme of the proposed method in seconds for the
University of Pavia and Pavia Center data sets. As expected
for both data sets, DAFE has the least CPU processing time.
Generally, the AUTOMATIC scheme follows the same trend
of the MANUAL scheme; for Pavia University, NWFE works
better than DBFE; and for Pavia Center, DBFE has a shorter
processing time than NWFE.

In summary, it can be concluded that the AUTOMATIC
version of the proposed method can provide classification maps
comparable with the MANUAL version of the proposed method
in terms of both classification accuracies and CPU processing
time when only two attributes (area and standard deviation)
are used instead of four (area, standard deviation, moment of
inertia, and diagonal of the box). However, the whole procedure
in the AUTOMATIC version of the proposed method as the
name indicates is automatic, and there is no need for any
parameters to be set.

Based on our literature review, the proposed method im-
proves all methods in the literature in terms of classification
accuracies. For example, the proposed method improves the
classification accuracy of the classification technique proposed
in [21] for Pavia University by almost 10 percentage points [the
best OA of 95% for the Pavia University data set reported in
[21] is achieved by DBFE (see [21, Table V]) which is equal to
87.97% (same size of train and test sets)]. The best OA for the
Pavia Center data set in [21] is achieved by NWFE and is, on
the other hand, equal to 98.87% (same size of train and test sets
but slightly larger test set). Thus, the best improvement in OA
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Fig. 6. Comparison between classification maps obtained by (a) DAFE and
(b) NWFE.

is from 87.97% to 97.00% (almost by 10 percentage points with
the MANUAL version) for the Pavia University data set. Based
on the results reported in [37], the performance of the proposed
method is as follows.

1) Against the independent component analysis (ICA) re-
sults in [37], the proposed approach gives improved
overall accuracies of 2.5% (with the MANUAL version)
and 1.83% (with the AUTOMATIC version) for the Pavia
University data set.

2) Against the PCA results in [37], the proposed approach
gives improved overall accuracies of 19.19% (with the
MANUAL version) and 18.49% (with the AUTOMATIC
version) for the Pavia University data set. It should be
noted that the test samples of Pavia Center used in
[37] are different from the test samples of Pavia Center
used in this paper. Therefore, the results reported in
[37] and in this paper for Pavia Center are not fully
comparable.

It should be again noted that, in the proposed AUTOMATIC
method, there is no need to adjust any parameters, which
increases the desirability of using the method.

The following results have been figured out in this paper.
1) When the number of training samples is adequate, the

use of DAFE may lead to better classification accuracies.
With reference to Table I, DAFE improves the OA of
NWFE by almost 2.5%.

2) Fig. 6 shows that not only the number of training samples
is important for the efficiency of DAFE and NWFE but
also the distribution of training samples on the whole
data set is of importance. As an example, the black boxes
in Fig. 6 show two parts of the input data which do
not contain training samples. In this case, although the
OA of DAFE (97.00%) is significantly higher than the
OA of NWFE (94.58%), some objects are missing in
the classification map obtained by DAFE since the data
do not have training samples in those regions. On the
contrary, for the region where there is an adequate number

of training samples (the red box), the use of DAFE leads
to a smoother classification map.

3) The classification of AP works much better than the
classification of Spectral in terms of the classification
accuracies. In data sets which contain a very dense urban
area, AP can provide discriminative information which
can be more useful than spectral information.

4) The AUTOMATIC version of the proposed method can
provide classification maps that are comparable with the
MANUAL version of the proposed method in terms of
both classification accuracies and CPU processing time
when only two attributes (area and standard deviation) are
used instead of four (area, standard deviation, moment of
inertia, and diagonal of the box). However, the advantage
of the AUTOMATIC version is that there is no need for
any parameters to be set.

IV. CONCLUSION

In this paper, a new approach is proposed for the classifi-
cation of hyperspectral images which uses both spectral and
spatial information. The method can be implemented fully auto-
matically. In order to use the spatial information, APs are taken
into account. For reducing the redundancy of both the spatial in-
formation and the original spectral data in order to provide more
accurate classification results, a few supervised FE methods are
considered. The new method was tested on two data sets, and
the obtained results confirm that considering spatial informa-
tion by using APs in conjunction with spectral information can
significantly improve the classification accuracies of the origi-
nal data. In addition, by using supervised FE, the classification
accuracies can be increased further. Furthermore, in order to
avoid the main difficulties of using APs, an automatic version
of the proposed method is introduced which only considers area
and standard deviation attributes. The AUTOMATIC method
obtained almost the same results as the MANUAL method
in terms of the classification accuracies and CPU processing
time and solved the main difficulty of the MANUAL method
which is related to the initialization of the parameters in the
EMAP. The proposed method was tested on two widely used
ROSIS data sets named Pavia Center and Pavia University. The
proposed method worked well in terms of the classification
accuracy and CPU processing time, which confirms the ability
of the method to classify high-dimensional data sets.

In experiments, the proposed approach can be thought of as
a general framework, and some of its steps can be replaced
by other techniques, possibly to improve the CPU processing
time and classification accuracies for the proposed approach.
For example, other types of feature reduction techniques such
as kernel PCA, ICA, and supervised feature extraction and
supervised feature selection can be used instead of PCA in the
proposed approach.

ACKNOWLEDGMENT

The Reflective Optics System Imaging Spectrometer data
and corresponding reference information were obtained from
Prof. P. Gamba of the University of Pavia, Italy.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHAMISI et al.: SPECTRAL–SPATIAL CLASSIFICATION FRAMEWORK BASED ON APS AND SUPERVISED FE 11

REFERENCES

[1] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and
J. C. Tilton, “Advances in spectral-spatial classification of hyperspectral
images,” Proc. IEEE, vol. 101, no. 3, pp. 652–675, Mar. 2013.

[2] G. Hughes, “On the mean accuracy of statistical pattern recognizers,”
IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55–63, Jan. 1968.

[3] D. A. Landgrebe, Signal Theory Methods in Multispectral Remote Sens-
ing. Hoboken, NJ, USA: Wiley, 2003.

[4] P. Ghamisi, M. S. Couceiro, and J. A. Benediktsson, “Classification of
hyperspectral images with binary fractional order Darwinian PSO and
random forests,” in Proc. SPIE, Image Signal Process. Remote Sens. XIX,
2013, pp. 88920S–88920S-8.

[5] S. Tadjudin and D. Landgrebe, “Classification of high dimensional data
with limited training samples,” School Elect. Comput. Eng., Purdue Univ.,
West Lafayette, IN, USA, Tech. Rep., 1998.

[6] H. Derin and P. A. Kelly, “Discrete-index Markov-type random pro-
cesses,” Proc. IEEE, vol. 77, no. 10, pp. 1485–1510, Oct. 1989.

[7] F. Bovolo and L. Bruzzone, “A context-sensitive technique based on
support vector machines for image classification,” in Proc. PReMI, 2005,
pp. 260–265.

[8] D. Liu, M. Kelly, and P. Gong, “A spatial-temporal approach to mon-
itoring forest disease spread using multi-temporal high spatial resolu-
tion imagery,” Remote Sens. Environ., vol. 101, no. 10, pp. 167–180,
Mar. 2006.

[9] G. Moser, S. B. Serpico, and J. A. Benediktsson, “Land-cover map-
ping by Markov modeling of spatial-contextual information in very-
high-resolution remote sensing images,” Proc. IEEE, vol. 101, no. 3,
pp. 631–651, Mar. 2013.

[10] G. Moser and S. B. Serpico, “Combining support vector machines and
Markov random fields in an integrated framework for contextual im-
age classification,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5,
pp. 2734–2752, May 2013.

[11] M. Khodadadzadeh, R. Rajabi, and H. Ghassemian, “Combination of
region-based and pixel-based hyperspectral image classification using
erosion technique and MRF model,” in Proc. 18th ICEE, May 2010,
pp. 294–299.

[12] P. Ghamisi, J. A. Benediktsson, and M. O. Ulfarsson, “Spectral-spatial
classification of hyperspectral images based on hidden Markov random
fields,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, May 2014, to
be published.

[13] G. Zhang, X. Jia, and N. M. Kwok, “Spectral-spatial based super pixel
remote sensing image classification,” in Proc. 4th Int. Congr. Image Signal
Process., 2011, no. 3, pp. 1680–1684.

[14] P. Ghamisi, M. S. Couceiro, N. M. F. Ferreira, and L. Kumar, “Use of
Darwinian particle swarm optimization technique for the segmentation of
remote sensing images,” in Proc. IEEE IGARSS, 2012, pp. 4295–4298.

[15] P. Ghamisi, M. S. Couceiro, J. A. Benediktsson, and N. M. F. Ferreira, “An
efficient method for segmentation of images based on fractional calculus
and natural selection,” Exp. Syst. Appl., vol. 39, no. 16, pp. 12 407–12 417,
Nov. 2012.

[16] Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, “Spectral-spatial
classification of hyperspectral imagery based on partitional clustering
techniques,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 5, pp. 2973–
2987, Aug. 2009.

[17] P. Ghamisi, M. S. Couceiro, F. M. Martins, and J. A. Benediktsson, “Mul-
tilevel image segmentation approach for remote sensing images based
on fractional-order Darwinian particle swarm optimization,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 5, May 2014, to be published.

[18] P. Ghamisi, M. Couceiro, M. Fauvel, and J. A. Benediktsson, “Integration
of segmentation techniques for classification of hyperspectral images,”
IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 342–346, Jan. 2014.

[19] M. Pesaresi and J. A. Benediktsson, “A new approach for the morpho-
logical segmentation of high-resolution satellite imagery,” IEEE Trans.
Geosci. Remote Sens., vol. 39, no. 2, pp. 309–320, Feb. 2001.

[20] J. A. Palmason, J. A. Benediktsson, J. R. Sveinsson, and J. Chanussot,
“Classification of hyperspectral data from urban areas using morpholog-
ical preprocessing and independent component analysis,” in Proc. IEEE
IGARSS, 2005, no. 3, pp. 176–179.

[21] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, “Spec-
tral and spatial classification of hyperspectral data using SVMs and mor-
phological profiles,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11,
pp. 3804–3814, Nov. 2008.

[22] M. D. Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Mor-
phological attribute profiles for the analysis of very high resolution im-
ages,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3747–3762,
Oct. 2010.

[23] M. Pedergnana, P. R. Marpu, M. D. Mura, J. A. Benediktsson, and
L. Bruzzone, “A novel technique for optimal feature selection in attribute
profiles based on genetic algorithms,” IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 6, pp. 3514–3528, Jun. 2013.

[24] I. Jolliffe, Principal Component Analysis. New York, NY, USA:
Springer-Verlag, 2002, ser. Springer Series in Statistics.

[25] K. Fukunaga, Introduction to Statistical Pattern Recognition. New York,
NY, USA: Academic, 1974.

[26] L. Jimenez and D. A. Landgrebe, “Hyperspectral data analysis and su-
pervised feature reduction via projection pursuit,” IEEE Trans. Geosci.
Remote Sens., vol. 37, no. 6, pp. 2653–2667, Nov. 1999.

[27] C. Lee and D. A. Landgrebe, “Feature extraction based on decision bound-
aries,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 4, pp. 388–
400, Apr. 1993.

[28] B. C. Kuo and D. A. Landgrebe, “A robust classification procedure based
on mixture classifiers and nonparametric weighted feature extraction,”
IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2486–2494,
Nov. 2002.

[29] E. J. Breen and R. Jones, “Attribute openings, thinnings and granulome-
tries,” Comput. Vis. Image Understand., vol. 64, no. 3, pp. 377–389,
Nov. 1996.

[30] N. Bouaynaya and D. Schonfeld, “Theoretical foundations of spa-
tially variant mathematical morphology part II: Gray-level images,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 5, pp. 837–850,
May 2008.

[31] M. D. Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Extended
profiles with morphological attribute filters for the analysis of hyper-
spectral data,” Int. J. Remote Sens., vol. 31, no. 22, pp. 5975–5991,
Jul. 2010.

[32] P. Salembier, A. Oliveras, and L. Garrido, “Anti-extensive connected op-
erators for image and sequence processing,” IEEE Trans. Image Process.,
vol. 7, no. 4, pp. 555–570, Apr. 1998.

[33] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 532–539,
Oct. 2001.

[34] L. Breiman, “RF tools a class of two eyed algorithms,” in SIAM Work-
shop, San Francisco, CA, USA, 2003, pp. 1–56. [Online]. Available:
http://www.stat.berkeley.edu/~breiman/siamtalk2003.pdf

[35] P. Marpu, M. Pedergnana, M. D. Mura, J. A. Benediktsson, and
L. Bruzzone, “Automatic generation of standard deviation attribute pro-
files for spectral-spatial classification of remote sensing data,” IEEE
Geosci. Remote Sens. Lett., vol. 10, no. 2, pp. 293–297, Mar. 2013.

[36] G. M. Foody, “Thematic map comparison: Evaluating the statistical sig-
nificance of differences in classification accuracy,” Photogramm. Eng.
Remote Sens., vol. 70, no. 5, pp. 627–633, May 2004.

[37] M. D. Mura, A. Villa, J. A. Benediktsson, J. Chanussot, and L. Bruzzone,
“Classification of hyperspectral images by using extended morphological
attribute profiles and independent component analysis,” IEEE Geosci.
Remote Sens. Lett., vol. 8, no. 3, pp. 542–546, May 2011.

Pedram Ghamisi (S’13) received the B.Sc. de-
gree in civil (survey) engineering from the Tehran
South Campus of Azad University, Tehran, Iran,
and the M.Sc. degree in remote sensing from the
K. N. Toosi University of Technology, Tehran, in
2012. He is currently working toward the Ph.D.
degree in electrical and computer engineering at the
University of Iceland, Reykjavik, Iceland.

His research interests are in remote sensing and
image analysis with the current focus on spec-
tral and spatial techniques for hyperspectral image

classification.
Mr. Ghamisi serves as a reviewer for a number of journals, including the

IEEE TRANSACTIONS ON IMAGE PROCESSING, IEEE JOURNAL OF SE-
LECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENS-
ING, and IEEE GEOSCIENCE AND REMOTE SENSING LETTERS. He was the
recipient of the Best Researcher Award for M.Sc. students in the K. N. Toosi
University of Technology in the academic year 2010–2011. He was the recipient
of the IEEE Mikio Takagi Prize which was awarded for the first place in the
Student Paper Competition at the 2013 IEEE International Geoscience and
Remote Sensing Symposium, Melbourne, July 2013.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Jón Atli Benediktsson (S’84–M’90–S’M99–F’04)
received the Cand.Sci. degree in electrical engi-
neering from the University of Iceland, Reykjavik,
Iceland, in 1984 and the M.S.E.E. and Ph.D. degrees
from Purdue University, West Lafayette, IN, USA, in
1987 and 1990, respectively.

He is currently the Prorector for Academic Affairs
and a Professor of Electrical and Computer Engi-
neering at the University of Iceland. His research
interests are in remote sensing, biomedical analysis
of signals, pattern recognition, image processing, and

signal processing, and he has published extensively in those fields. He is a
cofounder of the biomedical start up company Oxymap.

Prof. Benediktsson was the 2011–2012 President of the IEEE Geoscience
and Remote Sensing Society (GRSS) and has been on the GRSS Administrative
Committee since 2000. He was an Editor of the IEEE TRANSACTIONS ON

GEOSCIENCE AND REMOTE SENSING (TGRS) from 2003 to 2008 and has
served as an Associate Editor of TGRS since 1999, the IEEE GEOSCIENCE

AND REMOTE SENSING LETTERS since 2003, and the IEEE Access since
2013. He is on the International Editorial Board of the International Journal of
Image and Data Fusion and was the Chairman of the Steering Committee of the
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS

AND REMOTE SENSING in 2007–2010. He was the recipient of the Stevan J.
Kristof Award from Purdue University in 1991 as outstanding graduate student
in remote sensing. In 1997, he was the recipient of the Icelandic Research
Council’s Outstanding Young Researcher Award; in 2000, he was granted the
IEEE Third Millennium Medal; in 2004, he was a corecipient of the University
of Iceland’s Technology Innovation Award; in 2006, he received the yearly
research award from the Engineering Research Institute of the University of
Iceland; and in 2007, he received the Outstanding Service Award from the IEEE
Geoscience and Remote Sensing Society. He is a corecipient of the 2012 IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING Paper Award and
of the 2013 IEEE Geoscience and Remote Sensing Society Highest Impact
Paper Award. He is a Fellow of SPIE and a member of the Association of
Chartered Engineers in Iceland (VFI), Societas Scinetiarum Islandica, and Tau
Beta Pi.

Johannes R. Sveinsson (S’86–M’90–SM’02) re-
ceived the B.S. degree in electrical engineering from
the University of Iceland, Reykjavik, Iceland, and
the M.S. and Ph.D. degrees in electrical engineering
from Queen’s University, Kingston, ON, Canada.

He is currently the Head and a Professor with the
Department of Electrical and Computer Engineer-
ing, University of Iceland, where he was with the
Laboratory of Information Technology and Signal
Processing from 1981 to 1982 and the Engineering
Research Institute and the Department of Electrical

and Computer Engineering as a Senior Member of the research staff and a
Lecturer from November 1991 to 1998, respectively. He was a Visiting Re-
search Student with the Imperial College of Science and Technology, London,
U.K., from 1985 to 1986. At Queen’s University, he held teaching and research
assistantships. His current research interests are in systems and signal theory.

Dr. Sveinsson was the recipient of the Queen’s Graduate Awards from
Queen’s University. He was a corecipient of the 2013 IEEE Geoscience and
and Remote Sensing Society Highest Impact Paper Award.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Automatic Framework for Spectral–Spatial
Classification Based on Supervised Feature

Extraction and Morphological
Attribute Profiles

Pedram Ghamisi, Student Member, IEEE, Jón Atli Benediktsson, Fellow, IEEE,
Gabriele Cavallaro, and Antonio Plaza, Senior Member, IEEE

Abstract—Supervised classification plays a key role in terms of
accurate analysis of hyperspectral images. Many applications can
greatly benefit from the wealth of spectral and spatial information
provided by these kind of data, including land-use and land-cover
mapping. Conventional classifiers treat hyperspectral images as a
list of spectral measurements and do not consider spatial depen-
dencies of the adjacent pixels. To overcome these limitations,
classifiers need to use both spectral and spatial information. In this
paper, a framework for automatic spectral–spatial classification of
hyperspectral images is proposed. In order to extract the spatial
information, ExtendedMulti-Attribute Profiles (EMAPs) are taken
into account. In addition, in order to reduce the redundancy of
features and address the so-called curse of dimensionality, different
supervised feature extraction (FE) techniques are considered. The
final classification map is provided by using a random forest
classifier. The proposed automatic framework is tested on two
widely used hyperspectral data sets; Pavia University and Indian
Pines. Experimental results confirm that the proposed framework
automatically provides accurate classification maps in acceptable
CPU processing times.

Index Terms—Extended Multi-Attribute Profile (EMAP),
hyperspectral image analysis, random forest classification,
supervised feature extraction (FE).

I. INTRODUCTION

H YPERSPECTRAL imaging instruments are now able to
capture hundreds of spectral channels from the same area

on the surface of the Earth. By providing very fine spectral
resolution with hundreds of (narrow) bands, accurate discrimi-
nation of different materials is possible. In parallel, due to recent
advances in hyperspectral technology, the spatial resolution of

the sensors is also becoming finer, which allows for a detailed
characterization of spatial structures in the scene.

Supervised classification techniques play a key role in the
analysis of hyperspectral images, and a wide variety of applica-
tions can be handled by successful classifiers in the literature [1],
including: land-use and land-cover mapping, crop monitoring,
forest applications, urban development, mapping, tracking, and
risk management.

In the spectral domain, each spectral channel is considered as
one dimension. By increasing the dimensionality in the spectral
domain, theoretical and practical problems arise. Some of these
problems are related to the curse of dimensionality, which is
related to the unbalance between the (high) dimensionality of the
input data and the (often limited) number of training samples
used in the supervised classification process [2]. In [3],
Landgrebe shows that too many spectral bands can be undesir-
able from the standpoint of expected classification accuracy. In
other words, when the number of spectral bands (dimensionality)
increases, with a constant number of training samples, the
accuracy of the statistics estimation decreases. The aforemen-
tioned issue demonstrates that there is an optimal number of
bands and that (given an available set of training samples) more
features do not necessarily lead to better results. Therefore,
feature reduction techniques may lead to better classification
accuracies [4].

Conventional classifiers treat hyperspectral images as a list of
spectral measurements with no particular arrangement [5] and do
not consider spatial dependencies of adjacent pixels. In other
words, conventional techniques classify images only based on
their spectral information alone. Therefore, these approaches
discard information associated with the spatial correlations
among distinct pixels in the image. In order to address the
aforementioned issue, the consideration of both spectral and
spatial information has been widely explored in the literature [6].
In addition, spatial information can provide additional informa-
tion related to the shape and size of different structures, which
generally leads to better classification accuracies and classifica-
tion maps.

Two strategies are commonly used in order to characterize
spatial information: crisp neighborhood system and adaptive
neighborhood system. Although the first one mostly con-
siders spatial and contextual dependencies in a predefined
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neighborhood system, the latter is more flexible and it is not
confined to a given neighborhood system.Oneway for extracting
spatial information with crisp neighborhood is to consider
Markov random field (MRF) modeling. MRF is a family of
probabilistic models that can be described as a 2-D stochastic
process over discrete pixel lattices [7]. There is extensive litera-
ture on the use of MRFs in classification, such as [8], [9].
However, the main disadvantages of considering a set of crisp
neighbors are that 1) the standard neighborhood system may not
contain enough samples, which decreases the effectiveness of the
classifier (in particular, when the input data set is of high
resolution and the neighboring pixels are highly correlated
[6]) and 2) a larger neighborhood system leads to computation-
ally intractable problems [6]. In order to address the aforemen-
tioned issues, adaptive neighborhood systems can be taken into
consideration. A possible way to develop adaptive neighborhood
systems is to use different types of segmentationmethods. Image
segmentation is a procedure which can be used to modify the
accuracy of classification maps [10]. To make such an approach
effective, an accurate segmentation of the image is needed [11].
Several works have previously explored the extraction of spatial
information using segmentation techniques (e.g., [12]–[14]).
Another set of methods which can extract spatial information
by using adaptive neighborhood systems relies onmorphological
filters. Pesaresi and Benediktsson [15] used morphological
transformations to build a so-calledMorphological Profile (MP).
In [16], the MP was used to handle hyperspectral images and
named Extended Morphological Profile (EMP) in this context.
Attribute Profiles (APs) constitute another extension of the
concept of MP and provide a multilevel characterization of an
image by the sequential application of morphological attribute
filters, which model different specifications of the structural
information contained in the scene [17]. APs provide a powerful
tool to increase the discrimination of different classes [17], [18].
However, there are two main difficulties associated with the
concept of Extended Multi-Attribute Profiles (EMAP), includ-
ing: 1) how to establish which attributes lead to a better discrim-
ination for different classes and 2) how to determine which
values should be considered in order to initialize each AP.

In this paper, a new fully automatic approach is proposed for
accurate classification of hyperspectral images. Although the
presented framework can also be used for classification of
multispectral images with coarser spectral resolution, it is used
here for spectral–spatial classification of hyperspectral images.
In order to extract the spatial information, EMAP [17] are
automatically generated by the proposed framework. In order
to reduce the redundancy of the data and address the so-called
curse of dimensionality, different supervised feature extraction
(FE) techniques are also included in the proposed framework.
The final classificationmap is provided by aRandomForest (RF)
classifier [19], [20]. In order to handle high-dimensional data, RF
and SVM have been widely considered as the most powerful
classifiers since they are robust when handling high-dimensional
data with a limited number of training samples. Both the SVM
and RF classifiers are comparable in terms of classification
accuracies and have been widely used for the purpose of hyper-
spectral image classification. However, while both methods are
shown to be effective classifiers for nonlinear classification

problems, SVM requires a computationally demanding parame-
ter tuning process in order to achieve optimal results, whereas RF
does not require such a tuning process. In this sense, RF is faster
than SVM. In this paper, our main objective is obtaining good
classification accuracies in an acceptable CPU processing time.
In addition, several studies such as [21] have reported that
Hughes phenomenon [2] is more evident when the number of
dimensions is high and the data are classified by SVM instead of
RF. The proposed approach is tested using two well-known data
sets collected by the reflective optics spectrographic imaging
system (ROSIS) over the city of Pavia, Italy, and by the Airborne
Visible Infra-Red Imaging Spectrometer (AVIRIS) over the
Indian Pines region in northwestern Indiana. The experimental
results confirm that the presented framework is able to classify
hyperspectral images efficiently both in terms of classification
accuracies and CPU processing time. It should be noted that the
proposed approach is fully automatic and there is no need to
initialize any parameters empirically. The main contribution of
this paper compared to other works on EMAP is that, in most of
previous works, the EMAP is built using an unsupervised FE
approach such as principal component analysis (PCA), indepen-
dent component analysis (ICA), and Kernel PCA, while in this
work, we explore the use of supervised FE for this purpose.
Another main difference is concerned with the automatic nature
of our approach in the sense that, in previous works, threshold
values for making EMAP needed to be initialized manually,
while, in the present framework, a general range of parameter
values is used to make the parameter selection automatical.
Another important difference is that, in most previous works,
the outcome of the AP is directly used for classification, while in
our framework, we use a second FE strategy prior to classifica-
tion. As shown by the present contribution, the results of the
second FE step are used for classification purposes by our
proposed framework, with concatenating features of both FE
steps in one vector and then performing the classification step.

This remainder of the paper is organized as follows: the
proposed framework is discussed in Section II. Section III is
devoted to validating the framework via extensive experimental
results. Section IV outlines the main conclusions and provides
hints at plausible future research lines.

II. FRAMEWORK

In the proposed framework, supervised FE is first performed
on the input data and the first features with cumulative eigen-
values above 99% are retained. In the case of discriminant
analysis FE (DAFE), the criterion is related to the size of the
eigenvalues of the scatter matrices. In the case of decision
boundry FE (DBFE), it is related to the size of the eigenvalues
of the decision boundary featurematrix (DBFM). Let us consider

as the output of this step. Then, EMAPs are built on the first
few features and the resulting features are concatenated into one
stacked vector. In order to reduce the redundancy of the stacked
vector, a supervised FE step is performed once again. Let be
the output of this step. The final classification map is provided
by performing RF classification on the stacked vector,

. Fig. 1 illustrates the proposed framework by a
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flowchart. In the following, the individual parts of the proposed
framework will be discussed in detail.

A. Feature Extraction (FE)

FE consists of finding a set of vectors that represent an
observation while reducing its dimensionality. FE techniques
can be grouped into two categories: unsupervised approaches
and supervised approaches, where the former is used for the
purpose of data representation and the latter is considered for
overcoming the Hughes phenomena and reducing the redundan-
cy of data in order to improve classification accuracies. PCA is an
example of unsupervised FE. PCAdoes notfind optimum feature
sets in the sense of class discrimination and discards class
specific information. Therefore, for image classification, super-
vised FE may lead to higher classification accuracies. From one
point of view, supervised FE techniques can be split into two
categories: parametric and nonparametric. The main disadvan-
tages of nonparametric FE techniques are that they do not have an
assumption on the underlying density functions in the data.
Therefore, FE for nonparametric classifiers is often not feasible
or very time consuming. On the contrary, although the compu-
tation cost of nonparametric classifiers is often much larger than
that of parametric classifiers, there are some cases where the use
of nonparametric FE is desirable. For example, if the underlying
densities are unknown or problems involve complex densities,
which cannot be approximated by a common parametric density
functions, the use of a nonparametric classifier is important [22].
In this work, two approaches are considered for supervised FE:
DAFE and DBFE. Below, the considered supervised FE tech-
niques are briefly explained.

1)Discriminant Analysis FE (DAFE):This approach is widely
used for dimension reduction in classification problems [23].
Since, DAFE uses the mean vector and the covariance matrix of
each class, it is considered as supervised FE. In DAFE, within-
class, between-class, and mixture scatter matrices are usually
considered as the criteria for class separability. DAFE is fast and

works well when the distribution of the data is normal.
Otherwise, the performance of DAFE may not be satisfactory.
Another problem associated with this method is that if the
difference in the class-mean vectors is small, the feature
chosen may not be reliable. Similarly, if one class-mean
vector is very different from others, its class will dominate the
others in the computation of the between-class covariancematrix
[24]. As a consequence, the FE process may be ineffective. In
addition, DAFE performs the computations with full
dimensionality, which requires a large number of training
samples in order to accurately estimate parameters. A main
shortcoming of DAFE is that DAFE is not full rank and its
rank is at maximum where is the number of classes. Let
us assume that the rank of the within-class scatter matrix is , in
this case, only features are selected by using
DAFE. Since the complexity of the data in real scenarios could be
quite high, using only features may not be enough to fully
characterize the data.

2) Decision Boundary Feature Matrix (DBFE): This method
was proposed in [25] where it was shown that both dis-
criminantly informative and redundant features can be
extracted from the decision boundary between two classes.
The features are extracted from the DBFM. In order to obtain
the same classification accuracy as in the original space, keeping
the eigenvectors of the DBFM corresponding to nonzero
eigenvalues is crucial. The performance of this method does
not deteriorate even when there is no difference in the mean
vectors or covariance matrices. It should be noticed that this
approach does not rely on the number of classes in the same way
as DAFE. The efficiency of DBFE is highly dependent on the
quality and number of training samples, which is not desirable.
Another shortcoming of DBFE is that it can be computationally
intensive.

B. Extended Multi-Attribute Profile (EMAP)

Mathematical morphology [26]–[29] is a well-established
framework which provides operators able to high-quality spatial
features. Fundamental mathematical morphology operators,
such as Erosion and Dilation (and their combinations: opening
and closing), examine the geometrical structures in the image by
matching them to small patterns called structuring elements.
Depending on the shape and size of the structuring element,
undesirable effects can occur in the filtered image; in particular,
geometrical characteristics of the structures can be distorted or
completely lost. In this work, morphological operators are
considered which perform transformations by reconstruction,
a class of connected filters [30]. Specifically, they act on con-
nected components, i.e., flat regions of a gray scale image, which
are either completely removed or preserved according to their
interaction with the structuring element adopted by the
transformation.

1) Attribute Filters Based on Tree Representation: Attribute
filters [31] are flexible operators that can perform simplification
of a grayscale image driven by an arbitrary measurewhich can be
related to characteristics of regions in the scene such as the scale,
shape, contrast, etc. Improvements in terms of capability in
modeling the spatial information are achievable since these

Fig. 1. Flowchart of the proposed framework.
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operators are not based on fixed structuring elements, and the
image transformation is only computed bymerging its connected
components. The idea is to extract different types of information,
represented by the attributes, fromdifferentflat regions, i.e., parts
of the scene with the same gray levels. Attribute filters are
efficiently implemented with an equivalent representation of
the image as a tree [32].

In particular, a thresholding operation of all themapped values
present in the image , results in upper and lower level sets which
are connected components (i.e., flat zones) that can be grouped in
the following sets:

U CC Z

L CC Z

where CC being the connected components of the generic
image . There is an inclusion relationship [33] between the
connected components extracted by both the upper or lower level
sets [belonging to U or L , respectively]. This property
allows for the association of a node in the tree to each connected
component and thus represent the image as a hierarchical struc-
ture: the max-tree and min-tree [32] structures represent, respec-
tively, the components in U and L with their inclusion
relations by the thresholding operations. Attribute filters are
shape preserving, since they never introduce new edges in an
image [32], and operate on regions according to the result of a
binary predicate . In particular, the filtering criteria usually
determine whether the value of an attribute of a given con-
nected component verifies a predicate:
with R or Z, where is a threshold value. When
attribute filters are applied to the tree representation of the image,
the operator leads to a pruning of the tree by removing the nodes
whose associated regions do not fulfill . Two different filtering
approaches have been proposed: pruning the tree by removing
whole branches and pruning by not removing all the branches
[34]. Attributes can be purely geometric (e.g., area, length of the
perimeter, and moment of inertia) or textural (e.g., standard
deviation and entropy). A very detailed characterization of
features is usually obtained.

2) Attribute Profiles: The spatial features can be derived in
different ways such as with Gray-Level Co-occurrence Matrix
(GLCM), Differential Morphology Profiles (DMPs), or Urban
Complexity Index (UCI) [35]. Here, we propose to use EMAPs
instead of GLCM, DMPs, and UCI. The use of EMAPs based on
mathematical morphology concepts exhibits some desirable
features in the context of hyperspectral image classification.
Specifically, they offer a very flexible approach since they
can perform the processing based on many different types of
attributes. In fact, the attributes can be of any type. For example,
they can be purely geometric, or related to the spectral values of
the pixels, or on different characteristics. Furthermore, an
efficient implementation based on tree representation has been
used. In summary, EMAP offers a different strategy to include
spatial information when compared to GLCM or UCI.

The spatial information belonging to different features pres-
ent in very high-resolution data can be efficiently exploited by
considering a multilevel approach based on morphological

attribute filters. In particular, APs define a general set of
profiles which take advantage of the flexibility of the attribute
filters in order to better investigate the scene. According to the
type of the criteria (increasing, nonincreasing), APs are defined
differently. In the case of increasing attributes, the AP is a
sequence of attribute openings and closings which include
morphological opening and closing profiles by reconstruction
[36]. On the other hand, when dealing with increasingness
criteria, attribute thinning and thickening over a multilevel
approach is applied. The result is the obtained attribute thinning
and thickening profiles, which perform a multilevel analysis
of the image based on attributes (represented by ordered
criteria) not necessary related to the scale of the structures of
the image.

APs can be, therefore, regarded as more effective filters than
MPs, this is because the latter perform a partial characterization
of the objects in the scene as a consequence of the fact that
structuring elements are intrinsically unsuitable to describe
features related to the graylevel characteristic of the region.
Another considerable advantage is that APs are computed ac-
cording to an effective implementation based on max-tree and
min-tree representations, which lead to a reduction of the
computational load when compared with conventional profiles
built with operators by reconstruction.

3) Extended Attribute Profiles: Since hyperspectral sensors
collect information in several spectral bands, Extended Attribute
Profiles (EAPs) which are based on morphological attribute
filters are adopted in order to perform the analysis of
hyperspectral high-resolution images. The extension to
multivalued images is not a trivial task, and morphological
operators compute their function in a different domain which
becomes a subset of the multivariate domain, where the ordering
of the mapped vector values is not defined anymore. The EAPs
rely on the application of the APs to hyperspectral data and they
are simply defined as [36]

where PC name denotes a principal component obtained after
applying PCA [37]. As mentioned before, PCA does not find
optimum feature sets in the sense of class discrimination and
discards class specific information. Therefore, for image
classification, supervised FE leads to higher classification
accuracies since such approaches provide optimal features
with respect to class specific information. The EAP includes
in its definition the EMP since the operators by reconstruction
can be viewed as a particular set ofmorphological attribute. Since
the modeling of spatial features is performed by attribute filters,
this approach leads to a great flexibility, and the computation of
the filters on the max-tree structure reduces the computational
complexity with respect to EMP since the tree is built once for
each principal component and filtered multiple times, according
to the required number of levels.

4) Extended Multi-Attribute Profiles: APs extract efficiently
spatial features by considering different attributes; for this
reason, EMAPs merge different EAPs in a single data
structure [36]
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Since the dimensionality of the features is increased, the
EMAP has much greater capabilities in extracting spatial
information than a single EAP but, at the same time, the
computational cost of processing these features is slightly
higher since the max-tree and min-tree are computed only
once for each PC and they are filtered with different attributes
at different levels.

5) Automatic Framework: Now, an automatic framework is
introduced in order to solve issues such as the automatic selection
of the attributes that lead to a best possible discrimination
between the classes or the automatic identification of the most
appropriate values to initialize each AP. Fig. 2 shows the general
idea of the automatic framework for the construction of EMAPs.
Although the APs can be constructed by using a wide variety of
attributes, in the automatic framework, only the area and standard
deviation attributes are used, since the aforementioned attributes
can be adjusted in an automatic way and are well related to the
object hierarchy in the images. The standard deviation is adjusted
with respect to the mean of the individual features, since the
standard deviation shows dispersion from the mean [21].
Therefore, is initialized so as to cover a reasonable amount
of deviation in the individual feature, which is mathematically
given by

where denotes the th feature obtained by a supervised FE.
is the mean of the th feature and , , and are 2.5%,
27.5%, and 2.5%, respectively, which leads to 11 thinning and 11

thickening operations. It should be noticed that the above-
mentioned parameters have been tested on other well-known
data sets with different spatial resolutions in [18] and results
confirm that these parameters are data set distribution
independent and can provide excellent results in terms of
classification accuracies.

With regard to the adjustment of for the area attribute, the
resolution of the image should be taken into account in order to
construct the EAP [18]. The automatic construction of the
attribute area is accomplished by the following expression:

where and are initialized by 1 and 14, respectively,
with a stepsize increase of equal to 1. The EAP for the area
attribute includes 14 thinning and 14 thickening operations for
each feature. Each level is provided in square meters by consid-
ering the resolution of the image in meters. Each profile covers
structures in the range of , which might be a
reasonable range of sizes for different structures in both urban
and rural cases in remote sensing images [18]. However, differ-
ent ranges can be considered for different applications.

Regarding (3) and (4), the used parameters have been tested on
other well-known data sets with different spatial resolutions in
[18] and results confirm that these parameters are data set
distribution independent and can provide excellent results in
terms of classification accuracies. In other words, those para-
meters do not need to be tuned for different data sets with
different spatial resolutions. In the introduced framework, one
only needs to establish a range of parameter values in order to
automatically obtain a classification result with high accuracy for
different data sets. It turns out that the used parameter ranges

Fig. 2. Automatic framework for the construction of EMAPs. First, a supervised FE step is performed on the input data and the first features with cumulative
eigenvalues above 99% are kept. Then, EMAPs are built for the first few features and the output features are concatenated into one stacked vector.
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have been tested on other well-known data sets with different
spatial resolutions, such as the ones described in [18], and the
obtained results confirm that these parameters are data set
independent. In other words, those parameter ranges can be
fixed for different data sets with different spatial resolutions. In
[38], it was shown that the automatic scheme with only two
attributes (area and standard deviation) can provide results
comparable with a manual scheme with four attributes in terms
of classification accuracy and CPU processing time.

C. Fusion of Extracted Features Via Vector Stacking

As indicated in Fig. 1, the input data are transformed by a
supervised FE and only the first few features are used in order to
reduce redundancy in the data while keeping most of the data
variance. Then, the EMAP is computed by using only the first
effective features that correspond to 99% of the eigenvalues.

Let be the set of features retained. Then, MAP is performed
on each feature of and the output features are concatenated into
one stacked vector. In order to address the so-called curse of
dimensionality and reduce the redundancy of the stacked vector,
a supervised FE step is performed once again. Let be the
output of this step consisting of the features with cumulative
eigenvalues above 99%. The final classification map is achieved
by performing RF classification on the stacked vector;

.

D. Random Forest (RF)

RF was first introduced in [19]. It is an ensemble method for
classication and regression. Ensemble classifiers get their name
fromthe fact that several classifiers are trainedand their individual
results are then combined through a voting process. For the
classification of an object from an input vector, the input vector
is run down each tree in the forest. Each tree provides a unit vote
for aparticular class and the forest chooses the classicationhaving
the most votes. Based on [20], the computational complexity
of the RF algorithm is where is a constant,
denotes the number of trees in the forest, is regarded as the

number of variables, and is the number of samples in the data
set. It is easy to infer that RF is not computationally intensive but
demands a considerable amount of memory, since it is necessary
to store an matrix in the process. RF has several ad-
vantages, such as the capacity to provide good classification
accuracies and to handle many variables. Another advantage of
the RF classifier is that it is insensitive to noise in the training
samples. In addition, RF provides an unbiased estimate of the test
set error as trees are added to the ensemble, with almost no
sensitivity to overfitting issues.

III. EXPERIMENTAL RESULTS

A. Data Description

Two hyperspectral data sets were used in experiments. They
are described as follows.

1) Pavia University: The first test case is a hyperspectral
data set captured on the city of Pavia, Italy by the Reflective
Optics Spectrographic Imaging System (ROSIS-03) airborne

instrument. The ROSIS-03 sensor has 115 data channels with
a spectral coverage ranging from 0.43 to . The data have
been corrected atmospherically, but not geometrically. The
spatial resolution is 1.3 m per pixel. The data set covers the
Engineering School at the University of Pavia and consists of
different classes including: trees, asphalt, bitumen, gravel, metal
sheet, shadow, bricks, meadow, and soil. In our experiments, 12
noisy data channels were eliminated and 103 data channels used
for processing. The original data set comprises pixels.
Fig. 3(a) shows a false color composite of Pavia University and
Fig. 3(b) shows a fixed training set that will be used for training
purposes in this paper. Fig. 3(c) shows the available reference
data for the scene. The number of available test and training
samples is listed in Table I.

2) Indian Pines Data: The second data set used in experiments
is the well-known data set captured on Indian Pines (NW
Indiana) in 1992 comprising 16 classes (see Fig. 4), mostly
related to different land covers. The data set consists of

pixels with spatial resolution of 20 m/pixel. In this
work, 200 data channels are used, i.e., after the removal of the
spectral bands affected by atmospheric absorption. The number
of training and test samples is displayed in Table II.

It should be noted that, in addition to selecting widely used
data sets in the hyperspectral imaging community, we have used
exactly the same training and test samples that have been
considered in most works related to spectral–spatial classifica-
tion of hyperspectral images. Some of the works that have
considered exactly the same training and test samples are those
in [9], [39], and [40]. In other words, we not only used the same
number of training and test samples adopted by other state-of-
the-art methods, but also these samples have exactly the same
spatial locations in the data. This way of using the training and
test samples makes this work fully comparable with other
spectral and spatial classification techniques reported in the
literature. In order to keep consistency with previous results,
each method was run only once since we have not used different
training and test samples, but instead used exactly the same
samples as adopted in the previous studies.

Fig. 3. TheROSIS-03PaviaUniversitydata set: (a) false color image, (b) training
samples, and (c) test samples, where each color represents a specific information
class. The information classes are listed in Table I.
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B. Experimental Setting

In experiments, the input image is transformed by a supervised
FE and the first features with cumulative eigenvalues above 99%
are retained, since they are expected to contain most of the
variance in the original data sets. In the proposed framework,
there is a second FE step which is conducted using the same
criterion. For simplicity, the names of the different classifierswill
be referred hereinafter as follows:

1) Raw: when the input data are classified by RF.
2) Spec: when only Spectral information resulting from the

first supervised FE is classified by RF.
3) AP: when the selected features are used in order to produce

the EMAP and classified by the RF.
4) : when a supervised FE is performed for the second

time and the output is classified by the RF. We have
decided to use the name in this case, where FE
approach means that the input data set first is transformed
by FE approach and the EMAP is then transformed by
FE approach. As an example, means that the raw
data were transformed by DBFE and the EMAP by DAFE.

5) : stacked vector consisting all features resulting from
the first and second supervised FE. The suffix refers to
the second FE technique.

6) : stacked vector consisting of all features resulting from
the first and second supervised FE. The suffix refers to
the second FE technique.

In the following, the number of features for Spec indicates the
number of features with cumulative eigenvalues of more than
99% after performing DAFE or DBFE on the raw data. For
example, it can be seen fromTable III that six features are kept for
Spec. It means that, first, the input data are transformed byDAFE
and the first features with cumulative eigenvalues of more than
99% were kept (six features). These six features are used as a
baseline for constructing the EMAP. Then, 14 thinning and 14
thickening are produced for the area attribute and 11 thinning and
11 thickening are produced for the standard deviation attribute.
Therefore, each feature was used to produce 50 attributes and, by
considering the feature itself in that vector, we have 51 features
for each feature obtained by DAFE ( features for
AP). Then, the second FE was performed and the first features
with cumulative eigenvalues of more than 99%were kept. In this
way, for Table III, and consist of 8 and 24
features, respectively. is the combination of Spec and

( ) and is the combination of Spec and
( ).

The way we calculate the CPU processing of each method is
listed as follows:

1) Spec: CPU processing time of the first FE plus the CPU
processing time of the corresponding RF classification.

2) AP: CPU processing time of the first FE plus the CPU
processing time of producing EMAP plus the CPU proces-
sing time of the corresponding RF classification.

3) : CPU processing time of the first FE plus the CPU
processing time of producing EMAP plus the CPU proces-
sing time of the second FE plus the CPU processing time of
the corresponding RF classification.

4) : CPU processing time of the first FE plus the
CPU processing time of producing EMAP plus the CPU

Fig. 4. AVIRIS Indian Pines data set: (a) spectral band number 27
( ), (b) training samples, and (c) test samples, where each color
represents a specific information class. The information classes are listed in
Table II.

TABLE I
PAVIA UNIVERSITY: NUMBER OF TRAINING AND TEST SAMPLES ALONG

WITH CLASSIFICATION ACCURACIES FOR THE RAW SPECTRAL
DATA IN PERCENTAGE

The number of features is given in the parentheses.

TABLE II
INDIAN PINES: NUMBER OF TRAINING AND TEST SAMPLES ALONGWITH CLASSIFICATION

ACCURACIES FOR THE RAW SPECTRAL DATA IN PERCENTAGE

The number of features is given in the parentheses.
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processing time of the second FE plus the CPU processing
time of corresponding the RF classification.

The following measures are used in order to evaluate the
performance of different classification methods.

1) Average accuracy (AA): this metric shows the average
value of the class classification accuracy.

2) Overall accuracy (OA): this metric refers to the number of
samples, which are classified correctly divided by the
number of test samples.

3) Kappa coefficient: thismetric provides information regard-
ing the agreement corrected by the level of agreement that
could be expected due to chance alone.

4) CPU processing time: this metric shows the speed of
different algorithms. It should be noted that, since in all
algorithms (except Spectral), EMAP is carried out, theCPU
processing time of this step is discarded from all methods.
Hence, the CPU processing time is only provided for AP,

, DAFE, and NWFE. All methods were
implemented in MATLAB on a computer having Intel(R)
Pentium(R) 4 CPU 3.20 GHz and 4 GB of memory.

C. Experimental Results

1) Pavia University: Table III gives information related to the
classification accuracies of different methods after applying
DAFE, with the corresponding CPU processing times listed in
Table IV.As it can be observed fromTables I and III, the Spectral
classification with only six features improves the OA of the Raw,
data with 103 bands by 8%. Also, the class accuracies of
Meadows and Gravel classes can be improved. Specifically,
many samples ofMeadows aremisclassified as belonging to soil.
Moreover, many samples of Gravel are misclassified as
belonging to Asphalts and Bricks.

As can be seen from Table III, (consisting of 30 features)
outperforms other methods significantly. improves the OA

of Spectral, AP, , , and by 18%, 2.5%, 11,
6%, and 12%, respectively.

As it was already observed for the AVIRIS Indian Pines data
set, AP achieves the best OAafter sinceAP canmodel spatial
dependencies of different objects by considering an adaptive
neighborhood system. As can be seen from Table V, the OA of
Spectral with 29 features improves the OA of Raw (with 103
bands) by 8%.Another observation is that AP, , , and

provide good performance. However, with only
seven features provides the best results in terms of classification
accuracies and CPU processing time.

By comparing the results reported in Tables III andV, it is easy
to infer that DBFE works better than DAFE. The main reason
behind thismay be closely related to the fact that DAFE is not full
rank (its rank is at most equal to where is the number of
classes). Sometimes, the aforementioned number of features is
not enough in order to discriminate between different classes of
interest. However, DAFE is faster than DBFE. This fact can also
be observed in Tables IV and VI.

Based on our experimental results, the proposed framework
improves all methods in terms of classification accuracies for
Pavia University data set. For example, the proposed method
improves the classification accuracy of the classification
technique proposed in [39] by almost 11%. Based on the
results reported in [41], the proposed method improves the
OA of the previous method with PCA by almost 21% and
ICA by 3.5%. These are quite important achievements from
the viewpoint of classification accuracy (in this regard, our
framework provides some of the best classification results
ever reported in the literature for the considered scene). The
main disadvantage of the proposed method is the fact that the
final result is dependent on the second FE and it is difficult to
anticipate which one of or works better. The investi-
gation of these aspects will be a subject for our future research
efforts.

TABLE III
PAVIA UNIVERSITY: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT METHODS FOR THE ROSIS PAVIA UNIVERSITY SCENE AFTER APPLYING DAFE

The number of features used for classification purposes is reported in the parentheses.

TABLE IV
PAVIA UNIVERSITY: CPU PROCESSING TIME (IN SECONDS) OF DIFFERENT METHODS AFTER APPLYING DAFE
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Fig. 5 shows classification maps for different methods started
by DAFE applied on Pavia University.

2) Indian Pines:The low spatial resolution of this data set adds
more complexity, since it leads to the presence of highly mixed

pixels (which are mainly due to the early growth cycle of most of
the agricultural features in the scene). In this case, the
classification results may be degraded by the presence of
mixed pixels in the scene. In addition, the significant

TABLE V
PAVIA UNIVERSITY: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT METHODS FOR THE ROSIS PAVIA UNIVERSITY SCENE AFTER APPLYING DBFE

The number of features used for classification purposes is reported in the parentheses.

TABLE VI
PAVIA UNIVERSITY: CPU PROCESSING TIME (IN SECONDS) OF DIFFERENT METHODS AFTER APPLYING DBFE

TABLE VII
INDIAN PINES: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT METHODS FOR THE AVIRIS INDIAN PINES SCENE AFTER APPLYING DAFE

The number of features used for classification purposes is reported in the parentheses.

TABLE VIII
INDIAN PINES: CPU PROCESSING TIME (IN SECONDS) OF DIFFERENT METHODS AFTER APPLYING DAFE
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differences in the number of pixels in the reference data for
different classes make the classification task even more
complicated.

In these data, there is a high confusion between classes
Soybean-mintill and corn-notill which degrades the class accu-
racies of both of them. By comparing Tables II and VII, it is easy
to infer that, by performingDAFE on the input data and choosing
the first features with cumulative eigenvalues above 99%, OA is
reduced from 70.24% (Raw) to 65.47% (Spectral). This reveals
that of only 13 features are not sufficient to discriminate between
different classes, as compared to hundreds of spectral bands from
the input data.

As it can be seen from Table VII, AP improves the overall
accuracy of Raw in more than 25%. The main reason behind this
significant improvement is that AP not only considers the
spectral information, but also can model the spatial information
contained in the input data. The best classification accuracies in
Table VII are achieved by the proposed method; , which
improves the overall accuracy of Spectral, AP, ,

, and by almost 28, 2, 5%, 8%, and 9%, respectively.
It should be noted that the newmethod can discriminate different
classes by considering only 26 features. Moreover, the CPU
processing time of the proposed method is acceptable and takes
only 13 s to classify the input data set in the considered
computing environment. Table VIII gives information regarding
the CPU processing time of different methods after applying
DAFE.

After , AP exhibits the best performance among other
techniques in terms of classification accuracies. This confirms

that the consideration of spatial information has a significant
influence on the discrimination of different classes. By including
a second FE step, although classification accuracy for some
classes such as classes 3 and 4 are improved, the overall accuracy
of AP is reduced from 91.13% to 88.47% ( ) and 85.53%
( ).

Table IX gives information related to the classification accu-
racies of different methods after DBFE. The corresponding CPU
processing times are listed in Table X. By comparing Tables II
and IX, one can infer that the OA of the Raw classification
decreases when DBFE is performed. Again, the proposed meth-
od outperforms other techniques with acceptable CPU proces-
sing time (45 s) in this particular case.

In contrast, it is also important to emphasize AP exhibits an
acceptable performance in terms of classification accuracies
when compared to other classifiers (its performance is only
slightly lower than ). AP provides 720 features. This reveals
that RF is a robust classifier when dealing with very high-
dimensional data. Also, it is worth mentioning that provides
the best performance overall, and improves the OA of Spectral,
AP, , , and by more than 26%, 1.7%, 6.2%,
6.5%, and 7.9%, respectively.

As can be seen from Tables VII and IX, AP provides 585
and 720 features, respectively. The table shows that RF
can properly handle classification problems consisting of
high-dimensional input features and limited training samples,
with acceptable CPU processing time. In almost all cases,
DAFE outperforms DBFE in terms of classification accuracies
and CPU processing time. A possible reason for this may be

TABLE IX
INDIAN PINES: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT METHODS FOR THE AVIRIS INDIAN PINES SCENE AFTER APPLYING DBFE

The number of features used for classification purposes is reported in the parentheses.

TABLE X
INDIAN PINES: CPU PROCESSING TIME (IN SECONDS) OF DIFFERENT METHODS AFTER APPLYING DBFE
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the fact that the number of selected features used by DBFE is
not sufficient. As a result, more features need to be considered
in order to provide more consistent results in the
case of DBFE, which can be computationally intensive

and its performance is highly dependent on the training
samples.

Fig. 6 shows classification maps for different methods started
by DAFE applied on Indian Pines.

Fig. 5. Pavia University: (a)–(f), classification maps for different methods started by DAFE: (a) Raw, (b) AP, (c) , (d) , (e) , and (f) . (g)–(k),
classification maps of different methods started by DBFE: (g) AP, (h) , (i) , (j) , and (k) .
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IV. CONCLUSION

In this paper, we have developed a new automatic framework
for the classification of hyperspectral images. Our framework
uses both spectral and spatial information. In order to include the
spatial information, morphological APs are taken into account.
For reducing the redundancy of the extracted features and deal
with the curse of dimensionality introduced by theHughes effect,
supervised FE methods (DAFE and DBFE) are considered. The
proposed framework is extensively tested on two widely used
hyperspectral data sets, i.e., the ROSIS-03 Pavia University
scene and the AVIRIS Indian Pines. Different methods have
been used to implement the presented framework, and the results
provided have been compared in terms of classification accura-
cies and CPU processing time.

It should be noted that the two selected hyperspectral data sets
represent very different case studies collected by different in-
struments. The former is related to urban area problems and
presents high spatial resolution. In turn, the latter has medium-
size spatial resolution and is related to agricultural land-cover
classification problems. The good classification accuracies

obtained in both case studies indicate the good generalization
properties of the presented framework. In addition, the new
approach achieves better classification accuracies than other
widely used classification techniques, with acceptable CPU
processing time. We emphasize that the proposed procedure is
fully automatic, which is a highly desirable feature.

A topic of future investigation is the optimal selection (in
terms of classification accuracies) of the FEmethod in the second
stage of the proposed approach. Another topic deserving future
research is the development of parallel implementations of the
presented approach in high-performance computing architec-
tures, although the processing times reported in our experiments
(measured in a standard desktop CPU) are quite fast for the
considered data sets.
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Fig. 6. AVIRIS (a)–(f), classification maps for different methods after applying DAFE: (a) Raw, (b) AP, (c) , (d) , (e) , and (f) . (g)–(k),
classification maps of different methods after applying DBFE: (g) AP, (h) , (i) , (j) , and (k) .
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A Novel Feature Selection Approach
Based on FODPSO and SVM
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Abstract—A novel feature selection approach is proposed to
address the curse of dimensionality and reduce the redundancy of
hyperspectral data. The proposed approach is based on a new bi-
nary optimization method inspired by fractional-order Darwinian
particle swarm optimization (FODPSO). The overall accuracy (OA)
of a support vector machine (SVM) classifier on validation samples
is used as fitness values in order to evaluate the informativity of
different groups of bands. In order to show the capability of the
proposed method, two different applications are considered. In
the first application, the proposed feature selection approach is
directly carried out on the input hyperspectral data. The most in-
formative bands selected from this step are classified by the SVM.
In the second application, the main shortcoming of using attribute
profiles (APs) for spectral–spatial classification is addressed. In
this case, a stacked vector of the input data and an AP with all
widely used attributes are created. Then, the proposed feature
selection approach automatically chooses the most informative
features from the stacked vector. Experimental results successfully
confirm that the proposed feature selection technique works better
in terms of classification accuracies and CPU processing time than
other studied methods without requiring the number of desired
features to be set a priori by users.

Index Terms—Attribute profile (AP), automatic classification,
feature extraction, hyperspectral image analysis, random forest
(RF) classifier, spectral–spatial classification.

I. INTRODUCTION

HYPERSPECTRAL remote sensors acquire a massive
amount of data by obtaining many measurements, not

knowing which data are relevant for a given problem. The trend
for hyperspectral imagery is to record hundreds of channels
from the same scene. The obtained data can characterize the
chemical composition of different materials and potentially be
helpful in analyzing different objects of interest.

In the spectral domain, each spectral channel is considered as
one dimension, and each pixel is represented as a point in that
domain. By increasing the number of spectral channels in the
spectral domain, theoretical and practical problems may arise,
and conventional techniques that are applied on multispectral
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data are no longer appropriate for the processing of high
dimensional data [1]–[3].

The aforementioned characteristics show that conventional
techniques based on the computation of fully dimensional space
may not provide accurate classification results when the num-
ber of training samples is not substantial. For instance, while
keeping the number of samples constant, after a few number
of bands, the classification accuracy actually decreases as the
number of features increases [1]. For the purpose of classifica-
tion, these problems are related to the curse of dimensionality
[4]. In order to tackle this issue and use a smaller number of
training samples, the use of feature selection and extraction
techniques would be of importance.

From one point of view, feature selection techniques can be
split into two categories: unsupervised and supervised. Super-
vised feature selection techniques aim at finding the most infor-
mative features with respect to the available prior knowledge
and lead to better identification and classification of different
classes of interest. On the contrary, unsupervised methods are
used in order to find distinctive bands when prior knowledge
of the classes of interest is not available. Information entropy
[5], first spectral derivative [6], and uniform spectral spacing [7]
can be considered as unsupervised feature selection techniques,
whereas supervised feature selection techniques usually try to
find a group of bands achieving the largest class separability.
Class separability can be calculated by considering several
approaches such as divergence [8], transformed divergence
[8], Bhattacharyya distance [9], and Jeffries–Matusita distance
[8]. A comprehensive overview of different feature selection
and extraction techniques is provided in [10]. However, these
metrics usually suffer from the following shortcomings.

1) They are usually based on the estimation of the second-
order statistics (e.g., covariance matrix), and in this case,
they demand many training samples in order to estimate
the statistics accurately. Therefore, in a situation when the
number of training samples is limited, that may lead to
the singularity of the covariance matrix. In addition, since
the bands in hyperspectral data usually have some redun-
dancy, the probability of singularity will even increase.

2) In order to select informative bands, corrupted bands
(e.g., water absorption bands and bands with a low
signal-to-noise ratio) are usually preremoved, which is a
time-consuming task. Furthermore, conventional feature
selection methods can be computationally demanding. To
select an m feature subset out of a total of n features,
n!/(n − m)!m! operations must be calculated, which is
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a laborious task and demands a significant amount of
computational memory. In other words, the conventional
feature selection techniques are only feasible in relatively
low dimensional cases.

In order to address the aforementioned shortcomings of the
conventional feature selection techniques, the use of stochas-
tic and bioinspired optimization-based feature selection tech-
niques, such as genetic algorithms (GAs) and particle swarm
optimization (PSO), is considered attractive. The main reasons
behind this trend are that 1) in evolutionary feature selection
techniques, there is no need to calculate all possible alternatives
in order to find the most informative bands, and furthermore,
2) in the evolutionary approaches, usually a metric is chosen
as the fitness function, which is not based on the calculation of
the second-order statistics, and therefore, the singularity of the
covariance matrix is not a problem. In the literature, there is an
extensive number of works related to the use of evolutionary
optimization-based feature selection techniques. These meth-
ods are mostly based on the use of GA and PSO. For example,
in [11], Bazi and Melgani proposed an SVM classification sys-
tem that allows the detection of the most distinctive features and
the estimation of the SVM parameters (e.g., regularization and
kernel parameters) by using a GA. In [12], Daamouche et al.
proposed to use PSO in order to select the most informative
features obtained by morphological profiles for classification.
In [13], in order to address the main shortcomings of GA-
and PSO-based feature selection techniques and to take the
advantage of their strength, a new feature selection approach
is proposed, which is based on the hybridization of GA and
PSO. In [14], a method was introduced, which allows to si-
multaneously solve problems of clustering, feature detection,
and class number estimation in an unsupervised way. However,
this method suffers from the computational time required by the
optimization process.

In GA, if a chromosome is not selected for mating, the
information contained by that individual is lost, since the
algorithm does not have a memory of its previous behaviors.
Furthermore, PSO suffers from the premature convergence of a
swarm, because 1) particles try to converge to a single point,
which is located on a line between the global best and the
personal best positions, which this point does not guarantee to
be a local optimum [15], and 2) furthermore, the fast rate of
information flow between particles can lead to the creation of
similar particles. This results in a loss in diversity [16].

In this paper, a novel feature selection approach is proposed,
which is based on a new binary optimization technique and
the SVM classifier. The new approach is capable of handling
very high dimensional data even when only a limited number
of training samples is available (ill-posed situation) and when
conventional techniques are not able to proceed. In addition,
despite the conventional feature selection techniques for which
the number of desired features needs to be initialized by the
user, the proposed approach is able to automatically select the
most informative features in terms of classification accuracy
within an acceptable CPU processing time without requiring
the number of desired features to be set a priori by users. The
new feature selection technique is, at first, compared with the

traditional PSO-based feature selection in terms of classifica-
tion accuracy on validation samples and CPU processing time.
Then, the new method is compared with a few well-known
feature selection and extraction techniques. Furthermore, the
new method will be taken into account in order to overcome
the main shortcomings of using attribute profiles (APs).

The rest of this paper is organized as follows: First, the new
feature selection approach is described in Section II. Then,
Section III briefly describes SVM. Section IV is devoted to the
methodology of the proposed approach. Section V is on exper-
imental results, and main concluding remarks are furnished in
Section VI.

II. FRACTIONAL-ORDER DARWINIAN PARTICLE SWARM

OPTIMIZATION (FODPSO)-BASED FEATURE SELECTION

In brief, the goal is to overcome the curse of dimensionality
[4] by selecting the optimal lE bands for the classification,
i.e., lE ≤ l, wherein l is the total number of bands in a given
image I . Selecting the most adequate bands is a complex task
as the classification overall accuracy (OA) first grows and then
declines as the number of spectral bands increases [4]. Hence,
this paper tries to find the optimal lE bands that maximize the
OA obtained as

OA =

∑Nc

i Cii∑Nc

ij Cij

× 100 (1)

wherein Cij is the number of pixels assigned to class j, which
belongs to class i. Cii denotes the number of pixels correctly
assigned to class i, and Nc is the number of classes.

In this paper, optimal features are selected through an op-
timization procedure in such a way that each solution gets its
fitness value from the SVM classifier over validation samples.
The optimization procedure is handled with PSO algorithms.

In 1995, Eberhart and Kennedy proposed the PSO algorithm
for the first time [17]. The stochastic optimization ability of
the algorithm is enhanced due to its cooperative simplistic
mechanism, wherein each particle presents itself as a possible
solution of the problem, e.g., the best lE bands. These particles
travel through the search space to find an optimal solution,
by interacting and sharing information with other particles,
namely, their individual best solution (personal best), and com-
puting the global best [18].

The success of this algorithm has given rise to a chain of
PSO-based alternatives in recent years, so as to overcome its
drawbacks, namely, the stagnation of particles around subop-
timal solutions. One of the proposed methods was denoted as
Darwinian PSO (DPSO) [19]. The idea is to run many simulta-
neous parallel PSO algorithms, each one as a different swarm,
on the same test problem, and then, a simple natural selection
mechanism is applied. When a search tends to a suboptimal
solution, the search in that area is simply discarded, and another
area is searched instead. In this approach, at each step, swarms
that get better are rewarded (extend particle life or spawn a new
descendent), and swarms that stagnate are punished (reduce
swarm life or delete particles). For more information regarding
how these rewards and punishments can be applied, please
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see [20]. DPSO has been investigated for the segmentation of
remote sensing data in [21].

Despite the positive results obtained by Tillett et al. [19],
this coopetitive approach also increases the computational
complexity of the optimization method. As many swarms of
cooperative test solutions (i.e., particles) simultaneously run in
a competitive fashion, the computational requirements increase,
and, as a consequence, the convergence time also increases.
Therefore, and to further improve the DPSO algorithm, an
extended version denoted as FODPSO was presented in [22], in
which fractional calculus is used to control the convergence rate
of the algorithm. This method has been further investigated for
gray-scale and hyperspectral image segmentation in [20] and
[23]. An important property revealed by fractional calculus is
that, while an integer-order derivative just implies a finite series,
the fractional-order derivative requires an infinite number of
terms. In other words, integer derivatives are “local” operators,
whereas fractional derivatives have, implicitly, a “memory” of
all past events. The characteristics revealed by fractional calcu-
lus make this mathematical tool well suited to describe phenom-
ena, such as the dynamic phenomena of particles’ trajectories.

Therefore, supported on the FODPSO previously presented
in [22], and based on the Grunwald Letnikov definition of frac-
tional calculus, in each step t, the fitness function represented
by (1) is used to evaluate the success of particles (i.e., OA). To
model the swarm, each particle n moves in multidimensional
space according to the position (xn[t]), and velocity (vn[t]),
values that are highly dependent on local best (x̆n[t]) and global
best (ğ[t]) information, i.e.,

vs
n[t + 1] = ws

n[t + 1] + ρ1r1 (ğs[t] − xs
n[t])

+ ρ2r2 (x̆s
n[t] − xs

n[t]) (2)

ws
n[t + 1] = αvs

n[t] +
1

2
α(1 − α)vs

n[t − 1]

+
1

6
α(1 − α)(2 − α)vs

n[t − 2]

+
1

24
α(1 − α)(2 − α)(3 − α)vs

n[t − 3]. (3)

Since the proposed FODPSO-based feature selection ap-
proach is based on running many simultaneous swarms in
parallel over the search space, s shows the number of each
swarm.

The coefficients ρ1 and ρ2 are assigned weights, which
control the inertial influence of “the globally best” and “the
locally best”, respectively, when the new velocity is determined.
Typically, ρ1 and ρ2 are constant integer values, which rep-
resent “social” and “cognitive” components with ρ1 + ρ2 < 2
[24]. However, different results can be obtained by assigning
different values for each component.

The fractional coefficient α will weigh the influence of past
events on determining a new velocity, i.e., 0 < α < 1. With a
small α, particles ignore their previous activities, thus ignoring
the system dynamics and becoming susceptible to get stuck in
local solutions (i.e., exploitation behavior). On the other hand,

with a large α, particles will have a more diversified behavior,
which allows exploration of new solutions and improves the
long-term performance (i.e., exploration behavior). However,
if the exploration level is too high, then the algorithm may take
longer to find the global solution. Based on [24], a good α value
can be selected in the range of 0.6–0.8.

The parameters r1 and r2 are random vectors with each com-
ponent generally a uniform random number between 0 and 1.

In order to investigate FODPSO for the purpose of feature
selection, the dimension of each particle should be equal to
the number of features. This way, the velocity dimension
(dim vn[t]) and the position dimension (dim xn[t]) correspond
to the total number of bands of the image, i.e., dim vn[t] =
dim xn[t] = l. In other words, each particle’s velocity will be
represented as an l-dimensional vector. In addition, as one
wishes to use the algorithm for band selection, each particle
represents its position in binary values, i.e., 0 or 1, where 0
demonstrates the absence of the corresponding feature, and 1
has a dual meaning. In this case, as proposed by Khanesar et al.
[25], the velocity of a particle can be associated to the probabil-
ity of changing its state as

Δxs
n[t + 1] =

1

1 + e−vs
n[t+1]

. (4)

Nevertheless, as one wishes to use the algorithm for band
selection, each particle represents its position in binary values,
i.e., 0 or 1. This may be represented as

xs
n[t + 1] =

{
1, Δxs

n[t + 1] ≥ rx

0, Δxs
n[t + 1] < rx

(5)

wherein rx is a random l-dimensional vector with each com-
ponent generally a uniform random number between 0 and 1.
Therefore, each particle moves in multidimensional space ac-
cording to its position xs

n[t] from the discrete-time system
represented by (2)–(5). In other words, each particle’s position
will be represented as an l-dimensional binary vector.

To make it easier to understand the proposed strategy, an
example is given in Fig. 1. As the figure shows, the image has
only five bands, i.e., l = 5. This means that each particle will
be defined by its current velocity and position in 5-D space,
i.e., dim vn[t] = dim xn[t] = 5. In this example, and to allow
a straightforward understanding, only a swarm of two particles
was considered. As it is possible to observe at time/iteration
t = 1, particle 1 is positioned in such a way that it ignores the
fourth band, i.e., x1[1] = [1 1 1 0 1], whereas particle 2 ignores
the first and third bands, i.e., x2[1] = [0 1 0 1 1]. Computing
(1) under those conditions returns an OA of OA1 = 60% and
OA2 = 64% for particles 1 and 2, respectively. Considering
only those two particles, particle 2 is considered as the best
performing one from the swarm, thus attracting particle 1
toward itself. Such attraction induces the velocity of particle 1
for iteration 2 and, consequently, its position.1

1The MATLAB code for the PSO- and FODPSO-based feature selection
approaches will be provided on a request by sending an e-mail to the authors.
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Fig. 1. Band coding of two particles for an image with five bands. Gridded
bands are ignored in the classification process.

III. SVM

As discussed before, in the proposed method, the OA of SVM
over validation samples is considered as the fitness value. SVM
has attracted much attention due to its capability of handling
the curse of dimensionality in comparison with conventional
classification techniques. The main reasons behind the success
of the approach are that 1) SVM is based on a margin maxi-
mization principle that helps avoid estimating the statistical dis-
tributions of different classes in hyperdimensional feature space
and that 2) SVM takes advantage of the strong generalization
capability obtained by its sparse representation of the decision
function [11].

In hyperspectral image analysis, the random forest (RF)
classifier and SVM play a key role since they can handle
high-dimensional data even with a limited number of training
samples. In this paper, we prefer to use SVM rather than RF
due to its susceptibility to noise. Due to its sensibility, corrupted
and noisy bands may significantly influence the classification
accuracies. As a result, when RF is considered as the fitness
function, due to its capability to handle different types of noises,
corrupted bands cannot be eliminated even after a high number
of iterations. On the contrary, since SVM is more sensible than
RF against noise, it can detect and eliminate corrupted bands
after a few iterations, which can be considered as a privilege
for the final classification step.

The general idea behind SVM is to separate training samples
belonging to different classes by tracing maximum margin
hyperplanes in the space where the samples are mapped [26].
SVMs were originally introduced for solving linear classifica-
tion problems. However, they can be generalized to nonlinear
decision functions by considering the so-called kernel trick
[27]. A kernel-based SVM is being used to project the pixel
vectors into higher dimensional space and estimate maximum
margin hyperplanes in this new space, in order to improve the
linear separability of data [27]. The sensitivity to the choice of
the kernel and regularization parameters can be considered as
the most important disadvantages of SVM. The latter is clas-
sically overcome by considering cross-validation techniques
using training data [28]. The Gaussian radial basis function is
widely used in remote sensing [27]. More information regard-
ing SVM can be found in [29] and [30].

IV. METHODOLOGY

In order to show the different capabilities of the proposed
feature selection technique, two different scenarios have been
taken into consideration.

A. First Scenario

In the first scenario, the new feature selection approach is
directly performed on raw data sets in order to select the most
informative bands from the whole data set. The main work flow
of the proposed method for this scenario is listed as follows.

1) Training samples are split into two categories: training
and validation samples.

2) FODPSO-based feature selection is performed on raw
data. SVM is chosen as the fitness function, and its
corresponding OA on validation samples is considered as
the fitness value.

3) The selected bands are classified by SVM with the whole
training and test samples, and final classification map will
be achieved.

B. Second Scenario

In the second scenario, an application of the proposed
FODPSO-based feature selection technique will be shown.
In this scenario, we address the main shortcomings of using
AP: 1) which attributes should be taken into account and
2) which values should be opted as threshold values. A com-
prehensive discussion related to AP and all its modifications
and alternatives can be found in [31]. In this scenario, dif-
ferent types of attributes with the wide ranges of threshold
values will be constructed for building a feature bank, and
then, we let the proposed feature selection technique choose
the most informative features from the bank with respect to
the classification accuracy for the validation samples. In other
words, the new feature selection technique not only solves the
main shortcomings associated with the concept of AP, but also
reduces the redundancy of the features and addresses the curse
of dimensionality.

Fig. 2 illustrates the flowchart of the proposed method based
on the FODPSO feature selection technique for the second
scenario. The main work flow of this method is listed as
follows.

1) A feature bank is made, consisting of raw input data and
an AP obtained with four attributes with a wide range of
threshold values.
• The raw input data are transformed by principal com-

ponent analysis (PCA).
• The most important principal components (PCs), i.e.,

components with cumulative variance of more than
99%, are kept and used as base images for the extended
multi-AP (EMAP).

• The obtained EMAP and the raw input data are con-
catenated into a stacked vector (let us call the output of
this step ℘).

2) Training samples are split into two categories: training
and validation samples.
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Fig. 2. General idea of the proposed classification framework based on the
FODPSO-based feature selection technique for the second scenario.

3) FODPSO-based feature selection is performed on ℘. The
fitness of each particle is evaluated by the OA of SVM
for the validation samples. After a few iterations, the
FODPSO-based feature selection approach finds the most
informative bands with respect to the OA of SVM over
the validation samples (the output of this step will be
called �).

4) � is classified by SVM by considering the whole set of
training and test samples, and a final classification map
will be achieved.

It should be noted that, in this work, the PCA can be replaced
by other feature extraction techniques (in particular, kernel PCA
and nonparametric weighted feature extraction (NWFE), which
have shown promising results in order to produce APs [31]).
Now, a brief discussion on EMAP is given.

1) EMAP: In order to overcome the shortcomings of the
morphological profile, AP was introduced in [32] for extracting
spatial information of the input data, which is based on attribute
filters. APs can be regarded as more effective filters than mor-
phological profiles because the concept of the attribute filters
is not limited to only the size of different objects, and the APs
are able to characterize other characteristics such as shape of
existing objects in the scene. In addition, APs are computed
according to an effective implementation based on max-tree
and min-tree representations, which lead to a reduction in the
computational load when compared with conventional profiles
built with operators by reconstruction. An AP is built by the
sequence of attribute thinning and thickening transformations
defined with a sequence of progressively stricter criteria [32].
To handle hyperspectral images, the extension of AP was pro-
posed in [33]. Extended AP is a stacked vector of different APs
computed on the first C features extracted from the original data
set. When different attributes a1, a2, . . . , aM are concatenated
into a stacked vector, the EMAP is obtained. More information
regarding AP and its different variations can be found in [2],

Fig. 3. AVIRIS Hekla data set. (a) Spectral band number 50. (b) Training
samples and (c) test samples, where each color represents a specific information
class. The information classes are listed in Table I.

[3], [31], and [32]. In this paper, the following attributes have
been taken into account:

1) (a) area of the region (related the size of the regions);
2) (s) standard deviation (as an index for showing the homo-

geneity of the regions);
3) (d) diagonal of the box bounding the regions;
4) (i) moment of inertia (as an index for measuring the

elongation of the regions).

V. EXPERIMENTAL RESULTS

A. Data Description

1) Hekla Data: The first hyperspectral data set used was col-
lected on June 17, 1991 by AVIRIS (having a spatial resolution
of 20 m) from the volcano Hekla in Iceland (see Fig. 3). Sixty
four bands (from 1.84 μ to 2.4 μ) were removed due to the
technical problem with the fourth spectrometer in 157 bands.
An image of size 500 × 200 was used in this paper for the real
experiments. For this data set, from the total number of training
samples, which is equal to 966, 50% was chosen for training
and the rest as validation samples, in order to perform the PSO-
and FODPSO-based feature selection approaches. After finding
the most informative bands with respect to the OA of SVM
over validation samples, all 966 samples are used for training
in order to perform SVM on the selected bands. The number of
training, validation, and test samples is displayed in Table I.

2) Indian Pines Data: The second data set used in exper-
iments is the well-known data set captured on Indian Pines
(NW Indiana) in 1992 comprising 16 classes (see Fig. 4),
mostly related to different land covers. The data set consists of
145 × 145 pixels with spatial resolution of 20 m/pixel. In this
paper, 220 data channels (including all noisy and atmospheric
absorbed bands) are used. In the same way, for Indian Pines,
from the total number of training samples, which is equal to
695, 50% of the samples were chosen for training and the rest
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TABLE I
HEKLA: NUMBER OF TRAINING, VALIDATION, AND TEST SAMPLES. FOR

THE FINAL CLASSIFICATION STEP, THE TOTAL OF TRAINING AND

VALIDATION SAMPLES IS USED TO TRAIN THE SVM

Fig. 4. AVIRIS Indian Pines data set. (a) Spectral band number 27 (λ =
646.72 μ). (b) Training samples and (c) test samples, where each color
represents a specific information class. The information classes are listed in
Table II.

TABLE II
INDIAN PINES: NUMBER OF TRAINING, VALIDATION, AND TEST

SAMPLES. FOR THE FINAL CLASSIFICATION STEP, THE TOTAL

OF TRAINING AND VALIDATION SAMPLES

IS USED TO TRAIN THE SVM

for the validation samples, in order to perform the PSO- and
FODPSO-based feature selection approaches. After performing
PSO- and FODPSO-based feature selection approaches, all
695 samples are used for training in order to perform SVM on
the selected bands. The number of training, validation, and test
samples is displayed in Table II.

In this paper, in addition to selecting data sets that are
widely used in the hyperspectral imaging community, we have
used exactly the same training and test samples that have
been considered in most works related to the classification of

hyperspectral images. Some of the works that have considered
exactly the same training and test samples are given in [3]
and [34]. In other words, we not only used the same number
of training and test samples adopted by other state-of-the-art
methods, but the samples also have exactly the same spatial
locations in the data. This way of using the training and test
samples makes this work fully comparable with other spectral
and spatial classification techniques reported in the literature.

B. General Information

The following measures are used in order to evaluate the
performance of different classification methods.

1) Average Accuracy (AA): This index shows the average
value of the class classification accuracy.

2) OA: This index represents the number of samples, which
is classified correctly, divided by the number of test
samples.

3) Kappa Coefficient (k): This index provides information
regarding the amount of agreement corrected by the level
of agreement that could be expected due to chance alone.

4) CPU Processing Time: This measure shows the speed of
different algorithms. It should be noted that, since in all
algorithms (except Raw) EMAP is carried out, the CPU
processing time of this step is discarded from all meth-
ods. Hence, the CPU processing time is only provided
for AP, Raw + AP, decision boundary feature extraction
(DBFE), and NWFE. Except DBFE and NWFE, which
have been used in the MultiSpec software, all methods
used were programmed in MATLAB on a computer hav-
ing Intel Pentium 4 CPU 3.20 GHz and 4 GB of memory.

The number of iterations in each run for PSO- and FODPSO-
based feature selection techniques is equal to 10. Since
PSO- and FODPSO-based feature selection techniques are ran-
domized methods, which are based on different first popula-
tions, each algorithm has here been run 30 times, and results
are shown in different histograms and compared with different
indexes in order to examine the capabilities of PSO- and
FODPSO-based feature selection techniques.

It should be noted that, in this paper, in order to compare
PSO and FODPSO, both data sets (Hekla and Indian Pines)
have been taken into account. However, for the first and second
scenarios, we preferred to use only Indian Pines since this data
set is more complex for classification. Therefore, the capability
of the proposed method can be shown more clearly by using
Indian Pines instead of Hekla. In this case, 25 PCs with a
cumulative variance of more than 99% were selected as the base
images for producing EMAP for Indian Pines.

Based on [24], the sum of all ρ’s should be inferior to
2 and alpha should be near 0.632. Therefore, the parameters
ρ1, ρ2, and α are initialized by 0.8, 0.8, and 0.7, respectively.
It should be noted that the same set of parameters has been
used for both data sets and both scenarios, in order to show that
the proposed technique is data set distribution independent, and
with the same set of parameters, for all different data sets and
scenarios, the proposed method can lead to an acceptable results
in terms of accuracies and CPU processing time.
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After comparing PSO- and FODPSO-based feature selection
techniques in terms of OA over validation samples, the best
method will be chosen for further evaluation. Then, the best
method will be compared with the other well-known feature
selection and extraction techniques. In order to have a fair com-
parison, among 30 runs, four runs have been chosen, and their
classification accuracies are compared with obtained results
from the other feature selection and extraction techniques. This
way, the results of 30 runs have been sorted in an increasing
order with respect to their OA over validation samples. Then,
for a fair comparison with the other methods, the four runs are
selected as follows.

1) Min: SVM classification is applied on the bands selected
with the least OA over the validation samples among
30 runs (the first group of the most informative bands
when the results of 30 runs have been sorted in an
increasing order).

2) Median1: SVM classification is applied on the bands
selected with the median OA over the validation samples
among 30 runs (the 15th group of the most informative
bands when the results of 30 runs have been sorted in an
increasing order).

3) Median2: SVM classification is applied on the most
informative bands selected with the median OA over the
validation samples among 30 runs (the 16th group of
bands when the results of 30 runs have been sorted in an
increasing order).

4) Max: SVM classification is applied on the bands selected
with the highest OA over the validation samples among
30 runs (the 30th group of the most informative bands
when the results of 30 runs have been sorted in an
increasing order).

Other methods for the purpose of comparison are listed as
follows.

1) Raw: The input data are directly classified with SVM
without performing any feature selection or extraction
technique.

2) Div: Divergence feature selection is performed on the
input data and the selected bands are classified by SVM.

3) TD: Transformed divergence feature selection is per-
formed on the input data, and the selected bands are
classified by SVM.

4) Bhathacharyya: Bhathacharyya distance feature selection
is performed on the input data, and the selected bands are
classified by SVM.

5) DBFE: DBFE is performed on the input data, and the
selected bands are classified by SVM.

6) NWFE: NWFE is performed on the input data, and the
selected bands are classified by SVM.

For the second scenario:

1) AP: The feature bank including all four attributes with a
wide range of threshold values is classified by SVM.

2) Raw + AP : The Raw and AP are concatenated into a
stacked vector and classified by SVM.

Fig. 5. Hekla: Box plots for OA over 30 runs for (top) PSO-based feature
selection and (bottom) FODPSO-based feature selection.

The following ranges for different attributes have been taken
into account in order to build the feature bank:

a =

(
1000

phi

)
× {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

s =
( μ

100

)
× {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}

d = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

i = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

where phi and μ are the resolution of the image in meters and
the mean value of a feature, respectively.

Again, in order to secure the fairness of the comparison, the
number of features for DBFE and NWFE has been chosen in
two different ways: 1) the number of selected features is equal
to the number of features, which provides Max (see a few lines
above), and 2) the top few eigenvalues, which account for 99%
of the total sum of the eigenvalues, were selected.

The data sets have been classified with SVM and a Gaussian
kernel. Fivefold cross validation is taken into account in order
to select the hyperplane parameters when SVM is used for the
last step (for the classification of informative bands).
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Fig. 6. Hekla: Final classification accuracy in percentage and processing time in seconds for the PSO- and FODPSO-based feature selection approaches.

C. FODPSO Versus PSO

1) Hekla: Fig. 5 shows the box plots for the OA of the clas-
sification for 30 runs (ten iterations within each run) for PSO-
and FODPSO-based feature selection approaches, respectively.
As can be observed in Fig. 5, although one cannot perceive
any major differences between both methods, the FODPSO-
based feature selection approach presents an overall smaller
interquartile range, i.e., the OA of the classification, at each run,
has less dispersion regardless of the number of trials. On the
other hand, the average value of the OA is slightly larger than
for the PSO-based method.

One-way MANOVA analysis was carried out to assess
whether both the PSO- and FODPSO-based algorithms have a
statistically significant effect on the classification performance.
The significance of the different types of algorithm used
(independent variable) on the final OA and the CPU processing
time (dependent variables) was analyzed using one-way
MANOVA after checking the assumptions of multivariate
normality and homogeneity of variance/covariance, for a
significance level of 5%.

The assumption of normality of each of the univariate
dependent variables was examined using a paired-sample
Kolmogorov–Smirnov (p-value < 0.05) [35]. Although the
univariate normality of each dependent variable has not been
verified, since n ≥ 30, and this was assumed by benefiting from
using the central limit theorem [36], [37]. Consequently, the
assumption of multivariate normality was validated [37], [38].
Note that MANOVA makes the assumption that the within-
group covariance matrices are equal. Therefore, the assumption
about the equality and homogeneity of the covariance matrix
in each group was verified with the Box’s M Test (M =
72.7642, F (3; 720) = −2.0706; p-value = 1.0000) [38].

The MANOVA analysis revealed that the type of algorithm
did not lead to a statistically significant different outcome
for the multivariate composite (F (1; 58) = 3.5830; p-value =
0.1667). In this situation, the FODPSO-based solution pro-
duces slightly better solutions than the PSO but is considerably
faster than the latter. To easily assess the differences between
both algorithms, let us graphically show the outcome of each
trial using box plot charts (see Fig. 6). The ends of the blue
boxes and the horizontal red line in between correspond to the
first and third quartiles and the median values, respectively.
As one may observe, by benefiting from the fractional ver-
sion of the algorithm, one is able to slightly increase the OA

Fig. 7. Indian Pines: Box plots for OA in percentage over 30 runs for (top)
PSO-based feature selection and (bottom) FODPSO-based feature selection.

while, at the same time, slightly decrease the CPU process-
ing time.

2) Indian Pines: Fig. 7 shows the box plots for the OA of
the classification for 30 runs (ten iterations within each run)
for PSO- and FODPSO-based feature selection approaches, re-
spectively. Similarly as before, despite the lack of major differ-
ences, the FODPSO-based feature selection approach presents
an overall smaller interquartile range and a larger average value
of the OA.
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Fig. 8. Indian Pines: Final classification accuracy in percentage of the PSO- and FODPSO-based feature selection approaches.

Once again, one-way MANOVA analysis was carried out to
assess whether both PSO- and FODPSO-based algorithms have
a statistically significant effect on the classification perfor-
mance.

The assumption about the equality and homogeneity of the
covariance matrix in each group was verified with the Box’s
M Test (M = 72.5156, F (3; 720) = −2.0636; p-value =
1.0000).

For this data set, the MANOVA analysis revealed that the
type of the feature selection algorithm led to a statistically
significant different outcome on the multivariate composite
(F (1; 58) = 14.6338; p-value < 0.0001). As the MANOVA
detected significant statistical differences, we proceeded to
the commonly used ANOVA for each dependent variable. By
carrying an individual test on each dependent variable, it was
possible to observe that the OA does not present statisti-
cally significant differences (F (1; 58) = 0.0116; p-value =
0.9145). On the other hand, it is in the CPU processing
time that both algorithms diverge the most, thus resulting in
statistically significant differences between them (F (1; 58) =
16.7499; p-value < 0.0001). As expected, the FODPSO-
based solution produces slightly better solutions than the PSO
considerably faster than the latter.

To easily assess the differences between both algorithms,
the outcome of each trial is graphically shown using box plot
charts (see Fig. 8). As one may observe, by benefiting from
the fractional version of the algorithm, one is able to slightly
increase the OA (slightly higher median value) and, at the same
time, considerably decrease the CPU processing time.

D. First Scenario

Fig. 9 shows the list of the selected bands by the proposed
method in 30 different runs. Runs 2, 16, 30, and 29 are se-
lected as Min, Median1, Median2, and Max, respectively.
As it was mentioned before, since the FODPSO-based feature
selection technique is a randomized method that is based on
different first populations, the selected bands are different in
different runs.

As can be seen from Table III, the proposed method (Max)
provides the best results in terms of OA, followed by Median1

and Median2 (other runs of the proposed technique). This
shows that different alternatives of the proposed method (except

Fig. 9. First scenario: Selected bands by the proposed method in 30 different
runs. Runs 2, 16, 30, and 29 are selected as Min, Median1, Median2, and
Max, respectively.

Min) demonstrate the best performance and improve the other
techniques in terms of classification accuracies.

Some algorithms, such as the originally proposed DBFE
[39], require the use of the second-order statistics (e.g., the
covariance matrix) to characterize the distribution of training
samples with respect to the mean. In hyperspectral image
analysis, the number of available training samples is usually not
sufficient to make a good estimate of the covariance matrix. In
this case, the use of sample covariance, or common covariance
[1], may not be successful. As an example, either when the sam-
ple or the common covariance approach is chosen to estimate
the statistics for each available class for DBFE, if the number
of pixels in the classes is not, one more than the total number
of features being used (at least), the DBFE stops working. In
this case, the leave-one-out covariance (LOOC) [1] estimator
can be used as an alternative to estimate the covariance matrix.
The normal minimum number of required samples for a sample
class covariance matrix is l + 1 samples for l-dimensional data.
For the LOOC estimator, only a few samples are all that is
needed. In general, this covariance estimator is nonsingular
when at least three samples are in hand regardless of the di-
mensions of the data, and so it can be used even though the sam-
ple covariance or common covariance estimates are singular.
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TABLE III
FIRST SCENARIO: THE CLASSIFICATION OF DIFFERENT TECHNIQUES IN PERCENTAGE FOR INDIAN PINES. THE NUMBER OF

FEATURES IS SHOWN IN BRACKETS. THE BEST ACCURACY IN EACH ROW IS SHOWN IN BOLD. TIME IN SECONDS

As discussed before, the conventional feature selection tech-
niques are only feasible in relatively low dimensional cases.
This way, as the number of bands increases, the required statis-
tical estimation becomes unwieldy. In our case, the methods di-
vergence, transformed divergence, and Bhattacharyya distance
stopped working since in our data sets, the corrupted bands
have not been eliminated, and also, the dimensionality of the
data sets is high. However, since the proposed method is based
on the evolutionary technique, there is no need to calculate all
possible alternatives in order to find the most informative bands.
Another advantage of using the proposed method is that there
is no need to estimate the second-order statistics, and in this
manner, the singularity of the covariance matrix is not a prob-
lem. Therefore, the FODPSO-based feature selection technique
can find the most informative bands in a very reasonable CPU
processing time when the other techniques stop and cannot lead
to a conclusion.

E. Second Scenario

Fig. 10 depicts the box plots for the OA of the classification
for 30 runs (ten iterations within each run) for PSO- and
FODPSO-based feature selection approaches, respectively. As
before, Fig. 10 shows the advantage of the FODPSO-based
approach over the alternative. In this case, one can easily
perceive the differences, wherein both the interquartile range
and the average value of the OA are considerably improved.
In other words, the FODPSO-based feature selection technique
is able to find a better and more stable solution than the PSO-
based feature selection technique.

The significance of the different types of algorithm used
(independent variable) on the final OA and the CPU process-
ing time (dependent variables) was analyzed using one-way
MANOVA.

The assumption about the equality and homogeneity of the
covariance matrix in each group was verified with the Box’s
M Test (M = 72.8921, F (3; 720) = −2.07424; p-value =

Fig. 10. Indian Pines: Box plots for OA in percentage over 30 runs for (top)
PSO-based feature selection and (bottom) FODPSO-based feature selection.

1.0000). This suggests that the design is balanced and, since
there is an equal number of observations in each cell (n = 30),
the robustness of the MANOVA tests is guaranteed.
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Fig. 11. Indian Pines in the second scenario: Final classification accuracy in percentage of the PSO- and FODPSO-based feature selection approaches.

The MANOVA analysis revealed that the type of algorithm
led to a statistically significant different outcome on the mul-
tivariate composite (F (1; 58) = 18.8030; p-value < 0.0001).
As the MANOVA detected significant statistical differences, we
proceeded to the commonly used ANOVA for each dependent
variable. By carrying an individual test on each dependent
variable, it was possible to observe that the OA does not
present statistically significant differences (F (1; 58) = 3.3804;
p-value = 0.0711). On the other hand, it is once again in the
CPU processing time that both algorithms diverge the most,
presenting statistically significant differences (F (1; 58) =
20.7238; p-value < 0.0001). As expected, the FODPSO-
based approach (higher median value) produces slightly better
solutions than the PSO and is considerably faster than the latter.

To easily assess the differences between both algorithms, the
outcome of each trial is graphically shown using box plot charts
(see Fig. 11). In the second scenario, one can easily observe the
benefits of the fractional version of the algorithm, achieving a
high level of OA in a short period of time.

Table IV gives information regarding the number of selected
features in Min, Median1, Median2, and Max for different
attributes, area (a) with 725 features, standard deviation (s)
with 500 features, moment of inertia (i) with 450 features, and
diagonal of the box bounding the regions (d) with 500 features.
As can be inferred from the table, the proposed method selects
different number of features for different attributes in different
runs. Therefore, it is difficult to conclude which attribute leads
to better classification accuracies. However, it seems that the
proposed methodology selects the highest number of features
for the area attribute. The reason behind this might be that
the area attribute is well related to the object hierarchy in the
images, and it generally can model the spatial information of
images in a good way.

As can be seen from Table V, the proposed feature selection
technique has the best performance when the other feature
selection and extraction techniques are not able to process the
data due to very high dimensionality and the limited number of
training samples. All alternatives of the proposed method have
almost the same performance in terms of OA and significantly
improve on AP and Raw + AP in terms of classification accu-
racies. Both AP and Raw + AP dramatically suffer by the curse
of dimensionality and the high redundancy of available features
in the feature bank.

TABLE IV
SECOND SCENARIO: THE NUMBER OF SELECTED FEATURES IN Min,

Median1 , Median2 , AND Max FOR DIFFERENT ATTRIBUTES, AREA (A)
WITH 725 FEATURES, STANDARD DEVIATION (S) WITH 500 FEATURES,

MOMENT OF INERTIA (I) WITH 450 FEATURES, AND DIAGONAL

OF THE BOX BOUNDING THE REGIONS (D) WITH 500 FEATURES

TABLE V
SECOND SCENARIO: THE CLASSIFICATION OF DIFFERENT TECHNIQUES

IN PERCENTAGE FOR INDIAN PINES. THE NUMBER OF FEATURES IS

SHOWN IN BRACKETS. THE BEST ACCURACY IN

EACH ROW IS SHOWN IN BOLD

In addition, the proposed method can be considered as a
good solution to overcome the shortcomings of APs. As can
be seen, the proposed method can automatically find the most
informative features from the feature bank including highly
redundant features.
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VI. CONCLUSION

In this paper, a novel feature selection approach has been pro-
posed, which is based on a new binary optimization technique
named binary FODPSO and SVM. The proposed approach was
compared with commonly used feature selection and feature
extraction approaches in experiments using standard AVIRIS
hyperespectral data sets. Based on the experiments, the follow-
ing points can be concluded.

• Binary FODPSO exploits many swarms in which each
swarm individually performs similar to an ordinary PSO
algorithm with rules governing the collection of swarms
that are designed to simulate natural selection. Moreover,
the concept of fractional derivative is used to control the
convergence rate of particles. The aforementioned reasons
lead to a better performance than binary PSO in terms
of CPU processing time and OA for the cross-validation
samples.

• In the novel feature selection approach, there is no need
to set the number of output features, and the proposed
approach can automatically select the most informative
features in terms of classification accuracies.

• Since the new approach is based on an evolutionary
method, it is much faster than other well-known feature
selection techniques that demand an exhaustive process to
select the most informative bands. In this sense, the new
approach can work appropriately in a situation when other
feature selection techniques are not applicable.

• Since the new feature selection approach is based on
an SVM classification that is capable of handling high-
dimensional data with a limited number of training
samples, it can proceed to select the most informative
features in an ill-posed situation when other feature
selection/extraction techniques cannot proceed without a
powerful technique for estimating the statistics for each
class. As an example, when the original way is opted to
estimate the statistics for each class, DBFE based on origi-
nal statistics cannot proceed, since the number of pixels in
the following classes needs to be at least one more than the
total number of features being used, and LOOC statistics
must be taken into account to handle this issue [1]. How-
ever, the new method can handle this problem effectively.

• The new approach can solve the main shortcomings of
using AP for classification.

As a possible future work, we aim at finding the best SVM
parameters (i.e., regularization and kernel parameters) by using
the proposed binary FODPSO in an automatic way instead of
adjusting the parameters by using a cross-validation procedure
after performing binary FODPSO. In addition, in the second
scenario, the proposed feature selection approach can be per-
formed on each AP separately, which generally leads to higher
classification accuracy but in a higher CPU processing time.
Therefore, another topic deserving future research is the devel-
opment of parallel implementations of the presented approach
in high-performance computing architectures, although the pro-
cessing times reported in our experiments (measured in a stan-
dard desktop CPU) are quite small for the considered data sets.
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Feature Selection Based on Hybridization of Genetic
Algorithm and Particle Swarm Optimization

Pedram Ghamisi, Student Member, IEEE, and Jon Atli Benediktsson, Fellow, IEEE

Abstract—A new feature selection approach that is based on the
integration of a genetic algorithm and particle swarm optimization
is proposed. The overall accuracy of a support vector machine
classifier on validation samples is used as a fitness value. The
new approach is carried out on the well-known Indian Pines
hyperspectral data set. Results confirm that the new approach is
able to automatically select the most informative features in terms
of classification accuracy within an acceptable CPU processing
time without requiring the number of desired features to be set
a priori by users. Furthermore, the usefulness of the proposed
method is also tested for road detection. Results confirm that the
proposed method is capable of discriminating between road and
background pixels and performs better than the other approaches
used for comparison in terms of performance metrics.

Index Terms—Attribute profile, feature selection, hybridization
of genetic algorithm (GA) and particle swarm optimization (PSO),
hyperspectral image analysis, road detection, support vector ma-
chine (SVM) classifier.

I. INTRODUCTION

SUPERVISED classification techniques classify the input
data by partitioning the feature space into decision regions,

by using a set of training samples for each class. These samples
are usually obtained by manual labeling of a small number
of pixels in an image or based on some field measurements.
Thus, the collection of these samples is expensive and time de-
manding. As a result, the number of available training samples
is usually limited, which is a challenging issue in supervised
classification.

In [1], it was shown that, after a few features, while the
number of training samples is kept constant, the classification
accuracy actually decreases as the number of features increases.
For the purpose of classification, this is referred to as the curse
of dimensionality [2]. To address this issue, the use of feature
selection/extraction techniques is of importance.

Feature extraction/selection techniques can be grouped into
two categories: unsupervised and supervised approaches. For
the purpose of image classification, the latter techniques are
preferred since they try to reduce the dimensionality of the
data while maximizing the separability between classes. Non-
parametric weighted feature extraction (NWFE) and parametric
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decision boundary feature extraction (DBFE) have been exten-
sively used for this purpose. On the other hand, divergence,
transformed divergence, Bhattacharyya distance, and Jeffries–
Matusita distance are well-known feature selection techniques
that have been widely used in remote sensing. For more infor-
mation on the aforementioned techniques, please see [1].

Conventional feature selection techniques usually demand
many samples to estimate statistics accurately. In addition, they
are usually based on an exhaustive process for finding the best
set of features, and in this case, they are time demanding,
and their CPU processing time exponentially increases as the
number of bands (features) increases. To this extent, a new
generation of feature selection techniques is based on evolu-
tionary optimization methods, since they are not based on an
exhaustive process and can lead to a conclusion in a faster
way. In addition, by considering an efficient fitness function
for these methods, they can handle high-dimensional data with
even a limited number of training samples (ill-posed situa-
tions). In particular, the genetic algorithm (GA) and particle
swarm optimization (PSO) have gained significant attention
from researchers. There is an extensive literature regarding the
use of the GA and PSO for the purpose of feature selection.
For example, in [3], Bazi and Melgani proposed a support
vector machine (SVM) classification system that allows for
detecting the most distinctive features and estimating the SVM
parameters by using a GA. In [4], Daamouche et al. proposed
the use of PSO to select for classification the most informative
features obtained by morphological profiles. However, both
PSO and the GA suffer from a few shortcomings. The main
shortcoming of PSO is the premature convergence of a swarm.
The key reason behind this shortcoming is that particles try to
converge to a single point, which is located on a line between
the global best and the personal best positions. This point is
not guaranteed for a local optimum [5]. Another reason could
be the fast rate of information flow between particles, which
leads to the creation of similar particles. This results in a loss in
diversity. Furthermore, the possibility of being trapped in local
optima is increased [6]. The main advantage of using PSO is its
simple concept along with the fact that it can be implemented
in a few lines of code. Furthermore, PSO also has a memory of
past iterations. On the other hand, in the GA, if a chromosome
is not selected, the information contained by it is lost. However,
without a selection operator as in the GA, PSO may waste
resources on inferior individuals [6]. PSO may enhance the
search capability for finding an optimal solution. However, the
GA has difficulty in finding an exact solution [7].

In this letter, to address the main shortcomings of GA-
and PSO-based feature selection techniques and to take the
advantage of their strength, a new feature selection approach
is proposed, which is based on the integration of the GA

1545-598X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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and PSO. To find the most discriminative features in terms
of classification accuracies, the overall accuracy (OA) of the
SVM classifier over validation samples is investigated as a
fitness value. The SVM is selected due to the fact that it is
capable of providing acceptable classification accuracies for
high-dimensional data when even a limited number of training
samples is available. To evaluate the efficiency of the proposed
method, two different scenarios are drawn.

i) In the first scenario, the proposed feature selection ap-
proach is performed on a well-known hyperspectral data
set, i.e., the AVIRIS Indian Pines. Results demonstrate
that the new method can significantly increase the clas-
sification accuracy of the raw data in an acceptable CPU
processing time.

ii) In the second scenario, the proposed feature selection
technique is applied on a set of features derived by at-
tribute profiles [8], to select the most discriminative fea-
tures for detecting roads from a background. Results infer
that the new feature selection approach is able to detect
roads in a complex urban image with acceptable accuracy.

This letter is organized as follows: The proposed methodology
is discussed in Section II. Section III is devoted to experimental
results. Finally, Section IV outlines the main conclusions.

II. METHODOLOGY

Here, first, the concept of two well-known optimization
techniques, namely, GA and PSO, will be recalled. Then, the
proposed feature selection technique, which is based on the
hybridization of the GA and PSO (HGAPSO + SVM), will be
described.

A. GA

The GA is inspired by the genetic process of biological
organisms. The GA consists of several solutions called chro-
mosomes or individuals. Each chromosome in a binary GA
includes several genes with binary values 0 and 1, which
determines the attributes for each individual. A set of the
chromosomes is made up to form a population. The merit
of each chromosome is evaluated by using a fitness function.
Fit chromosomes are selected for the generation of new chro-
mosomes. In that step, two fit chromosomes are selected and
combined through a crossover step to produce a new offspring
(or solution). Then, mutation is applied on the population
to increase the randomness of individuals for decreasing the
possibility of getting stuck in local optimum [9].

B. PSO

PSO is a biologically inspired technique derived from the
collective behavior of bird flocks, first introduced by Kennedy
and Eberhart [10]. PSO consists of a set of solutions (particles)
called population. Each solution consists of a set of parameters
and represents a point in multidimensional space. A group
of particles (population) makes up a swarm. Particles move
through the search space with a specified velocity for finding
the optimal solution. Each particle has a memory that helps it
in keeping the track of its previous best position. The positions
of the particles are distinguished as personal best and global

best. The velocities of particles are adjusted according to the
historical behavior of each particle and its neighbors, while they
fly through the search space. Each move of particles is deeply
influenced by its current position, its memory of previous
useful parameters, and the group knowledge of the swarm [10].
Therefore, the particles have a tendency to fly toward improved
search areas over the course of the search process.

The velocity of the ith particle in the (k + 1)th iteration is
mathematically defined as

V k+1
i = WV k

i + C1r1

(
pbk

i − Xk
i

)
+ C2r2

(
gbk

d − Xk
i

)
(1)

where C1 and C2 are acceleration constants, r1 and r2 are
random values in the range of 0 and 1, W is the inertia weight
(predefined by the user), Xk

i shows the position of each particle
in d-dimensional search space, pbk

i is the best previous position
of each particle named particle best position, and gbk is the best
position of all the particles (called the global best particle). The
position of the ith particle is updated by

Xk+1
i = Xk

i + V k+1
i . (2)

The PSO was originally introduced for the optimization of
problems in continuous multidimensional search space. To ex-
tend that concept to feature selection, it needs to be developed to
deal with binary data, in which 0 and 1 demonstrate the absence
and presence of a band, respectively. In [10], Kennedy and
Eberhart applied the sigmoid transformation on the velocity
component to develop a binary discrete PSO to control the
range of velocity between 0 and 1 according to

ΔXk+1
i =

1

1 + exp
(
−V k+1

i

) . (3)

For updating the position of each particle, ΔXk+1
i is compared

with rx, which is a random d-dimensional vector in which each
component is, in general, a uniform random number between 0
and 1 according to

Xk+1
i =

{
1, ΔXk+1

i ≥ rx

0, ΔXk+1
i < rx.

(4)

C. HGAPSO + SVM

GA and PSO can be combined in different ways. However,
in the proposed feature selection approach, hybridization is
obtained through integrating the standard velocity and update
rules of PSO with selection, crossover, and mutation from
the GA.

Fig. 1 shows the block diagram of the proposed approach. To
investigate the hybridization of the GA and PSO for the purpose
of feature selection, the dimension of each particle needs to
be equal to the number of features. In this case, that velocity
dimension, i.e., dim V k

i , as well as the position dimension, i.e.,
dim Xk

i , correspond to the total number of bands (l bands)
in the input data (dim V k

i = dim Xk
i = l). In that case, each

particle’s velocity is represented as a l-dimension vector. In
addition, as one wishes to use the algorithm for band selection,
each particle represents its position in binary values, i.e., 0 or 1,
where 0 and 1 demonstrate the absence and the presence of the
corresponding feature, respectively.
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Fig. 1. Flowchart of the proposed method.

In this letter, a random population is initially generated. The
individuals in the population may be regarded as chromosomes
with respect to the GA or as particles with respect to PSO. Then,
a new population for the next generation is produced through
enhancement, crossover, and mutation as described below.

Enhancement: In each generation, after the fitness values for
all the individuals in the same population are calculated (the
OA of SVM on validation samples), the top half of the best-
performing particles is selected. These individuals are regarded
as elites. Then, the elites are enhanced by PSO. By using these
enhanced elites as parents, the generated offsprings usually
achieve better performance than using the elites directly [11].
Furthermore, (1) is applied to the elites. In each iteration, the
range of velocity is regulated between 0 and 1 with the sigmoid
function [see (3)] and compared with a random chromosome
between 0 and 1 to update the position in binary format
[see (4)]. By performing PSO on the elites, the search ability of
the algorithm may increase. Half of the population in the next
generation consists of the enhanced individuals, and the rest is
generated by the crossover operation.

Crossover: To produce well-performing individuals, the
crossover operation is only performed on selected individuals
produced by PSO. To select parents for the crossover operation,
a tournament selection scheme is used, in which two enhanced
elites are selected at random, and their fitness values are com-
pared. The individual with the better fitness value is selected
as a parent and inserted into the mating pool. Then, the two
individuals are moved back to the population. In the same way,
the other parent is chosen and moved to the mating pool. Two
offsprings are created by performing crossover on the selected
parents. A two-point crossover operation is used. The produced
offsprings make up the other half of the population in the next
generation.

Mutation: This operation occurs along with the crossover
operation. Here, uniform mutation is adopted. In our case, a
constant mutation probability that is equal to 0.01 is used.

III. EXPERIMENTAL RESULTS

A. Description of Data Sets

1) Indian Pines: The hyperspectral data set used in experi-
ments is the well-known AVIRIS data captured of Indian Pines
(NW Indiana) in 1992 comprising 16 classes, mostly related
to different land covers. The data set consists of 145 × 145
pixels with a spatial resolution of 20 m/pixel. In this letter,

220 data channels (including all noisy and atmospheric ab-
sorption bands) are used. Training samples are available for
16 classes, and the total number of training and test samples is
695 and 9691, respectively. The same training and test samples
for all 16 classes as in [12] are chosen, and a half of the training
samples is selected for validation.

2) Toronto: The RGB Toronto Roads data set is captured at
the resolution of 1.2 m/pixel. This data set contains three bands
consisting of 1500 × 1500 samples. Fig. 2(a) and (b) shows
this data set and its corresponding digitized samples [13]. For
this data set, 0.01 of the total samples are randomly chosen as
training samples (1052 samples for class Road and 21448 for
class No-road) and the rest as test samples (10 2007 samples
for class Road and 2 125 493 for class No-road). Then, a half of
the training samples is chosen for validation.

B. General Information

The proposed method was implemented in MATLAB, on a
computer having Intel(R) Core(TM) i7 CPU 2.40 GHz and
16 GB (15.9 GB usable) of memory.

The number of populations in the first and second scenarios
was set as 20 and 10, respectively. The same set of parameters
for both data sets was chosen, which infers that the proposed
method is data set distribution independent, and there is no need
to set any parameters for it, and the method can automatically
choose the most informative bands in terms of classification
accuracies.

The hybridization of GA-PSO will automatically stop, when
the difference between the OA of the best solution and the
average value of fitness values in a swarm is less than a
predefined threshold value.

For the first scenario, to compare the capability of the pro-
posed methodology, four well-known feature selectors, namely,
divergence, transformed divergence, Bhattacharyya distance,
and Jeffries–Matusita distance, have been taken into account.
In addition, two frequently used supervised feature extraction
techniques, namely, DBFE and NWFE, have been considered.
In the case of NWFE and DBFE, features with cumulative
eigenvalues above 99% are retained and classified with SVM.
This way of choosing features has been widely used in the liter-
ature (e.g., in [14] and [15]). In addition to the aforementioned
techniques, GA + SVM and PSO + SVM are investigated
to be compared with the proposed approach. Since the first
scenario is related to feature selection and image classification,
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Fig. 2. (a) Input data. (b) Manually produced reference map. (c) Map obtained by SVMRGB. (d) Map obtained by SVMAP. (e) Map obtained by HGAPSO +
SVMAP.

TABLE I
FIRST SCENARIO: CLASSIFICATION ACCURACIES AND CPU PROCESSING

TIME IN SECONDS. THE BEST RESULT IN EACH ROW IS SHOWN IN

BOLDFACE. THE NUMBER OF FEATURES IS SHOWN IN BRACKET. SINCE

PSO + SVM, GA + SVM, AND HGAPSO + SVM ARE THE AVERAGE

OF TEN RUNS, THE NUMBER OF FEATURES IS NOT GIVEN

OA, average accuracy, kappa coefficient, and CPU processing
time are considered for the evaluation of the final results. Since
the PSO+SVM, GA+SVM, and HGAPSO+SVM are based
on evolutionary techniques and their results can be different in
different runs, all aforementioned approaches have been run ten
times, and the average results are reported in Table I.

For the second scenario, since it is related to road detection,
the root mean square error (RMSE) is taken into account as
it was suggested that the RMSE is the most solid index [16].
For this scenario, since the Toronto data consist of only three
components (RGB), to produce extra features, an attribute
profile is used. A morphological attribute profile is considered
as the generalization of morphological profile, which simplifies
the input image by using the sequential stricter thresholds to
model spatial information of the input image. For a detailed
description of the attribute profile, refer to [8] and [14]. In this
letter, three attributes, i.e., area (λa = (1000/v) {1, 3, 5, 7},
where v is the resolution of the input data), standard deviation
(λs = (μi/100) {30, 40}, where μ is the mean of the ith fea-
ture), and the diagonal of the box bounding the regions (λd =
{25, 50, 100}), are used. However, other types of attributes
with different ranges can be used. In this case, 19 features
for each component (including itself) were produced. Since
we have three components (R, G, and B), the total number of
produced features is 57, which was considered as the input for
the proposed methodology. Then, HGAPSO + SVM is applied
on the features obtained by the attribute profile (and named
as HGAPSO + SVMAP) and compared with 1) the result of
SVM performed on the RGB data (named as SVMRGB) and
2) the result of SVM performed on the features produced by the
attribute profile (named as SVMAP).

The data sets have been classified with SVM using a
Gaussian kernel. Fivefold cross validation is taken into account
to select the hyperplane parameters when SVM is used for the
last step (for the classification of informative bands).

C. First Scenario

The result of classification with different techniques is listed
in Table I. These results have been obtained when conventional
feature selection techniques, including divergence, transformed
divergence, and Bhattacharyya distance, cannot work due to the
singularity of the covariance matrix. The main reasons behind
this shortcoming are that the conventional feature selectors
cannot eliminate the corrupted bands automatically, and this
step should be done manually, which is time consuming. In
addition, when there is not a balance between the number of
bands and the number of training samples, the aforementioned
conventional feature selection techniques will not perform well.
Furthermore, almost all of the conventional feature selection
methods are computationally time demanding. For those ap-
proaches, to select a subset of m features out of a total of n
features, n!/(n − m)!m! alternatives must be calculated, which
is a laborious task and demands a lot of computational memory.
In other words, the feature selection techniques are only feasi-
ble in relatively low-dimensional cases. Another shortcoming
of most of the conventional methods (particularly divergence,
transformed divergence, and Bhattacharyya distance) is that
the number of desired features must be initialized a priori. In
contrast, since evolutionary-based feature selection techniques
(e.g., PSO + SVM, GA + SVM, and HGAPSO + SVM) are not
based on the calculation of the second-order statistics, the sin-
gularity of the covariance matrix is not a problem. In addition,
when an evolutionary technique is taken into consideration,
there is no need to calculate all different alternatives to find
the most informative bands, and, therefore, these methods are
usually faster than the conventional ones. Furthermore, in the
proposed method, there is no need to initialize the number of
desired features, and the approach can find the most informative
bands with respect to the OA of SVM over the validation
samples.

Some algorithms, such as the originally proposed DBFE,
demand the use of second-order statistics (i.e., the covariance
matrix) to characterize the distribution of training samples with
respect to the mean. In that case, if the number of available
training samples is not sufficient, a good estimation of the
covariance matrix might be impossible. For this purpose, the
use of a sample covariance or a common covariance [1] may
not be successful. As an example, either when the sample
covariance or the common covariance is taken into account
to estimate the statistics for each available class for DBFE, if
the number of pixels in the classes is not, at least one, greater
than the total number of features being used, the DBFE stops
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working. To handle this issue, the leave-one-out covariance [1]
estimator can be used as an alternative to estimate the covari-
ance matrix. However, this is not a problem for evolutionary-
based feature selectors since they are nonparametric and do not
need to estimate class conditional densities. In addition, they
can efficiently handle high-dimensional data with a very limited
number of training samples due to the generalization of the
SVM, which has been considered as the fitness function. As can
be seen from Table I, the proposed method outperforms NWFE
and DBFE in terms of classification accuracies and improves
the OA of DBFE and NWFE by almost 12 and 8 percent,
respectively.

As can be seen from Table I, HGAPSO + SVM outperforms
the other evolutionary-based feature selection techniques (e.g.,
GA + SVM and PSO + SVM) in terms of classification
accuracy. On the other hand, PSO + SVM has the highest
CPU processing time among other evolutionary-based feature
selectors. The main reason of this shortcoming is that although
PSO is a fast optimization method, it converged after a higher
number of iterations. On the contrary, although the conver-
gence of GA + SVM is faster than that of PSO + SVM and
HGAPSO + SVM, it has the worst classification accuracies due
to the premature convergence of the chromosomes.

Since all the evolutionary-based optimization methods are
based on a random process, the selected features are different
in different trials. In the experiments, the proposed approach
selected 73–94 features in ten different trials. It should be
noted that the proposed approach allows for the detection of the
best distinctive features without requiring the number to be set
a priori by the user.

D. Second Scenario

The obtained RMSE for SVMRGB, SVMAP, and
HGAPSO + SVMAP are 0.7669, 0.6461, and 0.6049,
respectively. HGAPSO + SVMAP provides the smallest
RMSE among all techniques, which confirms the capability
of the proposed method to detect the classes of interest.
The main reason that the proposed approach outperforms
SVMAP is that although attribute profiles are a powerful
technique to model spatial information of an image, they
produces redundant features that can reduce the classification
accuracies. However, by using the proposed technique, the
most informative features can be selected leading to higher
classification accuracies. Fig. 2 shows the input data, the
manually produced reference map, and the maps obtained by
SVMRGB, SVMAP, and HGAPSO + SVMAP, respectively.
As can be seen, the proposed method detects more details from
the road network as compared with the other approaches and
outperforms SVMRGB and SVMAP.

IV. CONCLUSION

In this letter, a new feature selection technique, which does
not need to set the number of desired features a priori, has been
introduced, based on the integration of GA and PSO. According
to the experiments, the following can be concluded.

1) The proposed method can find informative bands in terms
of classification accuracies in an acceptable CPU time.

2) The proposed method can be used for road detection.

3) In the novel feature selection approach, there is no need to
set the number of output features since the proposed ap-
proach can automatically select the most useful features
in terms of classification accuracies.

4) The proposed method is data set distribution indepen-
dent, and for it, there is no need to initialize any
parameters.

5) Since the proposed algorithm is based on evolution-
ary techniques, it is much faster than other well-known
feature selection techniques that require an exhaustive
process to select the most informative bands. Therefore,
the new approach can work appropriately in a situa-
tion in which other feature selection techniques are not
applicable.

6) Since SVM is considered as a fitness function in the pro-
posed method, it can handle high-dimensional data with
a limited number of training samples, when other feature
selection techniques cannot proceed due to singularity
problems of covariance matrices.
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CHAPTER 6

Conclusion and Future
Works

6.1 Conclusions

The main objective of this thesis was the proposal of robust spectral-spatial
classification approaches for hyperspectral data. In addition, special emphasis
was given to the accuracy and speed of the proposed approaches. Further-
more, we tried to make the spectral-spatial classification approaches automatic
in order to reduce users’ efforts and the exhaustive time in order to handle high
volumetric hyperspectral data for real-time applications. As the main conclud-
ing remarks, the following points can be mentioned:

• In the second chapter of the thesis, a fully automatic framework was in-
troduced for the spectral-spatial classification of hyperspectral images. In
the framework, SVM was used for the extraction of spectral information
and HMRF was taken into account for the extraction of spatial informa-
tion. In the final step, the outputs of SVM and HMRS were combined
by using the majority voting. The efficiency of the proposed method has
been tested in both situations with and without considering the gradi-
ent step. The proposed method was evaluated on two data sets (Indian
Pines and Salinas). In both cases, the new approach has been provided
good results in terms of classification accuracies in an automatic way. In
that work, the concept of HMRF was used for the first time in the field of
remote sensing, and the efficiency of that for the segmentation of hyper-
spectral images was demonstrated.

• In the third chapter, two novel multilevel thresholding segmentation meth-
ods have been proposed for grouping the pixels of benchmark image pro-
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cessing images as well as multispectral and hyperspectral images into
different homogenous regions. Those methods were based on DPSO and
FODPSO, which can be used in finding the optimal set of threshold val-
ues and use many swarms of test solutions which may exist at any time.
In those approaches, each swarm individually performs just like an or-
dinary (PSO) algorithm with a set of rules governing the collection of
swarms that are designed to simulate natural selection. In addition, for
FODPSO, the concept of fractional derivative was used to control the
convergence rate of particles. With respect to the obtained results, the
FODPSO outperformed the classical PSO and DPSO within multilevel
segmentation problems on benchmark image processing images and re-
mote sensing data from different points of view such as CPU processing
time and corresponding fitness value. Experimental results also indicated
that the FODPSO was more robust than the two other methods and had
a higher potential for finding the optimal set of thresholds with more
between-class variance in less computational time, especially for higher
segmentation levels and for images with a wide variety of intensities. In
addition, to show the efficiency of the proposed segmentation method
on the result of classification, a novel classification approach based on
the new segmentation method and SVM was proposed. Results con-
firmed that the FODPSO-based segmentation method improved the SVM
in terms of classification accuracies when compared to the standard SVM
classification of the raw image data. Furthermore, a combination of MSS
and FODPSO has been taken into account for the spectral-spatial clas-
sification of hyperspectral images. In that work, results indicated that
the use of both segmentation methods can overcome the shortcomings
of each other and the combination can improve the result of classifica-
tion significantly. It should be noted that, in that chapter, the concepts
of DPSO- and FODPSO-base segmentation techniques were used for the
first time in the pattern recognition community.

• In the fourth chapter, the usefulness of AP and its extensions and modi-
fications have been taken into account for the classification of hyperspec-
tral data sets. In that chapter, two novel spectral-spatial classification
frameworks have been introduced, which are able to automatically clas-
sify input hyperspectral data sets very accurately within a short period of
time. In all the above-mentioned cases, the use of AP and its extensions
demonstrated its effectiveness for modeling some regional characteristics
(e.g., scale, shape, and contrast), provided a multi-level decomposition of
an image. As shown in that chapter, AP and its extensions can be consid-
ered as simple yet effective approach for the classification of hyperspec-
tral images.

• In the fifth chapter, two novel approaches have been proposed for the
purpose of feature selection addressing the curse of dimensionality. The
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first approach was based on a new optimization technique named BFODPSO
as well as SVM. The second approach was based on the hybridization of
GA and PSO as well as SVM. For the both approaches, there is no need to
set the number of output features as a priori and the proposed approaches
can automatically select the most informative features in terms of classi-
fication accuracies. In addition, since the both approaches are based on
an evolutionary method, it is much faster than other well-known feature
selection techniques which demand an exhaustive process to select the
most informative bands. In this sense, the proposed approaches can work
appropriately in a situation when other feature selection techniques are
not applicable. Since the new feature selection approaches are based on
a SVM classification which is capable of handling high dimensional data
with a limited number of training samples, they can proceed to select the
most informative features in ill-posed situations when other feature selec-
tion/extraction techniques cannot proceed without a powerful technique
for estimating the statistics for each class.

6.2 Perspectives

• Due to the speed and efficiency of the FODPSO-based segmentation, it
can be evaluated in image segmentation applications for the real-time au-
tonomous deployment and distributed localization of sensor nodes. The
objective is to deploy the nodes only in the terrains of interest, which
are identified by segmenting the images captured by a camera onboard
an unmanned aerial vehicle using the FODPSO algorithm. Such a de-
ployment has importance for emergency applications, such as disaster
monitoring and battlefield surveillance. In addition, finding a way for
the estimation of the number of thresholds in FODPSO-based segmenta-
tion and joint multichannel segmentation instead of segmenting data set
band by band would be of interest.

• The selection of attributes and their related thresholds is also another
area, which demands a further improvement. In addition, although few
strategies for the authomatic selection of the attribute thresholds have
been proposed, they are limited to some attributes (i.e., area and standard
deviation) and might not be applicable to others, thus opening the need
for developing more generic selection strategies for the filter parameters.

• It would be interesting to further improve and adapt the proposed ap-
proaches for a wide variety of applications such as land-cover mapping,
urban management and modeling, species identification in forested areas
and so on.
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• In order to manage and monitor many predictable and unpredictable nat-
ural disasters (including but not limited to earthquakes, floods, weather
events, landslides and wildfires), we are particularly in need of devel-
oping fast, simple, automatic and efficient methods for disaster manage-
ment. Undoubtedly, the aforementioned points have a major participate
in the economics of different countries. As a result, assessing the useful-
ness of the proposed approaches in real-time applications where a rapid
and accurate response is needed would be very interesting.

• Another topic deserving future research is the development of parallel
implementations of the presented approach in high-performance com-
puting architectures, although the processing times reported in our ex-
periments throughout the thesis (measured in a standard desktop CPU)
are quite fast for the considered data sets.



APPENDIX A

Accuracy assessment

This chapter provides a rough idea regarding the assessment matrices, which
have been extensively used in order to evaluate the result of the output clas-
sification map. In general, almost all metrics for the assessment of the final
classification map are based on the confusion matrix. This matrix provides a
possibility for evaluating the exactitude of a given classification map with re-
spect to the reference map. In this appendix, the confusion matrix will firstly be
described, and then, several specific and global estimators are extracted from
the confusion matrix.

A.1 Confusion Matrix

In pattern recognition, a confusion matrix is considered as a visualization tool
typically used in supervised learning. In this matrix, each column infers the
instances in a predicted class, while each row represents the instances in an ac-
tual class. This matrix is also be able to infer where the classification technique
lead to confusion (i.e., commonly mis-labeling one class as another). Table A.1
represents an example of confusion matrix for a 3-class classification problem.
The term Ci represents the class i and the term Cij refers to the number of pix-
els which are wrongly assigned to the class j, which are referenced as class i.
Nc represents the number of classes in the referenced map.
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Table A.1: Confusion Matrix for a 3-class classification problem.

Percentage Classification data
Reference data C1 C2 C3 Row total Producer’s accuracy

C1 C11 C12 C13
∑Nc

i C1i
C11∑Nc

i
C1i

C2 C21 C22 C23
∑Nc

i C2i
C22∑Nc

i
C2i

C3 C31 C32 C33
∑Nc

i C3i
C33∑Nc

i
C3i

Column total
∑Nc

i Ci1
∑Nc

i Ci2
∑Nc

i Ci3 N
User’s accuracy C11∑Nc

i
Ci1

C22∑Nc

i
Ci2

C33∑Nc

i
Ci3

A.1.1 Overall Accuracy (OA)

The OA is the percentage of correctly classified pixels, which can be estimated
as follows:

OA =
∑Nc

i Cii∑Nc

i,j Cij

× 100.

A.1.2 Class Accuracy (CA)

The CA (or producer’s accuracy) is regarded as the percentage of correctly clas-
sified pixels for each class. This metric infers how well a certain area was clas-
sified. This metric includes the error of omission in which the more errors of
omission, the lower the producer accuracy. This metric is calculated by divid-
ing the number of correct pixels in one class by the total number of pixels as
derived from reference data as follows:

CAi = Cii∑Nc

j Cij

× 100.

A.1.3 Average Accuracy (AA)

The AA is the mean of class accuracies for all the classes, which can be esti-
mated as follows:

AA = Cii∑Nc

j CAi

× 100.

It should be noted that either OA or AA is closed to 100%, it infers that
the classification accuracy is more accurate. The problem associated with the
concept of OA occurs when a referenced set is unbalanced. In this case, the OA
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may not be a good representer for the true performance of the classifier. For
example, if a class has very few number of referenced pixels, its influence will
be very low on the OA, while it will be more influence in the AA since the mean
is done the number of classes rather than the whole number of pixels. Strong
difference between OA and AA may indicate that a specific class is wrongly
classified with a high proportion.

A.1.4 Kappa Coefficient (k)

This metric is a statistical measurement of agreement between the final classi-
fication map and the reference map. It is the percentage agreement corrected
by the level of agreement that could be expected due to chance alone. It is
generally thought to be a more robust measure than simple percent agreement
calculation since k takes into account the agreement occurring by chance.

κ = Po − Pe

1− Pe

where

Po = OA, Pe = 1
N2

Nc∑
i

Ci+C+i, Ci+ =
Nc∑
j

Cij , C+i =
Nc∑
j

Cji.
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