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Abstract 

Visual database systems require efficient indesiiiç to eiiable fast access to the images and video. ln 

addition. the Large mernos, capacity and cliannel bandwidtli requirements for tlie storage and 

transmissiori of visual data necessitate the use of compression techniques. Future multimedia 

applications are likely to increasingly store and transmit the visual information in compressed form. 

Hencr indesing tlie visual content in compressed domain is espected to result in signiticant savings in 

somp~itritioiiül cotnplt.sit>. Vector qwntizatioti ( V Q )  is riil efficient teciitiiqut. for I O N  bit rate inirigt' 

and video compression. In addition. the lower complesity of tlie deccider makes VQ attractive for low 

power systerns and applications whicli require fast decoding. Most irnportantly. VQ is naturally an 

indexing teclinique. where a block of pixels is compactly represented using an indes (label) whicli 

corresponds to a codebook. 

In this thesis. we propose the novel concept of using VQ for joint compression and indesing 

of images and video. Tlie imagedimage tiames are compressed using VQ and the labels and 

codewords rire employed in indesing tlie visual content. First, we present a revitw of imaguvideo 

compression and indesing. We then propose two tecliniques in the VQ compressed dornain for imagc 

itidexing. In tlic tirst tecliniqtie. the Iiistogrnm ofcodewords weiglitrd Dy the nurnber of labels is used 

as feature vector for indesing. In the second tecliiiique. the histogram of the labels. wliicli are used to 

represent an image. is used as an indes. We also propose a new technique based on adnptive wnvelet 

VQ. wliicli providcs aii improvement in coding and rrtrirval performance. Here. the images are 

decoinposed usiiig wavelet trarisforni followd by V Q  O!' the traiisftxrn coet'ticieiits. A usage i~iap O t' 

codewords is grneratrd for eacli image and is stored along witli the image. In tlie retrieval proçess. tlic 

usage map of tlie que- image ( V Q  encoded) is cotnpared with the corresponding tisagc rnnps of tlir 

target images in the database. 

Since vidro has both spatial and temporal dimensions. a straiglithnviird extension of the 

irnase indesing techniques for video indesing is inefficient. We propose to rmploy botli tlir spatial 

and temporal features for efficient indesing of video clips. The video sequence is partitioned into 

sliots using the label maps of the individual frames and the camera operations and motion within cadi 

shot are tlieii deteriniiirid by further processing the label rnaps. Each shot is then represented tisiiig 

spulio-trnrpoiud i d e s .  Tlie spatial indes represrnts tlir content of tlic key frainr (iniase) of a ~lior. 

li île rhe tetnpornl iiides rcprcsciits the i~iotiori and catntlrri operations \\ i t l i i  ti tlit. sliiit. Detai led 

simulations Iiave bern carried oiit using a large database of images and video srquences. Simulatioii 

results dernonstrate tlie excellent retrieval performance of the proposed techniques at a significantly 

reduced computational complexity. 
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Introduction 

Multimedia Information Systems are becoming increasingly important with the advent of 

broadband nrtworks. high-powered workstations and compression technologies. There are 

several applications inciuding distance learning, telemedicine. interactive television. digital 

libraries. multimedia news and geographical information systems which are already 

dominatêd and are expected to br increasingly populatrd by visual (images and video) 

information. Since. visual media involves large amounts of memory and computing power 

for storage and processing, the problems of flexible acquisition. processing and access have 

becomc more important. 

It can bt: seen tiom the esperirnce of textual media basrd information rrtrirval. for 

rsamplt! over the World-Wide Wsb ( WWW). that content-based indexing play a crucial rolr 

in the location and retrieval of the required information. The succçss of visual media srarch 

engines will therefore rely on the development of sophisticated tools and techniques for 

content-based indexing. 

1.1 Problem Definition 

Previous approaches to indexing of visual media have taken two directions. The first 

direction is a straightforward extension of textual databases. In this approach, the visual 
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contents are represented in textual form using keywords and attributes such as scene 

description. actor's name. director's name. etc. The keywords and attributes serve as indices 

to access the associated visual data. The Aggregate Data Manager (ADM) which is an 

interactive database system is an example of the extension of conventional databases to 

handle images [ I l .  ADM is based on a relationai database mode1 and uses the Struçtured 

English Query Language (SEQUEL) to query the stored images. This approach has the 

advantage that visual databases c m  be accessed using standard query languages such as SQL 

(Structured Qurry Language). However this entails extra storage and nrrds a large arnount of 

rnanual processing. .A more serious consideration from the point of view of reliability is that 

the descriptive data ( i )  do not conform to a standard language. ( i i )  are inconsistent. and ( i i i )  

might not capture the imagehide0 content. Thus the retrieval rçsults may not br satisfactory 

since the query is based on features that have bren inadequately representrd. The second 

approach to indexing visual data is to apply image analysis/understanding techniques. Image 

pattern recognition techniques are first used to classi% an imap/video into one of several 

categories. Interpretation to each class is then provided using knowledge bases. For example. 

the shape features in a sccnr may be rnapped ioto synbols which represent clemrntay shaprs 

such as circles. rectangles. etc. Semantics of the scene is developed by interpreting the 

collection of symbols. The interpretation is accomplished by using visual models and rules 

that imitate the human understanding. The Multi-sensor Image Database System (MIDAS) of 

Carnegie-Mellon University is a good esamplç of this approach [21. Two file types are 

distinguislicd in MIDAS: data files and description tiles. The data files contain the images 

while the description files (text tiles) contain a hierarchical symbolic representation of a 

scene. In addition, the description files contain relational tables which describe the 



interrelations between the text files. This approach has two disadvantages: ( i )  the use of pre- 

defined categories limits the application of the database system and (ii) this is a 

computationally intense and cornplex task. As a result. there has been a new focus on 

drveloping imagehide0 indexing techniques which ( i )  have the capability to retrieve visual 

data based on thêir contents. (ii) are domain independent. and ( i i i )  can be automated. 

The storage of uncompressed visual data requires considerable capacity. For example. 

the data rare for a 704x576 Full motion video at 34 bitdpisrl and a frarne ratr of 30 

tiarnes/second (4 Cornmon Intermediate Format) is 276 Megabits/srcond. This implies that a 

DVD-ROM (write once. read many Digital Versatile Disc) with a storage capacity of 17 

gigabytes can only store 8.4 minutes of vidro. Sirnilarly, the transmission of uncompressed 

imagehidro data over digital nrtworks requires a high bandwidth. For excample. the 

transmission of one second of video over FDDI (Fibrr Distributed Data Interchange) at a rate 

of 100 MegabWsecond and 20% throughput ratr for a shared network involves 13 seconds. 

tlence. i t  is necessary to use efficient irnagehidro compression techniques to providr cost- 

effective solutions for the storage and transmission of visual data. 

Many compression algorithms have been reportrd in the literature to reduce the 

storage and transmission requirements in imagehide0 applications [3]-[27]. The International 

Standards Organization (ISO) has proposed the Joint Photographie Experts Group (JPEG) 

and thci Moving Pictures Experts Group (MPEG) standards for image and vidro compression. 

respectively [XI-[3 J.  Rrcrntly. the Moving Pictures Experts Group has developed an 

audiovisual compression standard. refrrred to as MPEG-4. to support access and proçessing 

of audiovisual data at very low bit rates 1261-[27]. The scope of MPEG-4 is future delivery 

and storage systems allowing for high compression (1 0-64 kbitskec), interactivity, scalability 
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of video and audio content, and support of natural and synthetic audio and video content. 

Recently, MPEG has initiated a new standard. called içfzïhimedici Contenr Descriptirm 

lnrerfice (MPEG-7). MPEG-7 will specifi a standard sct of dcscriptors that can be used to 

describe various types of multimedia information. This description will be associated with 

the content itselt: to allow fast and cflicicnt scarching of visual data. 

Typically indexing and compression has been pursued independently as s h o w  in 

Figure 1.1. Compression algorithrns cire concenicd mainly with thc optimization o r  distortion. 

bit rate and complexity without focusing on content accessibility. On the other hand. indcxing 

tcchniques are usually designcd ignoring the Iàct that it is very Iikely that images and vidco 

rnay be stored in thc comprcsscd form. Image and vidco indcxing in thc uncomprcsscd 

domain (Figure 1 . l )  has the Lollowing disadvantages: First. proccssing of the uncom presscd 

data is timc consuming since irnagehidco data are voluminous. Second. thcrc is an aiixiliary 

storagc rcquiremcnt to storc the dccomprcsscd data. This rcduccs thc overall systcm 

pcrlormancc and storagc cficicncy. 

-1.0 climinate thc problcms OS indcxing in ihc uncomprcsscd domain. it is ncccss- to 

combine imagdvideo indexing and cornprcssion as shown in Figurc 1.2. Image and video 

indexing in the compressed domain has two advantages. First, therc is a reduction in 

cornputritional cost as image/video are represented in the compressed form. Second, we note 

that many comprcssed bit strearns typically contain inlbrmation. such as motion vcc tors. 

which can hclp in derivi ng contcni-bascd indiccs. 

Kcscxch in thc tirca of combincd irnagcividco indcxing and comprcssion c m  bc 

pursued in two directions: ( i )  io gcncrate content-based indices in the compressed domain for 

existing compression techniques, and (ii) to develop novel compression techniques that are 



optimized not only in terms of signal distortion, bit rate and cornplexity but also providr the 

feature of indesing. 

Compressed Domain 

b lmagel r Transmission Image1 
Video Compression k-b Decom pression 

4 
Video 

- - 
- 

-- - 
- -  - 

lndexing 

- Ir 

Image1 
Video - 

Indexing 

-1 

Figure 1.1 : Indrxing in the uncornpressrd domain. 
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- . , . - .- . - 
. . . - .. - - - .. . --A - . 
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lndexing lndexing 

f 

1 
3 

1 
-4 

Figure 1.2: Indexing in the compressed domain. 
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1.2 Investigated Approach 

Vttctor qiianiization ( V Q )  is an efficient technique for ire- low bit ratc image and video 

compression [7 ] - [ I j ] .  Recrntly. V Q  has been used to simpliîj image procrssing algorithnis. 

such as enhancement. edgc detection and reconstruction. by perîiorming thrm sin~ultaneously 

with the compression [ M l .  In VQ [7]. the image to be cornpressrd is dscoriiposrd into L- 

dimensional vectors. Using a nèarest neighbor rule, each input vector is rnapped onto the 

label of the closrst codrword. The labels of the codewords are used to rrpresent the input 

image. Image reconstruction is implemented by a simple table look-up procedure. where the 

label is used as an address to a table containine the cociewords. In othrr words. VQ is 

natiirally an indrsing technique. where rnch subirnage (vector) is mapped into an indss 

(label). In addition. VQ lias the following advantagrs: 

Fast decoding which rnakrs i t  attractive for systems based on software only playbrick of 

vidro such as Intel's Indeo. Apple's QuickTime and Microsoft's Video. 

Reduced hardware requirements due to the sirnpliciiy ol' the decoder wliicli mrtkcs i t  

attractive for low power applications such as portable video-on-deniand in wircless 

communications [ 13].[28]. 

Hrnce. VQ is a promising approach for combining compression with indesing. 

In this thrsis. we propose novel algorithms basrd on VQ to index images and videu in 

the comprrsstld domain. Tlie proposeif techniques combine compression and indesin@. and 

providr escellent performance at botli hiçh and low compression ratios. 



1.3 Summary of Contributions 

The fundamental contribution of this thesis is the proposa1 of V Q  as an efficient technique for 

joint compression and indexing of images and video. Following is a list of the individual 

contributions: 

1. .-\ critical survcy of esisting image and video indrsing techniques [15 11-[I 521. 

2. Two new algorirhms for the indexing o i  compressed images using vector quantization 

[154]. 

3. Algorithm for the integration of indexing and compression of vector quantized images 

using VQ and wavelrt V Q  [ l j j ] .  

4. Algorithm for the segmentation of video srquences in VQ domain.. 

5 Algorithm for the detection ofcamcra operations in the VQ domain [156]. 

6. Spatio-temporal indrsing of video srquences [ 1571. 

1.4 Thesis Outline 

The thesis is organized as follows. Chaprer 2 prrsrnts a review of iniagr and vidro indrsing 

techniques. Chapter 3 follows with a review of content-based image and video indexing 

techniques in the compressed domain. 

In chapter 4. we propose two novel techniques for indexing images using VQ. In the 

tirst technique. for each codrword in the codebook. a histograrn is gcnerated and stored dong 

with the cods\vord. W r  note tliat tlir superposition of the histognms of the codtwurds. u.liidi 

are used to represent an image. is a close approximation of the histogram of the image. This 



histograrn is used as an index to store and retrieve the image. In the second technique, the 

histognm of the labels of an image is used as an index to access the image. 

In chapter 5 .  we propose a new technique based on adaptivr vrctor qumtization 

which integrates the index of an image within the compressed bit Stream. Here. the index is 

generated at compression tirne and hence the proposed technique eliminûtrs the netd h r  a 
C 

separate structure to store the indices. The performance of this technique is investigated in the 

spatial and transfomi domains. 

In chapter 6.  we propose an algorithm for vidro indexing using a sptrtio-trmpunrl 

index. The spatial index represents the spatial content of the representative frarne of a shot. 

while the temporal index represents the temporal content of the shot. The spatial index is 

based on the codrwords used to compress the represrntative frame. whilr the temporal indes 

is based on motion and camera operations within the shot. We present two algoritlinis for rhe 

drtection of shot boundaries and cûmrra oprirations. respectively. The proposed techniques 

are cxec~ited rntirely in the cornpressrd domüin. This entails signiticaiit swings in 

çomputational and storrigr costs rcsdting in fastrr exrcutioii. 

Finally. the summary and future resecirçh directions are prrsrnted in  chapter 7 

followed by the references. 



Review of Image and Video 

Compression 

Image and video data are voluminous: compression is essential for storage and 

transmission. The goal of imagehidro data compression is to reduce the number of bits 

required to represent an image/video signal while maintainine an acceptable tidelity [3 ]-[-Il. 

Imagehidro compression is rssentially a redundancy removal process. Efticient compression 

is achieved bp cxploiting the spatial. temporal and psychovisual redundancies. Spatial 

redundanq refers to the drpendcncy betwecn th<: pixel values in a local rq ion  of an image. 

Sparial rcidundrtncy is typically rrmoved hy ernploying intraticimr coding techniques sucli ils 

predictive coding. transfom coding. etc. Temporal redundancy refers to the correlation 

between the successive frarnes in a video sequence and is usually rçmoved by employing 

interframe compression techniques such as motion estimation/compensation. frarns 

replrnislunrnt. etc. Most image/video frames contain psychovisual redundancies: tliat is. 

soine information may br  removcd witliout sacrificing the subjective image qualitp. For 

rsample. two propcrties of the human visual systern that rnay be expioited to a great 



advantage are (i) lower sensitivity to faster moving objects and (ii) lesser perception of 

distortion at higher spatial fiequencies. 

In this section we present a review of image and video compression techniques. First. 

the concepts of lossless image/video data compression are presented in section 2.1. This is 

followed in section 2.2 by an overview of lossy compression techniques. In section 2.3. wr 

present a review of vector quantization techniques. This is followed in section 2.4 by a 

review of wavelet transforrn. The JPEG. MPEG. and MPEG-4 standards are then discussed in 

sections 2.5. 2.6. and 2.7. respectively. We note that emphasis is placed on the review of 

vector quantization (VQ) methods as the focus of this thrsis is essentially based on VQ. The 

summary is presrnted in section 2.5. 

Lossless Compression 

Lossless compression is çoncerned with minimizing the  average nurnber of bits per pixrl 

without any loss in image quality: i.e. the decoder should rrconstnict the exact input image 

from the encoded image. Information theory statrs that the source can be exactly encoded 

with H bits/pixel. where H is the source entropy. For a source with zb possible independent 

symbols with probabilities p,. i= 1.7. ... .zb. the zerorh-order entropy is given by: 

H = -t p, log, p, 

This results in a variable length code (VLC) whrre shorter codewords are assigned to more 

fiequent pixrl values and longer codrwords are assigned to infrequen t piscl values. Huffman 

and Arithmetic coding are the most popular approaches for lossless coding. Arithmetic 

coding achieves higher compression ratios than Huffman coding, but it is more difficult to 
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implement. Another technique for lossless coding is run length coding [3] in which a 

reduction in the bit rate is achieved by sequentially transmitting or storing the pixel values 

(run) followed by the number of its repetitions (length). Significant compression is possible if 

the input image is characterized by long runs. 

2.2 Lossy Compression 

Lossy or minimum distortion compression results in a reconstruction that is not identical to 

original (uncompressed) image. The purpose of lossy compression is to minimize the bit rate 

for a given average distortion or rquivalently. to rninimize the average distonion for a given 

bit rate. For an image source. the average distortion D is defined as 

LI = Efd(.-1. :1)t (2.2) 

where t i ( . A . ~ )  is 3 distortion rneasure between the source .*1 and its reproduction .i. Clrarly. 

the design of such an encoding scheme depends on the statistics of .-l and the characteristics 

ti(.4..i). Rate distortion thtory [j] provides the theoretical l o w r  bound on the bit rate of an> 

qunntizrr. For the source A with a probability tùnction p.,(.-I). the rate distonion function is 

detinèd as 

R ( D * )  = min(l(.4. A ) )  (3.3) 

whrre the minimum is takrn over al1 the encoding schemes whicli result in average distonion 

D less thon somr value D*. and /(.-l..Li) is the average mutual inrormation brtween .+l and ..i 

defined as 



where p.;.4(&4) is the conditional probability for '4 given .i. This deilnition of the rate 

distortion tiinction indicates that for a given average distortion D. the minimum transmission 

rate is R(D).  Shannon's coding tlieorrni statrs that it is possible tu design an encoding system 

which üchirves the average distortion D at a transmission rate nrbitrarily close to R(D).  

Althouyh the throry dors not drtail the design of such an sncoding systeni. it is 

valuable in coinparing the performance of diffcrent encoding schenirs. 

The techniques for lossless imagehide0 compression can be classikd into predictive. 

transform. waveldsubband. vector quantization. fractal. and rnodrl-based coding. We nonr 

present a brief overview of racti technique. Detailed description of the tschniqiirs can be 

found in [3]-[29j. 

Predictive cotling: Predictive compression exploits the mutual rcdundancy between 

neighboring pixels. Ratlier than encoding the pisel intensity dircctlp. its value is tirst 

predictrd from tlir prsviously encodcd pisrls. Tlie predicted piscl value is then subtracted 

from the actual pixel value and the differencr (prediction error) is quantized and çoded for 

transmission. The quantized prediction error is used at the receivrr to reconstruct the image. 

Tronsfornr codig: The basic concept in transform coding is to concentrate the 

important information in a I'ew trnnsforni corftiçients. wliicli are thrn qiiantized. coded and 

transmittsd. For still ininyrs. the input iniags is first divided into non-overlapping blocks 

i t , , l . , n 2  of iLlIxlbl2 pisels. In order to decorrelate the image data. a two dimensional transform 

is then applied to X,,,l.,2 as shown in The transformation maps Xlm2 into a two dimensional 



array Qlt,, of transfom coefficients with the same dimension. Mathenatically this operation is 

given by: 

where A,,,,,I..,J is the transform kernel. The resulting coefficients Q,,,,,. zi= 1 .?. . . . .:lfl 

1-1 2.. . .,Ad2 are then quantized, coded and transmitted. At the receiver. an inverse transtorm 

operation is applied to the quantized coefficients l;,., to reconstruct the image: 

.A-' ,,.,,, !,.,,,' is the inverse transform kernel. 

.4n optimum transfom should result in statistiçdly independent coei'ticients. 

Karhunen-Lowe transform is an optimum trrinsform in terms of both the mran squarc error 

and subjective quality. However. it requires a large numbrr of operations to cornpute: and is 

hence usually replaced by sub-optimal transforms such as Fourier transfom. discrete cosine 

iransform (DCT). or Hadamard transform. Although there are many transform techniques. 

DCT is widely tised in  practice because of its simplicity and i t  is performance which is close 

to the optimal Karhunen-Loeve transform [XI. DCT has been adopted in image and video 

coding standards. such as JPEG. MPEG and H.16 1. 

Subband COtling: In subband coding. the input signal is filtered to create a set of 

subimages or subbands. eaçh of which contains a limited range of spatial frequençirs. Tlir 

res~ilting subbands are downsampled to preservi: the data rate. The subbands arc ihen 

srparately quantized. with attention bring paid to bit allocation. Decompression is performttd 



by upsarnpling the decoded subbands, applying appropriate filters and adding the 

reconstructed subbands togrther. 

Fracid Coding: A fractal is a geometric fom where irrepular details recur at different 

scales and angles which c m  be described by a transformations (cg. an affine transformation). 

Fractal image compression is the inverse of tiactal image grneration. i.e. instead of 

generating an image from a given formula, fractal image compression searches for sets of 

fractals in ri digitized image which describr and represent the cntire image. Once the 

appropriate sets of fractals are drtermined. they are reduced to very compact fractal transform 

codes or formulas. In block fractal coding. an image is partitioned into a collection of non- 

overlapping regions known as range blocks. For each range block. a domain block and an 

associated transformation are chosen so that the domain block best approsimates the range. 

Tlisse transformations are known as fim.vtd C O ~ ~ S .  While the pisrl data containrd in the 

range and domain blocks are u s d  to detrmiine the code. the? are not part of the code. 

rrsulting in 3 high compression ratio 

.Lludd-Bi~sed Cotling: Model-based coding can be classi fi rd into 2-D and 3-D rnodel- 

based coding. In 2-D model-based compression. the input image is segmentrd into regions 

rshibiting common features. For example. an image might be partitioned homogeneous 

regions and rncodrs their shaprs and intensities. In 3-D model based compression are based 

on structural mode1 of scrnrs. Thcrr are two approaches to 3-D model based compression. 

Tlir tirst makrs use 01' siirlàcrs o t' the objrct modried by genernl grometric models suçh as 

pianrs or smootli surtÿccs. i-lerr. information such as su rhc r  structure and motion 

information is estimated from image sequences and utilized in compression. The second 

approach utilizes pararneterized model of the object such as pararneterized facial models. 



Here, the parameterized models are usually given in advance. Model-based compression have 

achieved some of the highest compression ratios. however. they have high computational 

comple'rity. 

Vecror Qzronrizarion ( VQ): Details of VQ are presented in section 2.3. 

C?'.iiriders: Drtails of wavelet coding will be presentrd in section 7.4. 

These categories of compression techniques ofien overlap. combined (hybrid 

techniques) and they are ofien combined with lossless compression. 

2.3 Vector Quantization 

In VQ [ I O / .  a training set of representative images is decomposcd into L-dimensional vccrors. 

An iterative clustering algorithm siich as the LBG algorithni is used to grncrate a sodcbook. 

{ Lrt,LT2. ... .UL.}. whrre N is the number of codewords in the codebook and U l = ( ~ i l l .  11,'. ... . 
l r l l . )  The codebook is then made available at bot11 the transmitter and the receiver. In the 

tncoding process. the image to be compressed is decomposeci into L-dimensional vecrors. 

Each vector C;={i*,,. rT,:. ... .vlL 1 is mapped into anothsr vrctor Ci.  The mapping proçrss is 

based on a minimum distortion or nearest nrighbor rulc: Compression is acliirived by 

transmitting the label j corresponding to L\. Image reconstruction is implemented by a table 

look-up. where the label j is used as an address to a table containing the codewords. 

The steps involved in V Q  as applird to irnagdvideo compression are vector 

formation. codebook design. and qiiantization. 



2.3.1 Vector Formation 

ï h e  first step in VQ is to decompose the input image into vrctors. The image is partitioned 

into two dimensional blocks of equal or variable sizes. The features or values are extracted 

from the blocks and then rearranged into vectors. Various vrctor formation schemes have 

been proposcd [7]-[IO]. For esample. the vectors can be formed from the original pixel 

values of the blocks: the transfoml çoctffiçirnts d a  block of pixels: the prrdicrion error of a 

block; the pixel values of a block normalizrd by the average and the color componrnts of a 

pisel. 

2.3.2 Codebook Design 

Linde et ( I I .  [8] have presented an algorithm for codebook design basrd on the two conditions 

for optirnality. referred to as the generalized Lloyd or the LBG (Linde. Buzzo. and Gray) 

algorithrn. The LBG algorithm is a variant of the K-means (C-means) clustering algorithm. In 

this algorithrn. givrn an initial codebook. each training vcctor is assigned to its nsnrest 

nsighbor codeword. Each codeword is then moditied to minimize its distortion relative to the 

vectors assigned to it. This proccss continues iteratively until the change in distortion 

between two successive iterations is within a threshold of acceptance. The algorithm is 

described as follows: 

1.  Givctn an initial codebook. Ci,= ( IC;.i=I.7 . . .  .X j .  a thrrshold &>O and a traininp set 

[ k',,i=1,2, ... . A';. set nt to O and Dl tci S. 

2. Assign each input vector to its nearest neighbor codeword: 

q(y)=y  ,,,, ifS d ( y , W , , , ) I d ( Y , W , . , )  /or j * k  



3. Find Cm,l by computing the centroids of the training vectors assigned to each codeword: 

whrre M,, is the number of vectors assigned to N;,,,,. 

4. Compute the average distortion: 

if Dm relative to Dm., is less than E. then stop: otherwise. go to step 2. 

To obtain the initial codebook G. one possible approach is to select the tirst. or the 

evenly spaced N vectors as an initial codebook. Altemativrly. one might use the splitting 

algorithm [a]. where the csntroids of the training set is calculatrd and split into t~vo 

codewords. The LBG algorithm is applird to yield s codebook of two codewords. Ex11 

codeword is then split into two codevectors to yield a codebook of four codewords. This 

procedure is repeated uniil an :V-level codebook is constmcted. 

Note that the LBG algoritlim ma) converge to a local minimum. Furtherniortt. the 

solution is not unique and drpends upon the initial codebook. Sin~ulatrd annealing is a 

procedure which introduces randomness in each iterrition of the LBG algorithm can be used 

to avoid the local minima. However. this procedure is computationally intensive. Recently. 

techniques based on neural networks and the painvise nearest neighbor (PNN) algorithm lias 

bren reported as alternatives for codebook design [7]. in the neural network approach. the 

wights (which reprrsent the codewords) between the neurons are adaptiwly adjustrd ahsr 

the presrntation of eacli vector. The main advantage of neural network is that i t  converges to 

an asymptotic value faster than the LBG algorithm. In the PNN approach, each of the K 



training vectors is considered as a separate cluster. We start with the K clusters and merge 

together the two clustrrs which result in the minimum increase in average distortion. This 

yields K-1 clusters. The merging process continues until only iV clusters remain. PNN is 

tàster than the LBG algorithrn. however the LBG aigonrhm results in a codebook that 

satisfies the two conditions for optimality. In addition. it has bren shown tliat for a practical 

codebook size and training set, the computational efficirncy of the LBG algorithrn is higher 

than the PNN algorithm [9]. 

2.3.3 Vector Quantization using an Universal Codebook 

Vector quantization techniques can be broadly classi fied. wi th respect to training and 

codrbook grneration. as universal and adaptiw. In this section. image çoding using universal 

VQ is reviewrd. whilr adriptivr V Q  is discussrd in tlir nest section. Universal V Q  employs a 

tised codcbook genrrated using a large set of training vectors srlectrd from diffrrent types of 

images. To ensurr yood image tidelity the codebook iiiusr be large. wliich in turn inçreases 

bath the bit rate and tlir coding complesity. The codrbook size can br rrduced using 

techniques wliich esploit the local image statistiçs. Esamples includc çlassitied VQ. 

predictive VQ. tinite state VQ. multi-stage VQ. fast search VQ. address VQ. and fast srarch 

VQ. 



Figure 7.1 : Vector quantization 
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2.3.4 Vector Quantization using an Adaptive Codebook 

Input vector Ncrirrst - 
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In adaptive VQ. the codebook is adaptecf in order to match the lucol image statistics. For 

esample. a nrw codrbook can bc geiirrated using the vrctors of the input image as ri training 

set. The nrw çodebook is transmitted. t'ollowd by the labels corresponding ro the wçtors of 

the image. Goldberg et al. [131 have presented an adaptive V Q  scheme for coding 

monochrome and color images. In their schrme. the image is panitioned into non- 

overlapping sub-images. and for rach sub-image a separate 16-64 lsvrl codebook is creatcd. 

These codebooks brtter match the local image statistics. however. the improvernent in çoding 

pert'orniancr is achicived nt the espense of tlir ovcrhead incurred tor transmitting the neu 

çodebooks. An alternative scheme. which reduces the overhead. is to update or replenish part 

of the codebook. For example, Gersho [ id]  have proposed a technique where the distonion of 

Look-up vector 
triblc. 



each input vector is monitored. and if it is larger than a predetemined threshold. the 

codeword with the "largest time since use" is replaced by the input vector. 

We note that in the above techniques. the major drawback is that the improvemrnt in 

image quality is achieved at the expense of increasing the computational complexity. 

2.4 Wavelets 

Wavelet transform decomposes a signal into a weighted sum of basis functions called 

wavelets [23]. The unique feature of the wavelet transform is that the wavelets are ail dilatcd 

and translated versions of a single iunction. the so callrd "mother wavrlet". Mathematicolly. 

this is esprrssed as follows (one dimension): 

(3. I O )  

and by 

wavelet 

discretizing the values for arr and ,û=nPoa/'. we obtain the following discrcte 

decomposition for a function g(. ): 

1 -111 -'t 
wherc y,,,,(rl =a,, ~(u,,-"'r-/$,). The usual clioiçr is a,=I and P,,=l. whicli rcsiilts into 

dyadic grid. Because of the orthonomiality of y/,,,.,, we get 

"n, .n ( g )  =< Y ,,, .,, - ' (2.13) 

The ivavrlet coefficients can be calculatrd iteratively using a two channel filterbank 

[231. A 7-D wavelet transform is implemrnted usinp a separablc approach. 

Figure 7.2 shows a 3-level wavelet decomposition of an image 9' of size .b Y pixels. 

In the first level of decomposition, one low pass sub-image S' and three orientation selective 



high pass sub-images (w',", w',', W1*4 are created. In the second level, the low pass sub- 

image is further decomposed into one Iow pass and three high pass sub-images (~v'v", IV? 

CV~""). This process is repeatçd on the lowpass subimage to form a highrr level wavelet 

decomposition. The inverse wavelet transform is calculated recursively. where the highsr 

resolution images are generated starting from the lower resolution sub-images. 

Original iniagt. S' 

C C "  

Figure 2.3: Rttpresentririon of 2-dimensional wavelrt transforni. 

2.5 R E G  Compression Standard 

Recrntlp. the International Standards Organizntion (ISO) lias proposrd a standard for imagc 

compression known as JPEG (Joint Pictiire Esperts Group) [25]. JPEG provides a tiarnr.\wrk 

t'or compression of gray 1rvt.l and color images for a wide rage of applications. The JPEG 

standard has four modes of operations: 



Baseline sequential: each image is compressed in a single left-to-right, top-to bottom; 

Progressive coding: the image is encoded in multiple scans for applications in which 

transmission time is long and the user prefers to view the image building up in multiple 

coarse-to-ciear passes. 

Hierarchical coding: the image is encoded at multiple resolutions. so that lower resolution 

versions may be accessed without the need to decompress the Full resolution image. 

Losslrss compression: the image is encodrd usinp DPC kt-basrd loslrss approac h. 

The baseline sequential is a DCT-based algorithm. The progressive and hierarchical 

modes use a modified version of the baseline algorithm. The DPC bl-based lossless algori thm 

is independcnt of the DCT. We now presrnt a brieî' description of the baseline sequentiül 

mode. 

In the basrline mode. image compression is carrird out in three steps: DCT 

computation. yuantization and variable length coding. The image to b r  coded is first 

partitioned into non-overlüpping blocks of s i x  8 x 8  pisels as sliown in Figure 2.3. In ordcr to 

decreasc the average rnergy of tlie image pixels. encli pisèl is levcl-sliifted by 2"". wherr n is 

the number of bits requircd to represcnt each pixel value (for esamplci. n is equal to 8 for 

images with 256 gray lrvrls). Each block thrn undergoes a 2-dimensional DCT. The DCT 

coefficients are quantized using a visually adapted quantization table. The DC coefficients 

are differentially encodrd. while the AC coefficients are scamed dong the zigzag lines 

s h o w  in Figure 7.4 and snçoded using an entropy encoder. The decoder is sirnply the inverse 

of the encoder. 



8x8 blocks 

DCT Quantizer 
A 

Entropy coder 
A 

Figure 1.3: Basclinc JPEG encoder. 
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Figure 2.4: Zigzag scanning of the DCT coefficients 

2.6 MPEG Compression Standards 

Rrcently. the International Standards Organization (ISO) have proposed standards for vidtro 

compression known as MPEG (Moving Picture Experts Group [ 2 6 ] .  In addition. the 

Consultative Committer on International Telephony and Telegraphy (CCITT) lins 

reçonimcndrd a standard for videotelepliony cltllrd tliç H.261 at px64 Kbitds [171. In tliis 

section wr rrvirw the MPEG video compression algorithm. 

In the MPEG video compression standard, a block based motion 

estimation/compensation is employed to remove the interfrarne correlation and discrete 
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cosine transform (DCT) for the removal of the intraframe correlation. Block diagrams of the 

MPEG encoder is shown in Figure 2.5. Here. a group of pictures approach is used instead of 

the frame by frame coding. A group of pictures is typically a combination of one or twvo intra- 

pictures (1). predicted picture (P). and the rest of bi-directional pictures (B) as shown in 

Figure 2.6. The 1-framrs provide randorn nçcess points and are also usrd as (i reference for P- 

frames. The I-frarnes are coded using DCT on 8 x 8  blocks. The DC coefficient is 

differentially encoded using variable length codes (VLC). The AC coefficients are zigzag 

scamed as shown in Figure 2.4 and ordered into (RUNLENGTH. AMPLITUDE) pairs. A 

variable length coder (VLC) is used to encodr each pair. The P- and B-frrimrs are 

drcompossd into I6x 16 blocks and the motion vector for each block is calculated. The 

motion vrctors are also variable lengtli codrd and transmitted. The motion compensated 

differencr h m e  is partitioned into 8x  S blocks which tlirn undergo a 2-dimensional DCT. 

The DC and AC corfticients are quantized. ordered dong the zigzag scan line into 

[ RLJNLENGTH. .AMPLITUDE] pairs and çoded using a VLC. 

Input Frrinic 
framcs n i m o r y  

(nvcrsc De- 
DCT quantizcr 

Motion vectors 
Btiffitr. w Bit 

VLC' 
MU'< S trram 

Figure 2.5: MPEG video coder 



Figure 2.6: Esample of a group of pictures used in MPEG. 

In MPEG-1 and MPEG-2 the video information is assumed to b r  rectangulnr of f ixrd 

size displayed at tised interval. In MPEG-4 the concept of Vidco Objrct (VO). Vidro Object 

Layer (VOL) and Vidro Objrct Plane (VOP) have bren introduced. A VO can be viewed as 

the MPEG-4 ctquivalrnt of a GOP in the MPEG-I and -2 standards. VOP rttpresc~~ts 

instances of a yiven VO. The VOP can have arbitras shapr. For esample. tlir video tiame 

shown in Figure 1 . 7 ~  can be srgmentsd into two VOP's: VOPl for the background and 

VOP2 for the foreground. as shown in Figure 2.7a and 2.7b. respectively. At the encodrr side. 

together with the VOP. composition information is sent to indicatr wherr and when each 

VOP is to be displayed. At the decoder side the user may be allowed to change the 

composition of the scenr displayrd by interacting on the composition information. Tlie sliape. 

niotion and texture information of the VOP's brlonging to the samc VO is encodeci into a 

srparaie video object layer (VOL). 



Figure 2.7: Example of VOP. (a)  One frame from a scenr. (b)  VOPI. and (c)  VOP2. 

For each VO. the shnpr. motion. and testiire information of  VOP's ore coded. Thc 

shapr information is ref'rrrd to as alplia planes. The techniques to be adoptrd bp the MPEG- 

4 will provide lossless coding of alpha planes and lossy coding of shapes and transpnrcncy 

information: thus. allowing for tradeoffs between bit rate and accuracy of shape 

reprrsentation. Furthemore. intra-and inter-shape coding functionalities ctmploying motion 

compensated shapc prediction is snvisioned so as to allow efficient and nndom access 

operaiions as well as efficient coiupression of shape and transparency information for diverse 

applications. 

Temporal redundancies between video content in separate VOP's within a VO are 

exploited using block based motion estimation and compensation. The intra VOP's as well 
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as errors d e r  motion compensated prediction, are coded using DCT on 8x8 blocks, in a 

manner similar to hat employed in MPEG. The compressed alpha plane. motion vectors. and 

DCT coded information are multiplexed into a VOL bit strearn by coding the shape 

information followed by motion and texture coded data. 

2.8 Summary 

In ihis chapter we have presented a review of image and video compression techniques. First. 

we have explained the concepts of lossless imap/video data compression. We have thrn 

presented an overview of lossy compression techniques including predictive coding [3]-[j]. 

transform codiny [6]. subband coding. fractal coding [18]-[19]. and modrl-biised 

compression techniques [ 1 71. We have rnipliasizrd the rwirw of vector quantization ( V Q )  

[7]-[1 j] and wavelet [20]-[NI methods as the tocus of this thesis is cssentially based on VQ 

and wavelct-VQ. Finally. we have presented a review of JPEG. MPEG. and MPEG-4 

con~pression standards [?5 l-[N 1. 



Review of ImageIVideo 

Indexing 

Wr recail from chapter I that. one of the key features required in a visual database is efficient 

indesing to cnable fast access to the irnagedvideo in the database. In order to overcome the 

limitations of keyword bastd systems and classiticationiinterpretation techniques. indssing 

tecliniques based on automatic feature extraction have bren reponed in the literaturr. 

T'ypicall';. indices based on feat~ire vsctors derivrd from images and vidro are used as indices 

to search and retrieve the irnags(s)/video of interest. In this chaptrr we present a detailrd 

rrviçw of  image and video indesing techniques in the uncompressed domain [ 15 11. 

This çhapter is orpanized as follows. An overview of a visual storagt. and reirieval 

system is presented in section 3.1. Image and video indexing in pixel (uncompressrd) domain 

are reviewed in sections 3.2 and 3.3. respectively. Compressed domain image and video 

indesing tecliniques tire rcviw-zd in sections 3.4 and 3.5. resprctively. This is followed by a 

rcview of MPEG-7 standards in section 3.6. Finally. the sumrnary is prrsrnted in seciion 3.7. 



Visual Storage and Retrieval System 

Visual database access has two main components: storagr and retrieval. In the srorage 

process. images and video are processrd to extract features which describe their semantics. 

The estracted features are thrn reprrsented. organized and stored in the database. In the 

rrtricval procrss. the system analyzes ri query. cxtracts the appropriate fcaturr: vector and a 

search process is performed. The search process is carried out by computing the "similarity" 

between the kature vector of the query and those of the candidate images and video stored in 

the database. The retrirvrd images and video nrr presented to the user in the drscrnding order 

of the similarity to the query. 

Several image and video databasr systems have bern proposrd in the literciture [NI- 

[37]. An architecture of a gcneric imagdvideo databasr systcm is s h o w  in Figure 3.1. I t  

consists of the user interface. content-based retrieval. organization. and database mana, (lement 

modules. A functional description of each module is presented below. 

1 .  fiwr Inrerfàce: In visual information systrms. user interaction p l a y  an important role in 

almost al1 of its iùnctions ( c g . .  srmi-automatic and manual featurc estnçtion. navigation. 

selrction. and refinement). The user interface consists o l  n que- processor and a browser 

to provide the interactive graphical tools and mec hanisms for querying and browsing the 

database. respectively. The query processor provides the means to retrieve images and 

video using a varitity of mrthods and interfaces. A que- c m  range from a simple 

kryword-based qurr). to ri comples one whrre the user specifies a sketch or an object 

track. In contrast to textual databasr systems. image and video databases are required to 

evaluatr properties of the data specified in a query. For example. to retrieve al1 images 



similar to an image based on color, the coior attributes ( e g ,  color histogram) of the input 

image has to be calculated. After retrieving ail similar imagedvideo. the browser is used 

to display the results. The browser allows users to navigate through the database visually 

and to further refine the search. 

- .  
User / 

User Interface 

Content-Based Retrieval 

Database Management 

Figure 3.1 : Storage and retrieval of images and video. 



1. Conlent-bnsed Retrievcrl Modzrle: As shown in Figure 3.2. the content-based retrieval 

module consists of the following: 

Camera 
Object Coior 

Operations 

Sketch Texture Keywords 

Feature Extraction and Representation 

Figure 3 .?: Content-Basrd Retrirval blodulr 

Scrnr Chcrnge Detecrion: Prior to storage in a database. a vidro sequrnce is first 

segrnrnted into rlemental scenes called shots. -4 shot is a sequrnce of frarnes gentirateci 

during a continuous operation and tlierctforr represents a continuous action in tinx or 

space [1271. Tlir purpose of the segmentation process is to partition the vidtio streani intu 

a set of rnsaningful and manageable segments which then serve as basic units for 

indexing. Once a video sequence is segrnented into shots, a set of key fiames is then 



selected to represent the shot [ l  1 1],[112]. Each shot is represented using spatial or 

temporal features. The spatial fearures refer to the spatial content of the key frames oE a 

shot. while the temporal features refer the temporal content of the shot. The key frames 

of a shot are fed to the image pre-processing stage in order to generate the spatial features 

of the shot. while the shots are analyzed in ordrr to extract the temporal featurrs. 

Iinnge PI-e-prosessirig: The image is first pruczssed in ordrr to ttxiract the features which 

describe its contents. The processing might involve decornpression. enhancement. 

tïltering. normalization. segmentation. and object identification. If the input image is in 

the cornpressrd foriii. dc.compression is requircd to tàcilitatr: rsrcution of the pisel 

dornain algorithms. The outpur of the image prr-procrssing stage is typically a collection 

of ob-iects and rrgions of interest. 

Felitirre E-~rrtrcrion und R e p r r s n r ~ i o n :  In this stage. the sr  mantiçs of irnageh idco 

content are rstracted and represented. The basic philosophy is the transformation of the 

data-rich piscl representation of image and video spacr to compact and semantic-rich 

rrpresentation 01' visual characteristics (color. texture. .... etc.) in featiire spacr. Featiires 

(of the objscts. rcyions. and/or the wlide image) such as texture. color. etc. are usrd to 

describe the content of a still image. For video. the spatial features are genented using 

still image techniques [ I  1 11-[l 121, whilc the temporal features are rxtracted based on 

motion and/or cümera operations within the shot [12Zj.  Image and video fcatures can br 

classi fied into primitive and logical featiires [39]. Primitive feritiirrs suc h as çolor. slicipe 

centroids. etc. are quantitative in nature and can be rxtracted automatically or semi- 

automatically. Logical features are qualitative in nature and provide abstract 



representations of visual data at various lcvels of detail. Typically, logical features are 

extracted rnanually. One or more features can be used in ri specitïc application. For 

example, in a satellite information system, the texture features arc important. while shape 

and color katures are more important in trademark registration systrms. Oncc the 

fcatures have been extracted. the tcxtual. numerical. alphanumerical. etc.. index keys arc 

derived. 

3. Orgunizoriun: El'licient query processing neccssitates the organization of imagdvidco 

indices such that eflicictnt search stntegics c m  be used. We note that imagdvideo indices 

are approximately rcprescnted. may have inter-rclated multiplc attributes and may not 

have an cmbcddcd order [ I - j ] .  Thercforc. convcntional indesing structures like B-trcc. 

hashing, etc.. cannot bc used for the organization of imagdvidco indiccs. Flcxiblc data 

structures should bc used in order to Iàcilitate storagciretricval in visual information 

systems. Structures such as R-tree tàmily [128]. R'-tree [1291. quad-trce [ 1301 and grid 

file 11 3 1 ] arc commonly used. Each structurc has its advantages and disadvantagcs: somc 

have limitcd domains and somc cm bc uscd concurrcntly with others. Niu rr (11. [X 1 

havc discusscd sornc issucs çonceming novsl indcxing structures Ior imagc rclrieval. 

Ahangcr et al. [ 3 6 ]  have d so  presented a review of indexing structures for vidro. 

4. Dutubuse Munugemenf hfudule: The database management module provides interna1 

lcvel physical storage structurc and access path to the database. Thc databasc 

mmagemcnt modulc has thc following characteristics: ( i )  providcs insulation bctwccn 

programs and data ( i i )  providcs uscrs with a conceptual rcprcscntation oi'thc data. ( i i i )  

supports multiple vicws of the data, and (iv) ensures data consistency . 



3.2 Image Indexing In Pixel Domain 

Recently. image indssing techniques based on color. texture. sketch. shape and spatial 

rrlationships have been reported in the literature [40]-[45]. Color. texture and shape allow 

users to retrieve images thal contain objrcts whic h have similar attributes. Sketch allows 

images to bc: retrievrd based on a rough outiinc of the object(s) in a qurry image. Spatial 

relationships facilitate retrievals based on features such as adjacency. overlap. and 

containment among the objects in a scrne. We now present a rrvirw of image indesing 

techniques. 

Color is an important attributr for image representation. The color distribution of an image is 

typically represented using the image histogram. The histogram of an image ji is an N- 

dimensional vsctor iH( f i . i ) :  i=l .  1. ... . Xi. where .V is the number of colors (bills) and H(/,.,.ii 

is the number of pisrls ha\.ing color i. 1-fistoyrams are invariant to image rotation. translation 

and viewing asis [ - ) I I .  111 image indesing using histogram [-Ml-[G]. the histograms art: the 

feature vectors used as image indices. We note that a similarity measure is used in the 

Iiistogram spüce to measure the similarity of two images. 

Given a pair of iiiiagrs. . f,; and J,,. the similarity betwern the two images ma' be 

ineasured using tlie norniiilized 



It has been s h o w  that this metric eq. (3.1) is fairly insensitive to changes in image 

resolution. histograrn size. occlusion. depth and view point [JO]. Howrver. histograrn 

intersection does not consider the perceptual similarity between the different bins. A rnetric 

which takes into account the similarity between the bins is defined as Follows : 

wlirre the weight Cr, denotes the cross correlation between the colors corrrsponding to bins i 

and j. We note that the metric in eq. (3.3) has a higher computational complçxity than the 

histogram intersection (eq. (3.1)). However. it is closer to htiman judgment of çolor 

similarity. 

The color histogram requires additional storage space and a large amount of 

procrssing. For an image of sizr .fi Y. the histograrn calculation requires O(.\?? additions and 

0l.w increments. In addition. O(?() operations are rrquired to compare a pair of histo, m m s .  

To decrcase the compiitütionai çomplesity. the number of bins should bc rcduced. The tirst 

ripproach to rrduce the numbrr of bins is to represrnt the red ( R ) .  green ( 6 )  and bluc ( B )  

componrnts using the RG. OF. and W B  cçolor ascs as follou.s [-!Ut: 

R G = R - G  

B I ' = 3 x  B -  R-G 

W B =  R+G+ B 

Tliis representation allows the intensity ( W B )  to be more coarsely quantized than RG and BK 

i-1 Iiistogram of 2048 bins is obiainrd if RG and BYare dividrd into 16 sections. wliilc IU? is 

The second approach to reducing the number of bins is based on the 

observation that a small number of bins capture the majonty of pixel counts in a histograrn. 



Therefore. only the bins with the largest counts are cornpared. Experiments have shown that 

this approacli results in a marginal depndation in performance [Ji .QI. 

An alternative approach to reducing tlie computational complexity in color indrxing. 

is to use the dominant features of a histograrn. A color distribution of an image is inrerpreted 

as a probability distribution which c m  bs chanctcirized by its moments [U]. If  the first three 

moments of each color component are used. only 9 tloating point nurnbers are required to 

represrnt rach index. The similarity metric is a weighted sum of the absolute differencrs 

between the corresponding moments. This approach outperforms the approaches based on 

reducing the niirnber of bins in terms of storage requirrmrnts. retrieval speed and robiistness 

[4. i-Io\vs\w. the use of low ordcr moments is sensitive to changes in illumination. 

Another approach to rcducci the computationnl complesity is to use a lower 

dimensional histogrnm or a lower complrsity metric to filter a large fraction of the database. 

A higher-dimensional histograrn or a higher complexity metric can thrn be applied to the 

small set a l  retrisved iniages. Vellaikal el (ri. [481 have proposd to rcpresent the color 

histogram at diffrrent rcisolutions. Here. the histogram is Jecomposed using the tbrre- 

dimensional Haar wwelttt bais  tiinctions. In the ssarch process. tlit: top Il' wavelet 

coefficients of the histogram of the query image are compared. Hafner er (11. [ j 3  1 have 

proposrd the use of a lower dimensional and computationally simple distance measure based 

on (3.7). This tecliniquc not only rediicrs tlir complesity of the searcli procrss. but c m  ako 

be iniplemented in a hiernrchical rnnnner. whrrr n finer match can br  obtained by increasing 

the nuinbrr of coefficients cniployrd in the srarch process. 

W s  note that in the previous techniques a histogram describes the entire image 

content. without taking into account the location of the colors. This may resuli in 



unsatisfactory retrievals (e. g., false positives). For example. an image with a white car on the 

left might be matclied to an image with white birds on the right. This problem can be 

rliminated by incorporating spatial information in the content reprrsrntation. Gong et trl. [42] 

have proposed the use of local histograms. Here. an image is partitioned into 9 (3x3) sub- 

images. For each sub-imagè. the color histogram is genrrated. The content of the image is 

rrpresented by the histograrn of entire image and the histograms of the sub-images. This 

technique captures the locality of colors in an image. Stricker er tri. [49] have proposeci a 

technique whcre the image is partitionrd into 5 overlapping fuzzy regions. The histogram for 

each region is calculated and is rrpresented by the first 3 moments. The 15 moments are used 

to reprrsent the image. The fuzziness of the reyions rnakes the frature vector insrnsitivc to 

small rotations of an image. In addition. ri similarity fiinction which esploits the spatial 

arrangement of the 5 regions is èinployrd rcsulting in invariance of retrittvril results witli 

respect to rotations of 90 degrses around the center of an image. 

Including spatial information in the color representation of an image will not only 

improve the retrieval rate but also allow user queries based on the color of a sub-image. For 

rsample. qiieriss such as "retrievc al1 images with white birds on the riglit" could be 

answered. However. this technique requires the use of efficient segmentation and 

representation of the sub-images. 

3.2.2 Texture 

Texture is an important katuri: of a visible surface where rcrpetition or quasi-repetition of 

fundamental pattern occurs. Texture features such as contrast, uniformity, coarsenrss. 

roughness, regularity, frequency, density and directionality provide significant information 
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for scene interpretation and image classification [54]. Texture modeling and classification 

techniques can be grouped into structural. statistical and spectral mrthods. In this section. a 

survey of texture modeling and classification techniques that have been employed in image 

databases is presented. 

Picard ri cd. [59] have pressnted a technique based on Wold deconiposition. I f  an 

image is assurned to be a homogeneous and regular 2-D random field. tlien the 2-D Wold likr 

decomposition is a superposition of threr orthogonal components: a purel'-indeterministic 

field ic(n.rn). a generalized rvanescent field v(n,m) and a harmonic field w(n.ni). This rnodrl 

providrs a description of textures in trrms of periodicity. directionali ty and randomness. Each 

one of these attributes is associated with the prominence of a diffmnt çoniponent. ' T l x  

conspicuous components in periodic. directional and less stnictiired textures are i i lm .n i ) .  

v(17.m) and l r (n. t i i ) .  respectivsly [59]. Simulations on about a 1000 test images (cropped froni 

I I2  Bordatz testiire irnnfrs [QI)  have shown tliat the Wold-based paramrtsrs arc closrr to 

hiiman judgmrnt o t' testtire simi larit? than the principal components approaçli. 

Tamura el oi. [6 1 1 have propossd the use of coarscnrss. çontrast and dircctionnl it! as 

tsstiirr featiires. C'oo~wiess  is a rnçasurs of the granulariry of the testiire. Cronfi*m-r can b r  

rnrasured based on the gray-lrvel distri but ion. Direcfiuncr/i& determines whether or no t the 

image has a certain direction. A rnodified set of the Tarnura features has been used in the 

QBIC project [G]. 

Zhang er L I / .  [661 ticive proposcd a technique based on frritiires derived from ri 

i~iuliiresolution rrp-c.sciitatioii of the texture image. Here. the image pattern is decomposrd 

into a set of differrnt rrsolution sub-images using multiresolution simultaneous 

autoregressive mode1 (MR-SAR). The MR-SAR panmeters associated with each sub-image 



are used to construct the index. The combination of MR-SAR mode1 with Tamura's 

coarseness features and gray level histogram gives better performance than MR-SAR [66].  

Howrver. the irnprovement in retrieval rates is at the cxpense of increasing the size of the 

f'ature vector which increases the comple~ity of indexing and searching. 

Retrieval by testure is useful when the user is interested in retrieving texture images 

which are similar to the query image. However. the use of texture features in a genrnl visual 

database sysrrm requirrs texture segmentation (which remains a cliallrnging problrm) and 

the combination of texture katures with spatial information. 

3.2.3 Sketch 

Anotlisr approüch to desçribinp the content of an image is bg using a sketch. A sketch is an 

abstract image which çontains the outline of objccrs. In this technique. for each image to bc 

stored in the database. a sketch image is generated and stored. Typically. a sketch is created 

by using cdgc dtitcction. thinninp and shrinking algoritlims. The sketch is uscd as a kc!- to 

rrtrirw the dcsircd images from the databasc. 'The similiirity of two imagcs is nxrisured by 

usiny the siinilarity of thtiir sketclios. 

A teclmique for sketch basrd image retrieval has been proposed by Kato er u1.[80] and 

is implemented in the QBlC [U]. Each color image is convertcd into luminance and 

clmminance componrnts. An rdgr operator is applird to the luminance çornponent to 

coinputci the bina? rdge image. The edgr ininet: is reducrd to 64x64 pixels and the reducrd 

image is thinnsd. Que- processing is performed by matching the user d r w n  sketch to tlir 

sketches stored in the database. The matching process between the query image and a 



candidate image is executed as follows. The query sketch is first reduced to 64x64 pixels and 

divided into blocks of  8 x 8  pixels. Each block in the query image is correlated with the blocks 

within a search area in the candidate image. The size of the search area is 16x 16 pisels and is 

centered around the block. 

The main disadvantage of this approach is thût it is orientation and scnlr drpendrnt. 

Similar images with different orientation or scale will not be retrieved when compnred with 

the query image. This problem cm be eliminated by using sophisticatrd edgr repressntation 

and matching algorithms. 

3.2.4 Shape 

Tlie shapr of an objrct rekrs to its profile and physical structure. Shapr fearures arc 

fundamental to systems such as medical image databases. where the color and textures of 

objects are similar. In yeneral. shape features can be represented iising traditionül shapt: 

rinaiysis such as invariant moments. Fourier descriptors. autoregrcssiw models and peometry 

attributes [69]- [71]. However. in image storage and retrieval applications. shapr fcaturrs çan 

bt- classitird into global and local features. 

C;lohiil f&rrio-es are the properties derived from the entire shape. Esamples of global 

shape katures are roundnrss or circularity. central moments. eccentricity and major asis 

orientation. In gencral. global katures are robust to distortion. howver.  tliey cannot hmdlr 

occluded sliaprs. Enkins et tri. [781 have developcd the ARTISAN shape rrtriwal systcm 

(Automatic Rrtriewl of Trademark Images by Shape Analpsis). Edge drtection techniques 

are applied to the tnde mark images to detive a set of region boundaries. The boundaries are 



approsimated as a sequence of straight line and circular arc segments. The boundaries are 

then grouped into families using proximity and shape similarity criteria. Eight global features 

are used. namely: circularity. aspect ratio. discontinuity angle irregularity. length irregularity. 

complssity. right anglenness. sharpness. directedness. 

Loail\énriut.s are those derived by partial processing of a shape and do not drpend on 

the entire shape. Examples of local features are size and orientation of consecutive boundary 

segments [76]. points of curvature. corners and turning angle. Gary rr c d .  [75] have presented 

a shapr similarity technique based on local boundary features rncoded as muiti-dimensional 

points. Although local features c m  be used for occluded shapes. they are noise sensitive. Ang 

ei r d .  [79] have presented multidirnensional kature nirasures of objrct shapes and feature 

blobs for retrieval of crramic ani facts. Object shape is represented by boundary eccrntricit!. 

and region conipactrirss. moment and convesity. High detailed re-ions are reprrsrnted bl- 

number of blobs. dispersion of blobs. and central moment of blobs. and total blob s i x .  

Rctricval by shapr sirnilarity is a difficult problem because of tlir I x k  ut' 

mathernatically esact definition of sliapr sirnilarity wliich accounts for the vririoiis srmontic 

qualitirs rhnt Iiumans assipn to shapes. The majority of such tecliniyiies  ha\^ b w n  liirnsd ai 

retrieving simple 3-D image objects capable of being represented by a single shapc boundary. 

Recently. Scassellati er al. [74] have studied shape similarity using algebraic moments. splinr 

citrw distances. ciimulative tiirning angle. sipn of curvat~ire and tlaiisdro tt' distance and 

çoniparcd it to Iiiiniün perception. It has b w n  s h o m  [74] tlirit tiirning anglc. sign uf'ç~in.at~irc 

and olgebraic moments mas< çlosely match humlin judgrnent. 



3.2.5 Spatial Relationships 

In this technique. objrcts and the spatial relationships among objects in an image are usrd to 

rrpresent the content of an image. First. rmh image is converted into a syinbolic picture. The 

symbolic pictures are then encoded typically using 2-D strings which are stored in the 

database [5 11-[57]. Queries are cxpressed in the sams 2-D string notation. Tlie problrm of 

image retriewl ihiis bccomes a problem of 2-D seyuence matching. 

The basic algorithm for image indexing using spatial relationships \vas prrsentrd by 

Chang r i  r d .  [ Y  11. To start with. the objects in an image are segmented and recognized. The 

image is convened into a symbolic picture. where the objects are represrnted using a set of 

symbols S. The position of an object in the symbolic picture is derrrniinrd b>. itic uhjrçt's 

7 - 9  ' centroid. For asninple. the symbolic picturtt çorresponding to the image in Figirc.  xi is 

s h o w  Figurc 3.3 b. The relationships among the objrcts in an image art. espresseci using the 

set of operators A=(<.=.: 1. The symbol Y" drnotes the left-right or below-abovc spatial 

. . rrlationsliip. f h c  "=" sinnds for "at the some spatial location as" and thc s!*nibol ": dcnotes 

the rrlniion "in [ h ~ '  sânx set as". A 2-D string over S is drfined as 

(-r,j1,-~2y2...s,,~;.-r ,,,, ~ , x , , ~ , - ~  .... ,,,,, z , , )  (3.4) 

1 where -r,-y2-rj ... .Y, is a 1 -D string over S @>O and I,ES). p(.) is a perrnu~ati~n over ( 1. .... 1 1 , .  

Jb /Y9 j  ... y, and z/=~zj ... Zn are 1 -D strings over -4. For example. in Figure l i a .  tr and b are to 

the lrft of c. c is above h and h is abovc C I .  the image can be represented using tlir 2-D string 

; cl=h--. L'. ' l  dl.- c m ; .  



b) 

Figure 3.3: Esample of image representation using 2-D string. a) An image containing 3 ninin 

objccts. b )  Symbolic picturi: whicli represrnrs the image (a).  

blatching 2-D strings is based on a ranking schrme for the objtict symbols in tiic 

strings. The matching algorithm is simple. however. for images with large nurnber of objrçts. 

( i )  the 2-D string rttpresentntion is cornplex. and ( i i )  the spatial operators ( . - l= i  <.=.: l )  cire not 

s~ifticirnt to give a çonipletr: description ot' the spatial rrlationsliips aniong the objests. 



3.3 Video Indexing in Pixel Domain 

..\ video sequenci: is a series of images sequentially ordered in timr. Prior to storage in a 

database. a video stream is segmented into elementary units (shots) to br  identiiird and 

indesed. Since vidro data consists of still images ( frarnes). al1 the techniques prsscntrd in 

sectioii 2.2 are applicable to the individual frarnos of  a vidro sequelice (spatial kntiires). In 

addition. video has temporal proprrties such as motion. camera operations. sequrntial 

composition and interframe relationships. In this section. wr present a rèvièw of video 

segmentation metliods fol10 wed by video indexing using spatial and temporal fsüt ures. 

3.3.1 Scene Change Detection 

A numbcr of algorithms for scenc change drtection in both the uncornprrssed and 

cornpressrd domains have bcrn reponed in the literature [94]-[l l j]. The different dyorithms 

in the uncornpresscd dornain can bt: broadly classified into five cntepories: remplate 

matching. histograrn-based. block-based. twin-coinparison. and model-bascd iechniqiies. 

3.3.1.1 IntensityKolor Template Matching 

Sçene change can be deiected by emphasizing the spatial similarity between two frarnes L9-11- 

[J61. The simplèst way to nicasure the spatial similarity betwern two framesj,, and./;, is using 

trmplate matchiny. wt~ere sach pisel iit the spatial location (i,.j) in./;, is cornparcd with tlit: 

pixel at the same location in,/;. Typically. the diffrrence magnitude. D!f;,l,.f;,.i.j). ofJ,, and./; is 

used for cornparison where 



where P l f i .  I, i.j) is the intensity of the pixel at (i.j) and Pu;,,, CI. iy. Pif",, C'.. i,jj. P!J,,. C'j, i , ~ )  are 

the color components Cr. C2. and Cj of the pixel fij) respectively. For example. in case of 

uing the RGB color coordinarr system. Cr. CT2 and C', are q u a 1  to R. G and B. respcctivrly. 

Nqasaka et al. [46] have proposed the use of the sum of the diffsrence magnitude 

s,(j; , , ,  j;, ) = D ( L , , . L , - ~ ~  

A scenr change is declarrd whenevrr S,u;,,,j;~ exceeds a prsspcci fird threshold. 

Zhang rr al. [95] have presented an algorithm based on the numbrr of çhanged pisrls. 

A pisrl is changed if D(f;,,,./i,i,j) is greater than a certain threshold. A cut is driccted if the 

prrcentagr of the changed pisrls is greater than a threshold. 

Wr note that. using the previous metrics. it is difficult to distinguish betwern a srnall 

change in a large are3 and a large change in a small area. Theritfore. trrnplate niatching 

mctliods are sensi [ive to noise. o bjcct motion and çaniera operations (e.g. pcinning and 

zoorning) sinçe they result in faIse detections. 

3.3.1.2 Histogram Based Techniques 

Wr recall tiom section 7.1. that the intensitylcolor histogram oE a prayicolor image f is  an .Y- 

dimensional vector i H(f.3: i=l. 2. ... . .\;] where .V is the number of levelsicolors and H(/.*i) is 

the numbcr of pixels of levellçolor i in the image j: The rationale beliind histogram based 

approaches is that two frarnes that exhibit minor changes in the background and objçct 



content will also show insignificant variations in thrir intensitykolor distributions. In 

addition. histograms are invariant to image rotation and change slowly under the variations of 

viewing angle. scale and occlusion [4]. Hence. this technique is ~ S S  sensitive to c a ~ ~ a  

operations and object motion compared to template rnatching based techniques. 

Tonomura [97] has proposrd a technique basrd on the gray Irvel histogram 

difference. Let the histograms of framss /, and J, be denoted by H f i .  i) and H(f;,, i). 

respectivrly. The sum of the histograms diffsrence magnitude is definrd as: 

A cut is declared if S2)';,,,,f;~ is greater than a rhreshold. 

Histogram based techniques tend to lose scrnt: changes which have srnall variations in 

their intensity distribution [981. In addition. hisrogram cornparisons may not retlect the 

content difference [100]. Hence. histogram based techniques are not necrssarily superior to 

tcmplatr rnatching approaches. 

3.3.1.3 Block Based Techniques 

We note that the techniques presented in sections 3.1.1. I and 3.1.1.2 use global rittributes of 

images such as point by point differences. and intensity or color histograrns. Block basrd 

techniques [100]-[IO11 use local attributes to reducr the et'fect of noise and ccinwa flashes. 

Hrre, each frarnej;,, is partitioned into a set of i- blocks. Rather than comparing a pair of 

framrs. ttvrry sublime in - f;,, is compared with the correspondiny siibframr: in f ! ; .  'rlie 

similarity between j ,  andf,; is measured using 



where C', is a predrtermined weighring factor and S,(/;,,.J;l.i) is a partial match obtained by 

comparing the ith repion in fin and ji. Kasturi el Q I .  [94] have presrnted a metric based on 

statistical characteristics of the intensities of subimages. Corresponding blocks in two fiames 

are conipared usiny a likelihood ratio. 

where p ,., and a',,,,, are the mean and variance. respectively. of block i in fran~ri j;,,. If tiir 

likelihood ratio is greater than a threshold. S,lf;,,-f;,. i l  is set to 1. Othenvise. 

O. A scrne change is declarrd whenever the number of clianged blocks is 

whenever SJ(f;,,lf;, 1 is greatrr than a given tlireshold and C',. is 1 for al1 i )  

S,//;.,j;t.i) is set to 

arge enough (i.e.. 

Cornparrd to the 

intensityicolor template matching. this approach reducrs the number of over detectrd 

(incorrectly) camera breaks. This reduction is a rt-sult of the increased tolrrrincs to slow 

camera and objcct movements. Howcver. çuts may be misdetected betwrcn two frames tliat 

have similar pisel values. but different density functions. 

Video segmentation is the identification of two types of segment boundaries (abrupt 

changes and gradual transitions) which takr place ovrr a sequence of frames. The previous 

techniques are bascd on a single threshold and lack the power of dstecting gradua1 scrnr 

chanpes. rince i l i t  f~ in ic  to tianic diffsrençr. in a gradua1 transition is srnallrr thnn the 

threshold. Loweriiig the ihrrshoid results in both false drtrctions and misdetections. We now 

review a technique for the detection of gradual scene changes. 



Twin-cornparison [95] has bren proposed for the detection of gradua1 scene changes tising a 

dual threshold. In the first pass. a high threshold Tc. is employed to detect abrupt scene 

changes. In the second pass. a reduced threshold T, is used to idrntify the potrntial starting 

frame 1,; of a transition as shown in Figure 3.4. Once j; is idrntitied. it is cornpared wirh 

subsequent tiarnes. measuring the accumulated difkrencr instead of the h m e  to framt. 

diflerence. The end frarne /, of  the transition is detected when the difference between 

successive frames decreases to less than T, while the accumulated difference becomes larger 



than Tc. If the consecutive frame difference falls below Tg before the accumulated difference 

rxceeds Tc, then the potential starting point& is dropped, and the search continues for other 

gradual transitions. Although the twin-cornparison approach is effective in detecting gradual 

scene changes, however the type of scene change (fade, wipe, ... etc.) cannot be identifird. 

3.3.1.5 Model-Based Segmentation 

In a video sequence. gradual transition from a scene to another is the result of ihr editing 

procrss. Editing has direct influence on how the viewers respond to the video material. their 

interpretation. and their emotional reaction. Film editing is to be considered as not only the 

glue between shots. but also an essentiai contribution to the meaning conveyed by the video. 

Hence. it is not only important to identify the transition position. but also the type of the 

In model-based techniques, the problem of video segmentation is viewed as the 

procrss of locating the edit boundaries witliin the video sryuence. Hrre. di ffcrrnt d i t  types. 

such as çuts. translate. wiptts. fades and dissolves are modeled by mathematical functions. 

Hampapur et d. [ 1 141 have presented a mode1 for the video rdit. Let S l k y  t )  and S2(.r.-v,i) be 

two shots that are being edited, and S(r,y,t) the edited shot. AI1 the chromatic processes can 

be described as a linear pixel intensity manipulation: 

whrre I l .  1: rire tlic Icngtli (in number of frames) for which the scaling of cach of the two 

shots lasts. This technique is efficient for detecting chromatic edits which results from scaling 

the color space. However. it cannot be used in detecting other types of chromatic translations. 



rotation, etc. Aigrain et al. [Il31 have presented a technique for the detection of scene 

boundarirs based on a differential model of motion picture. The algorithm is based on an 

estimation of the density function for the difference between trvo framrs. 

Afier the segmentation of a video Stream. features within rach shot such as content. 

lrngth and camera operations are used t'or indesing proposes. Two approachrs for video 

representation are distinguished. The first approach is based on image indesing techniques 

while the second is based on temporal features. W r  now present video incirsing trçliniq~ics 

based on spatial features. Temporal-based indrxing techniques are presented in section 2.3 .; . 

3.3.2 Spatial Features 

.A set of representative (reference) framçs is selectsd to represrnt sach shot ro bt: storcd in tlic 

database. Image indrxing techniques (section 2.1 ) are then applird on the refcrrncr framtt. 

Arman et LI/ .  [ 1 1 1 ] have proposed a technique where each video shot is reprrscnted using the 

shape and color kariires of a rrferencr frame. The refcrcnce trame is the 10th Framr in tlic 

shot. The shüpr and color propertirs are represented using niomrnts (the iiiass and thc 

moments of inrrtia around the horizontal and vertical axes) and color histograni. respectively. 

Zhang et c d .  [ l  121 have presented an algorithm whcre the reference frame(s) is first 

segmentrd based on prominent color. In addition. the reference friime is partitioned intu 9 

subframrs (3x3) .  Eacli franir is indesed using the size. color. shape. and losatioii oi' the 

segmentrd rryions and tlir çolor histograms of the frarne and the 9 subtiames. 

The major drawback of spatial-based vidco indesing trchniques is thar video 

sequences are treated as still images, thus the semantics contained in a sequence are lost. This 



results in rcstricting the user queries. Temporal features allow the user to specifi queries that 

involve the exact positions and trajectories of the objects in a shot. 

3.3.3 Temporal Features 

The apparent motion in a video sequencr c m  b s  attributed to c r imm or objttct niotion. In this 

section. WC present (i review of vidco indéxiny techniques usiny motion informarion and 

camera operations. 

Motion 

Hrre. image seq1ic.ncc.s are indesrd based on the motion propsrties of abjects ivi t l i in  rlic 

sequrncr. The goal of the systcm is to br  able to retrirvt: a ranked set o t' sey urnces wliicli 

have object motions sirnilar to that specifird by the qurry. 

Ioka et ni. [120] have presented a method for retrieving seqiiences using motion 

information as a kry. To start with. each frame is partitioned into rrciangiiior blocks. Motion 

vectors art: derived froni the image srqurnces using block matching. Tliese vrctors ore 

mapprd into spatio-temporal space and the motion of èach block is tlien represented as a 

single vector in the feature space. The vectors are clustered and a represrntative trajectory is 

eenerated for eacli group of vectors. A representative trajectory of a cluster is the closest to 
C 

the mran vector of the cluster and has the longest lik time. The represrntativr trajrctorirs are 

stored in the database. Querirs can be specifki using an interactive que-. speçificatioo 

mechanisrn which allows the user to enter a motion trajectory. The sprtçified trajrctory is 

matched with the trajectories of the sequences in the database using a distance measure and 



the sequences with the smallest distance are retrieved. Although this technique does not 

address the problem of correspondence of trajectories. it can be incorporated as a low level 

tool into a complete video data management system for raw feature-based retrirval. 

Lee rf al. [121] have presented a video indexing technique based on the motion 

reprrsentation for the track of a moving object (using optical tlow for motion sstractionL 

Object motion is represented using a combination of the following 16 primitive motion types: 

1 .  Trmsl~tion: North, north east, east. south east, south, south west, West. north west. 

2. Transialion in deph: close to the camera. away from the camera. 

3. Rotation: clockwise. counterclockwise. 

4. Rofarion in &ph:  rotate to left. rotate to right. rotate upward. rotatr downward. 

Camera Operations 

The seven basic camera operations are: fixed. panning (horizontal rotation). tracking 

(horizontal transverse movernent). tilting (vertical rotation). booming (vertical transverse 

rnovemrnt). zooming (varying the focusing distance) and dollying (horizontal laterai 

movement) as shown in Figure 3.5. Carnera operations include the basic operations and al1 

the different possible combinations [115]. 

Akutsu et OZ. [ l  151 have used motion vectors and their Hough tnnsforms to identifi 

the seven basic camera opentions. The motion vectors pattern is characterized physically and 

spatially by i )  the imynitudr of the motion vectors. i i )  the divrrgenceiconveryence poinr. For 

esriiiiplr. in case of a siniplr zoom in. pan righr and tilt up at a constant spcrd. the motion 

vectors are shown in Figure 3.6a, Figure 3.6b1 and Figure 3 . 6 ~ ~  respectively. The algorithm 

has two stages. The first stage employs biock matching to detemine the motion vectors 
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between successive fiames. in the second stage the motion vectors are transfonned to the 

Hough space. The Hough transfoun of a line in the spatial domain is just a point in the 

Hough space. A group of lines in the spatial domain are represented by: 

A 

Panninç 4 
4 v 

Dollying 

A 
Trac king 

v 
Booming 

Figure 3.5: Basic camrra operations. 

Figure 3.6: Motion vecton. zoom sequence, (b) pan sequence. and (c) tilt sequence 



P = x0 cos(?) + Yo W P )  (3.11) 

in the Hough space, where (X,Q+~) is the point of divcrgence/convergence. The lcast squares 

method is used to fit the transfomed motion vectors to the curve rcpresented by eq. (3.1 1)  

Seven categories of camera opentions have been estimated: pan, zoom. tilt. pan and tilt. pan 

and zoom. tilt. zoom and pan. We note this technique based on motion vcctors is noix 

sensitive and has a high computational complexity. 

Camera operations can be dciected by cxamining what are k n o w ~  as the X-ray iniagcs 

[116]. An cdge detection is first perfomed on al1 the frrunes within a shot. A horizontal X- 

ray image is then obtained by taking a weighted integral of the edgc frarncs in the horizontal 

direction. Similady, a vertical X-ray image is obtained by taking a wcightcd integral or  thc 

edgc frames in the vertical direction. Carnera operations are obtaincd by approxirnating thc 

spatial distribution OS thc edge angles of the horizontal and vertical X-ray imagcs. WC note 

that performing edge detection on al1 Frames in the sequencc is time consuming. 

Wc notc that in a11 thc prcvious tcchniques . only a subscr of thc cmcra  opcriitions 

mc cstracted. In addition. ii is not possible to distinguish tracking from panning. and 

boorninç from tilting. Recently. Srinivasan ri d. [ l  1 71 have proposcd a technique based on 

optical flow in order to distinguish tracking from paming, and boorning from tilting. This 

technique is bascd on the idea that if the components of the optical flow due to carnera 

rotation and zoom arc subiractcd from the optical tlow. the residual flow will be parailel. 

Wc notc tliat in al1 thcsc tcchniques for thc detection of camera operations. it  is 

assumcd ihai thcrc is no largc nwving objcct dominating ~ h c  visual licld in thc vidco 

sequences. In case of the presence o h  large moving object dominating the visual field, false 

detection of a carnera operation rnay occur. 
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Wz recail from chapters 1 and 2 that image and video data are voluminous, hence, the 

visual data in future multimedia databases is expected to be stored in the compressed form. In 

order to avoid the unnecessary decompression operation in the searching process. it is 

efficient to index the image and video in the compressed form. Recrntly. cornpressed domain 

image and video indexing techniques based on compression parameters have been reportrid in 

the literature [88]-[149]. In sections 3.4 and 3.5 we present a review of image and video 

indesing in the compressed domain. respectively. 

3.4 Image Indexing in the Compressed Domain 

Compressed domain image indesing techniques are generally transform domain techniques 

and c m  be classified into four categories: discrete Fourier transform (DFT). tiarhuncn-Loevr 

transform (KLT). discrete cosine transform (DCT). and multiresolution-based techniques 

such as subbands and wavelrts. Wr  now presrnt a review of compressed domain image 

indcxing techniques. 

3.4.1 Discrete Fourier Transform (DFT) 

Fourier transform is very important in image and signal processing. DFT employs complex 

çsponcntial basis functions and provides a good coding performance since it has good energy 

compaction property. Wr  note that DFT has the foilowing propertics which are usehl in 

indesing: (i)  the magnitude of the DFT coefficients are translation invariant. and (ii) the 



spatial domain correlation can be efficiently cornputed using DFT coefficients. We now 

present a review of Fourier domain indexing techniques. 

Stone et 01. [1 351 have proposed an image retrieval algoritlm in Fourier domain. The 

algorithm has two thresholds that allow the user to independently adjust the closeness of a 

match. One threshold controls an intcnsity match whilr the other çontrols ~i tcsture match. 

The thresholds me correlation values that can be cornputed efficiently using the Fourier 

coefticirnts and are particularly efficient when the Fourier coet'ficients are mostly zero. 

.4ugustejin et al. [1 361 have studied the retrieval performance of satellite images bassed on the 

radial and angular distribution of Fourier coefficients. We note that the radial distribution is 

sensitive to tssturr coarseness whereas the angular distribution is sensitive to directionality of 

testures. It was obsèrved that the radial and angular mrasures provide a good performance 

when a few dominant frequencies are presrnt. The statistical measures provide a satis factory 

performance in the absence of dominant frequencies. Celantano er (11. [137] have evaluated 

the performance of anpular distribution of Fourier coei'ficients in image indesine. Hsre. the 

images are tirst prr-processed with a lowpass Filter and the FFT is calculated. The FFT 

spectra is tlirn scanned by a revolving vector exploring 180" range. The angular histogram is 

calculated by computing the sum of image cornponents contribution for each angle. While 

calculating the sum. only the middle frequency range is considered as they represent visually 

important image componrnts. The angular histogram is used as the feature vector for 

indrsing. Tlir featurc vector is independeni of translation in spatial domain while the rotation 

in spatial domain corresponds to a circular shift in the histogram. 



3.4.2 Karhunen-Loeve Transform (KLT) 

Karhunen-Lowe trans form or principal component anal ysis. is based on the statistical 

properties of an image. Here. the basis îùnctions are the eigenvectors of the autocorrelation 

mritrix of the image. KLT provides maximum energy compaction and is statistiçally the 

optimum transform. 

A technique based on the principal components analysis combined with DFT has been 

applied in the Photobook [60]. Let xi. i4 .2 ,  .... JV be the veçtor representing the DFT 

magnitude of the ith image in a training set of :LI images. The covariance matrix. C, of the 

training set is rstimated. Each principal component is an rigenvector of the covariance. The 

computational cornplexity is reduced by noting that C c m  have ai most .l1 eigenvectors. The 

KLT coefficients of the images to be stored in the database. Lire obtained ~ising the :Lf 

eigenvectors. The transfomi coefficients are the katlires used for comparing textures. KLT 

has two advantages. First. vector components a n  dècorrelated and second. components are 

cornpressrd into a smail number of coefficients. In addition. tlic use of DFT magnitudes 

makrs the transform coefficients invariant to spatial translation. i-lowe\-r r. the performance 

may be degraded for images outside the training set. 

The projection to Karhunen-Loeve space extracts the ,Llosr Expressive Fmtzurs 

(MEF's) of an image. I-iowever. an eigenfeatiire ma. represent aspects of tliç imagin- 

process. such as illumination direction. whicli are unrelated to recognition. An increase in the 

number of eiprnfeartiires dors not nrçessarily lrad to an improved succriss ntc. To addrrss 

this issue, Swets el al. [138] have proposed a Discriminant Karhunen-Loeve (DU) 

projection where KLT is followed by a discriminant analysis to produce a set of Most 
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Discriminating Features (MDF9s). In DKL projection, betweenîlass scatter is mêuimized, 

while the within-class scatter is rninimized. The authors havr reported an improvement of 10- 

30% using DKL technique (over KLT) on a typical database. 

KLT has been studied extensively for image compression applications [.Il. Although 

KLT is optimal. i t  is not widrly iised due io its high coniputationsl complrsity. We note tlirit 

KLT is employcd in analyzing and encoding multispcctral images 1221 and lias tlierdbrt: a 

potrntial for indexing in rrmote sensing applications. 

3.4.3 Discrete Cosine Transform (DCT) 

The DCT employs real sinusoidal basis functions [4] and has enrrgy compaction 

rfficiency close to the optimal KLT. As a resuit. the international image and vidro 

compression standards. such as JPEG. MPEG. H.261. and H.265, are based on DCT. Wr 

now present a review of the DCT-based indctsing techniques that have appeared in the 

literature. 

Chang et ai. [88] havr proposed a texture based indesing technique in the 

DCT/Mandala domain. The energies of the subbands are used to define the texture frature 

sets. For an i V x N  DCTIMandala transform. lV2 bands are obtained. In order to reduce the 

search cornplexity. Fisher Discriminant analysis is used to reduce the testure îêature vcctor. 

We note tliat Fisher Discriminant analysis generates a faniily of linear composites from the 

original feature vrctors tliat provide for maximum average separation among training classes. 

The transform domain feature elements of the input image are mapped to a set of 



eigenvectors with the maximum reparability significance. The Mahalanobis distance in the 

transforrned feature space is used to measure the similarity between two images. 

Shneier r i  al. [89] have proposed a technique for image based on the mutual 

relationship between the DCT coefficients of unco~ected regions in both the que? image 

and tar2et image. Hrre. a set of 2nl windows is selectrd. The windows are raiidomly paired. 

with the constrint that ench windoiv has only one partner. For each pair of windows, a bit is 

allocatrd in the m bit index. For rach window the average of cach DCT coefficient is 

computed resul ting a 64-dimensional feature vector. For each feature value and each window 

pair. the indrs is computed by comparing the values of the first windouf with those of the 

second window. If the difference is greater than a threshold the corresponding bit is set to 1 

othewisr it is reset to O. The similarïty bctween two images is measured b!. çomputing the 

similarity between thrir keys. In contrast to the technique proposed bu Chang et cil. [8S] 

which is based on texture similarity. the similarity in this technique has no semantic meaning. 

Smith et t i l .  [42] have proposed a DCT based rnethod where the image is divided into 

4x4 blocks and the DCT is computed for each block resulting in 16 coefficirnis. The variance 

and the mean absolute values of each of these coefficients are calculated over the m i r e  

image. The texture of the entire image is then represented by this 32 component featurc 

vector. Reeves et al. [43] have proposed a DCT-based texture discrimination technique 

which is similar to that of Smith et d [QI. Here. the image is divided into SsS blocks. -4 

t'rature vector is forrnrd witli the variance of the tirst S AC çoefticirnts. The technique dors 

not rmploy the mean absolute value of the DCT coefficients, as in 1421. The technique 

assumes that the first AC coefficients have the most discriminating features, and thus avoids 



discriminant analysis used in [42]. The run-time complexity of this technique is smaller than 

that of [QI, since the length of the feature vector is small. 

3.4.4 Multiresolution-Based Techniques 

Recently. techniques based on image decomposition into a set of different resolution 

subimages using subbnnds. wavelets and Gabor have brcome popiilar in image coding and 

indexing applications [XI-[24]. Here, an image is passed throuyh a set of lowpass and 

highpass filters. recursively. and the filter outputs are decimated in order to maintain the 

same data rate resulting in a multiresolution representation. Subband coding is gcnerally 

impiemented using quadrature mirror filters (QMFs) in order to reduce the aliasing cffecrs 

arising out of decimatiori. In wavelet transfom. the lowpass output is recursivrly filterttd. 

Gabor transforrn is simiiar to wavelet transform, where the basis hnctions are Gaussian in 

nature and lienci: Gabor Transform is optimal in tirne-frcquency loçalization. Since inost 01' 

the energy in the subband domain is represented by a few lowpass cocfticienrs. hi@ 

compression ratio is achieved by discarding the hi& frequency coefficients. We note tliat the 

entire data is passed througli the filters. and there is no blocking of data as in JPEG. Image 

decomposition has severai advantages in coding - i) multiresolution capability. i i )  better 

adaptation to nonstationas signals. i i i )  hi& decorrelation and energ!. compaction efficirncy. 

and iv) reducttd blocking ortifacts and mosquito noise. 

Chang et trl. [l39j have proposed a texture analysis scheme using irregular trer 

decomposition where the middle resolution subband coefficients are used for texture 

matching. In ihis scheme. a J dimensional feature vector is generated consisting of the energy 
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of J most important subbands. Indexing is done by matching the feature vector of the query 

image with those of the target images in a database. For texture classification. superior 

performance can be obtained by training the algorithm. Here. for each class of textures, the 

most important subbands and their average energy are found by the training process. A query 

image can then bs  categorized in one of the texture classes. by matching the feature vector 

with those of the representative classes. 

Jacobs et al. [Ml have proposed an indexing technique based on direct cornparison 

of wavelet coefficients. Here. al1 images are rescaled to 128x 175 pixels followed by a 

wavelet decomposition. The average color, the sign (positive and negative) and indices of A! 

(a value of 40-60) largest magnitude transfomi coefficients of eacli image are calculated. The 

indices for al1 of the database images are then organized into a single data structure for fast 

image retrirval. A good indeliing performance has bren reponed in the paper. Howevrr. the 

index is dependent on the location of transform coefficients. Hence. the target images which 

are translatrd and rotated versions of the que? image. mny not bs rrtrieved using this 

technique. 

Wang et ai. [146] have proposed a technique which is similar to tliat of Jacob er c d  

[145]. Here. al1 images are rescaled to l28x 128 pixels followed by a four stage wavelet 

decomposition. Let the four lowest resolution subirnages. which are of size 8x8. be denoted 

by SL (lowpass). Si, (horizontal band). SI- (vertical band). and .YD (diagonal band). Image 

matçliing is tlicn pcrfornicd iising a threr stsp procedure. In the first stage. 20% of the images 

are retrirved based on the variance of SL band. In the second stage. a fewer number of images 

will be selected based on the difference of Sc coefficients of query and target images. Finally, 



the images will be retrieved based on the difference of SL, SH, SI. and SD coefficients of query 

and target images. For color images, this procedure will be repeated on al1 three color 

channels. The complexity of this technique is small due to hierarchical rnatching. The authors 

have reported an improvement of performance over Jacob's technique [ 1451. Howevrr. as in 

Jacob's technique. the indexing performance is not robust to translation and ro tnt ion. 

Manda1 et nl [14 1 ] have proposed to compare the histograms of directionai subbands 

to thd a match with the que? image. It has bern shown that the histograms of wavelct bands 

of similar images. with limited carnera operations. are similar. The complesity of direct 

cornparison of the histograms of al1 the subbands is reduced by matching the distribution 

parameters of the subbands. The pdjs (or histograrns) of highpass wavelrt subbands can be 

rnodelctd using gencrnlized Gaussian density (GGD) function [1421 wliicli is expresscd in 

terms of two parameters <r (standard deviation) and 7 (shapr: parametcr). Hence. the 

dissimilarity between a target and que- image can be expressed in terms of the difference of 

the band parnmrters. The images which have minimum distance are retrirwd from the 

ciatabw . 

kIandal er (11. [I 431 have proposed a histogram-based technique in the wavelet 

domain which is robust to changes in illumination. In this technique. the change in the 

illumination level is estimated using scale invariant moments of the histopram. The subband 

parameters o and y of each subband of the target image are thrn changrd appropriately to 

countrr the rffect of illumination change. 

An indrsing technique using Gabor wavelets was proposed by Manjunath r i  oi. [ I  441. 

Here. each image is decomposed into four scales and six orientations. A feature vector. of 



dimension 48. is then formed using the mean (p) and standard deviation (o) of each subband. 

Tlir similarity of the query image and a target image is determined by the similarity of thrir 

frature vectors. In this technique. the number of orientations are more. Le.. six. compared to 

three orientations (horizontal, vertical and diagonal) in the wavelet domain. Hence. better 

directional discrimination is achieved with this technique. However. the Gabor wavelets art. 

computationally expensive compared to dyadic wavelrts. 

3.5 Video Indexing in the Compressed Domain 

3.5.1 Scene Change Detection 

Recently. several algorithms for vidro segmentation in the cornpressrd domain have bern 

reported [102]-[109]. According to the type of information used. the alyorithms for video 

segmentation in the compressed domain are divided into four classes. namely. segmentation 

using DCT coc.ftiçients. motion vectors. motioniDCT and subbnnd decomposition. 

3.5.2 DCT Coefticients 

The standards for image and video compression (JPEG. MPEG and H.26 1 ) are DCT-based 

techniques [25]-[37]. The transform coefficients in the frequency domain are related to the 

spatial domain. Therefore. the DCT coefficients cm be used for sçtine change detection in 

compressed video sequrnçes. 

Arman et ol. [102]-[IO31 have proposed ii tschniqiie for sçrnt. change drtcction in 

motion JPEG using DCT coefficients. For each compressed frame jif, B blocks are first 

chosen opriori from R connected regions in 1;'- A set of randomly distributed coefficients (c, 
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c,, c ,  .. .) is selected frorn each block where c, is the .vth coefficient. A vector CY;I!=(~~. c?, c~ 

... is forrned by concatenating the sets of coefficients selected from the individual blocks in 

R. The vrctor ~ f , '  representsf;,,' in the transform domain. The normalized inner product is 

used as a metric to judge the similarity of frarne/,/ to frarnef~' 

A scrnr transition is detçcted if Y/ is greater than a threshold. In case of false positives. which 

result from carnera and object motion. fi' and j;' are decompressed and their color histograms 

are compared to detect carnera breaks [103]. Zhang et rd. [104]-[l Oj] have presented a pair- 

wise cornparison technique in the transform domain similar to template matching techniques 

in the uncompressed domain. Here. the pair wise nomalized absolute differencr 

~(/,;,~,.f;,',i:j)of the (i,j)block in two frarnesf;,! and!;,' is deierminrd using 

where ~(/;~',/n', i J, k )  is the kth coefficient of block (id) in j,'. if the di fferencr: DU;,/$', i.j) iç 

larger than a threshold. the block (if) is considcred to be changed. If the nurnbcir of chnnged 

blocks rxceeds certain threshold. a scene change in the video sequencr [rom frame ji' to 

frarne is declared. Cornpared to the technique by Arman el al. [ 1021. the processing time of 

this technique is less. however. it is more sensitive to gradua1 changes [105]. 

Wt. note that rlie previous two algorithrns are applicd on vidm sequencrs compressed 

using motion JPEG. In case of MPEG vidro. only 1-frames are comprtissttd with DCT 

coefficients and hence the previous two techniques cannot be directly applied to the B- and P- 

frarnes. In addition. the techniques based on I-frames may result in false positives. To 



overcome these problems, Yeo er al. [IO61 have proposed a unified approach for scene 

change detection in motion JPEG and MPEG. This algorithm is based on the use of only the 

DC coefficients. To start with, a DC frarne J ' , ; , ~ ~  is constructcd for rvery frarne in the 

sequence. The DC coefficients in JPEG and 1-frames in MPEG are obtained dirrctly from 

each block. For B- and P-frames in MPEG video the DC coefficients are estimated. The sum 

of the difference magnitude of the DC fiames f;,DC andjiD' is used as a measure of sirnilarity 

bettveen two frarnes. i.e.. 

where ~(f;,,~~: 1. y) is the DC coefficient of block (i,,). -4 scene change from.#;,, to j; is declared 

if: ( i )  S~V;,,~~, .#;:'.) is the maximum within a çyrnrnrtric sliding window and ( ii 1 sj(/inD1 ., /in') 

is 2-3 times the second largest maximum in the window. Although this technique is bst. cuts 

may be misdetrcted between two frarnrs which have similar pixel values but different density 

functions. A metric for gradua1 transition has cils0 becn proposed (1061 bastd on temporal 

subsampling wliere one in rvrq 10 frarnrs is testeci rather tlian successive frames. This 

technique is sensitive to minera flashes and variations in scrntl tliat typically oçcur beforr 

scenr changes. 

3.5.3 Motion Vectors 

The apparent motion in a vidro srqurncr: çan be attnbuted to çaniera or objrct motion. 

Motion sstimation!çon~pensaiion p l a y  an important rolr in video compression. The objective 

is to reduce the bit rate by taking advantage of the temporal redundancies between adjacent 

frarnes in a video sequrnce. Typically, this is accomplished by estirnating the displacement 
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(motion vectors) of uniformly sized blocks between two consecutive frames. In general. 

motion vectors exhibit relatively continuous changes withiri a single camera sliot. while this 

continuity will be disrupted betweeii framrs across different shots . 

In MPEG. B- and P-frames contain the DCT coefficients of the error signal and 

motion vectors. Liu er al. [108] have presented a technique based on the error signal and the 

number of motion vectors. A scene cut between a ~-frame/;, ,~ and a past referencr P-Frarnr 

/,if increases the error energy. Hence. the error energy provides a mensure of similaritp 

betweenfiP and the motion compensated frarnef,'. 

whrre E, is the rrror rnergy of macroblock i and Fp is the nurnber of fonwrd predicted 

macroblocks. For the detection of scene changes basrd on B-frames. the differrnre berwern 

the number of fonvard predicted macroblocks Fp and backward predicted B, is used. il scent: 

change between a B-framr and its past rekrence B-frame will decrease Fp and increase Bp. 

scene change is drclared if the difference between Fp and Bp changes from positive to 

Zhang er al. [IO41 have proposed a technique for cut detection using motion vrctors 

in MPEG. This approach is based on the nurnber of motion vectors :VI. In P-frames. !CI is the 

number of motion vectors. in  B-frame, !Cf is the smailer of the counts of the Ionvard and 

backward non-zero motion. Thrn ;M < Twill be an effective indicator of a çamcra boiindary 

before or afier the B- and P-frarne. where T is a threshold value close to zero. However. this 

method yields false detection when there is no motion. This is improved by applying the 



normalized imer product metric (eq. (3.12)) to the two 1-frames on the sides of the B-frame 

where a break has been detected. 

3.5.4 Hybrid MotionIDCT 

Zkng  cr r d .  [109] have presented a segmentation rilgorithiii bascd on niotioii information and 

the DC coefficients of the luminance component. To s t a r t  nith. the DC cosffisisnts in the P- 

franirs are reconstructed. The variance of the DC coefficients lkL1 for the I- and P-framrs is 

thrn computed. Three ratios are computed. narnely: 

Number of intra com~ressed macroblocks 
 ab^ - Number of blocks with motion compensation 

Number of backward motion vectors Rh = 
Number of fonvard motion vectors 

A two pass algorithm is applied. In the Erst pas.  suspccrod scene change frames ore 

marked. A P-framr and B-frarne are suspected framtrs if Rp and R h .  pttaks. respectively. An 1- 

frarne is a suspectrd frarne if ~d<r'l peaks and RJof the B-frames in front of theni peaks. In the 

second pass. al1 suspected frames which fali in a dissolve region are unrnarked. Al1 the 

marked frames are then exarnined. If the difference betwern the current marked frame and the 

last scttne change tisceeds a thrssbold. then the current marked frarnct is ri truc sçenr change. 



3.5.5 Segmentation Using Su bband Decomposition 

Lee et (11. [ I l  O] have presented a scene detection algorithm whrre the temporal segmentation 

is applied on the lowest subband in subband cornpresssd video. Four rnetrics have bern 

investigated. namel y: 

This metric is insensitive to object motion. however. it is sensitive to canera operations such 

as panning and zooming. 

Hisrugrcvn o/'tl(f/krrnce jfcrme: is the histograrn of the pixel to pixel di fferrnce frürnc 2nd 

rnrasures the change between two frames fi,, and/,. The degree of change between.f;,, and 

J, is large if there are more pixels distributed away from the origin. 

where a is a threshold for determining the closeness to zero. The histogram of the differencct 

framr (Eq. 24) is niore sensitive to object motion than the difference of histograms (Eq. 73) 

[ l  IO]. 

Block hisrugrmt tL@erence: the Iowest subband is divided into R blocks and the surn of 

the absolute di fferences of the blocks defined as 

is used as a metric for scene change detection. This metric is sensitive to local object motion. 



BIock vnrirznce J*rence: instead of using the histogram. the variance of the block is 

used. Le. 

This metric is block-based and hence it is sensitive to local objrct motion. 

Alier the segmentation of a video stream, features within each shot such as content. 

Iength and camera operations are used for indesing proposes. Two approaches for video 

representation are distinguished. The first approach is basrd on image indexing techniques 

while the second is based on temporal features. W r  now present video indexing techniques 

based on spatial features. Temporal-based indexing techniques are pressnted in section 3.3.2. 

3.5.6 Video Indexing Using Motion 

Ditnitrova et ai. [122] have proposed a technique based on the motion compensation 

component of the MPEG vidro encoder. Tlir: trajrctory of 3 macroblock is computed from rhe 

Fonvard and backward motion vectors that belon- to the macroblock. The position of a 

macroblock in a P-framtt is computed using block coordinates and tonvard motion wctors. 

The position of a niacroblock in a B-frame is computed by averaginy the positions obtained 

from ( i )  the next predicted block coordinates and the backward motion vector and (ii) the 

previous block coordinates and fonvûrd motion vector. Each trajectory can be thought of as 

an n-tup!r of motion vrctors. The rnocroblock trajrctorics are the katitre vectors used for 

indesing. 



We recall that klPEG compression standards have addressed primarilp the stonge and 

transmission aspects of audiovisual materials. MPEG-4 will rstend the tùnctionality of the 

underlying data representations and will also maintain some backward compatibility with 

MPEG-I and MPEG-2. Rrcently. MPEG proposrd to speci% a nru standard. çallsd 

~blzrltimedia Confent Description Inferfàce and re ferred to as MPEG-7. MPEG-7 will specifi 

a standard set of descriptors that can be used to describe various types of multimedia 

information. This description will be associated with the content itself. to allow fast and 

efficient searching for audiovisual material. In addition to having a description of the content. 

the MPEG-7 description may include other types of information about multimedia. such ris 

coding scheme used. conditions for accrssing the niaterial. classi f cation and links to otlier 

relevant material. 

We note that MPEG-7 descriptions do not depend on how the described content is 

coded or stored. For example. visual information could br cornpressrd using MPEG-4. JPEG. 

or VQ. EVIPEG-7 will allow different granularity in its descriptions. offering the possibilit to 

have difkrent levrls of discrimination. This impliss that the same material c m  be described 

using different types of features. tuned to the area of application. For rxample. in visual 

material. a lower abstraction level might be a description of shape. texture. color. andior 

motion. whilt: for audio. mood. tempo. and tempo changes might be used. 

There are many potential applications that will benefit from the MPEG-7 standard. 

Esamples include digital libraries. multimedia directory services. broadcast media selrction. 



and multimedia editing. It is anticipated that the MPEG-7 will become an international 

standard by the end of the year 2000. 

3.7 Summary 

Ln tliis cliaprrr wr have presentsd a r e v i w  of iniügr: and vidco indesing techniques in both 

the cornpressed and uncompressed domains. First. we have presentrd an overview of a visual 

storage and retrieval system. This was followed by a review of image and video indexing 

techniques in the uncompressed (pixel) domain. A summary of the revirwrd techniques is 

shown in Table 3.1. 

The advent of compression techniques has led to the introduction of compressed 

domain indesing techniques based on compression parameters such as transfomi cocfficicnts. 

motion vsctors. etc. In this chapier we have pressntcd a review of compressed domain iniagr 

and video indexing techniques. A summary of the different techniques is shown in Table 3.7. 

Ws note tliat it is difticult to compare the performance of various indrsing techniques. KLT. 

although statistically optimal. is computationally intensive. In addition. the basis images need 

to be stored. which reduces the compression efficirncy. The block DCT in JPEG providcs a 

good coding and indexing performance. However. the block structure was not originally 

intended for indexing. It has been shown in [42] that the wavelet transform oiitperfoms the 

DCTIMandala trans form in image classi f cation. 

In concliision. i t  is efficient to index imageividro (visual data) in compressed form for 

the following reasons: ( i )  the advent of visual compression standards is espected to result in 

visual data being increasingly stored in compressed form [3]-[30], (ii) indexing in the 



compressed domain eliminates the need to decornpress the visual data and apply pixel- 

domain indexing techniques. (iii) many compressed bit streams contain information, such as 

motion vectors. which can be used in deriving content-based indices [IO?]-[106].[172]. and 

(iv) in compressed domain there is a reduction in computational cost as the visual data is 

compactly represented [ 1531-[157]. 

In the next chapters we present novel techniques for combined imapehideo indexing 

and compression in the VQ compressed domain. 

Problems 

Iniagr Indexinp 

Detection of Scene 
Change 

Video indexing 

Detection of Canlera 
Opcrations 

Methodologies 

Color 

Texture 

Sketch 

Shape 

Spatial Rclationships 

IntensityKolor Template Matching 

Histograrn-bnsed Trcliniqurs 

Block-Based Techniques 

Twin Cornparison 

Model-Based Segmentation 

Spatial features of key frames 

Motion 
-- - 

Motion vectors 

X-ray images 

Table 3.1 : Summary of imagehide0 indexing techniques in the pixel domain. 
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Pro blem Mrthodology 

Image lndexing 

Scenr Change Detsction 

Vidso indrsing 

Discrete Fourier Trnnsform (DFT) [lX J-[ 1371 

Karhunen-Loeve Transform (KLT) [22],[60 J,[ 13 81 

Discrete Cosinr Transform (DCT) [58] .[89] 

h.1ultiresolution-Based Techniques [72 1.[139]-[ 1-16 1 

DCT Coefficients 

Motion Vectors 

Hybrid MotiodDCT 

Subband Decomposition 

Motion Vectors 

Table 3 2: Summny of the image and video indrxing techniques in the compressed domüin. 



Image Indexing Using Vector 

Quantization 

4.1. Introduction 

We recall from chapter 2. that several algorithms for image indesing have bern reported in the 

literature. However. these techniques require a large amount of processing and addi tional stonge 

space to compute and store the indices. respectively. A more serious problem is diat these 

algorithms may not be applicable to images stored in the compressed form. We also recall from 

chaptrr 3. that several image compression algorithms have been reported in the literature to 

rrducti the storage and transmission rrquirements in image applications. The International 

Standards Oryanization has proposed the JPEG [23] and MPEG [2J] standards for image and 

video compression. respectively. Compressed domain image and video indexing techniques 

based on compression parameters such as DCT coefficients. subband coefficients. motion 

vectors. etc. have been reportrd in the literature [ I  121. We note that. at low bit rates. DCT based 

techniques sufkr from bot11 blocking rffects and mosquito noise. Mosquito noise results from the 

quantization error of the high frequency cornponents. which exist at the edge of an object but 

spans across the block in transform domain [20]. 
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Vector quantization (VQ) is an escient  technique for low bit rate image and video 

compression [7]. In addition. VQ has the following advantages (i) fast decoding which makes it 

attractive for systems based on software only playback of video such as Intel's Indeo. Apple's 

QuickTime and Microsoft's Video. and (ii)  reduced hardware requirements due to the simplicity 

of the decoder which makes it attractive for low power applications such as portable video-on- 

demand in wireless communications [106]. More irnportantiy. VQ is naturally an indexing 

technique [155]. where each subimage (vector) is mapped into an index (label). Hence. VQ is a 

prornising approach for cornbining compression with indexing. 

In this chapter. we propose two eftïcient techniques based on VQ that provide fast access 

to the images a database at a lower computational cornplexity. Most irnportantlp. thcse 

tcchniquzs combine image compression and indrxing. The proposrd techniques provide fast 

access to the images in the database and have lower storagr requirements. 

This chapter is organized as follows. In section 4.2, we esplain why VQ c m  be used to 

combine compression and indexing of images and video. Indrsing using the histogram O F  

codewords weighted by the number of labels and the histogram of the labels are presented in 

sections 4.3 and 4.4. rrspcctively. Simulation results are reportrd in section 4.5. followed by the 

summary in section 4.6. 

4.2. Indexing Using VQ 

In V Q  [ 1 O]. a training set of representatiw images is decomposed into L-dimensional vecton. An 

iterative clustering algorithm such as the LBG algorithm is used to generate a codebook. 

C= ( W1,IY., ... . W,V). where N is the number of codewords in the codebook and W,=(wIl, wu, ... , 



wiLJ.  The codebook is then made available at both the trammitter and the receiver. In the 

encoding process, the image to be compressed is decomposed into L-dimensional vectors. Each 

vector V,={v,,. v,?, ... .v>L) is mapped into another L-dimensional vector CV, 

q:y+ y (4.1 ) 

where LI.;EC In othrr words. vsctor quantization involves the partitioniny of the L-diniensional 

sprice into Ar decision rrgions [p,,i=l, ;. ... . ,L3. racti containing one of the X reproduction 

vectors or codewords W,. The vector V, is quantized as W; if it is in the region{p,). that is 

q:y--+CY f y ~ p ,  (4.2) 

which implies that the mapping is completely charactrrized by the partition pl. Here. the 

srlrction rule is a minimum distortion or nearrst ncighbor rule; i.r. : 

( ) = IF; iff' d( C r .  CF; ) 5 d( C;, CP, ) /u t*  d l  k (4.3) 

where q ( . )  is the quantization operation and d( V,, Cc) is a distortion mrasure which represents the 

error whrn C', is reproduced by C Y , .  

Thus. VQ involves a clustering and mapping operations. The two operations make VQ a 

natural indexing technique dur to the following : 

The clustering process involved in the generation of the codebook. irnplies that vectors 

having "similar" properties are grouped together. 

Input vectors which generally have much in common. are likely to have to the samr label. 

r\ visual illustntioi~ of encodiny and drcoding processes is shown in Figures 4.1 and 4.7 

iising a codebook of s i x  16 çodcivords and 16x 16-diniensional vrctors. It çan btr sren tliat the 

codewords. which c m  br regarded as a set of subimages. can be used to derive content-based 

features. We also note fiorn Figures 4.1 and 4.2 that sirnilar vectors map to similar codewords. 



We conclude from the above discussion that features derived from codewords. which 

represent an image, have the potential to be content-based indices. In order to providr fast and 

efficient retrieval in a database system environment. these features have to satisQ several 

requirements including: (a) simple to denve and represent. (b) can be compared using a similarity 

mcasure which involves low computational complexity. and (c) provide excellent retrieval rate. 

We have selected two features: (a) the histograrn of codewords weighted by the nurnber of labels 

and (b) the histogram of the labels. Simulations dçmonstrated that the two features providr h s t  

access to the images ir. a database with lower computational complexity compared to other 

techniques. 

Figure 4.1 : VQ encoding. 



Figure 4.2: V Q  decoding. 

4.3. Histogram Of The Codewords Weighted By The 

Frequency Of The Labels 

The histogram of the pixels of an image refers to the probability density function of the image 

intrnsitirs. For color images the histogram refers to the joint probability distribution of the threr 

color channels. In image indrxing using histogram. the images are scaled to the same number of 

pixels. and the histograrns are the feature vectors which are used as image indices. A distance 

mrasurr is used in the histogram spacr to mrasure the similarity of two images. W'e refer to this 

technique as the direct histogram of tlir pixels technique (tl-PX). 

The advantagr of H-PX is that it is invariant to image rotation. translation and viewing 

axis [20]. However, it requires a Ikge amount of processing and additional storage space. For an 

image of size XxY, the calculation of the histogram of each color channel requires O(,YY) 
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additions and 06W) increments. In addition, O(P) operations are required to compare a pair of 

histograms. where P is the nurnber of bins in the histograrn. The total number of operations 

required ro calculate the histogram for images of various sizes are tabulated in column 11 of Table 

4.1. Hence. the use of H-PX on compressed image has the following disadvantages: (a) requires 

decompression before feature extraction which entriils large storage. and (b) has high 

computational complexity. We now present an algorithm for the indexing of compressed images 

using V Q  which has the advantages of H-PX at lowrr storage and computational requiremsnts. 

The histogram of the codewords weightrd by the frequency of the labels is calculated as 

follows. To stan with. for each codeword. j. in the codebook. the histogram of the pixels. {ri?,,,; 

i 4 . 2 .  ... . PI. is generated and stored aiong with the corresponding codeword. Let ml. m:. .... n h  

be the frequency of the labels 1,. Ir .  .... lu. respectively. The summation of the histograms of the 

codewords weighted by the frequency of the labels is a close approximation of the histograrn of 

the image as illustrated in Figure 4.3. In other words. the histogram of an image (Fa, i) ; i= 1. 2. 

.. . . PI is npproxiniatrd by 

for i = l .  2, ... . P. We refer to this approach by H-CL. For example, the histograms of pixels of 

the Lena image (Figure 4.4) calculated using H-PX and H-CL (IV =5 12. L =16) are shown in 

Figure 4.5. The histograrn of the codewords weightrd by the frequency of labels is used as an 

index to store and rctriwr the image. 



Input image Label man Cudebook 

Frqucncy oflabcls 
mt, m:. ... , m~ 

- 
Itisrognrn o f  input imîgc 

Figure 4.3: Calculation of histogram of the codewords weighted by the frequency of labels 

For an image of size .\X1- pisrls. the calçulation of the histograrn of the pixels in H-CL 

requires the same number of additions and cornparisons as the H-PX algorithm. however i t  

reduces the number of increments to O(,W/L) operations. Comparing columns II  and III  of Table 

4.1. it can be seen that for L=16. the number of operations required in H-CL is approsimatrly 

50% of that in H-PX which results in a faster ssecution. 

Figure 4.4: Lena image. 



1 . . . . . . . . H-PX 

Figure 4.5: The histograms of pixels of the Lena image. 

4.4. Histogram Of The Labels 

VQ is a mapping from a vector in L-dimensional space into a finite set (codrbook) of 

reproduction vectors (codewords). Ure note that the information conveyed by a set of quantized 

vectors. is also sncodrd in the set O F  codrword labels. To illustrate this. consider the example 

shown in Figure 4.6. Herr. tlir luminance component ( 11 of ri sequence of 5 images with varioiis 

camrra operations are shown in Figure 46a-Figure 4 . 6 ~  The images are compressrd using VQ at 

1i compression ratio of 16: 1 (.V=36.L=16)). The codebook is arranged in the nscendinp ordrr of 

the average and standard drviation of the codewords. By ordering the codebook. sirnilar vectors 

map to neighboring labels and hence the label map of an image produces a scaled version of the 

image as s h o w  in Fiyitre 4.6f-Figure 4.6j. This suggrsts the use of feature vectors derivrd from 

the labels 3s indiccs Cor tlis dalabase. H m .  the histograrn of the labels of an image/;,, is a K- 

dimensional vector {f-r(/;,,.il : i=/ .  2. ... , ET! . whrre H$,,,i) is the numbrr of labels i in the 

compressed image and K is the number of codewords in the codebook. The histograms of the 



labels are the feature vectors used as image indices. We refer to this algorithm as the direct 

histogram of the labels (H-LE!). 

a) Original image 

b) Rotation to the right 

c) Rotation to the lefi 
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d) Pan lefi and boom up i) 

e) Zoom out j)  

Figure 4.6: Five images and thèir label maps. 

For an image of size XxY pixels. H-LB requires Ol.n'/L) additions. O(.YI'Z) increments 

and O(N) operations for comparing a pair of histograrns. We note that for L 4 6 .  H-LB requires 

only 6.15% of the number of operations rrquired by H-PX as can be sren from Table 4.1. 



1 

Image size 

II 

(H-PX) 

III 

(H-CL) 

IV 

(H-LB) 

Table 4.1: The number of operations required to calculatr: the histogram of the pixels (H-PX). 

histograni of the codewords weighted by the number of labels (H-CL). and the histogram of 

labels (H-LB). 

L 
'A = Down 2 sampling 
t 

B .  Ch 
by 2 

Figure 1.7: Block diagram of the compression algorithm. 

4.5. Simulation Results 

We rrecall t'rom cliapter 3 that srveral VQ algorithms for the compression of still image have bern 

reportrd in the littrratiire [7 ] .  In O u r  simulations. we have adoptrd the contiguration shown in 

Figure 4.7. Here. the color image is first trânsformed from RGB to the YCrCb format. The t' 

component represents the luminance of a color pixel, while the Cr and Cb represent the two 



chrominance cornponents. The chrominance components have a lower signal energy, and hence 

they c m  be spatially subsampled without degrading the overall coding performance. The Ci. and 

Cb componrnts are subsampled by a factor of two in both the horizontal and vertical directions. 

Each of the three components (Y. Cb and Cr) is compressed separately using VQ through the 

samr process for monochrome pictures. Several Y. Ch and CT codebooks were pre-gnrratsd 

separately using the LBG algorithm as drscribed in section 3.1.3. We note that the codebooks are 

reneratrd using the same training set. These codebooks are used to cornpress the test images uscd 
C 

in the simulations presented in the rest of this sections. Let NI.. Ncb. and iVC-, be the sizes of the 1'. 

Cb and Cr codebooks. respectively. The bit rate in bits/pisel is calculated as follows: 

where Li.. Lta. and L,iare the vector dimensions of the Y. Ch and Cr components. respeçtively. 

The use of vectors of uniform dimension offèrs good matching for hardware 

implementation. hrnce. in our exprrimcnts. we have used h'I=Y,7.=:V,;=X and L I=L<.h.=L, sr=L. 

The V Q  parameters (\-dues of .V an L )  and the corresponding compression ratios are tabulatrd in  

Table 4.2. 

Image retrieval is performed as follows. First. the index of the que- image is determined. 

The index of the query is then compared with the indices of the images in the database. The 

cornparison procrss is the computation of the "sirnilarity" between the two images. The images 

whose histograms are closrr to thrit of the quep image are thrn retrirved. This process is 

illustrattid in Figiirc 4.8. 



codebook 

size 

1v 

Vec tor 

dimension 

Compression 

ratio 

Table 1.2: Compression ntios for various codebook sizrs and vector dimensions. 

Figure 4.8: Image retrieval. 



Ws use the retrieval results of H-PX as a baseline for comparison. For cach image three 

histograms (one for each color channel C? are obtained. Given a query iinageb,. and an image / ,  

in the database, the similarity between the two images is measured using the distance between 

their histograms. In our experiments two distance nieasures are used. The first is the suni of the 

intersections of the corresponding histograms (MTR): 

whrre C=(Ci.fi.C\J is the three color channels. For esamplc. in case of usinp the RGB color 

coordinarr systrm. C',. C': and C'; are squal to R. G and B. respectively. The second distance 

measure which is used to rvaluate the similarity between two images is the sum of the Euclidean 

distances betwrcn tlir corrcsponding histograrns ( EUCL):  

For each que?. let ;Ll be the number of similar images in the databasr. Let T be the 

number the retrievèd irnaps (the numbrr of relevant and non-relevant images retrievttd in 

response to a qutiry). Wc: detinr: the rctrisval rate of a qucry image j. R, . as: 



where r, is the number 

retrieval rates over the 

relevant images retrieved. The retrieval rate, R. is the average of the query 

total number of queries. i.e.. 

wherç .V,, is the tord number of queries. 

To evaluate the retrieval performance of H-PX. we have performttd simulations using 

approximately 1000 images each of size 748x256 pixels. The images are taken fiom various 

image classes including people. natural scenes. buildings. animals. etc. The images are storrd in 

the YCbCr coordinate system. We refer to this database (of the uncompressed images) as UC. 

Five sets of expenments were performed. In the tirst set. the histogram of the Y channel is 

ussd as an indes (H-PX-G). The retrieval rates of H-PX-G are graphed in Fi, wre 4.9a. For 

esample at P I O .  the retrievai rate of I-I-PX-G using the histogram intersection (NTR) and 

Euclidean (EUCL) are 95.270'0 and 86.41%. respectively. This mrans that on the average. 

95.17O5 of the siniilar images are present in the rrtriwed images iising INTR. The corrrsponding 

rate for EUCL is 86.41%. In the second set of s'tprrirnents. the histo~rams of the tiiree coior 

channels are used as an index (H-PX-C). The retrieval rares of H-PX-C rire graplicid in Figiirc 

-Wb. It can be sren from Figure 4.9a and Figure 4.9b that INTR has higher retrieval rate than thnt 

of EUCL. For H-PX-G, MTR outperforms EUCL by 1%-4%. while for H-PX-C. NTR 

outperforms EUCL by -106-6%. This is because. in EUCL. the large error components dominatc 

the smnll error components rrsulting in ri lower performance. By comparing Figure 1.9a and 

Figure 4.9b. it can bc sren that 1-I-PX-C out perfornis H-PX-G by 3%-8?6 and 60;;-ll% iisiny 

MTR and EUCL. resprctively. However, the compiexity of H-PX-G is 1 /3 of H-PX-C. 



The test images were compressed at different compression ratios as s h o w  in Table 4.2. 

We refer to each database (of cornpressed images) by VQ(compression r-ntio). For example. 

VQ(32: 1 )  refers to the image database where the images are cornpressrd ar 32: 1 using the 

codebook with N=X6 and L=16 as s h o w  in the fifth entry of Table 4.2. 

+ H-PX-C. UC, lNfR 

-* H-PX-C. UC. EUCL 

5 10 15 20 25 

Numb er of retrieved images (TI 

Figure 4.9: Rètrieval rate as a function of T using H-PX on UC: (a) Histogram of Y and (b) 

Histognms of Y. Cr and Ch. 
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In the third set of exprriments. simulations were carried out using H-CL on the databases 

VQ(32:l)  and VQ(28:1).VQ(128:1). and VQ(11J:l). the performance of H-CL using the Y 

channel only (H-CL-G) and using the three color channels (CI-CL-G) cire rviiliiated in the 

databases VQ(32: 1 )  and VQ(28: 1). Retrieval rates of H-CL-G and H-CL-C are graphed in Figure 

4.103 and Figure 410b. respectively. It can bt: secn from Figure 4.10 that the retrittval ratr 

decreases as compression ratio increases (bit rate decreases). This is due to the îàct that a 

histogram cornputrd using eq. (4.4) approaçhes the original histogam at lowrr compression 

ratios. For example. for T = 3  using INTR. at compression ratios oT 32: 1 and 28: 1 .  the rrtrirvnl 

ratrs are 85.45% and 89.66%. respectively. The corresponding rates using EUCL are 71 J O %  and 

74.77%. rrspectivrly. It c m  also be seen from Figure 4.10. that rrtricvol ratrs using [NTR are 

higher than the rates of EUCL. Comparing Figure 4. lOa and Figure 4. lob. it c m  bi: srrn tliat Ci-  

CL-C outperforms H-CL-G by 7%-ljYo and I ;?/O-25?6 using INTR and EUCL. respectivtily. Wr 

note that al1 the test images are outsidr the trainin? set and thcretore furtlier irnprovements in 

retrieval performance çan br: espected for images inside the training set. 

To investigate the effect of using a larger vector dimension retrieval rates of H-CL-G and 

H-CL-C on VQ(128: 1) and VQ(113: 1) are determined. Retrieval results are graphed in Figure 

4.1 1. It  can be seen from Figure 4.1 1 that by increasing the veçtor dimension from 16 to 64 the 

retrirvril ratr of H-CL-G dscreases by 2%-6% and 3%-5*/0 for codebooks of s i x  256 and 5 12 

çodcwords. rrspsctively. I t  can also hc sren from Figure 4. I 1 rhat thc corresponding decreasr. in 

retrievai rates for H-CL-C are 3 % 4 %  and 2.j%-3%. respectively. Sirnilm decrease in retrieval 

rates have been observed using EUCL. Using codebooks of sizes 256 and 512, increasing the 
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vector dimension from 16 to 64, for H-CL-G the retrieval rates decrease by 7%-8% and 1%-5%. 

respectively. The corresponding decrease for H-CL-C are 3%-6% and 1%-5%. respectively. This 

is because the distance between a histogram computed using eq. (4.4) using a larger vector 

dimension while keeping the codebook size and the histograrn of the original will increase. The 

effect of using a larger vector dimension can be decreased by increasing the codebook size 

Retrieval rates were obtained using H-LB on VQ(64: l ) ,  VQ(5 1:  1). VQ(J3: 1). VQ(37:l) 

VQ(32: 1 ) and VQ(28: 1 ). The rates are graphed in Figure 4.13. It can br seen from Figure 1.12a. 

that using MTR the retrieval rate increases as the bit rate increases (compression ratio decreases). 

It c m  be seen from Figure 4.1 î b  that using EUCL the retrieval rate increases as the compression 

ratio dècreases from 64: 1 to 32: 1. However. using EUCL the retriwal rate at a compression ratio 

of 28: 1 is Iess than that at a compression ratio of 32: 1. This is because the number of r m p q  bins 

in the histogram of labels increasss with increasing codrbook size (not al1 tlir codewords are 

used in the compression). This results in large rrror cornponents which dominate smailer errors 

and hrncr reducing tlir retricval rate. I t  c m  h r  sren from Figure 1.17 tliat H-LB outprrforms H- 

PX for VQ(37: 1 ). VQ(33: l ). and VQ(78: I ) by O. 1 %-5% l %-5% and l %-~Yo .  For VQ(J3: l ). 

VQ(5 1 : I ). and VQ(6-I: 1 ). H-PX outprrforms H-LE3 by 0- 196 and 1 %-A?/,. Comparing Figure 

4.123 and Figure 4.13b. it c m  br seen that iNTR outpertôrms EUCL. therefore. only the results 

using iNTR are reported in subsequent experimrnts. 

To inwstignte the efi'rct of ~ising largrr vcictor dimension. the test images arc 

compressed using a vector dimension of 64 (8x8  block). Retrieval ntes of H-LB-G on 

VQ(256: 1 ). VQ(70S: I ). VQ( 17 1 : 1). VQ( 146: 1 ). VQ( 118: 1 ). and VQ( 1 14: I ) were obtainrd. The 

results are shown in Figure 4.14. It can be sern from Figure 3.14. that increasing the vector 

dimension from 16 to 64 (reducing the bit rate by a factor of 4) using a codebook of size 16 

9 1 



codewords reduces the retrieval rate by 0%-1.5%. However. for using a larger codebook size (32. 

64. 138. 236 and 5 12). the retrieval rates using a vector dimension of 64 are sliglitly higher than 

the correspondhg rates using a vector dimension of 16. 

In the last set of rxperiments. the performance of the proposed H-LB technique is 

çompared with a technique bosed on the histopram of the DC coefficients. Hers. the test images 

are also cornpressed using JPEG to form two databases: JPEG(32: 1 ) and JPEG(64: 1 ). The 

JPEG(32:i) and JPEG(6J:I) images are compressed using JPEG at a compression ratio of 

approrirnately 32: 1 and 64:l. respectively. The histogram of the DC coei'ficients (H-DC) is used 

as a feature vector to access the images in the databases. Retrieval rates are graphed in Fipiire 

4.1 5 .  It  can be seen fiom Figure 4.15. that at compression ratios of 3 2 1  and 641. H-LB 

outprrforms H-DC by 3%-6% and 20%-30%. respectively. 

From the retrirvnl results presented in this section. it c m  be seen that H-LE3 outperforms 

H-LC at both iiigh and low compression ratios. however. form the visual retrievül results (set: 

Figures 4.16 and 4.17). W r  notice that H-CL out prrforrns I 1-Li3 in retrieviny rotatrd or translatcd 

images using the original image as a qurry. 
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Figure 4.14: Eft;.ct of vector diniension on the rrrrirval of H-LB-C (a) gray images ( b )  color 

images. 
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Figure 4.15: Rrtrieval rates of H-DC on JPEG(32: I ) and JPEG(6.l: 1 ). 



( c )  

Figure 4.16: (a) Query image. First three retrieved images (b) H-CL-C (c) H-LB-C 
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Figure 4.17: (a) Query image. First three retrieved images (b) H-CL-C ( c )  H-LB-C 



4.6. Summary 

In this chapter. we have demonstrated that V Q  is an efficient technique for joint image 

compression and indexing. We have presented novel algorithms for the indexing compressed 

image ushg VQ. In the tint technique (H-CL). the histogram O C  the çodewords wighted by the 

number of labels is used as an index to store and retrieve an image. In the second technique (H- 

LB), the histogram of the labels of an image is used as an index. Simulation results dernonstrate 

that H-CL has a similar performance to H-PX at a compression ratio of 32: 1. while H-LB 

outperforms H-CL and H-PX at high as wçll as low compression ratios. In addition. H-CL is best 

suited for retrieving rotatcd or translated images using the original image as n qusry. In terrns of 

çomputational complesity. 1-1-CL and CI-LB requirr only 5O0& and 6.25*/u ut' the nuniber o l  

operations required by H-PX. The performance of H-LB kvas also compared with the histogram 

of the DC coefficients in JPEG compressed images (H-DC). .4t a compression ratio of 32: 1 and 

64: 1. H-LB outperfoms H-DC by Y!h-6% and 70%-3OS'o. respectively. 

We note that H-CL can be applied to adaptive VQ compression techniques which are 

based on codrbook replrnishrnent. while H-LB can not be applied directly to those techniques. In 

chapter 5 .  we propose an indrxing techniques for adaptive VQ based n the usage map in the 

spatial and wavelet domains. 



Image Indexing Using 

Adaptive VQ 

5.1. Introduction 

In chapter 4. we have presented two image indesing technique based on VQ. In thesr 

techniques. the indices are derived from compressrd images which eliminates the need for 

decompression and hencr reduces the computational and storage requirements. Howrvrr. the 

index is associatrd with the corresponding compressed bit Stream. therehy rrducing the 

storage efficiency. III this chaptrr. wr propose a technique based on adaptive vrctor 

quantization whicli integrates the index of an image within the compressrd bit Stream. This 

integration has two advantages. First. the index is generated automatically at compression 

tirne. which avoids tlic iinnttcessary decompression and/or procrssing operations. Srcondly. i t  

dors not rrquire additional memory for storing the indices. 

This chaptcr is organized as follows. The employrd compression technique for 

adaptive wavelet V Q  is detailed in section 5.2. The indexing algorithm is presented in section 

5.3. Simulations are presented in section 5.4. Finally. the summary is presented in section 5.4. 
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5.2. Image Compression Using W avelet Vector 

Quantization 

It has been shown that rvavelet transform based coding outperforms DCT-bascd coding. since 

ir is frre from both blocking effects and rnosquito noise. We recali from chapter 3. that 

wavelet transform provides a tool for drcomposing a signal into a weighted sum of basis 

functions called wavelets. For image applications. wavelet transfom decomposes an image 

into a set of di fferent reso iution subimages corresponding to the various frequency 

components of the original image. resulting in a multiresolution representation. 

The wavelet coefficients c m  be quantized and encoded using a variety of techniques. 

The combination of wavelet transform and V Q  has been s h o w  to br very efficient for very 

low bit rate image coding [16]-[17]. 

tlere. the image to be cornpressrd is first driçomposcd using waveirt transfom. To 

stan with 64-D vectors ( L ~ ( ~ - V ~ ~ )  are formed by combining the corresponding blocks in the I O  

subimages as shown in Fisure 5.1. The vector corresponds to the lowpass subirnage. whilr 

(VI-v3). (v4-vtF)  and ( v ~ ~ - v ~ ~ )  correspond to the subimages at leveis 3. 2, and 1. respectively. A 

block of s i x  z3'" (m=l .  2.3) is iised for each horizontal. vertical and diagonal orientation 

subimages at the mth level. In other words. the sizes of the blocks are scaled corresponding to 

the lcvel of the wavelst pyarnid. With this structure. the numbrr of blocks in the subimages 

is constant and Iirnçt. tlirrr is 3 one to one çorrrspondrncc betwetin a block at one resolution 

level in the wavelet pyrarnid and a block at the samr  position at a different resolution level. 

Hence, there is significant arnount of redundancies among the various subimages. 



Figure 5.1 : Vecror t'orniation. 

To exploit the correlation among the various subimages. the 64-D vectors are encoded 

using nonlinear interpolative V Q  (NIVQ). Hrrr. 16-D kature vectors j) rire grneratrd 

by taking the tirst 16 elrments from lower resolution subirnages within the corresponding 64- 

D vectors ( I . , ) - V ~ , ~ )  3s shown in Figure 5.1. V Q  is perforrnrd on the IO-D vrctors. We note that 

the codebook at the encoder (16-D codebook) differs from that at the decoder (64-D 



codebook). The codebooks are designed by partitioning the 16-D and 64-D vector spaces into 

corresponding subspaces. The 16-D codebook is first generated by clustering the 16-D vector 

spacr into subspaces. The 64-D codebook is then generated by projecting the resultant 

subspaces in the 16-D vector space into the 64-D vector space. The projection between the 

16-D and 64-D vectors is a one to one mapping oprration. 

This technique reduces the computational complexity in the conventional V Q  process. 

In addition. it preserves the high frequrncy subimages even at hi@ compression ratios (very 

low bit rate). This results in a superior coding performance. Good quality rcconstructrd 

imags cm b r  obtained at compression ratios of 40: 1 for gray-lrvel images and 100: 1 for 

çolor images. 

Ws recall from chaptrr 3. that VQ a large codebook must be used in ordrr to rnsure a 

good image tidelity. which in tum increases bot11 the bit rate and the coding complesity. 

Typically. adaptive VQ is cmployed to clirninate the need for a large univrrsal codrbook. In 

adaptive VU. the codebook or pan of it is moditied in order to match the local imayc 

statistics resulting in highrr kidelity. We note that the improvemrnt in image quality is 

achieved at the rspense of increasing the corn putarional complexity. 

In the following section we present a codebook adaptation and indexing technique 

which results in lower bit rate for label encoding and provide indexing features. 

5.3. lndexing using adaptive wavelet VQ 

In the proposeci teclinique. a large univrrsal codebook of sizr  iV codrwords is h-st genermd 

off-line as described in section 5.2. The codebook is generated using a set of representative 



images. For each image to be stored in the database, the image is decomposed using wavelet 

transfom. The transform coefficients are then encoded using NIVQ. A usage map {il&,,j); O 

< j _É Ki ). where i r ( f , i )  E {O, I ) is generated to indicate the used codewords as shown in 

Figure 5.2. The used codewords constitute a reduced codebook of size :bl codewords. where 

:Il < N .  The labels corresponding to the reduced codrbook and the usage map art: stored in 

the database. We note that the reduced codebook corresponding to an image retlects the 

content of the image and sirnilar images have similar rrduced codebooks. The usage map 

corresponding to an image constitutes a feature vector which is used as an index to store and 

rerrieve the image. 

The similarity between two images j;,, and 1: is measured using the following 

equation: 

whtrr  O is the XOR operation. Using rhis metric. the cornparison of two indices requires 

O N )  bit operations. wliere .V is the codebook size. The nurnber of bits required to store an 

index is O(N) bits. This technique doesn't require any additional operations to calculate the 

indices as the usage map is generated d u h g  compression of the images. We refer to this 

technique as indesing using the usage map (IUM). The proposrd technique provides fast 

access to the comprrssed images in the database and has lower storaye requiremenrs. In 

addition. the lowest rrsolution subimages resulting from the wavelet decomposition can be 

used as visual icons for browsing purposes. 
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Figure 5.2: Usage rnap ysnttration. 

5.4. Simulation Results 

Simulations were carried out using a database containing 500 gray lrvel images. rach of s i x  

5 12x5 12 pisrls. The datnbasc contains images of dif'ferrnt classes based on trsturrs. natural 

scenes. buildings. animüls. etc. The images are first decomposed using a bi-onho%onai 

wavelrt transform with 315 taps [16]. The corresponding coefficients of the wavelet tilter 

bank are s h o w  in Table 1 .  The transform coefficients are compressed using NIVQ as 

drscribrd in sections 5.2 and 5.3. Each image is represented by a usage map and o set of 

labels. We note tlirit codebook of sizr 4096 codrwords is generated using ü training set of 70 

imases. The hierxchical indrxing approach is used as a baseline for cornparison . 



In hierarchical indexing technique [107]. a multirrsolution indexing technique based 

on subband decornposition. The images are decomposed using nz subband filters and the 

histograrn of each subimage is generated. The histogram of a subimage is an n-D vector {Mi) 

: i=l. -7. ..- . n). where n is the number of gray levels and H(i) is the number of pixels of gray 

levrl i in the image and serves as the index of the imqr .  The histograms (indices) are 

comparrd at different resolutions in a hierarchical manner. To start with. the histogram of the 

lowrst subimage is usçd as an indrs for iniagr retrieval. If the retrie\.al result is not 

satisfactory. the histogram of the next higher resolution subimage is used as an index. The 

process is repeated until the images of interest are retrieved. We refrr to this method as the 

hierarchical indesing approach (HIA). W s  note that HIA is computarionrilly intensive 

procrdure. 

Retrieval rates of the proposed techniqiir are evaluated iising the query by esarnplc 

approach. 1-Iere. a sample image (qurry) is yiven and the task of the system is to retrievc 

images which are ggsimilar" to the saniplt: iiiinye. For this purpose. the systrm estracts the 

usage map (index) of the qiirry image and matches it against al1 the usage maps (indices) of 

images storrd in the datûbase. The matching procrss is carried out by computing the 

"similarity" between the index of the query and thosc of the images in the database. The 

similarity between two imagesf,, andji is measured using rquation 3. The retrirved images 

are arranged in the ordrr of increasing vciliie of the similarit? rnetric. 



S ynthssis 

Lowpass Highpass 

Table 5.1 : Coefficients of bi-orthogonal wavelets. 

Lowpass 

For sach queq. Irt T be the number the retriswd images (the number of relevant and 

Highpass 

non-relevant images retricivtid in responsc to a qurry. Let S be the number of similar images 

in the database W r  detint. the retrieval rate of a qurry image j. R,. as: 

t - , /S  S i T  

r ; / T  S > T  

whrrr r, is the number relevant images retrirwi. The retrievai rate. R. is the average of the 

query retrieval n t r s  over the total number of qiicries. ix.. 

where IV, is the total number olqueries. 



The retrieval rates are shown in Figure 5.3. It c m  be seen frorn Figure 5 3' that the 

nnk of the similar image is among the first 5 ( 1% of the total database population) retrieved 

images at a rate of 87.2%. For example. the tirst three retrieved images in response to the 

queries sliown in Figures Figure 5.4a and Figure 5.63 are shown in Figure 5.4b and Figure 

5 Ab. respectively. 

The same queries were performed on the database using HIA. Here. index matching is 

a hierarchical approach. where the histogrrims of the subimages are çompared at different 

resolutions. Retrieval results are shown in Figure 5.3. [t cm b r  srrn from Figure 5.3 that 

using LUM and HIA. the rank of the retrieved images where among the first 15 images at a 

rate of 93.2% and 92%. respectively. I t  cm also be seen that using IUM and HIA. the rank of 

the retrieved images where among the first 75 images at a rate of 94.596 and 94.4%. 

respectively. Hence. HIA and IUM perforrn comparably. Howevèr. the computational 

complexity of IUM is much less than that of HIA which results in hster rxrcution. 

82 -- - -- -- - .. .. . - -  .- 
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Number of Retrieved Images (T) 

Figure 5.3 : Retrieval rate as a function of the number of retrieved images. 
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(b)  

Figure 5.4: (a) Query image. (b) Retrieval results. 

The number of operations and the number of bits required to calculate and store a 

single index in HIA and IUM for some typical image sizes are shown in Table 5.2 and Table 

5.3. respectively. It can be seen from Table 5.2 and Table 5.3. that IUM has much lower 

çomputational and storiiyr requirements. IUM requires only 32%-38% of the nurnbttr of bits 

required to store a single indes using HIA. .4 more srrious consideration froni 

implementation point of view is the computational cornplexity involved in calculating and 

comparing the indices. It can be seen from Table 5.2, that IUM requires 0.3%-2.5% of the 

I l l  



number of operations required by HIA. In addition, for index matching, HIA invoives 

arithmetic operations (bytewise operations which includes additions and multiplications) 

while IUM involves only bitwise operations. Hence, the proposed technique integrates image 

compression and image indexing at a significantly reduced cost for computing, storing and 

cornparhg the indices making possible real time implementation. 

(b) 

Figure 5.6: (a) Query image. (b) Retrieval results. 



Table 5.2: The number o f  operations/index 

Image size 

356 x 256 

352 x 788 

512 x 512 

730 x 576 

1 Image size 1 HIA 1 IUM 1 
3 5 5 x Z j j  10753 4096 

5.5. Summary 

HIA 

1.7 x 10' 

2.7 x 10' 

6.9 x 10' 

1.1 x 106 

in this chaptrr. vie have presentrd a technique which combines image compression and 

c l  wavelet indrxing using adaptivç vector quantiznt ion. The images are tirst decomposed usin, 

transform followed by VQ of the transform coefficients. We note that similar images map to 

sirnilm labels. Hence. the labels conesponding to an image constitute a feature vector which 

is used as an index to store and retrieve the image. 

I l 3  

IUM 

4096 

4096 

4096 

I 

4096 



Simulation results have shown that the proposed technique performs comparably to 

the hierarchical indexing approach in tems of retrieval rates. Comparinç the proposed 

technique to the histograrn of the code words weighted by the frequency of labels (H-CL) and 

the histograrn of labels (H-LB). it c m  be seen that the proposed technique integrates the 

index within the compressed bit Stream and employs ii similarity metric which only involves 

bitwise operations. Hence the proposed indexing technique has following advantages: ( i )  

indices are generated at compression timr. (i i)  does not require additional rnemory for storing 

the indices. and (iii) provides fast access to the images stored in the darabasr. 



Spatio-Temporal Video 

Indexing 

6.1 Introduction 

In this chapter. we present an indrxing techniquc for cornpressed video iisinp wctor 

quantization. Here. a video sequence is tirst compressed using VQ. Each frame is reprtisentcd 

by an usage map. a set of V Q  labels and a set of motion vectors. The video srquenct: is 

partitioncd into shots and the various carnera operations and motion within cacli shot are thrn 

detcrmined by procrssing the V Q  label maps. Each h o t  is indescd using a spcitio-rrntpor~ii 

indrs. The spatial iiidcs refers to the spatial content of the representativs trame of a shor. 

while the temporal index represents the temporal content of the shot. The spatial index is 

based on the codewords used to compress the reprrsentative frame. while the temporal index 

is based on motion and camera operations within the shot. The proposed indesing technique 

is rsecutrd entirely in the compressrd domain. This tintails signilicant swings in 

computational and storaye costs rrsulting in fastrr esrcution. 

This cliapter is organized as follows. First, the requirernent of the proposrd spatio- 

temporal indexing are drtailed in section 6.3. The proposed algorithm for video compression 
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using VQ is then presented in section 6.3. The scene change detection algorithm and the 

generation of the spatial index are presented in sections 6.4 and 6.5. respectivsly. This 

follows in section 6.6. with the details of the proposed algorithm for the generation of the 

temporal index (object motion and camrra operations). Finally. a summary is presented in 

section 6.7. 

6.2 Spatio-temporal Video Indexing 

Video indexing has numerous applications each with different goals. For example. in a movie 

industry, a film editor cssentially looks for footage of a particular type of scene and/or 

sprcific camrra operations tiorn a databasr populated with similar shois. On the other hand. rt 

producrr in a television station intcrestrd in profilin- (i crlebrity rnay require aççrss to al1 the 

significant video clips relating to that specific celebrity. In a distance learning application. a 

student is interesred in a specific lecture vidro or associated material. while in a telemedicine 

application a mediciil practitioncr may be interestrd in the past investigations of a patient or 

particular esamples of a disease. This points to the nerd for a video indesing schrmr which 

is flrsible and adaptable to the wide variety of queries in different application domains. In 

other words. a good video index must integrate both temporal and spatial structure of the 

video sequence. 

We presrnt an indesing technique for cornpressrd vidro using vrctor quantization. 

Here. a video sequrnce is first compressed ~ising VQ. Each frame is represented by a usagr: 

map (which indicates the subsrt of codewords in the codebook that were usrd in cornpressing 

the frame), a set of labels and a set of motion vectors as show in Figure 6.1. The video 



sequence is then partitioned into shots using a metric based on the histogram of the label. 

Each shot is indexed using a spatio-rempural index as shown in Figure 6.1. The spatial indes 

represents the spatial content of the representative frame of a shot. We propose to employ the 

usage map corresponding to a representative h e  of a shot as the spatial index. The 

temporal activity within a shot is represented by the temporal indrs which is rssrntially the 

motion information and camera operations within the shot as shown in Figure 6.2. In this 

chapter. the motion activity is detrcted by tracking the trajectorirs of the motion vectors of 

the labels. while camera operations are detected by analyzing the directionality of the spatio- 

temporal patterns of the label maps. W r  note that the proposed spatio-temporal indrs is 

grnerated entirr ly in the VQ compressed domain. This entails signi ticant savinps in 

cornputational and storagr costs for decompression and recompression resulting in faster 

mecution. 
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Figure 6.1 : Block diagrani of the proposrd vidro indesiny technique 
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Figure 6.7: Block diagram of the proposed video indesin2 tccliniqur 

6.3 Video Compression using VQ 

In our approach. we extend the image compressim algorithm. which was drscribrd in section 

2.3. to video compression by exploiting the temporal redundancy in the labels of succrssivc 

kames. To stari witli. tlie fraine .f,it to be compressed is decornposed into L-dimensional 

veçtors. For racli vector. 1; in the current frarnef,;, the label of the neürest codeword u; is tirst 

detemined using the universal codebook. The usage map {~rcJ;,,,j); 0 S j 5 k i l )  where 

~ c & , , j l ~ { O .  1; is updated to indicate that codeword w, is used. The label w, corresponding to v, 
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in the current framej, is compared with the label at the sarnr spatial location in the previous 

frmef,;,.l. If they match. a flag Sf is transmittrd to the recciver. Otlienvise. a match is sought 

within a srarch area in j,;l.i. If a match within the search area is obtained. a tlag SI. followed 

by the displacement (motion) vector of iv, are transmitted. However. if a match is not 

obtained rvsn  within the search area. the label corresponding to y, in the reduced codcbook is 

used to encode the input vector . The algonthm can be expressed in pseudo code as follows: 

Begin 

Decornpose the input framej;,, into L-dimensional vectors: 

For each vector Do 

i l ;  = the label of the nrarest vector in the universal codebook: 

update the usage map: 

it*,,, = the label corresponding to the vector at the samr spatial location of the input 

vector: 

i f ( wI,, marc lies N; ) tlirn send a llag S, 

\Y,, = the neart-st label within a search area: 

if (11; matches is,) then send Sm followed by the motion vector: 

send a tlag S, followed bu the label corresponding to W.  in the rcduccd 

codebook: 

End for 

End. 



We note that the codebook is arranged in the ascending order of the average and standard 

deviation of the codewords. By ordering the codebook. similar vectors rnap to nrighboring labels 

and hence the label rnap of an image produces a scaled version of the image. For sxaniple. the 

label rnap of the Lena image using non-ordered and ordered codebooks are shown in Figure 6.3. 

The ordering of the codrbook has two advantages: (i) the labels can be coded to furthrr reduce 

the bit rate and. (ii) the label maps of a video sequence is used to extract the carnera operations as 

will be discussed in section 6.3. 

Computer simulations were carried out on the Miss Amrrica srqiirnçc with a tiamr 

s i x  of 188x360  pixels and 8 bits/pisel. The sequence is obtainsd form 

"ftp:~ifip.ipl.rpi.eduiimageisequence/". The coding performance of the proposed algorithin is 

cvaluated usinp rate distortion criterion. Far an image of sizc .I',L\'~ and a masimum pisril 

value of 255. the Peak Signal to Noise Ratio (PSNR) of the reconstructed image is calculatrd 

where .Y,, and Y,, cire the intensity of the pixel ( i j )  in the original and the reconstructed image. 

resprctively. The total bit rate is calculated by: 

K + (log, K + 1) x N, + 2 x IV, + 5 x Y,, 

where K, .K.. Y,; and :V,,, are the codebook six. the n~imber of  labels. the niirnber esact rn~itchcs 

(S,  tlags). and the number of motion vectors. respectivttly. In our rsperimsnts. the values of the 

nags Si. Sb and S,,, are=(O), {IO), ( 1  1 ) .  



(a> (b) 

Figurc 6.3: Label map of the Lena image. (a) Non-ordered codebook, (b) Ordered codebook. 

The bit ratc and thc PSNR per Iiamc which rcsult from applying ihc compression 

technique on cvcry other 4th frarne OF the Miss America sequencc arc s h o w  in Figurc 6.4 

and Figure 6.5, respcctively. Note that the intermediatc frames are skipped to allow for larger 

changes bctwccn succcssivc frarncs. Thc avcrrige bit ratc and PSNR arc 0.3 bpp and 33.3 dB. 

respcctivcly. It can bc sccn from Figurc 6.4. ihat when there arc signiticani changes betwecn 

thc francs (cg.,  ~rarncs 79 to 91) the bit rate incrcases. It c m  bc sccn Fron~ Figurc 6.5. thrit 

thc proposcd compression technique maintains a relatively constant quality throughout thc 

scquencc. The overhead for stot-ing the usagc map is 0.0025 bit per pixel. I t  c m  bc secn h m  

Figure 6 . 4  that thc overhcad is ranges h m  0.7% to 1% of the total bit ratc. 'I'hc ovcrhcad ol' 

ihc usagc map as a function of codebook s i x  for somc typicd images is s h o w  in Figurc 6.6. 



Frame number 

Figure 6.4: The total bit rate as a function of Frarne number. 
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Figure 6.6: Usage map overiiead in bits prr pixel as a function of codebook s i x  fom some 

typical image sizes. 

6.1 Video Segmentation 

The structure within a video stems from the tact that video streams rire formed by cditing 

dirferent \-idro segments known as shots. .A shot is n srqurnce of framrs genrrated during a 

continuous operation and it represents continuous action in time and spacr [127]. Shots can 

be joined togcither in rithrr an abrupt transition mode. in which t \ v o  j l i u t s  cire simply 

concatenatrd. or through gradua1 transitions. in which additional framcs may br  introduced 

using editing operations such as dissolve. fade-in. fade-out and wipe. Furthemore. each shot 

might contain srveral clips where each clip is defined by a homogenous camera opsrrition 

(cg.. LOOIII. t i l t .  .... etc.). 

Thc purposr of the segmentation procriss is to partition a vidro Stream into a set of 

meaningfiil and manageable clips as shown in Figure 6.7. which then serve as the basic units 

for indesing. The segmentation process can be performed in two stages as shown in Figure 



6.8. We now presrnt the algorithm for scene change detection. The algorithm for the 

detection of camera operations is detailed in the next section. 

Cuts 

Video 

\ 
Shot 1 

4 b 4  
Shot N 

H b 

Clip Clip Clip Clip Clip 
4 M u M M b 

Figure 6.7: Video segment in terms of shots and clips. 
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b 

Figure 6.8: Block diagram for video segmentation. 



6.4.1 Scene Change Detection 

Video has both spatial and temporal dimensions. and licncs a good video index should 

capture the spatio-temporal content of the scrne. We recall that. in order to achicvr this. a 

video is tlrst segmentrd into rlcmental scenrs called shots. Sliots c m  bc. joiiied togctlicr in 

eithrr an abrupt transition mode in wliicli two shots are simply concaténatrd. or rhrough 

gradual transitions. in which additional frarnes mq bc introduced using cditing operations 

such as dissolve fadr-in. fade-out and wipe. in generai. video segmentation is acliirved by 

ernploying a difference mrtric to masure the changes betwrrn two frames. A scsnr change is 

deciared if the difference between the tivo trames esceeds certain threshold. 

The histogram of the labels of a framr fi,, is the Cdimrnsional vrctor ,'H(f,>.i) ; i-i. 2. 

. . . . E;;'. whrre Hg;,. il is the number of labels i in th<: cornpresstxi framtl and K is the number 

of codrwords in the codebook. The difference brtween two frames 6 ,  and f,; is rneasured 

using the X-rnrtric : 

.A large value ofd(fm,& indicates thatj; andf,; belong to different scrnrs. An abrupt 

scenr change is declared if the difference betwren two successive frames ctscrrds a threshold. 

.A gradual transition is drtected if the difference brtwern the current frams and the tirst frorns 

of the present shot is larger than a threshold. 

Simulations werc esecuted using three music: video sequenees. Wr refer to the video 

sequences as "S 1". "SZ" and '53". Each sequence has a frame size of 120 x 160 pixels. The 

fint sequence. S 1. has 20 1 frarnes and contains 7 abrupt scene changes. The second sequence 
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S2 has 20 1 frarnes and contains 2 1 cuts and has many special effects. The third sequence, S3 

bas 500 Frames and contains a total of 13 gradua1 scene changes with very smooth transitions. 

In the first experiment. the video sequences were compressed as drscribed in section 

2. using a codrbook of 256 codewords and 16-D vectors conesponding to a compression 

ratio of 16: 1. Segmentation results are tabiilated in Table 6.1. Ws note that .YJ. X,,, and .V, are 

the number of detected, missed and false cuts. respectively. It can be seen from Table 6.1 that 

one cut is missed and there are some expected false alarms. We note that tlis largrst number 

of false alarms is for the sequence SZ. This due to the fact that S? is charactcrized by a large 

number of special effects and carnera operations. 

'Table 6.1 : Scrne change detrction results using V Q  at ü compression ratio of' 16: 1. 

In the second rsperiment, the video sequences were compressed using V Q  (section 3) 

at a compression ratio of 64: 1 using a codcbook of s ix  256 and 64-D vsçtors. Deteçtion 

results are tabulatcd iii Table 6.2. Comparing Table 6.1 and Table 6.1. it  çan bc seen that rit a 

compression ratio of 64: 1 .  there are few misses and the number of falsr: alarn~s increases. 



Table 6.2: Scene change detection results using V Q  at a comprcssion ratio of 64: 1. 

Howrver. false cuts do not cause problcms as the frames within such segments satis- 

the requirements of a shot. Hencr. the proposed algorithm has an ésccllrnt performance at 

both low and high compression ratios. 

in the third esperiment. the sequences wrre compressed using motion JPEG at a 

compression ratios of approximately 16: 1 and 27: l . The 2-rnetric applied to the histogram of 

the DC coefficients is used for scrnr change detection. The detection results nt a compression 

ratio ol' 16: 1 and 27: I are tabulatcd in Table 6.3 ~ i n d  'Table 6.4. respecti\.ely. Tho nuniber of 

missed cuts increases from 10% at a comprcssion ratio of 16: 1 to 24% at ri çonipression ratio 

ù f  Y: 1. while rhe number of falsr cuts increases from 36% to 6 1%. 

I t  can be seen from Table 6.1 and Table 6.3. that scene changes were detectrd at a rate 

of 90% in sequences compressed using V Q  at a high compression ratio of 64: 1. while cuts 

w r r  detccted only at rate of 75?6 in sequences comprrssrd using motion JPEG nt a lower 

compression ratio of 27: 1 .  Hrnce. segmentation of cornpressrd video seqiirnces using VQ is 

elliçient ai botli hi& and Ion. compression ratios. However. the performance of the 

segmentation algorithm degrades using motion JPEG at Iow bit rates. 



Table 6.3: Detection results ~ising the DC coefficients at a compression ratio of 16: 1 .  

Table 6.4: ratio of 37: 1 .  

k 

Sequence 

S 1 

S2 

S3 

J 

6.5 Spatial Index 

We recall from section 6.2. that afier a video sequence lias been partitionrd into shots. a 

representative frame for each shot is selected and image indexing techniques are then applird 

to the rrference frame. V Q  is a mapping from a vector in L-dimensional space into a tinitr set 

( codebook) of reproduction vrctors (codewords). Wt: note t h  the in fornirit ion conwycd hy a 

sct of qiiantizrd vcçtors. is also encoded in iIie set of codsword labels. Hrtnctt. similar images 

map to similar codewords. We propose to employ the usage map as feature vector to index 

the representative Framr of a shot. We recall from section 3 that during the compression of a 

Detrction results using the DC coefficients at a compression 
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frame. a usage map is generated to indicate the used codewords. We recall from chapter 5 ,  

that the reduced codebook corresponding to an image rrflects the contents of the image and. 

The wage map corresponding to an image constitutrs a feature vector which is usrd as an 

index to store and retrieve the image. 

The sirnilarity between two images f, andf, is measured using the following equation: 

where @ is the XOR operation. Using this metric, the cornparison of two indices requires 

O(N) bit operations. The number of bits required to store an indes is O N )  bits. This 

technique doesn't require any additional operations to calculate the indices as the usage rnap 

is gctneratéd during the compression stage. Hençe. rhe proposrd technique provides hst 

access to the compressed images in the database and has lower storage requirements 

Simulation were performed using approsimatrl y 500 representative images rach of 

sizr 256x256 pixels. Tlir images are compressed to t o m  2 databases name[!.: B? and B3. 

Tlie iinagrs in 82 and B3 are compressed using ndaptive V Q  (section 6.3)  at compression 

ratios of 15.9: 1 and 63: 1.  respectively. 

Retrieval results are shown in Table 6.5. Ws note that BO and BI rekr to the 

databases in which the images are indexed using the histogram of the pixels (iincornpressed 

doniain). Tlie images in BO are indesed using the histograni of pixels witli 256 bins. \hile i n  

B 1 rach histogram is quantizcd to 64 bins. Using the usage rniip as a spatial indrs at 

compression ratios of 15.9:1 and 62: 1. the retrieval rates were 91 -3% and 90.2%. 



respectively. Using the histogram of the pixels as an index the images were retneved at a rate 

of 88.6%. 

Table 6.5: Retrieval rates using histograrn of pixels. and usage map on the databases BO. B 1. 

B2 and B3. respectivcly. 

Database Retrieval rate 

Table 6.6: Cornputationûl and storage requirrments. 

L 

The number of operations and the number of bits required to calculate and store the 

histogram of pixels for some typical image sizes are s h o w  in Table 6.6. For a codebook of 

image size No. of operations No. of bits 



size 256 with 16-dimensional vectors. the number of operations required to calculate a single 

indes in each database is 256. It c m  be seen that the proposed technique has very low 

cornputational and storage requirernents. It is important to note that indrxing using the 

histogram of pixels requires arithmetic operations (additions and multiplicationsl. while 

indesing using the usage rnap involves only bitwise operations. 

6.6 Temporal Index 

We recall t'rom srction 6.1. that the temporal index consists of two parts: the first represents 

motion activity while the second rrpresents camera operations within a shot. In this section. 

the grneration of the temporal index is detailed. 

6.6.1 Motion 

We recall From section 6.3. that during the compression of a video seyuence motion 

estimation on racli label has been performcd. This information can be exploitrd to drscribe 

the motim witliin sach shot. 1-0 s tm with. the motion vectors arc used to trrick ericli label. 

Each track c m  br thought of as an n-tuple of motion vectors. The tracking operation is 

performcd as follows: Given (xl ,y , ) .  the coordinate of a label in frarne Ji.  and the motion 

vector (AL Ay) between / j  and jj. the coordinate of the label in is (.q+llr.y+&). If 

durinp the tracking procedure the initial label mows out of its position. thrn haw to 

yenmite (i ne\\ t n c k  for the new label whose position coincides witli the çoordinaies of the 

initial label. The track of a label is represented by 



where ((x, .yl) . (s~.y2).  .... (s,.y,J). fi and!; are a set of points reprrsenting the absolute framt: 

coordinates. number of the tlrst frame in which the track started. number of the last frarnri in 

which the track ended. 

6.6.2 Detection of Camera Operations 

Wr recall from section 2.5, that the basic camera operations are: fixed. panning (horizontal 

rotation). trac king (horizontal transverse movement ). t i l ting (vertical rotation). booming 

( ~ ~ s n i c d  transverse rnovement). zooming ( varying the focusing distance ) and dolly ing 

(horizontal lateral movrmcnt) as sliown in Figure 2.6. Can im operations includc the basic 

operations and al1 the different possible cornbinations. Several tecliniques for cnmera motion 

estimation have been reponed in the literature. However. we note that these techniques are 

grnrrally afkcted by noise and have high çomputational çomplesity. 

For indesing purposes it is not rssrntial to know esactl! Iiow niuch pan or zoom 

occurred (quantitative carnera parameters): the important rrquirement is to recognizr which 

camera operations have occurred in a given shot. Therefore. the purpose of the proposed 

technique is to extract qualitative camera operations. In this section. we present a technique 

for the detcction of camrrri operations. The proposed technique is less sensitive to noise and 

ha5 3 lower computational cornplesity. Wr start hy presrnting a canxra mode1 for the basic 

carneni operations. 



6.6.2.1 Camera rnodel 

A vidro camera projects the 3-D space onto the 2-D image plane. Using tlie notation in 

Figure 6.9. the point at coordinates (,Y Y . 2 )  in the 3-D space is mapped onto (XJ) in the image 

plane. The coordinates (.Y KZ) and ( ry)  are related by the perspective transformation 

where F is the focal length. 

Image plane 

Figure 6.9: Calçulation of the projrcted point ( X J )  ii-orn the objrct point (-1: Ka. 



6.6.2.1.1 Zoom: 

A zoom is the change o f  the camera focal lenpth and results in a change wliich manifests 

itself as a radial motion towards (zoom out) or away (zoom in) from the crntcr of the image. 

Let (xl.y1) denote the image plane coordinates o f  the point (.Y. 1 2 ' )  with a focal length of FI.  

and (s~:) is the image plane coordinates of the same point with (i focal length F: (aftrr the 

zoom). Using equation 6.4. the following relation is derived: 

We note (x:.?;,) is independent of the distance brtween the carnera and the object (the drpth 

6.6.2.1.2 Pan 

A pan is a rotation of the camera around the Y-asis by an angle p. Let (si.jPi) and ( s : . ~ : )  be 

the image plane coordinates of a point (.Y 1: Z) before panning and aRrr panniny. resprçti~ely. 

The relation b r t w c n  (.Y!.J,) and (s:.p) can be espresscd as follows: 

Assuming the value of p is small and xl;F 1. equation 6.6 reducrs tu: 

s. = s, i FP r?. = J., - - 

Hrnce a pan operation rrisults in a shif by a consrani amount. 



6.6.2.1.3 Trac king 

ae. The A tracking operation dong the horizontal avis results in a horizontal shih of the ima, 

shift depends on the distance of the objects from the camsra (depth). Horvrvsr. for the 

purpose of indexing. the tracking rffect can br approximatcly considered to be identical to 

that of the pan operation. 

6.6.2.1.4 Tilt 

A tilt is a rotation of the camera around the X-auis by an angle a. Let ( x l . y , )  and (.r2,y2) be the 

imqe  plane coordinatès of a point (X Y.2) before tilting and after tilting. rrspectively. The 

relation between ( x l . y / )  and (XJ-v2) can br  rxpressed as fol10 ws: 

t\ssuming a srnall value ofu and yliF 1. equation 6.8 reducrs to: 

x, = x, y. = r, 4- Fa - - 

Hrnce (i tilt oprration results in a vertical sliifi by F a  

6.6.2.1.5 Boominq 

A booming operation dong the vertical axis results in a vertical shiR of the image. The shift 

drpends on the distance of the objects from the camrra (depth). However. to obtain 

qualitative information for indexing the booming efkct c m  be ripprosimatrly considered to 

be identical to that of the tilt oprration. 



Based on the previous carnera model. the qualitative carnera operations in a shot can 

br  determined by analyzing the spatio-temporal patterns which is discussed in the following 

section. 

Figure 6.10: Image block. 

6.6.2.2 Generation of Spatio-temporal Patterns 

The proposed technique for the extraction of camera operations is based on analyzing the 

direction of spatio-temporal patterns. Here? a set of frarnes are stacked in tirnr one afirr 

another to f o m  a an image block as shown in Figure 6.10. A spatio-temporal pattern is a slice 

of the image block as shown Figure 6.10. Two types of spatio-temporal patterns are 

distingiiishcd: vertical and horizontal. A vertical spatio-temporal pattern of size *y. pixels ai 

location (rn.17) is grnerated by tirst selecting tiorn rach label rnap the subirnage of s i x  sx 1 at 



(n1.n). The subimages are then placed next to each other from lefi to right as shown in Figure 

6.1 1. This can be e'cpressed as follows: 

uhere C'ST(i,j) is the (i,j) pixel of a vertical spatio-temporal pattern and I, is the j t h  label map. 

A horizontal spatio-temporal pattern of size y x s  pisels at location O H . I I /  is grneriireci 

by iirsr selecting from each label map the subimage of size 1x1 at (i11.n). The subimages are 

then placed nrxt to each other from top to bottom as shown in Figure 6.12. This cm br  

espresseci as follows: 

wherc HST(i,j) is the (i,j) pixel o h  horizontal spatio-temporal pattern. 

6.6.3 Analysis of Spatio-temporal patterns 

Cnmrra operations within a sequence can br  detected by analyzing the directionality of a set 

of spatio-temporal patterns. Three vertical spatio-temporal patterns are stilectrd. The tirst at 

the lsft side (left pattern). the second at the center (crnter pattern) and the tliird is at the riglit 

side (right pattern). Simiiarly. three horizontal spath-temporal patterns (top pattern. central 

pattern and bottom pattern) are selrcted as shown in Figure 6.13. A spatio-temporal pattern 

can he viewed as a texture image and hencr camera operations can be estimateci by sstimnting 

the directionality of a set of spatio-temporal images. The Jirectionali t y  o î' a spatio-temporal 

pattern. can be estimated from the power spcctnim of the pattern. If the directionality of n 

pattern is 0, then the energy is concentrated in the direction perpendicular to 0. Figure 6.14 

shows a spatio-temporal pattern and its power spectrurn. 
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(rri,  ri) 

Figure 6.1 1 : Generûtion of a vertical spatio-temporal pattern. 



Figure 6. l '>: Grneration of a horizontal spatio-temporal pattern. 



Top pattern 

Centrai pattern 

Bottoni pattern 

le fi 
pattern 

central right 
pattern pattern 

Figure 6.13 The location of horizontal and vertical patterns. 

(a) (b) 

Figure 6-14: Fourier spectrum of a spatio-temporal pattern. (a) pattern; ( b  spectruni. 

Let 0,.  0:. and €13 be the directionality of the top, central and bottom horizontal spath- 

temporal patterns. respectively. Let y,. p. and y, be the directionality of the left. central and 



right vertical spatio-temporal patterns, respectively. From our simulations, fised. pan, tilt and 

zoom camera operations can be detected from the directionaliîies of the spatio-temporal 

patterns as shown in Tables 6.7 and 6.8. We now illustrate how pan and tilt operations are 

determined. 

Camera operation 

Fixed 

Pan right 

Pan lefi 

Tilt iip 

P 

Table 6.7: Detection of tixed. pan and zoom camera opentions. 

Consider the sequence which involves a pan to the right operation as shown in Figure 6.15. 

The sequence is compressed as described in section 6.7. Three spatio-temporal patterns of the 

label maps are shown in Figure 6.16. The top. central and bottom horizontal spatio-trmporül 

paitcms are gcnerated at (6.1). ( 18.1) and (30.1). respectively. It can be seen from Figure 

6.16. tliat the directionality of the tlirec: patterns are approsirnately the same. Le. Bia02zB; 

Tilt down 

Zoom in 

Zoom out 

and 0, is less tlian 90". In case of a pan to the lef we note that 8 i ~ 8 2 z 0 3  and 01 is larger than 

0 3 

z90° 

0, < 90 

81 > 90". 

Not defined 

81 

z90° 

~ 9 0  

0 1 > 90". 

Not defineci 

Not detined 

0, > 90" 

8, < 90" 

02 

r90° 

B i  < 90 

8, > 90". 

Not defined 

.lot de t k d  

z90° 

z90° 

Not detined 

8 < 90" 

0,  > 90" 



I Camera operation 

Pan right I Not defincd Not defined 

Pan lefi Not defined Not detined 

1 Tilt iip 

Tilt ciown 

Zoom in 

Zoom out 

Table 6.8: Detection of fixed. tilt and zoom camera operations. 

Figure 6.15: Frames 1 ,7  and 4 1 of the pan sequence. 

Figure 6.16: :Lefi, central and right horizontal spatio-temporal patterns of the sequrncr 

shown in Figure 6.15 



Consider the sequence shown in Figure 6.17 which involves a tilt up carnera operation. The 

Isft. crnter and right vertical spatio-temporal patterns are s h o w  in Figure 6.18. It can be seen 

from Figure 6.18 that the directionality of the three patterns are approximately the snmr. i.r. 

- / i zy ,~y j  and 7, is larger than 90". In case of a tilt down we note that yisyrZyj and l!~ is less 

than 90". 

Figure 6.17: Frames 5,10 and 15 of a sequence which involves a tilt up camrn oprrations. 

Figure 6.18: The Ieft. central and right vertical spatio-temporal patterns corresponding io the 

sequence sliown in Figure 6.1 7. 

To illustrate how a zoom camera opention is detected. consider the zoom in sequence 

sbown in Figure 6.17. The corresponding horizontal spatio-temporal patterns are shown in 
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Figure 6.18. It can be seen from Figure 6.18 that the first half of each pattem has a 

directionality less than 90°. while the second half has a directionality greatêr tlian 90'. In case 

of a zoom out carnera operation the first half of each pattern has a directionality greater than 

90". while the second half has a directionality less than 90". 

Figure 6.19: Frarncs 5.30 and 60 of a zoom in sequrnce. 

Figure 6.20: Top. central and bottorn horizontal spntio-temporal patterns correspondin, '1 to the 

sequence s h o w  in Figure 6.19. 



The directionality of a subpattern is determined is estimated fiom the 2-D power 

spectrum.as follows. Let a spatio-temporal pattern and its DFT be represented by f(x.y) and 

F(ir.v). The power spectmm of the transfom. which gives the enrrgy of the hequency (1r.v). 

is defined as:~(ii.v)=.~~(u,vjl' The amount of energy in direction a is given by L, P(r.a). 

where P(r.a). is P ( w )  expressed in polar coordinates. If the of Er P(r.m h3s a peak at y. 

then spatio-temporal pattem has a directionality perpendicular to y. 

Simulations performed on four video sequences S,,,,,,. SmIIldro2. Scu,tit,ruj and S,l,,,,4. 

The sequences S,,,e,l. Scomrro2. Scamdra3 and S,,cpru4 composed of 10. 16. 70 and 27 camrra. 

operations. respectively . In addition. and S,,,,l,roJ do not have large moving 

objrcts that dominatr the scene. The sequences are comprrssed usine a codrbook of sizr 3 6  

codrtvords and a 16-dimensional vectors. 

Deteçtion results are shown in Table 6.9. It çan be seen from Table 6.9. that for the 

sequences S,,l,,,r. S,,,,,,,2. and Sc-ulIreruj the ail carnera operations in the srqucnces are 

detèçted. while for SL.c,,ll,rc,, only 2 operations are misscd. I r  c m  be also srrn (rom Table 6.0 

that number of false detections ranges from 12.5%-60%. Ws note that is high in sequences 

which contûin moving objects. Hence. the proposcd algorithm has an excellent perfornirince. 

We recall that here camera operations are detected from label maps which results in low 

cornputational complexity. In addition. the proposed technique is less sensitive to carnera 

vibration and flash noise. sincr the drtection procrss is bnsed on a set of frames rather tlian 

individual franies. 



Table 6.9: Numbrr of detected (Nd). missed. (A;,,) nnd fdse detected (;y) camrra oprratioiis. 

Sequence 

Scamcra i 

Scrimsrril 

6.7 Summary 

In tliis chaptsr. we have presented an indrxing technique for comprcssed vidw usin, 'J vector 

qunntization. The video sequence is panitioned into shots using a metriç bascd on tlic 

histogram of the label rnaps. Each shot is indrxed using a spiitio-tempord index. The spatial 

indes is the usage map corresponding to a representatiw frlime of the shot. The temporül 

rictivity within a shot is essrntially the motion inforniation and çürnrra operations wittiin the 

shot.. The motion rictivity is detrctrd by tracking the trajjrcrories of the motion wctors of the 

labels. whilr camrra operations are detected by analyzing the directionality of the spatio- 

temporal patterns of the label maps. The spatio-temporal index provide an efficient 

reprrsentation of the content of a video shot. In addition. it is yrnerated entirel! in the. VQ 

compressrd domain wliich results in signifiant swings in computational and storage costs. 

Nd 

10 

16 

lVnr 

O 

O 

4 

3 
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Summary and Future 

Research Directions 

1. Summary 

Visual media indexing is crucial in several applications for efficient rerric.\.al of irnagc and vidco 

information. With the progress o i  multimedia tec hnology. large amounts of \ iwal  data will be 

widely accessible and thus will become one of the primary sources of information. much as text 

is roday. Whether the application is distance leaminp. digital librciries. interactive television. 

multimedia news or banking. large volumes of video data will he required to be accrssed 

prrcisely and efticirntly. 

One of the key features for efficient. economic storage and retrieval required in a 

database system is efficient indexing to enable fast access to the stored data. Whilr indesiny 

techniques for testual data are wrll established to the estcnt that a considerable number of 

database systems cire comrnercially availablr. there is an impending necd to devclop content- 

based indrsing techniques to facilitate retrieval from a visual database. 



Wr recall from chapter 1. that research in image and video indexing take one of two 

directions. The first direction is to develop indesing techniques for compressed images and 

video. The second direction is to develop compression algorithms tliat are optimizeci not only 

in coding performance (bit rate vs. quality) but also in terms of  retrieval efficiency (joint 

compression and indexing). In this thesis. we have addressed the problrm of image and video 

indexing using vector quantization (VQ). 

In chapters 2 and 3.we have presented a comprehensivr review of image and video 

indexing techniques in the uncompressed and compressed domains. respe~ti\~ely. In chapter 

4. we have presented two techniques for indexing of vector quantizrd images. In the first 

technique. for each codeword in the codebook. a histogram is generated and srored dong with 

the codeword. The summation of the histograms of the codewords weighted by the number of 

labels is iised as an index to store and rrtrieve the image. In the second technique. the 

histogram of the labels of an image is used as an index to access the image. We have shown 

that the proposed techniques providr fast accrss to the images in a database. havr lower 

storage requirements and combines image compression with image indesing. 

In chapter 5. we havr proposed a nciw technique for the storags and retrieval of 

compressed images. The proposed algorithm is applird in the wavelet transform domain. In 

this technique. the images are first decomposed using wavelet transform followed by adaptive 

vrctor quantization of the transform coefficients. The usage map o f  the sodebook is ustid as 

an index for image retrieval. We have shown tliat the proposed technique provide fast access 

to the storsd images and lias a lowcr rost for çomputinp and storing the indices cornparcid to 

other techniques reported in the literature. 



In chapter 6, we have presented an indexing technique for V Q  compressed video. 

Here. the video sequence is partitioned into shots using a metric based on the histogram of 

the label maps. Each shot is indexed using a spnlio-ten~porai index. The spatial index is the 

usage map corresponding to a representative frame of the shot. The temporal activity witliin a 

shot is essentially the motion information and camera operations within the shot. The motion 

activity is detected by tracking the trajectories of the motion vectors of the labels. while 

camera operations are detected by analyzing the directionali ty O l the spatio-temporal patterns 

of the label maps. The spatial and temporal indices are generated entirely in the VQ 

compressed domain. which entails significant savings in computational and storrige costs for 

decompression. resulting in faster execution. 

2. Future Research Directions 

Future rçsearch work in the area of image and video indrxing using V Q  cnn be carrird out 

dong the following directions: 

A natural lrvel for representing visual content would bt: the object 1rvc.l ( cg . .  a horsr. or 

a racing car). This will provide ii hierarchical representation whrre imagdvideo objects 

can be indexrd at different levcls. An important research issue is to develop techniques 

for object segmentation and tracking in the VQ cornpressed domain. Wr  recall from 

chapters 4 and 6 that the label map of an image can be viewed as a scaled version of the 

original image. tIencc. object rstnction algoritlinis çan br npplied directly to tlir label 

ninps. whilc objrct tracking c m  br irnplrmrnted iising motion parrimeters compiitcd from 

label maps. WC note that object segmentation and tracking are esecuted in the VQ 

domain. which eliminate the need for decompression. 



In a generic visual database system, it is impossible to foresce al1 possible queriss a 

priori. For example, a news producer in a television station interested in profiling the 

leader of a country may require access to al1 vidro clips relating to that specific person. 

On the other hand. a film editor essentially looks for shots of a particular type of scene. It 

is impractical to have an attributc for each possible query (e.g.. color. camera motion. 

etc.). Hence, he development of a generic index structure is of great interest. A generic 

index enables us to derive n dominant feature to perform the srarcli operation based on 

the specific input query. 

The simulations for the proposed algorithm for the detection of camera operations using 

spatio-temporal patterns of label maps. have dcmonstratrd that the technique is frasible 

and useful. W r  note that it is not possible to distinguish tracking from panning. and 

booming [rom tilting. Optical tlow analysis of the label maps can be used in order to 

distinguish tracking from panning. and booming from tilting. This technique is based on 

the idra thnt if the çomponents of the optical tlow due to carnuri rotation and zooni are 

subtracted from the uptical tlow. the residuai tlow will he pardlrl [ I  03 J.  

In the proposed tecliniques. we have used hll-srarch VQ. For K input \e tors .  the 

encoding complexity of a full search VQ is O(KLN) where L and !V are the vector 

dimension and codebook size, respec tively. We recall from c haptrr 3. that vector 

quantization algorithms which rrduces the computational complesity Iiave bern rtrponed. 

We note that the extension of the proposcd techniques to 0 t h  VQ algorithms such as 

tree-stnictiircd VQ. miilti-stage V Q  and classifird VQ is usrful and rftïcient. Hrre. it is 

possible to grnerate an index which provide a mechanism for hierarchical image and 

vide0 retrieval. 

15 1 
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