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Abstract

Planning and controlling production in a large make-to-order manufacturing network

poses complex and costly operational problems. As customers continually submit

customized orders, a centralized decision-maker must quickly allocate each order to

production facilities with limited but flexible labor, production capacity, and parts

availability. In collaboration with a major desktop manufacturing firm, we study these

relatively unexplored problems, the firm's solutions to it, and alternate approaches

based on mathematical optimization.
We develop and analyze three distinct models for these problems which incorpo-

rate the firm's data, testing, and feedback, emphasizing realism and usability. The

problem is cast as a Dynamic Program with a detailed model of demand uncertainty.

Decisions include planning production over time, from a few hours to a quarter year,
and determining the appropriate amount of labor at each factory. The objective is to

minimize shipping and labor costs while providing superb customer service by produc-

ing orders on-time. Because the stochastic Dynamic Program is too difficult to solve

directly, we propose deterministic, rolling-horizon, Mixed Integer Linear Programs,
including one that uses recently developed affinely-adjustable Robust Optimization

techniques, that can be solved in a few minutes. Simulations and a perfect hindsight

upper bound show that they can be near-optimal. Consistent results indicate that

these solutions offer several hundred thousand dollars in daily cost saving opportu-

nities by accounting for future demand and repeatedly re-balancing factory loads via

re-allocating orders, improving capacity utilization, and improving on-time delivery.

Thesis Supervisor: J6r6mie Gallien
Title: Associate Professor of Management Science and Operations
London Business School
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Note on Confidential Information

So as to protect the firm's proprietary and confidential information, much of the data

presented in this thesis has been changed to prevent access by competitors. Although

specific values of many parameters vary from their true historical value, the relative

values and qualitative results that we present still represent reality well.
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Chapter 1

Introduction

This thesis addresses production planning and control problems encountered by make-

to-order manufacturers that have multiple production facilities. As rapid advances in

technology improve the availability of information, global supply-chain controls are

being developed to improve market responsiveness to shifting consumer demands. In

make-to-order network manufacturing, firms must use automated controls to quickly

and efficiently allocate thousands of custom orders to multiple manufacturing facili-

ties.

This work is motivated by and performed in collaboration with a particular, large,

make-to-order desktop computer manufacturing company, hereafter referred to as

"the firm," that needed such controls. The firm is a $61B annual revenue corpora-

tion, based in Austin, Texas, United States, that designs, manufactures, sells and

supports computer-related products. In North America, the firm manufactures hun-

dreds of thousands of consumer and corporate desktop computers each week. Rather

than selling via typical retail channels, the firm developed an innovative make-to-order

and direct factory-to-customer shipping business model, which many other companies

have now adopted. This business model provides great value to customers by tailoring

products to their desires and reduces inventory requirements by assembling finished

goods Just-In-Time. However, this business model makes outsourcing final assembly

of products difficult and increases direct labor and shipping costs. In North America,

the firm produces desktops from multiple factory locations to improve delivery lead



times, reduce shipping costs, and mitigate the risk of losing all manufacturing capabil-

ity. Uncertainty regarding the quantity, timing, and geographic destination of future

orders for desktops complicates the decision of how to allocate orders to factories

and adjust production capacity to match demand. Because computer manufacturing

is one of the most rapidly growing and competitive industries with products that

are becoming more difficult to differentiate, cost-advantages are critical to gaining a

competitive advantage. The firm's flexible, complex, and cutting-edge supply chain

presents an excellent opportunity to employ optimization-based solution techniques

in an industrial setting.

The first major contribution of this thesis is exposition of this industrial problem

which has received little attention in the literature. Chapter 2 presents the business

problem faced by the firm and its innovative and evolving supply chain configuration,

illustrating a problem with several sets of industrial data that requires further research

and setting the context for the remainder of the thesis. The fundamental question

posed in this problem and answered by this thesis is "Which desktops should be

built, when and where?" Intricacies of the problem, its associated challenges, and the

firm's approaches to solving it are discussed in detail. Chapter 3 reviews the relevant

academic literature, including production planning and control in make-to-order and

network settings, optimization-based solution techniques, similar industrial studies,

and other work related to the firm.

Chapters 4, 5, and 6 contain the second major contribution of this work: three

distinct models of the problem which incorporate the firm's actual data, testing,

and feedback, discussions of challenges to optimization modeling in practice, and

actionable solutions and insights. Analysis of these models demonstrates credible

and realistic cost savings opportimities from optimization-based solutions. In all of

these models, decisions include producing various desktops at factories over time

and determining the appropriate amount of production capacity. The objective is to

minimize the sum of several relevant supply-chain costs, including factory-to-customer

shipping costs, the cost of labor that is used directly to produce the desktops, and

the cost of poor customer service. Emphasis is placed on model realism and usability.



Several important questions are addressed in each of these chapters. How can

we model the firm's problem mathematically? What choices are appropriate when

balancing model tractability and realism'? What challenges can be encountered when

using mathematical optimization techniques to solve an industrial problem in prac-

tice? Compared to the firm's historical decisions, can mathematical optimization

leverage the firm's manufacturing network to reduce relevant supply chain costs and

improve customer service? If so, by how much and by making what decisions? Should

the firm be producing orders in different factories or at different times? What is the

appropriate amount of capacity to have at each factory? Can customer service be

improved by satisfying more orders on time? How confident can we be in our answers

to these questions?

In Chapter 4, the problem is formulated mathematically as a Dynamic Program-

ming problem and demand is analyzed and modeled in great detail. A simulation

study of various solution policies shows that a rolling-horizon, certainty-equivalent,

linear-programming policy performs near-optimally, improving upon the firm's his-

torical policy by several hundred thousand dollars per day.

In Chapter 5, the same problem is addressed deterministically by a large Mixed

Integer Linear Program (MILP) with many details that were necessary for implemen-

tation at the firm but too intricate or unintuitive for the in-depth analysis of Chapter

4, exposing many issues and insights that arise when using optimization in practice.

Analysis of the solution to the MILP indicates similar potential cost savings of several

hundred thousand dollars per day relative to the firm's actual decisions.

Chapter 6 studies the same problem but plans for production over the next

quarter-year rather than the next few days. Another MILP is developed, incor-

porating the cost to ship parts from suppliers to factories and decisions regarding

how much staff to hire at each factory. Because demand data was limited and solu-

tions suggested drastic reductions in labor levels, Robust Optimization techniques are

introduced, including discussions of how to model uncertainty appropriately and tech-

niques to maintain tractability. Results demonstrate that, even under extreme levels

of protection against uncertainty, optimization-based solutions can provide similar



cost savings of several hundred thousand dollars per day.

We coalesce these results and insights in Chapter 7, our conclusion. Many firms

now face difficult decisions in a make-to-order network manufacturing environment.

This thesis presents a thorough and grounded discussion of one such industrial prob-

lem. Realistic and tractable modeling choices, which often go without much discus-

sion, in addition to substantial financial impact, are necessary for optimization-based

solutions to be used in practice. Consistent and data-driven results show that these

controls can provide significant cost savings by dynamically allocating orders among

production facilities to continually re-balance factory loads. The insights gained from

thoroughly studying this firm's problems are readily applicable to other firms facing

similar production planning and control problems in make-to-order manufacturing

networks.



Chapter 2

Case Study: Geo-manufacturing

This chapter describes the challenging production planning and control problems that

were faced by the firm between 2006 and 2010 and are addressed in the remainder

of this thesis. In §2.1 we describe the relevant history of the firm's supply chain,

providing the problem framework. The problems are stated in §2.2. Further context

is provided in the summary of several interviews in §2.3 which illustrate the firm's

production capacity and labor force limitations at each factory. The solution that the

firm was already using and provides the historical baseline for our study is described

in §2.4.

2.1 The Supply Chain

The firm develops, assembles, sells and supports computers as well as related products

and services. The firm is well known for its brand-name products and supply-chain

innovation, shipping more than 110,000 computers every day to customers in over 180

countries. According to its website, in the third quarter of its 2011 fiscal year (ending

October 29, 2010), the firm had a revenue of $15.4 billion, an operating income of

$1.02 billion, a net income of $822 million, and earnings per share of $0.42.

The firm's unique and ground-breaking supply chain began in 1984 when it was

founded in Austin, Texas, USA based on the idea that selling computers directly to the

final customers would enable the best satisfaction of customer needs. Bypassing the



wholesalers and retailers, which are common in other computer distribution channels,

allowed the firm to let customers configure orders to their own specifications and

conferred greater control over its supply chain. Whereas most personal computer

vendors must forecast demand and build-to-stock, the firm's direct-sales and build-

to-order business model allow it to have excellent performance in inventory turnover,

overhead, cash conversion, and return on investment. Although the firm relies on

outside suppliers and contract manufacturers to provide many components of its

products, it performs the majority of final assembly for desktops itself. Instead of

owning its own parts inventory, suppliers own and manage parts in Supplier Logistics

Centers (SLCs) near each of the firms factories; every computer the firm builds has

already been sold before the firm owns the parts, a new and enviable business model

for the computer industry. By having such close relationships with both customers

and suppliers, the firm had an immense amount of information, allowing them to

quickly respond to customer demand. However, the direct-sales model requires quick

responsiveness in manufacturing capability and the information technology to support

swift order-fulfillment. Hence, the firm must maintain excess production capacity to

deal with demand volatility and hedge against significantly higher outbound shipping

costs, striking the correct balance of production at each factory over time.

Orders are configured and placed in-person, by phone, or via the firm's web-

site. Material Requirements Planning (MRP) software, combined with supervision

from the firm's Operations Center and factory managers, determines when and where

desktops will be assembled; these decisions are the crux of what we study. Every

two hours, supplies are then requested from nearby vendors for orders that the MRP

system determines should be built in the next few hours; vendors have two hours

to deliver those parts from the SLC. The factory then puts the parts for each desk-

top into kits, assembles the hardware, loads software, and tests basic functionality of

these computers, using a substantial amount of human labor. The computers are then

automatically packed in boxes that are later shipped from the firm's factories directly

to consumer's doorsteps via third party logistics providers. This thesis focuses on the

decision of when and where each desktop computer should be assembled.



Name Location Start End
TX Austin, TX, USA 1984 2008
TN Nashville, TN, USA 1999 2009
NC Winston-Salem, NC, USA 2005 2010
JM San Jeronimo and Juarez, Mexico 2009 Present

Table 2.1: The name, location, first year of production (start), and final year of

production (end) of relevant production facilities.

The firm's North American manufacturing network has evolved significantly. In

1984, the firm was founded in Austin, Texas (TX), where all manufacturing took place

until 1996. In 1999, in order to increase production capacity, reduce the cost and lead-

time of shipping directly to customers, and to reduce the risk of a disaster destroying

all of its production capability, the firm opened a manufacturing facility in Nashville,

Tennessee (TN). In 2005, it opened a third United States manufacturing facility in

Winston-Salem, North Carolina (NC), where it received an incentive package "worth

$240 million over 20 years from local and state governments" [Lad09] in exchange

for meeting minimum employment targets. As demand for computers shifted toward

notebooks, as the firm began selling via retail channels, and as investors pressured the

firm to cut costs, starting in 2008, the firm began to terminate desktop production in

its United States manufacturing facilities [SchO8]. The firm ended the manufacturing

of new non-server desktops in Texas in 2008, in Tennessee in 2009, and in North

Carolina in 2010. In 2009, it began outsourcing North-American desktop production

to another firm with factories located in Mexico. Table 2.1 details the firm's North

American manufacturing facilities, giving the names we refer to them by throughout

this thesis, their geographic location, and the years they began and ended production.

This thesis focuses on desktop computer assembly in North American markets

between September 2006 and April 2009, before the firm began retail distribution in

North America, when it used a primarily build-to-order business model. At the time,

it had two major desktop Lines of Business (or product categories), which we refer to

as consumer desktops and corporate desktops. The consumer oriented desktop line

focused on value, reliability, and modularity. The corporate desktop line, focused on



longevity, reliability, and serviceability. In the time of this study, the firm assem-

bled nearly 150,0(X) consumer desktops and 100,000 corporate desktops for customers

across North America each week in two or three of its North American factories. The

firm's North American customer base was distributed across the continent. The in-

ternational nature of shipping to Mexico and Canada limited the production for most

non-U.S. based customers to TX and TN, respectively. However, orders from across

the United States were typically eligible to be built in almost any factory.

Having multiple factories capable of serving the same customer base with a Make-

to-Order business model, enables much more dynamic production decisions than typ-

ical. An identical order made one day later or from a few miles away can easily be

built in a different factory. However, the immense number of possible options and the

complex dynamics of the system make such production decisions difficult. As shown

by the following work, Operations Research techniques can help maintain efficient op-

erations in such a dynamic production environment. As discussed in §3.2, although

the work outlined below analyzes a supply-chain that no longer exists, many compa-

nies, often in other industries, have similar supply-chain configurations and should

find this study useful. The Operations Center faced the difficult problem of deter-

mining which orders should be produced in which factories and at what times. This

thesis addresses that problem.

2.2 Problem Scope and Definition

We began working with the firm's North-American Operations Center, responsible

for centralized supply-chain coordination in North America, in 2006. The Operations

Center was responsible for assigning demand for various desktops with varying due-

dates, parts requirements, and shipping destinations across the continent, to the

three active manufacturing facilities, which have various supply and manufacturing

capacities. Although the Operations Center had developed heuristics to handle these

tasks, it was unsure of their efficacy. The fundamental question answered by this

thesis is "Which desktops should be built, when and where?"



At the time, the firm made decisions regarding this at three levels or scopes. At

a strategic level, with a horizon of about three to twenty years, the firm's senior

management decided to open or close assembly facilities in different locations, as

described in §2.1; we do not address this problem. At what we call the planning

level, the Operations Center planned production, staffing, and parts-sourcing targets

for each factory for a quarter-year or more. At the execution level, which concerns

day-to-day operations, looking at most two weeks into the future, factory managers

and the Operations Center determined when and where each order is fulfilled and

how long hired labor would be needed on the factory floor. This thesis focuses on the

planning and execution problems, assuming that the factory locations are fixed but

that production and labor-capacity decisions must be determined.

2.2.1 Planning

In order to inform parts supply decisions and factory staffing decisions, the firm plans

its production for the next quarter (or occasionally year). Forecasts1for that quarter's

sales volume, for each major Line of Business, were distributed among each week of

the quarter based on historical percentages. The Operations Center, being responsible

for production decisions, assigns this forecasted demand to different factories. Other

groups within the firm then procure parts from vendors based on these production

targets and factory managers hire sufficient labor to meet these production plans.

Although the Operations Center does not make labor and parts sourcing decisions

directly, it does consider the implications of its production decisions on other parts of

the supply chain. In the planning problem, the major decisions that the firm plans for

are 1) the volume of demand for various products that each factory will serve in each

week, along with the associated production and backlog levels, and 2) the amount of

labor necessary to serve that demand.

In the production of a desktop, parts components are assembled into into final

1We did not investigate alternatives to the firm's forecasting method, as it incorporates much

beyond the scope of our project, including strategic marketing decisions and executive desires. How-
ever, we do analyze forecast data available to the Operations Center.



products. The firm shares forecasts of future demand with its parts suppliers who

then manufacture and ship to the firm what they think will be a sufficient supply of

parts. Although the suppliers own and manage the parts until just a few hours before

assembly, the firm makes routing decisions regarding which purchased parts should

be delivered to each factory about a month in advance of their arrival to the United

States. Parts arrive from mostly Asian suppliers in Long-Beach, California, and are

shipped via truck or train to each of the Supplier Logistics Centers near the firm's

manufacturing facilities. Foreman [For08] addresses the problem of routing these

parts for the same firm and its many complexities in great detail. The cost to ship

various parts to different factories largely depends on the number of parts that fit on

a shipping pallet, the mode of transit used, and the distance to the factory. Because

parts routing decisions are made by another department within the firm and heavily

depend on information that becomes available after production plans have been made,
the Operations Center considers the implications of its production decisions on parts

routing by using the average cost to ship parts to each factory, which is referred to

as the inbound shipping cost.

Customers can choose how quickly they would like their order to be fulfilled from

a set of limited options (e.g. 2, 3, 5, or 7 days) which, along with the Operations

Center's choice of manufacturing location, determines the due date by which those

orders must be produced. Failing to produce an order by its due date is considered

poor customer service and can incur significant costs to the firm. The costs include

order cancellations, contacting or being contacted by customers, concession of other

valuable goods to appease customers, reduced likelihood of future purchases from

the firm, and expedited third-party shipping. Dhalla [Dha08 analyzes these costs in

great detail.

In a Make-to-Order business model, production for orders can only occur after

customers configure those orders. The firm must produce these orders in the few

days between when the order is made and when it is due. To do so, it must schedule

sufficient capacity to assemble the desktops. Production capacity is limited by two

expensive resources: 1) the physical layout and machinery of the factories and 2)



the amount of labor available to operate the factory. The physical layout includes

space for workers to assemble desktops and store work-in-progress (WIP) inventory

on the factory floor and space to keep not-yet-shipped but finished goods. Machinery

includes equipment that burns software onto hard-drives, tests machine functionality,

boxes desktops, labels boxes, and sorts and shrink-wraps them for shipping. Purchas-

ing additional machinery or changing the factory layout was beyond the scope of the

Operations Center's decision making. However, the Operations Center did determine

machinery utilization by assigning orders to each facility and thereby influence the

amount of labor available to operate the machinery.

Producing desktops at the firm's factories requires a significant amount of direct

labor to gather the correct components (called "kitting") and assemble them, which

scales in proportion to production volumes. Labor varies in several ways that affect

production capacity. The number of workers and quality of workers determines how

quickly parts are gathered and assembled and therefore the rate that desktops can

be assembled. Production in any period is limited by this rate multiplied by the

amount of time that these workers operate the factory. Because limited space for

WIP is available, as desired in a Make-to-Order environment, a steady flow of material

must be supplied to the machinery; hence, another limit on production is the rate

that machinery can process desktops multiplied by the amount of time that workers

operate the factory. As such, the number and quality of workers as well as the amount

of time they work are critical capacity decisions.

Factories employ both permanent and temporary laborers. Permanent hires tend

to stay at the firm for at least a few months if not many years and can take weeks

to recruit. Temporary laborers are available within a few days notice and may be

hired for just one day or for a few weeks but are often less. skilled at production tasks.

The firm limits the number of temporary workers to be less than some fraction of

permanent workers at each factory to both ensure quality and to be able to ensure

enough people have appropriate training for each task. Although permanent labor

tends to be more expensive and less flexible in quantity, their expertise is necessary

for quality.



The workers who perform this direct labor are assigned to work-teams at each

factory that operate shifts of varying lengths and frequencies. Typically, a work-team

will be scheduled to eight-hour shifts on five days of each week, or ten-hour shifts four

days per week, or twelve-hour shifts three days per week. These planned shift lengths

and frequencies are often referred to as nominal or straight-time hours. Although

the firm plans this shift structure, factory mangers often deviate from it and ask

work-teams to either work longer shifts or go home early. Usually, all workers in a

work-team will end their shift at the same time. If a work-team works less than their

nominal number of hours in a pay period, the firm almost always pays the workers

for all of the nominal hours anyways, making it a sunk cost. However, if a work-team

works more than their nominal number of hours in a pay period, the firm pays an

additional cost for each overtime hour. For instance, if a work-team has five eight-

hour shifts per week, it will have eighty straight-time hours per pay period. If the

work-team works less than eighty hours, it is still payed for eighty straight-time hours.

If it works for eighty-five hours in those two weeks, it is payed for eighty straight-

time hours and five overtime hours. Each shift has a minimum and maximum length

which limits the amount of WIP they can kit, assemble and pass downstream to more

automated machinery.

After a desktop has been assembled, loaded with software, tested, and boxed, it

is shipped directly to the customer via a third party logistics provider. Although the

customer may pay a shipping-fee to the firm at the time of ordering, the firm pays

the third party logistics provider different prices based on both the manufacturing

location and the customer's shipping address, which we typically call the destination,

in addition to factors such as speed of delivery and the size or weight of each box.

The choice of where each order is produced and what destination it is shipped to is a

significant factor in how much the firm pays to third party logistics providers, which

we call the outbound shipping cost. Because the firm ships desktops from its factories

to customers in small quantities, preventing economies of scale, the outbound shipping

cost can become relatively expensive and important in determining where an order

should be produced.



The planning problem faced by the firm's Operations Center is determining how to

allocate demand for a quarter-year's worth of desktops to the firm's North American

production facilities. It should consider inbound shipping costs, outbound shipping

costs, the cost of direct labor, limitations of the labor force, constraints on produc-

tion capacity, and possibly uncertainty in demand and how demand differs from its

forecast. Balancing all of these factors simultaneously can be difficult and misman-

agement can cost several hundreds of thousands of dollars per day.

2.2.2 Execution

All of the issues encountered in planning problem, other than changing the size of the

labor force, apply to the execution problem as well. Nonetheless, as the execution

problem considers day-to-day operations, it contains many more fine details that must

be considered. Some orders can only be satisfied by particular factories for a variety

of reasons, including parts availability, labor expertise, customer requests, and legal

issues. Scheduling the labor force become much more complex. Many more details

are known about orders that have been configured and should be incorporated into

the decision-making process.

In the execution scope, daily decisions are made regarding which orders are built

in each factory and the how long each work-team operates the factory at its pre-

determined staffing level. Each day, from a backlog of available-to-build (ATB) orders

from the recent past, often zero to four days worth of production, the Operations

Center must decide whether to leave orders where they were assigned by the default

plan or 'move' them from one factory to another. Further complicating this, more

orders will be made and become due in the near future. The rate at which each work-

team can produce desktops has already been determined by past staffing decisions,

but the length of time they spend producing desktops has yet to be finalized. With

projections for future sales and schedules for labor availability over the next two

weeks, decisions must be made for what is to be done today. Factories then execute

those decisions by producing the associated desktops.

Orders that customers have already configured, which are said to be in ATB, spec-



ify the quantity and type of desktops, necessary parts, due-date, shipping destination,

and which factories can produce them. Little is known about orders that have yet

to be configured other than forecasts of the total sales volume each day. As in the

planning problem, orders must be fulfilled between the time that they are configured

and the time that they are due; if an order is not fulfilled until after its due-date,

customer service deteriorates. Because the volume, parts requirements, due-dates,

shipping destinations, and eligibility of future orders is uncertain, making production

decisions can be difficult. Large volumes can either force factories operate longer

and at greater expense than planned or delay orders past their due dates. Producing

too much too early can leave factories starved for work when sales volumes are low,
wasting valuable resources such as labor that will be paid for anyway. Nonetheless,

factories can pool some of their capacity by compensating for imbalances between

them.

The Operations Center must decide which orders to satisfy immediately and which

orders should be delayed until a later date or moved to other factories. Because bulky,

heavy desktops are expensive to ship directly to customers, the choice should include

considerations for outbound shipping costs. These decisions also alter the length of

each work-team's shift which can cause non-trivial scheduling complications. The

duration of most shifts is limited to an interval of time. In order for a shift to be

extended beyond its nominal length, advanced notice must be given to the work-team

one to two days in advance, depending on the day of the week. Similarly, work-teams

can be called in for new shifts or added to existing ones. If a shift is extended

long enough, it may overlap with another shift, which has different ramifications for

physical bottlenecks and labor productivity; machines and space are still limited to

the same production rate, but desktops can be kitted and assembled almost twice as

fast. The number of hours worked so far in each pay period is tracked and can be used

to predict the cost of overtime. Concerns about fairness in balancing the workload

of each factory must be considered. Not only must the lengths of the current days'

shifts be adjusted, but estimates of future shift lengths are important information for

managing the workforce.



The Operations Center must assign orders to be built at locations that have

parts available. Alternatively, parts can be transferred between factories to match

demand within a few days through multiple modes of transit, including a regularly

scheduled shuttle and trucking services that are available on-demand. Checking the

availability of parts can be difficult. Although suppliers frequently update the firm

about what parts are available in the Supplier Logistics Center and what deliveries can

be expected over the next few weeks, variability in the time to delivery, substitution

of parts for each other, and data inaccuracies complicate matters. Because the parts

have already been routed to each factory's Supplier Logistics Center, inbound shipping

costs are no longer relevant. However, part shortages occasionally occur at individual

factories and throughout the network and can cause many orders to not be satisfied

on-time which is costly.

The execution problem faced by the firm's Operations Center is determining which

factories should satisfy each order, if at all, in the next twenty-four hours, accounting

for how this affects production over the next two weeks. It should consider outbound

shipping costs, the length of each work-team's shift, its impact on capacity and direct

labor costs, and parts availability. Because demand and parts supply vary from

planned values, the firm must repeatedly adjust its production tactics. Accounting

for all of these factors simultaneously can be difficult but is critical to the firm's ability

to operate and can be worth several hundreds thousands of dollars per day.

2.3 Understanding Factory Production Capacity

Given the importance of each factory's physical layout, machinery, and labor force, in

2006 we interviewed employees at each factory to understand that factory's production

capacity. In some cases, multiple interviews and email correspondence were necessary

to confirm the accuracy of the following details. Although many of the particular

numbers described below changed throughout the course of this study, the constraints

described continued to be exemplary of the limitations on production at the firm's

factories and are referred to throughout this thesis.



TX Production Capacity

In [Fel06], Jennifer Felch, one of the managers at TX, the main desktop production

facility in Texas, described the limitations on production capacity at TX. TX has

six "kit lines" that gather parts into kits and assemble desktop hardware. Each kit

line can produce up to 250 consumer desktops per hour or 300 corporate desktops

per hour, or any mix of the two at those rates. However, only two of these six kit

lines can assemble consumer desktops because the parts for consumer desktops are

stored in only two kitting areas for this more customized Line of Business. These are

physical constraints of the factory layout.

According to [Fel06], the labor shift structure also constrains productivity at TX.

The default schedule has two work-teams operate two shifts per day that last eight

hours per shift and have about 6.25 productive hours per shift, for five days each week.

The most this schedule could be extended to is two shifts per day that last eleven

hours per shift and have nine productive hours per shift, for seven days per week;

this cannot be maintained indefinitely but can be done when facing extraordinarily

high demand. Furthermore, most scheduled shifts must last at least six hours. Each

work-team has up to eighty straight-time hours per two weeks and is paid overtime

wages for any time spent on the factory floor in excess of eighty hours in a two-week

pay-period.

The maximum weekly production output of TX, based on physical bottlenecks

and the shift structure, is depicted in Figure 2-1. The inner region of the figure indi-

cates production mixes of consumer and corporate desktops that are feasible without

extending shifts beyond the default schedule; the outer region is possible by extending

shifts. The number and skill of available workers for these shifts can further constrain

production; the firm tracked this by estimating the average Units-per-Hour (UPH)

production rate for each work-team; combined with the length of a shift, UPH pro-

vides a reliable estimate of the number of desktops that a work-team can produce

during its shift.
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Figure 2-1: Maximum weekly production output of TX.

TN Production Capacity

In [Dol06, DH06], Eric Dolak, an employee at TN, and Michael Hoag, an Operations

Center employee, describe limitations on production at TN, the firm's factory in

Nashville, Tennessee. According to engineering specifications, TN has seven produc-

tion lines that can produce 400 units per hour, yielding a total 2800 UPH, independent

of product mix; however, if six or seven production lines assemble only consumer desk-

tops, capacity drops to 2150 or 2250 UPH, respectively. Although each production

line only builds one Line of Business at a time, over the course of a week or even shift,

production can be smoothed to achieve any mix of products.

In addition to the number of production lines, boxing assembled desktops in prepa-

ration for shipping is a major physical bottleneck at TN. Large corporate orders that

must be shipped together can consume most of the storage space in the the Automated

Storage and Retrieval System (ASRS). At most 200 boxes can be work-in-progress

(WIP) inventory before the two typically corporate desktop production lines must



shut down; this 200 desktop build-up of WIP can be cleared when work-teams pause

for a break every four hours. Given the rate that WIP builds for each Line of Business

at TN, we can compute how the ASRS constrains the production mix.

The labor structure at TN includes two work-teams that work five eight-hour (7.3

productive hours) shifts per week and one work-team that works four ten-hour (9.3

productive hours) shifts per week. Shifts can be extended to two work-teams on

four ten-hour (9.3 productive hours) shifts and two work-teams on three twelve-hour

(10.75 productive hours) shifts. Minimum shift lengths varied by shift. The default

shift length also determined the number of hours until overtime began.

The implications of the number of production lines, the ASRS bottleneck, and the

shift structure on TN's maximum weekly production output are depicted in Figure

2-2. Labor availability can further restrict this.
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Figure 2-2: Maximum weekly production output of TN.



NC Production Capacity

Rebecca Fearing and Sean Holly, in [FH06], describe NC, located in Winston-Salem,

North Carolina, as being the newest and most flexible North-American production

facility. Because only 900 orders can be labeled per-hour, boxing is the biggest bottle-

neck at NC, limiting it to 900 UPH if producing solely consumer desktops and 1096

UPH if only producing corporate desktops, whose orders tend to contain multiple

desktops. Over the course of this study, the capacity of NC increased to almost 1400

UPH. By this point, the production rate at NC was independent of the product mix.

NC has three work-teams, one working four ten-hour (8.75 productive hours), one

working five eight-hour shifts (6.75 productive hours), and one working three twelve-

hour (10.75 productive hours) shifts on weekends, each week. The first shift can be

extended by one hour each day and the second can be extended by four hours each

day. Minimum shift lengths varied by shift. The default shift length also determined

the number of hours until overtime began. Figure 2-3 depicts the maximum weekly

production output at NC if it is fully staffed.
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Figure 2-3: Maximum weekly production output of NC.



By 2008, when we developed and implemented a model to solve the problem

at the execution scope, the NC factory had added "lean lines" in addition to the

already existing conventional production lines. These lean lines focused on building

specific high-volume products efficiently and had two additional work-teams with their

own staff structure. We sometimes refer to these lean lines as "NCLL." In terms of

production and labor, NCLL can be treated as a separate factory from NC. In most

other ways, such as parts-availability and shipping logistics, NCLL can be treated as

a part of NC.

2.4 The Operations Center's Geo-manufacturing

Strategy

As the firm's supply chain evolved, the Operations Center developed solutions to the

problems described in §2.2. In this section, we present how the firm handled these

problems between 2005 and 2008, qualitatively. §2.4.1 covers the planning problem

of §2.2.1 and §2.4.2 covers the execution problem of §2.2.2. Quantitative analysis of

the firm's solutions is provided in Chapters 4 and 5 for the execution problem and

Chapter 6 for the planning problem.

2.4.1 Geographic Manufacturing Plans

At the time we began working with the firm in 2006, the Operations Center em-

ployed a tactic called "geographic manufacturing," " geo-manufacturing," or "geo-

man" which focuses on the geography of its manufacturing and customer network.

The geo-manufacturing strategy allocated desktops to factories based on the geo-

graphic destination that the order will be shipped to, focusing on reducing the cost of

shipping finished goods directly to the consumer. A map of the United States is split

into thirteen geographic regions, with finer granularity for more central regions. This

map, which the firm refers to as the "geoman map", can be seen in Figure 2-4 and

changed rarely. Every fiscal quarter, the Operations Center partitioned or allocated



those thirteen demand regions among the three factories. When a region is allocated

to a factory, most orders from that destination will be, by default, produced in that

factory. Exceptions were mostly orders that must be satisfied at particular factories.

In Figure 2-4, a typical allocation, the one used by the firm in Fall 2006, is illustrated

by the bold lines along with the associated percent of total demand assigned to each

factory. The fundamental thought underlying the choice to split the map into west-

ern, central, and eastern segments is that this will minimize the cost of shipping to

each destination while balancing the load on each factory. Because factory capacities

vary over time (e.g. NC's productivity grew over its first year in 2005 as more produc-

tion lines became operational), the proportion of total orders assigned to each factory

was occasionally adjusted. Nonetheless, the firm usually made the same allocation

decisions; the assignment of regions to factories in Figure 2-4 is representative of the

Operations Center's plan for most quarters from 2006 to 2008.

Even though labor force and parts sourcing plans were based on the allocation

decisions and hence production plans made by the Operations Center, the cost of

direct labor and parts routing were not at the forefront of generating the geoman

map. The total amount of volume given to each factory in the geoman map is chosen

to balance factory loads by allocating a total quarterly sales volume that is propor-

tional to that factory's physical production capacity. This does incorporate expected

changes in capacity, such as NC bringing more assembly lines on-line. Between 2006

and 2008, each factory had between 27% and 40% of the firm's total North American

manufacturing capacity, making the map split nearly evenly among the three active

factories. Because demand was allocated to each factory in these proportions, each

factory's labor force was also chosen to be of similar proportions. Production capacity

based on only the permanent labor force working their nominal schedule ranged from

89% to 98% of total demand in quarters we observed. Demand in excess of this ca-

pacity would be met by a combination of temporary labor and overtime. As physical

capacity and the allocation of regions rarely changed, the permanent labor force at

each factory could remain relatively stable between quarters, helping maintain factory

employees' morale and making planning for other operations easier. Because the firm
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Figure 2-4: The firm's geoman, or geographic manufacturing, map partitions the
United States into thirteen geographic regions (Alaska not shown), represented by
different colors. Regions are assigned to factories, indicated by the bold lines; by
default, factories produce orders that are to be shipped to the geographic regions that
they are assigned. For each factory, its location, the percent of U.S. demand assigned
to it, and additional international destinations are given in text. This particular
allocation was used in Fall 2006 and was typical for most quarters from 2006 to 2008.

had a policy of producing all orders made within a fiscal quarter by the end of it,

temporary labor was typically hired midway into each quarter and overtime was used

heavily to satisfy demand at the end of the quarter. This change in the labor force is

illustrated in much more detail in §6.1 where we model it mathematically. Although

capacity played a large role in the allocation scheme, the cost of direct labor did not.

Similarly, parts were routed to factories based on these production plans but were

not incorporated into the choice of how much volume each factory received.

The firm's Material Resource Planning (MRP) system uses "default download

rules," which, as the name suggests, are rules that determine the factory that will

download (or be given) an order by default, i.e. without manual intervention. The



MRP system takes any new order and checks several logical conditions to determine

which factory will be given instructions to produce that particular desktop. The re-

gional assignments of the geoman map are the major deciding factor in the default

download rules. Other factors include distinguishing orders with special requests,

extremely early due dates, or rare parts. Although the geoman map does not distin-

guish between products, the download rules will only assign orders to factories that

have the expertise to build a particular product family. For example, the factories in

Mexico that handled outsourced orders beginning in 2009 could not produce orders

that needed next-day delivery or orders that contained more one distinct configura-

tion of computers. Once an order is assigned to a factory by these default download

rules, the order will be produced there unless an employee makes a conscious choice

to move the order to another factory.

2.4.2 Geo-move Execution

The firm's Operations Center continually evaluates the performance of its manufac-

turing network. As each new order arrives, it is automatically assigned a factory

without regard for the current state of each factory or the availability of supplies.

The firm must respond to variations in demand to maintain cost-effective operations.

If total demand varies enough over a few days, it can induce excessive or insuffi-

cient labor capacity network-wide. Surges or lulls in demand from several geographic

regions assigned to the same factory can cause imbalances between factory loads.

Sometimes the default plan leads one factory to be starved for work while another

would need to extend its shifts or even be unable to satisfy all of its orders. Similarly,

imbalances in demand can cause unforeseen part shortages which also have costly

consequences. The Operations Center responds to this by moving orders between

factories and adjusting the length of shifts to produce as many desktops as possible.

The Operations Center re-allocates groups of orders to balance factory loads by

using a mix of spreadsheets, heuristics, intuition, politics, and experience. Recall that

the number of desktops available to be built is called ATB. Several employees track

the ATB to capacity ratio, which is the number of desktops in backlog divided by



the factory's daily production rate over the next few days, for each factory in several

spreadsheets. Management prefers that this ratio be between zero and three days and

at most five days worth of production. If the ATB to capacity ratio of two factories is

"too" different, where the amount of difference is somewhat subjective but typically

about one day worth of production, the Operations Center moves orders from the

factory with high ATB to the one with low ATB. As a rule, order moves were made if

otherwise one factory would be required to extend its shifts while another did not have

enough ATB to last through its minimum shift lengths. Similarly, if a factory could

not satisfy all of its orders within a day even with overtime while another factory did

not need to extend its shifts, order moves would be made. Fairness and employee

morale often played a role in order move decisions; factory managers occasionally

called the Operations Center to inquire why they had so many or so few orders and

whether orders could be moved so as to match the nominal shift structure more closely.

Severe part shortages, indicated by spreadsheets that display the top five to fifty parts

that are short, that are not network-wide in which multiple orders will become overdue

if no action is taken are also reason to move orders between factories. Occasionally

order moves were made when customers made special requests that their orders be

delivered more quickly than they had originally stated. Extraneous information, such

as large corporate orders that will become ATB soon, undocumented part shortages,

or short notice of unexpected factory downtime, which are not obvious from the

automatically generated data in the spreadsheets, are also used to inform whether

order moves should be made.

Once the Operations Center has decided to move orders between factories, an

employee queries the database of available orders to find a group of orders that have

as many of the following attributes as possible. The orders' destinations should be in

a region assigned to the factory with high ATB and are adjacent to (share a border

with) regions assigned to the factory with low ATB; this ensures that the outbound

cost increases by a relatively small amount. The number of desktops contained in

the orders selected should be approximately half the difference in ATB between the

two factories or at least enough to consider the two factories balanced; this was often



several thousand orders. The orders should be past due, due today, or due tomorrow,

which helps reduce the number of late orders because the factory they are moved

to should be able to produce them within the day. The orders must be eligible to

be built in the factory to which they will be transferred and required parts must be

available; this is most commonly done by selecting one or two high-volume product

families that can be built at any factory and almost always have parts available.

Although orders with these attributes are preferable, a suitable set is often difficult

to find. The person moving orders relies on expertise, intuition, and trial-and-error

to find a suitable set of regions, due-dates, and product families. Once a set of orders

is settled on and the ATB to capacity ratios are considered close enough, the move

is executed by uploading the list of orders and their new factory assignments to the

firm's MRP software.

Independent of whether any order moves have been made, factory managers will

adjust the length of their work-team's shift lengths within limits to produce as many

desktops as possible within a day. Delaying production now in anticipation of future

excess capacity, especially at other factories, is rarely a consideration. Orders that

are due in the next two days or already late are given highest priority. For a given

allocation of orders to factories, this minimizes the number of late orders. Sometimes

judgment calls must be made during the first shift of a day as to whether the first

shift should be extended before they know how much ATB they will have for the

second shift of the day. Occasionally, shifts will not be extended if the Operations

Center foresees insufficient ATB in the near future. Most of these decisions are made

by experienced employees inspecting time-series data of expected sales, ATB, and

production. Generally, shift lengths are adjusted to be just long enough to produce

all desktops in ATB.

Given the complexities and importance of this problem, the Operations Center

was interested in understanding the efficacy of its current solution and how it could

improve upon its current practices. In the Chapter 3, we review the literature that

already addresses similar problems and practices. In the remaining chapters, our

analysis of the firm's decisions and new solutions based on the literature suggest the



firm did well at minimizing shipping costs, as planned, but also had potential to

improve.



Chapter 3

Literature Review

In this chapter, we review the literature relevant to the problems defined in §2.2.

Theoretical literature on production planning and control, which tends to focus on

methodological issues such as characterizing and solving particular models, is reviewed

in §3.1. The papers that are specific to Make-To-Order (MTO) manufacturing, which

we cover in §3.1.1, tend to differ from those that deal with tactics for controlling

multiple factories, which we discuss in §3.1.2. We present an industrial problem that

belongs to both categories and is not fully addressed by either. Papers that discuss

practical challenges and difficulties in optimization modeling for MTO manufacturing,

such as balancing model realism and tractability or incorporating industrial testing,

and have some similarities to our setting are covered in §3.2. Although these applied

works tend to differ from ours in more ways than they are similar, they often contain

relevant insights or illustrate other industries that could adopt our work. Other work

done with the same firm that we study is discussed in §3.3.

3.1 Production Planning and Control

There is an extensive amount of relevant production planning and control litera-

ture, especially on basic concepts such as Lean Thinking, Just-in-Time inventory

management, Linear Programming based models with inventory and backlog dynam-

ics, forecasting and buffering against uncertain demand, and Make-to-Order business



models. Missbauer and Uzsoy (MU11], Graves [Gra02], and Silver et al. [SPP+98]

give broad introductions to and a plethora of references for the use optimization mod-

els for production planning and control problems in manufacturing of products with

discrete parts. See Vidal and Goetschalckx [VG97] for a review supply chain models

for production and distribution at a strategic level, emphasizing MILP formulations,

case studies, and other modeling issues, providing a range of comparable work. Chen

and Vairaktarakis [CV05] review more tactical and operational models for production

and distribution; our work falls under the "general tactical production-distribution

problems" class because a) it is tactical, b) it integrates inbound transportation, pro-

duction, and outbound transportation, and c) it has a finite horizon with multiple

time periods and dynamic demand. Sarmiento and Nagi {SN99] review work on the

integration of production and transportation costs. Although many of models dis-

cussed in these reviews consider large networks and use MILP formulations, most

allow for finished goods inventory and few address the stochastic issues inherent in

MTO manufacturing. We first discuss what is known for MTO manufacturing and

then return to the network setting.

3.1.1 Make-To-Order

Most of the literature on production planning and control focuses on Build-to-Stock

(BTS) or Build-to-Forecast business models where production begins before customers

order products. A common strategy in Make-to-Order (MTO) manufacturing is to use

traditional BTS order-release mechanisms along with specialized order-acceptance,

due-date setting, and contingency policies. Nonetheless, plenty of literature focuses

solely on MTO production. Make-To-Order, Assemble-To-Order (ATO), Build-To-

Order (BTO), and Configure-to-Order (CTO) are similar business models in which

products are made, assembled, built or configured after the customer has placed an

order; we use the more general and popular term Make-To-Order as our work is appli-

cable to all of them, although the particular firm we collaborated with is considered to

be CTO which is a subset of ATO which is a subset of MTO. Song and Zipkin {SZ03

survey the literature on dynamic ATO models, which tends to focus on the following



topics: 1) order and due-date promising, often called Available-To-Promise (ATP),

2) scheduling or prioritizing already accepted orders, or 3) production, distribution,

and inventory management for a given demand regime. Our work most closely falls

under the third category, setting production levels and distributing orders through

the network to customers, but consuming, not managing, parts inventories. The ex-

ecution problem is also related to the second category, as individual orders must be

scheduled for production.

Gunasekaran and Ngai [GN05] review Build-to-Order Supply Chain Management

(BOSC), developing a framework for future work on the subject. They note that

"there is a lack of adequate research on the design and control of BOSC. There is a

need for further research on the implementation of BOSC... The trade-off between

responsiveness and the cost of logistics needs further study... There are a noticeably

limited number of research papers on BOSC from both academics and practitioners."

They emphasize that BOSC must focus on optimizing logistics costs and delivering

products to customers on time in the development of information systems. Con-

trary to lean manufacturing, BOSC requires quick production cycles, responsiveness

to customers, and flexible rather than static schedules. Moreover, they note that

"order-processing is time consuming and costly, multiple revisions of specifications

are required, delivery dates are often not met, last-minute changes take up an in-

creasing portion of resources, production plans are often inaccurate and over-ruled,

and the more often this happens, the more profits decline." Although, plans must

be made based on forecasts, when the orders that are available to be built differ

enough from planned production schedules, recourse actions must be taken to control

the situation. This thesis addresses these problems by developing information tech-

nology that dynamically accounts for all orders and minimizes the financial impact

of such necessary but costly changes in production. Dynamic Programming, Linear

Programming, simulation, multi-criteria optimization, and queuing models are typi-

cal solution techniques; our work employs all of these except queuing models. They

further suggest that case studies be done on the implementation of BOSC in firms to

develop insights. As "most companies are not yet prepared to completely disseminate



the success behind their BOSC," this thesis presents and analyzes many aspects of

one very successful firm's tactics, e.g. the geoman map, and improves upon them.

Lin and Shaw [LS98] show through simulation that synchronizing material and

capacity availability in the order fulfillment process along with dynamic allocation

of resources can be critical strategies. lyer, Deshpande, and Wu [IDW03] show that

postponing demand to handle potential surges in demand that would exceed produc-

tion capacity can be an effective tactic in BOSC. Our MILP solutions re-iterate this

in a realistic industrial context, as they match parts and capacity to demand and

delay production until cost-efficient opportunities arise.

Before customers purchase from a MTO firm, their configuration options are typi-

cally filtered by an ATP system that must account for several of the same issues that

MTO production planning and control do. Kaplan [Kap69] and Topkis [Top68] did

early work on the issue of deciding whether to accept or reject orders for multiple

inventory classes sold at set national prices with varying geographic transportation

costs. Our problems only treat accepted orders but similarly must determine how

to ration the available inventory of production capacity to geographically diverse or-

ders. Chen, Zhao, and Ball [CZ301] formulate an Mixed Integer Linear Program

for an ATP model that quotes due dates while dynamically reallocating parts and

capacity when facing demand for a fixed set of orders; although our problem already

has promised due dates, the parts and capacity adjustments are relevant. Moses et

al. [MGGPO4] study real-time promising of order due dates for BTO systems with

dynamic order arrivals, accounting for 1) dynamic availability of resources, 2) indi-

vidual orders with specific attributes, and 3) the backlog of previous commitments,

similar to our execution problem; their scalable solutions perform well using an abso-

lute lateness metric, similar to our linear lateness penalty, on similarly large problems

of up to 100,000 orders with twenty resources. McNeil [McN05] gives a MIP for ATO

systems that balances forecasted high-profit orders with delivery of already accepted

low-profit orders, considering current commitments, delivery versus production expe-

dites, and resource allocation, solving large problems but providing only sensitivity

analysis. Hariharan and Zipkin [HZ95] show that the time between order acceptance



and assembly, i.e. how long production is delayed, is equivalent to a reduction in

manufacturing or parts-sourcing lead-time in Make-To-Stock systems, providing an

interesting interpretation of production timing.

3.1.2 Network Manufacturing

Much of the work on network manufacturing focuses on Build-To-Stock models, where

inventory can be held at various echelons in the network, and focuses on setting

inventory levels rather than adjusting production capacity. Although our problem

includes suppliers, manufacturing facilities, and customers, inventory is only held

near the manufacturing facilities and is neither owned nor managed by the firm.

Still, some of the methodological techniques are relevant.

Cohen and Lee [CL88 are widely referred to for models of production and dis-

tribution systems; their model includes raw materials, intermediate and final pro-

duction facilities, distribution centers, warehouses, and customers, emphasizing the

interaction of costs, service, and flexibility at each stage. Similar cost trade-offs are

prevalent in our problem. Wu and Golbashi IWG04] study multiple factories mak-

ing multiple products in a high-tech, capital-intense, short life-cycle context using

multi-commodity flow and Lagrangian decomposition. Paquet, Martel, and Mon-

treuil [PMM08] develop a MILP for multiple factories facing deterministic demand

for multiple products, allowing for inter-facility transfer of parts and selecting the

appropriate factory for each product based on local labor competencies. Dhaenens-

Flipo and Finke (DFF01] study a multi-period, multi-product, multi-factory industrial

problem with interrelated production and distribution costs, solving it quickly as a

network flow problem with a few binary variables. In [DFOO], Dhaenens-Flipo con-

siders multiple facilities with high distribution costs, deciding geographically where

to produce for scattered customers, akin to the geoman map. MILPs that are nearly

network flows with Lagrangian relaxation techniques can model our problems well

and can often be solved quickly.

Motivated by a large electronics manufacturer, Benjaafar, ElHafsi, and de Vricourt

[BEdVO4] develop a large and flexible (BTO or BTS) model of the problem of allo-



cating stochastic demand for multiple products to multiple production facilities with

varying capacities and inventory-handling costs, nearly modeling our problems. Some

products can be restricted to particular factories and transportation costs can be in-

cluded in production costs. Departing from our work, warehousing can be centralized

or de-centralized, base-stock levels are decisions, multiple customer classes order the

same products but have different demand rates and service costs, and the production

rate of each facility is fixed. They give several managerial insights and a few charac-

teristics of optimal solutions, some of which are "counter-intuitive," as is the case in

our work. In [BLXE08], Benjaafar et al. allocate demand from multiple markets to

multiple inventory locations, where production lead times depend on factory loads,

and the goal is to minimize geographic transportation, inventory, and backordering

costs. The non-linear problem is shown to be better solved by MILPs where each

product is assigned to only one factory; in our problem, large groups of orders or

market segments are assigned to single factories.

MILPs that are nearly network formulations with additional side-constraints are

a common approach for problems similar to ours. Although these papers share many

commonalities with our problems, they treat production capacity as fixed and demand

is not satisfied in a brief interval of time, which is not the case in Make-To-Order

manufacturing. Furthermore, they refrain from discussing the practical difficulties

involved in using these models in practice.

3.1.3 Dynamic Programming Solution Techniques

Although the planning and execution problems faced by the firm are very interrelated,

we solve them separately. The output solutions to the planning problem largely deter-

mine many inputs to the execution problem, making this system of control hierarchal.

Sethi et al. ISHZZ02] survey the use of hierarchical control in stochastic, dynamic,

manufacturing systems and show that the day-to-day fluctuations in demand, capac-

ity, and other details need not be captured by longer-term planning models. Although

it would be ideal to find global optimum when considering all of the firm's problems

jointly or at least analyze the two models together, this is intractable because of



the immense number of day-to-day details that would accumulate in a several-month

horizon planning problem. Furthermore, other decisions are made and various un-

certainties are realized between the scopes of the two problems; labor is staffed and

parts are routed with the planning problem's solution as input but they do not always

output the same staffing and parts quantities; the execution problem faces a differ-

ent situation than dictated by the planning problem's output. However, if we did

analyze the two problems together, we would expect similar cost savings potential,

because optimal solutions to both problems cut costs in similar ways by matching

production, parts, and capacity to demand while avoiding expensive shipping, labor,

and order lateness. It is common in both the literature and in practice to solve and

analyze these planning and control problems separately. For these reasons, we treat

the problems separately but discuss how their results coincide.

Sethi [SS91] justifies the use of Rolling Horizon decision making theoretically by

incorporating the cost of generating forecasts. As seen in Chand, Hsu and Sethi's

survey [CHS02] on Rolling Horizon solutions to Operations Management problems,

Dynamic Programs are often solved through rolling horizon heuristics and Linear

Programs; notably, no Make-To-Order production systems were included. Bertsekas

[Ber05b] indicates that rolling-horizon and certainty equivalence are common ap-

proaches to sub-optimal control for Dynamic Programming. Holt et al. [HMMS60]

discuss the use of certainty equivalents, where replacing the stochastic elements in

a problem with a particular deterministic ones leads to the same optimal expected

value, in production planning problems. We use the more loose interpretation of cer-

tainty equivalent control, given by Bertsekas [BerO5aj, where the uncertain quantity

is replaced by a typical value that may not lead to optimal solutions but hopefully

relatively good ones. Mayne et al. [MRRS00] surveys the theoretical results for and

Qin and Badgwell {QB031 survey the industrial technology available for similar model

predictive control problems. In our work, we formulate these rolling horizon, cer-

tainty equivalent, MILPs so that the industrial solver CPLEX can solve them in an

appropriate amount of time, usually a few minutes.



3.2 Similar Implementations

Our work is relevant to more than just the desktop manufacturing industry; Make-

to-Order networks arise in other industries, such as automotive, electronic retailing,

custom design work, food catering, and grocery delivery, where many facilities can

ship finished goods to geographically distributed customers and processing orders

consumes scarce resources and takes time. The literature contains many reports

of optimization models being implemented and used to control supply chains. We

present those most relevant to ours and some of their insights that apply here.

In {JG951, Jordan and Graves consider the benefits of flexible manufacturing in

the automotive industry and find that factories being able to cover some demand

for products typically produced in another factory, by "chaining" the commonali-

ties, improves profits when facing uncertain demand. They model demand as being

Normally distributed but truncated at two standard deviations with a coefficient of

variation of 40% and correlation coefficients within product groups of 30%. Our set-

ting has a similar demand profile and can use the firm's full flexibility to have factories

produce for destinations typically covered by other factories. For 3DayCar, Waller

{Wa04] discusses automotive BTO demand forecasting, price management, and ca-

pacity planning, noting that "optimization technology is critical to build to order

because it offers real-time constraint management and scenario planning." Ul-Haq

and Naddem [UHN10] investigate BTO supply chain management strategies for the

automotive industry with Volvo.

Klingman, Mote, and Phillips [KMP88] investigate a large, dynamic, multi-product

production and distribution problem at a chemical products firm, decomposing it into

a general network and a small, linear, Lagrangian, non-network component.

Zuo, Kuo and McRoberts [ZKM91] work with a corn seed producer and distrib-

utor, developing an MIP that allocates five major North American sales regions to

different factories with inter-region product transportation and constraints on quality,

work environment, minimum and maximum factory capacities, and market demand.

Wagner, Guralnik, and Phelps [WGP03] simulate dynamically distributed supply



chains for sleeping bag and backpack manufacturing with capacity and raw material

requirements. They show that demand variability in BOSC necessitates automated

on-line coordination of production facilities rather than pre-computed solutions, often

found through network flow formulations. In our case, solutions to the planning

problem must be updated by solving the execution problem.

Ehrun and Tayur [ET03] optimize cost at a grocery retailer with highly variable

demand and multiple distribution centers. In a pilot test, they reduced operating

costs by 20.8% and boosted profit by 11.6%, while providing superior fulfillment to

stores. Nonetheless, the model is mostly build-to-forecast and involves littler inter-

factory interaction. Our work finds similar operational cost savings possible.

Biswas and Narahari [BN04} build a generic supply chain management algorithm

and simulation based Object Oriented modeling language that supports BTO net-

works and Operations Research solution techniques. They provide an industrial case

study of a petroleum gas supply chain.

Xu et al. [Xu05, XAG06] study e-tailer assignment of orders to fulfillment centers

after accepting but before picking orders, similar to ATB orders in our problem,

with considerations for inventory availability and transportation costs. As in our

work, orders are re-assigned based on demand and supply information that arises

over time in a rolling-horizon manner, accounting for the number and size of orders

and correlation in demand, and heuristics are tested with industrial data.

3.3 Other Work on the Firm

Plenty of other work has been done with the same firm; much of it is relevant and

informative when considering our problems.

In [Dha08], Dhalla quantifies the cost of parts supply shortages and product deliv-

ery delays for the firm's North American operations. The factory at which a shortage

occurs, the type of products that are short, and the number of days that they will be

late are the major determining factors in shortage costs. We use Dhalla's analysis of

the cost of the firm delivering an order past it's due-date in our formulations of the



execution problem.

In {Rey06), Reyner develops tools, metrics, processes, and organizational roles

to improve routing of parts from suppliers in Asia to factories in North America.

In {For08, FGA+10], Foreman et al. extend these tools to include a MILP model,

minimizing routing and shortage costs. The model was implemented, field-tested,

and validated in a manner similar to the work in this thesis. Many of our information

sources were shared. The planning problem determines the expected demand for each

part at each facility, which their model would use as input; routing parts with their

model would serve as input for the availability of parts in our execution problem.

Several others have investigated uncertainty in demand at this firm. Einhorn

[Ein98] studies demand variability at the firm and the use of time-series forecasting

of part-level demand along with the impact of hedging the firm's forecast upward. Our

Robust Optimization approach to planning handles this in a similar but more system-

atic way. Hoffman [HofO9] addresses the impact of variation in CTO manufacturing,

using the firm as its primary example, and suggests that companies understand 1)

that variation and 2) how they provide value to their customers, while providing a

framework to find the price of addressing variation. Gupte [Gup08] shows that the

"dramatic changes" in the switch from BTO to BTS "have exposed some weaknesses

in the firm's Build-to-Order supply chain including the demand forecast and capacity

planning." The firm will need to increase order lead-times or decrease daily order vari-

ability in retail sales to manage with its current manufacturing capacity. Additionally,

the firm will need to minimize the number of different suppliers it partners with in

order to benefit from demand pooling and prevent a need for increased manufacturing

capacity. Although our models do not consider changing the machinery or layout of

factories, they do adjust the labor capacity to better utilize existing resources, even

as the firm begins retail sales.

Vainio [Vai04] analyzes the firm's order fulfillment process and suggests methods to

improve customer service and reduce logistics costs; by scheduling manufacturing and

shipping based on time of day, air shipments can be sent by ground instead. Vainio

considers only one factory at a time, using time-steps of two-hours and a horizon



of one-day, to jointly analyze the manufacturing decisions of the firm's order release

software with its distribution and routing software, making recommendations about

how to merge the two. Vainio notes that the order-release software "does not factor

order destination, scheduling time, and service level... into the scheduling algorithm;"

our work does account for these at multiple factories simultaneously. Vainio's work

is more granular than our model, focusing on only one factory, in smaller time-steps,

with more production differentiation and shipping modes. It does address a similar

issue of delaying less imminent orders so as to fulfill others more cost effectively.

Stecke and Zhao [SZO7] consider a single factory in this firm's network and propose

MILP models to integrate production and shipping to customers, re-scheduling the

production so as to allow cheaper shipping transportation modes. This operational

level of control is more granular in scope than our execution problem and would be

used to release orders for production once our execution problem determines where

they should be built.

To the best of our knowledge, this is the first work focusing on simultaneously allo-

cating stochastic demand to factories while adjusting labor capacity in a multi-factory

make-to-order setting. Exposing the problem's intricacies and the firm's solution to

it in Chapter 2 is the first major contribution of our work. Solving similar problems

using rolling-horizon, almost-network MILPs is not new. However, industrial data,

testing, and feedback, along with discussions of the practical challenges in model-

ing and actionable managerial insights, are rare. Our second major contribution is

providing these in a substantially different context, Make-To-Order network manu-

facturing.



56



Chapter 4

Execution Problem: Mathematical

Formulation and Analysis

This chapter develops a mathematical model of the problems described in Chapter

2, using approaches commonly found in the literature described in Chapter 3, and

evaluates the performance of various solution policies via a simulation study. It

focuses on the execution problem's scope, especially with regard to quantitative value

of parameters; most of the modeling still applies to the planning problem's scope.

We introduce our mathematical notation in §4.1 and then model the problem

formally as a Dynamic Program in §4.2, discussing a few simplifying assumptions

made in the modeling process in §4.3. The source of data for all of the model's

parameters is examined in §4.4. We then detail the demand model in §4.5, analyzing

the data and estimating parameters, making it as realistic as possible, introducing

forecast error, and validating the demand model's correctness. We present solution

policies for the Dynamic Program in §4.6 and develop the criteria through which

we will evaluate them in §4.7. We then discuss the results of the simulation that

evaluates these polices and discuss insights and conclusions in §4.8.



4.1 Mathematical Notation

We first develop some basic mathematical notation that will be useful throughout

this chapter to describe the problem, detailed in Chapter 2, formally. Tables 4.1, 4.2,

4.3, and 4.4 summarize most of the notation from their respective subsections.

Lower case letters k, t, T, I, d, w, and c are indices; capital case versions of these

letters tend to be either the set of all possible values for that index or the cardinality of

that set. For all other letters, lower case letters refer to decision variables and capital

letters refer to data parameters. When needed for clarity, bold symbols represent

vectors.

4.1.1 Indices

Time is discretized into periods indexed by the letters k, t, and T which take values

in { 1,...,K}. In this chapter, each period is a day and the time horizon we study

is typically one quarter year, making K = 91. The index k is typically reserved to

represent the current day in the decision-making process, while r will often refer to the

day that demand becomes known and t is typically used for due-dates and the timing

of future or past decisions. Subscript indices denote events that occur during time

period t (or k) or at factory (facility) location 1 E {1, . . . , L}; occasionally we index

the firm's three U.S. factories instead in 1 E {TX, TN, NC}. Superscript indices

refer to the demand 4t d (in number of desktop computers) that becomes known at

time r, must be shipped to destination d E D, and is due at time t. D is the set of

demand destinations, taken to be the set of U.S. states. The integer T represents the

number of days that a policy forecasts (demand and decisions) into the future; data

usually limits this to fourteen days. As we describe later, the only major source of

uncertainty arises from the demand 4,d; because it is later assumed exogenous from

decisions made within the problem, we refer to each instance of uncertainty as the

random instance W E {1,..., Q} and use 4 t (w) as the demand on instance w. The

model for this uncertainty is detailed in §4.5. An additional index c E {y, h, o, q}

denotes the category of decision or cost, based on the four types of decisions or costs,



Symbol Domain Description
k, t, r .0,... ,K} time period or day in horizon

1 {1, ... , L} factory (facility) location
d D U.S. states, shipping destinations for demand
w {1,..., } random instance of demand
c {y, h, o, q} category of costs or decisions

Table 4.1: Mathematical notation for indices.

Symbol Description

ydg production on day t for destination d at factory I
htj capacity on day t at factory 1
otg overtime capacity on day t at factory I
qt desktops past-due (late) on day t for destination d

Table 4.2: Mathematical notation for decisions, all in units of number of desktops.

which are discussed next. Table 4.1 summarizes the notation for indices.

4.1.2 Decisions

Decision variables yij (in units of desktops) represent the number of desktop comput-

ers that are to be produced on day t at factory location 1 to be shipped to destination

d. Decision variables he, are the amount of labor capacity (in desktops), representa-

tive of the labor force on the factory floor assembling desktops, on day t at factory

location 1; this quantity does include overtime. Auxiliary decision variables, used

mostly for cost accounting in some policies, otj and qd (both in desktops) respectively

represent the amount of overtime capacity at location I in time period t and the num-

ber of desktops that are past due on day t for destination d. Table 4.1 summarizes

the notation for decisions.

4.1.3 Costs

Cf is the shipping cost (in $/desktop) from location I to destination d. Htj is the non-

overtime cost-per-unit-capacity (in $/desktop) at location I during time period t and

Otj is the additional cost (in $/desktop) of overtime capacity; given a total capacity



Symbol Description

C cost of shipping one desktop from factory 1 to destination d
Htj cost per desktop of capacity on day t at factory 1 without overtime
ot, additional overtime cost per desktop of capacity on day t at factory I
P penalty cost per desktop past-due on each day for every destination

Table 4.3: Mathematical notation for cost parameters, all in units of U.S. Dollars ($)
per desktop.

of hel which contains ot,1 overtime capacity, the total labor cost is Ht,1h, 1 + Otioti. P

is the scalar cost penalty (in $/desktop/day) for each time period that each desktop

computer is past due. The objective is to minimize normal and overtime capacity

costs, shipping costs, and late penalty costs. Table 4.3 summarizes the notation for

cost data.

4.1.4 Data Parameters

In addition to 4"'d, we will use <b'd = T, as demand that becomes known at

time T and is due at or before time t and T' = E ,,t C,, '' as demand that

is known by time r and is due by time t. Production for demand that arrives at

time -r may not begin until it is known (k > -r) but some policies use a cumulative

forecast F' ' = '(W) + Er>k F'd (in desktops) composed of prior demand plus

a point forecast of future demand F'd (defined in §4.5.4) that will help coordinate

current and future decisions. Total production at location I on day t cannot exceed

the production capacity, ht,,, which must be between a lower bound _Hi, > 0 and an

upper bound Htj (both in desktops). The firm's long-term planning shift structure

included a nominal capacity HN (in desktops), which was the long-term plan or target

for staffing and is used in defining the schedule for labor. 0(t) is the first day of the

"pay period" that contains day t. Overtime otj is the total capacity between 0(t) and

t in excess of the planned capacity HIi (in desktops, typically a very large number

except for every fourteenth day when it is J=M(k) H/) for that time-frame; that is

,= - tk'L1+. Similarly, the number of computers late on day k for

destination d is ej = [4k'd - E 'f yA;]1+. Table 4.4 summarizes the notation for



Symbol Description
T'd demand for d arising at T due at t

<,d demand for d arising at T due by t
d demand for d arising by T due by t

F forecasted demand for d arising by r due by t
H, minimum capacity at 1 on t
H, maximum capacity at 1 on t
HN nominal capacity at 1 on t
H overtime capacity threshold for pay-period beginning on O(t)
O(t) first day of pay-period that contains day t

Table 4.4: Mathematical notation for data parameters, all in units of desktops other
than the O(t) which is a day.

these additional parameters.

4.2 Dynamic Programming Formulation

The network manufacturing problem that we described in Chapter 2 can be stated

as a stochastic dynamic program (DP) using the notation from §4.1, as follows. This

formulation is the result of extensive study and reflects most important aspects of

the problem described in §2.2.2. The definition of a DP requires an objective, a state

evolution procedure, and a control space, which we now model.

The state at stage k is

kJ -1 t _O' V1, d

zk = m,_A E(k-1) hT VI (4.1)

<br'd(w) VT < k, Vtd

The state vector xk contains cumulative production for each factory and destination

_d total capacity so far this pay-period hkig, and a vector of all known demand

ok(w), which we do not collapse because it may contain information about future de-

mand. Note that 4K (w) - E' y_, is the number of outstanding orders for desktops

from destination d on day k. The initial point xO is a vector of all zeros, since the



system typically resets between horizons, as the backlog of orders is cleared at the

end of every quarter.

The control at stage k is {d
Uk(Xk) Yk V= d (4.2)

hk1 VI

which contains both the production decisions y and the capacity decisions h at each

factory.

The noise at stage k is the demand

W - k+ 1 ,(w) ~Pk( IXk) )Vt,d (4.3)

where Pk(-IXk) will be specified in §4.5. Knowledge of the demand 4 t, is restricted

to periods r k; that is, past demand {4'd(w) : Kr k} is data known by period k;

future demand {4d : T > k} is a stochastic quantity.

After decisions have been made in period k, the state evolves according to

k_1 + ykgVl

Xk+1 =Id(k+1)#k+1(7k-1, + hk,L) VI (4.4)

(D rw) Vr < k + 1, Vtd

where I. indicates whether event a is true (1) or not (0); the cumulative production

pkd and cumulative capacity hkl are updated, capacity being reset if a new pay-period

begins (O(k + 1) = k + 1), and demand for the next day )k+14 (w) Vt, d is observed.

The objective is to minimize over policies y(x) and h(x) the relevant expected

total supply-chain cost over the horizon:

K

E( (r Cdykd + (( Hjhk +Oki~hk i-4$,1J) +P[kd(w)- z kdiI+1
k=1 . ,d i d I

(4.5)



where [a]+ = max{0, a}. This captures the total shipping cost Eki Ed y, the

total non-overtime cost of capacity ' =1 Hk,lhk,,, the additional cost of overtime

capacity E- 1 El Ok,1ok,j, and the late penalty cost Ek=1 Ed P qi for orders past-

due. The terminal cost is zero, but unsatisfied demand is penalized by P per unit

per day; the demand model in §4.5 will incorporate end-of-horizon effects.

The control constraints are

Uk C Uk(xk) (4.6)

where

Hk,l _ hk,l Hk, vi

Ed k, < h, Vi
Uk(xk) = {U s.t. } (4.7)

+ ~-,L) 4 Vd

0 < y, Vl, d.

The first line of constraints in (4.7) bounds the capacity h from below by the min-

imum capacity H and from above by the maximum capacity H. The second set of

constraints in (4.7) limits each factory's production Ed yk,i to be at most its capac-

ity hk,L. The third set of constraints enforces the Build-to-Order business model; it

restricts cumulative production W,, by day k for each destination d to be only for

orders that have already arrived, 3'" in total. Lastly, production, capacity, overtime

capacity, and lateness for desktops are non-negative quantities.

The formal Dynamic Programming problem we wish to solve is: minimize (4.5)

subject to (4.4) and (4.6). Once we have defined A, this is a well-defined dynamic

programming problem.

4.3 Simplifications

The model developed in §4.2 has been simplified to make it both more tractable to

analyze and more easy to understand. In doing so, we ignored a few practical diffi-

culties which are addressed in the more detailed implementation models of Chapters



5 and 6. These issues can be categorized as follows.

" Product Differentiation, Availability and Transfer of Parts, and Geo-Eligibility

" Labor Shift Structure Details

" Managerial Constraints

" Solution Approaches

We address them in order.

4.3.1 Product Differentiation, Availability and Transfer of

Parts, and Geo-Eligibility

In the formulation in §4.2, we treated all computer systems as identical. However,

in practice, the firm builds computers to order, with particular parts being chosen

by the customer. At the time, the firm produced two major categories of desktops,

referred to as "Lines of Business"; these were the consumer desktop and the corpo-

rate desktop. Within each line of business, there are various product families which

often shared many similar components. The largest source of distinction between

product families (and also the two lines of business) are the parts components that

combine to form them; these parts components, often referred to as "parts," include

chassis, monitors, memory chips, processors, and video cards. Another distinguishing

factor for product families is that some product families cannot be built at partic-

ular factories, sometimes referred to as geo-eligibility. If an order cannot be moved

to another factory, it is called "non-geo-eligible." Unavailability of low-volume parts

or unusually high labor-intensity in the production process for a particular product

family are typical causes of non-geo-eligibility. Occasionally, individual orders with

special delivery mechanisms, such as customer pick-up or international destinations,

are also considered non-geo-eligible.

We choose to not model parts or geo-eligibility for multiple reasons. First, parts

distribution is planned at a different level of scope; parts decisions are made by



a separate planning team and need to be made about two weeks in advance (see

[Dha08][ForO8] for more details) whereas the execution problem makes decisions less

than a day in advance and the planning problem makes decisions at least a month

in advance, limiting the possibility for dynamic interaction and hence usefulness.

Secondly, data was largely unavailable to the Ops-Center regarding parts availability

and hence little analysis could be done. Most importantly, when solving the problem

for the firm in Chapters 5 and 6, we found that differentiating by parts or geo-

eligibility rarely had a significant impact on the solution, other than that it was

necessary for the firm's use of the model. If a particular desktop could not be built at

a factory, a similar order assigned to another factory can often be swapped with it at

little or no cost. The more important quantities to model correctly for analysis are the

total volume of products being produced and how the factories were balanced based

on total volume. Because adding these constraints would provide little of interest

in analyzing the problem while adding significant complexities, we included neither

parts nor geo-eligibility in the model.

Because we do not model parts and geo-eligibility, and these are the major differ-

entiators for product families and lines of business, we also need not model multiple

products and instead treat them as perfectly substitutable from a production plan-

ning standpoint. In the implementations in Chapters 5 and 6, we do account for lines

of business or families and their respective parts.

4.3.2 Labor Shift Structure Details

The formulation in §4.2 includes capacity constraints on production and an overtime

calculation for capacity in excess of certain thresholds. Because most of the factories

had excess physical factory capacity, the major production capacity constraints stem

from the rather expensive labor force that assembles the desktops. The underlying

labor-force dynamics are much more complex and difficult to model appropriately.

Dealing with capacity in units of desktops produced is much easier to analyze; hence,

these constraints are formulated in units of desktops produced per time-period or

over a collection of periods and are much simpler to state than the true underlying



capacity constraints. However, in Chapters 5 and 6, the labor capacity constraints

are modeled more explicitly. They are described in terms of units per factory-hour

capacity and transformed by a units per labor-hour term to determine how many

labor-hours are necessary for each factory hour, allowing costs and constraints to be

written in units of labor hours.

In the planning problem of Chapter 6, a distinction is made between permanent

labor and temporary labor. The permanent labor force is better trained and can

produce desktops more efficiently, but cannot change in size as quickly, often being

fixed for a quarter of a year. The temporary labor force can fluctuate in size from

non-existent up to some fraction of the total workforce. Different employees can

stay on the factory floor for varying amounts of time, so permanent and temporary

labor can both stay for different amounts of overtime. Hence the decisions in the

planning problem are "how much" labor to hire and "how long" that labor is on the

factory floor; as such, the capacity decisions in the planning problem are actually the

product of two decisions, making this problem much more difficult mathematically.

For simplicity and because the model presented in this chapter is not analyzed at the

planning problem's scope, we do not model it in this chapter.

In the execution problem of Chapter 5, each day is broken down into three work-

shifts that have up to two work-teams staffed simultaneously. Overtime costs are

tracked for each work-team individually. Each team's shift length can be extended

beyond its nominal length in the labor schedule or be sent home early. Deciding to

extend a shift beyond the nominal length requires at least one day's advance notice

and sometimes two. Occasionally, two work-teams from different shifts may have

overlapping time on the factory floor. During these periods, which may have up to

double the planned amount of labor present, factory physical capacity can become

the bottleneck. However, because we do not need decisions at this level of detail for

analysis, we do not present these in this chapter.

These labor structure details are modeled appropriately in Chapters 5 and 6 where

they are relevant.



4.3.3 Managerial Concerns

As with most mathematical formulations of real business problems, more is at stake

than can be stated simply. The firm expressed corporate concerns other than finan-

cial impact and customer service which they would consider in the overall evaluation

of a solution. The three major categories of concern were maintaining fair and bal-

anced workloads at factories, producing stable solutions, and incorporating executive

mandates that were made for reasons beyond the scope of our problem.

A major concern was maintaining fairness between factories and employee morale

by having somewhat balanced workloads. For example, if one factory repeatedly

required overtime while another sent its workers home early, the workers in either

factory could perceive such production planning decisions as de-motivating or unfair,

even if doing so is cost effective. The firm often asked for us to model constraints

such as not deviating too far from a static schedule or that the ratio of orders as-

signed to planned factory capacity not deviate too much across factories. Most of

these can easily be captured by linear constraints. In some cases these managerial

requests could drastically alter a solution; by using sensitivity analysis or evaluating

the cost of solutions with and without the constraint, we obtain useful estimates for

the cost of such managerial policies and allow the firm to make the best decision. Be-

cause the parameters of such constraints or penalties were often determined by many

widely-varying, subjective inputs and because these constraints usually do not create

interesting changes in the solutions, we do not consider these types of constraints in

our analysis.

A second concern was that the solutions should be relatively stable; in the absence

of large or unexpected changes in the model's input, especially as small increments

of time pass and expected orders become known, the output should be qualitatively

the same. Creating such solutions would impose less work on various organizations

within the firm, such as the production planning and parts routing teams. Fur-

thermore, stable solutions would be more predictable and understandable. However,

in such production planning problems with high substitutability (between due dates



and destinations) and hence many near-optimal solutions, slight changes in the input,

such as moving forward one day in the horizon, could cause mathematical optimiza-

tion solutions to change substantially. An easy way to make these models have stable

solutions is to add a small penalty to the objective for deviating from a previous

solution. This is done in both implementations in Chapters 5 and 6, where we chose

a penalty of $0.01 per desktop whose production facility changes between solutions.

However, from the perspective of analyzing the cost and aggregate decisions of various

policies, such stability constraints add few insights and hence are not included in the

above formulation.

A final concern was a major agreement that the firm's executives had made with

a local government. In exchange for tax exemptions and other business incentives

for locating a factory in Winston-Salem, North Carolina, the firm had agreed to

maintain a minimum amount of permanent labor at that factory or pay expensive re-

numerations. This was equivalent to maintaining a minimum amount of production

capacity at that factory. Such minimum production or capacity constraints are easy

to include in the above formulation, but drastically alter the outcome in abnormal

ways. In Chapter 6, the planning model implementation includes analysis of the

cost of this constraint and solutions were provided both with and without it. Labor

planning is beyond the scope of this formulation and therefore these constraints are

not included in the present chapter.

4.3.4 Solution Approaches

Even though the model in §4.2 can be stated somewhat simply, it is difficult to solve

both theoretically and in practice due to the well-known curse of dimensionality.

This arises mostly from the uncertainty in the demand term <4, which is indexed by

arrival-date, due-date, and destination. A typical instance of this problem has ninety-

one days and fifty destinations, as described in §4.4, making the state space several

hundred-thousand dimensional. Additionally, the decision space includes decisions

indexed by factories, destinations, and days within the decision horizon, making it

several thousand dimensional. Because the state and decisions space are large, solv-



ing the Dynamic Program directly is computationally intractable. Even if we use a

simplified demand model and collapse the state space to include only the cumulative

demand realizations, production decisions, and capacity decisions to date, the state

space would still have several thousand dimensions, leaving the problem intractable.

As discussed in §3.1.3, a common and simple approach to dealing with uncertainty

in optimization is to replace the uncertain term by a deterministic one, hoping that

the solution to the deterministic problem performs well for the problem with uncer-

tainty. If the demand <b were deterministic, the formulation in §4.2 would be a Linear

Programming problem, which can be solved easily. In §4.8, we show that this ap-

proach performs well and that more complex approaches are unnecessary; by solving

this deterministic problem with a reasonable point-forecast for unknown demand, we

find excellent solutions to the original problem, as shown by their proximity to a the-

oretical upper bound which can also be easily computed using Linear Programming.

We compare several solution policies that treat demand deterministically, simplifying

the problem to obtain solutions; we then analyze them stochastically. These policies

are introduced in §4.6 and analyzed in §4.8.

4.4 Data Sources

Data from various sources was acquired by and in collaboration with the firm's North

American Operations Center team and is used in the analysis of various solution poli-

cies to this dynamic program. Some of the sources, such as interviews with factory

managers to determine factory production bottlenecks, are detailed in Chapter 2.

Herein, we describe and comment on the data for the indices, decisions, and param-

eters described in Tables 4.1, 4.3, and 4.4, along with data necessary for developing

the demand model in §4.5. New demand parameters, F and -y, the distributions of

demand among due-dates and destinations, are introduced in order to construct other

parameters, such as 4, that were not directly available. We first discuss the choice of

indices in §4.4.1. We discuss the source of cost data in §4.4.2. The source of demand

and labor parameters is discussed in §4.4.3. A brief summary of the source of each



Parameter Symbol Description of Source
Cd Contracts with third party logistics providers
Ht,1, Otj Financial reports on labor and production
P Data acquired by Dhalla [DhaO8]

Ztd ' Lookahead spreadsheets
Ik ATB snapshots of currently known orders
Yd The firm's historical data for planning problem

T~d See §4.5
See §4.5.4

H t,, H, Ht,,, O(t) Lookahead spreadsheets

Table 4.5: A brief description of the source of relevant data parameters.

data parameter is given in Table 4.5.

Most of the data collected comes from three distinct time periods, early 2008,

late 2008, and early 2009, each separated by at least one month; we refer to these

time periods as data sets 1, 2, and 3, respectively. Our analysis focuses on the time

period of data set 1, February through April of 2008, which is a typical quarter for

the firm; it avoids the "back-to-school" and winter break demand spikes. Spurious

data was gathered from other time periods and helped in estimating parameters for

these periods, but the demand patterns, factory capacities, and cost data are based

on or tuned for February through April of 2008.

4.4.1 Indices

The horizon of K = 91 days was chosen because the firm has a policy of finishing

production for all outstanding orders by the end of each fiscal quarter. The time

granularity of using days, as opposed to shifts or weeks, matched the execution prob-

lem's scope of making daily decisions; furthermore, demand data was not available

by shift nor were decisions made that frequently; given that we do not model shift

structure in this chapter, this granularity is appropriate.

The three factories {TX, TN, NC} were the major production facilities during

the time of this study. Each contained multiple production lines that had varying

traits, but these played little role in the context of which orders were assigned to each



factory; the differences that did affect production capacity are incorporated in the

costs of capacity.

The firm's Operations Center planned order moves at a granularity of eight regions

composed of U.S. states but executed its decisions by moving orders filtered by state;

they already executed on but did not plan for the state level. Although data was

available at a smaller granularity, such as zip-codes, U.S. states were fine enough

to provide plenty of flexibility in moving orders between factories while being large

enough to avoid moving orders for negligible returns in profits. Furthermore, given the

size of the problem, using 3-zip or finer granularity would often introduce data storage,

computation, and managerial oversight difficulties. Hence, we choose to use the U.S.

states as the destinations in D because they are tractable for computation, sufficiently

detailed for re-assigning orders with significant financial impact, and historically used

by the firm.

4.4.2 Cost Data

The cost Ci to ship a desktop from each factory I to any destination d was acquired

from the firm's early 2008 contracts with third party logistics providers to ship along

those origin-destination pairs and weighting them by the relative volumes of various

shipping priorities and desktop sizes/weights. An alternate set of shipping cost data,

formed by averaging the empirical shipping costs, matched these quoted costs well

and were the cost basis for the planning problem in Chapter 6. Because inbound

routing (from vendor to factory) decisions was not within the scope of the execution

problem, we do not include inbound shipping costs in this chapter.

Data on the cost of labor was constructed by combining the firm's internal financial

reports on the total cost of labor at each factory and historical production quantities.

The cost of non-overtime capacity Ht, and the cost of overtime capacity O were

computed by totaling the non-overtime and overtime labor costs at each factory over

many pay-periods and dividing it by the number of labor hours in that time-frame;

averaging these yields the cost per labor hour at each factory. Dividing this by the

units-per-labor-hour, another well-studied quantity that the firm tracked, yields the



cost-per-unit of capacity at each factory, which ends lip being the same for all time-

periods t.

The penalty for late orders is based on the work of Dhalla [Dha08] in quantifying

the cost of part shortages. Dhalla analyzed both the cost of lateness in existing

orders (cancellations and consolations) as well as the cost of future customers not

purchasing due to poor service. The data used in Dhalla's analysis indicates that

after the first four days of being late, the cost for each day that a computer is late

scales approximately linearly by P dollars per day that each computer is late. Those

first four days are incorporated into the due date of order in the demand model,

letting the DP of §4.2 treat the cost of each day that each desktop is late as scaling

linearly with the penalty P. The model's sensitivity to this parameter is analyzed in

§4.8.

4.4.3 Demand and Labor Data

The firm's North American Operations Center used Excel "Lookahead" spreadsheets

to track both past and expected future desktop sales as well as the labor capacity

assigned to each factory; they "look ahead" (into the future) up to at most two

weeks. An example can be seen in Figure 4-1. A new spreadsheet was created

each day and contained within it a tab for each factory. Within each factory's tab,

each column represented a day and each row contained different data on sales and

labor for those days. Columns from past days contained data on what had actually

happened while future data were point estimates or forecasts of what they expected

to happen. "Lookahead" spreadsheets from early 2008 through early 2009 were the

largest source of dynamic input data for the model; they provided daily sales data,

the firm's forecasts for future demand, and past decisions and future plans for labor

capacity.

The most important row was daily sales; these numbers represented past sales

along with forecasts for future sales. The word 'sales' is used interchangeably with

'demand' because decisions made within this model do not affect sales, outside of

the customer service impact which is addressed by the order lateness penalty; thus



Q3 WK9 03 WK10

27-Sep 28-Sep 29-Sop 30-Sep 1-Oct 2-Oct 3-Oct 4-Oct S-Oct 6-Oct 7-Oct -Oct 9-Oct 10.Oct

Sat Sun Mon Tue Wed Thu Fri Set Sun Mon Tue Wed Thu Fri

SALES 1,016 852 6,574 7,711 8,096 7,877 7,322 491 388 7,002 7,585 8,297 8,265 9,898
Actual Hours

A l 5 Shift 80 s0 80 80 80 80 80 B 0 80 80

Nominal Hours
1st Shift 80 80 80 80 80 80 80 80 80 80

Hours until Next Tean
Ist Shif 24.0 24.0 24 0 24.0 24.0 240 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24,0

Mlnum Hours
Ist Shift 6.0 60 6-0 60 6.0 6.0 60 6.0 60 6-0

Addiltional Hours
sI Shift 15 15 15 15 15 15 15 15 15 15

Advanfcei Notice I

I st Shif 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Figure 4-1: Example of the Lookahead spreadsheets used by the firm's Operations

Center.

we have data with which to estimate demand. However, forecasts were rarely, if

ever, updated, because they were generated by distributing total North American

desktop sales targets amongst days, product lines, and destinations according to static

proportions. Furthermore, data on what actually happened was only tabulated for

each day, factory, and line of business; given that we do not model lines of business,

our sales data and hence our demand data was indexed only by the time that it arose;

that is, we have 310 data points (days T) or empirical samples of E ' but none

of 4r'd.ot'

Nonetheless, the firm had estimates of the long-term distribution of demand

among destinations,
E z~d

Yd = ' (4.8)
Et,r,d' d)'

The firm historically used this to split the forecast among destinations when consid-

ering the planning problem. The firm's management had a strong belief that these

fractions were stable and did not vary significantly over time.

Backlog or ATB "snapshots" of what orders were currently known but not yet pro-

duced were available for thirty days for which we had matching Lookahead spread-

sheets. The total number of desktops in a snapshot from day k was EI- -

E -k ]+. The snapshots contained almost all information that the firm had about

any currently backlogged order, including the order-date, the due-date, the destina-

tion, which parts it required, and which factory it was currently assigned to. We

could not reconstruct the total number of orders for each dimension of demand with



this small data-set, mostly because the snapshots were not from consecutive days;

even for those that were consecutive, Lookahead spreadsheets with larger sales quan-

tities indicated that orders had become known and produced between the snapshots.

However, we were able to use these ATB snapshots to estimate the fraction of orders

that are due k days after arriving, namely

E lEd 77 (4.9)
EEt,r,d rOd

which is needed to estimate the demand distribution, as is done in §4.5.

The Lookahead spreadsheets also contained a large amount of data about the

factory's capacity and more-so about the labor shift-structure. The most prominent

figures were the "run-rate" or number of computers per hour that the scheduled work-

team is expected to assemble and the planned (future) or actual (past) number of

hours that each work-team is on the factory floor. There were two to five work-teams

per factory, sometimes operating in different areas of the factory simultaneously.

Although not available at first, for the purpose of model implementation in Chapter 5,

we asked the Operations Center team to track the theoretical minimum and maximum

length per shift, the timing between shifts, the effects of overlapping them, and other

details. As mentioned in §4.3, we aggregated these shifts and work-teams into daily

capacities that are directly usable by the model. We do this by multiplying these

shift-lengths by the "run-rates" to obtain the minimum capacity _Hil, the maximum

"Hi, and the scheduled (nominal) capacity HN for each work-team. We then add

these together to obtain the daily capacities.

All of the data described above was reviewed and confirmed to be sufficiently

accurate for implementation purposes by the firm's Operations Center members. The

choices made in modeling and data acquisition reflect our best attempt to mirror the

firm's operating environment.



4.5 Demand Structure

Herein we discuss the model of demand for the dynamic programming (DP) problem

in §4.2. Because uncertainty in demand is largely what makes the problem difficult,

we spend significant effort modeling it. The demand model must both realistically

emulate the demand situation faced by the firm and be tractable enough for analyzing

solutions to the DP problem. We are interested in the demand vector 4 (the demand

arising on day T, due on day t, and destined for d) but only have data for Ztd 4,d
(the demand that arises on day r), Ik, and -yd. Constructing a realistic demand model

from such limited data will require additional structure.

We begin in §4.5.1 by analyzing the available data and fitting distributions to

the daily demand, wherein we find that a Log-Normal distribution that depends

on the day of the week and the fiscal quarter fits best. We extrapolate this to fit

a distribution to the demand vector 4, adding assumptions where necessary and

estimating the distribution's parameters. This involves several conversions between
'd for which we have data and the more granular and data-less #' , along

with the logarithm of these quantities. In §4.5.2, we introduce correlation to make

the model more realistic. In §4.5.3, we make a few additional adjustments, making

the demand distribution discrete and accounting for the end-of-quarter "hockey-stick

effect." In §4.5.4, we model error in the forecast F. Lastly, in §4.5.5, we validate that

the approximations in this demand model generate demand that matches historical

values. Many of the modeling techniques used in this section are common in practice;

however, the correct choice and combination of these makes the modeling difficult and

interesting. By the end of this complex modeling process, we have a simple method to

generate random vectors 0 from a distribution that reflects reality to the best of our

ability, which will allow us to evaluate the performance of several policies in solving

the stochastic DP of §4.2 via simulation.

The DP formulation is most easily stated in terms of < the cumulative demand

due (in number of desktop computers), which has become known by time T, must be

shipped to destination d, and is due by time t. To understand the nature of demand,



it is easier to work with #t d, the demand that becomes known at time r, is shipped

to destination d, and is due at time t. We now model $.

4.5.1 Data Analysis and Estimation

As mentioned in §4.4, in the firm's Lookahead spreadsheets, there are 310 data points

(days r) of the quantity Et,d #'d which are instantiations of the random quantity we

call #1, the daily demand. We also have the "splitting" parameters

E ,d

and
EV' T,d

Fie E Ed,T tT+k

which are the percent of total demand arising from each destination d and the percent

of orders due within k days of arising, respectively, as described in §4.4. Note that

EdaYd = 1 and Ek Fk = 1.

A key parameter for describing the distribution of demand is its mean, p =

E 4 ,d. Because we have a good estimate of ENT, we would like any definition of p,d

to satisfy

Zpl4 =1ENY. (4.10)
t,d

We chose a simple, intuitive, and structural formula to define the mean of 4):

p7-,d E#"' := W YdrtEN . (4.11)

We can see that (4.11) satisfies (4.10) via

At Er = >: rd =f ET~ ' Ft-T =

t,d t4 d t

Although alternate definitions of pit were possible, this choice corresponds to as-

suming that daily demand (whose mean is E4), the distribution of due dates (whose



mean is '), and the distribution of demand among destinations (whose mean is -y) are

independent; any other choice would require computing interaction effects between

these parameters for which no data was available. Note that the mean of a distribu-

tion does not provide enough detail to evaluate the performance of policies in solving

the DP; we need a model for the distribution of #,'d that incorporates more than its

mean, such as its variance. Hence, we fit common probability distributions to the

demand data.

We analyzed the fit of several distributions to the daily demand data, includ-

ing Weibull, Log-Normal, Log-Logistic, Gamma, Exponential, and Uniform, with or

without the intercept fixed to zero. Gamma, Weibull, Log-Logistic and Log-Normal

distributions, all with zero intercept, fit well; other distributions did not. Both Log-

Logistic and Log-Normal distributions passed (failed to reject) Anderson-Darling,

Kolmogorov-Smirnov, and Chi-Squared tests at 10% significance (and lower) and had

the best R2 values. Log-Normal distributions are similar in shape to Log-Logistic dis-

tributions, but have lighter tails and more tractable covariance properties. Hence, we

use a multi-variate Log-Normal (LN) fit for 4. Because Log-Normal distributions are

appropriate for modeling demand and we have no way to estimate the distribution of

4, we also assume that 4 follows a multi-variate Log-Normal distribution. There is no

known closed-form distribution for Ed 'd when 4 is log-normally distributed. How-

ever, Fenton [Fen60] suggests a simple approximation that yields another log-normal;

namely, match the first two moments of 0' andZtd Ot'd. Although many papers since

then (e.g. Mehta [MWMZ07]) have criticized this approach and provided alternatives,

its simplicity and success in approximating most of the distribution (shown in both

[Fen60] and [MWMZ07]) make it worthwhile.

In summary, we use the following fits:

4 3 ~rd LN(p T , Ei1) eN(#it)

t,d

4 ~LN(p4', e)

Because Log-Normal distributions are often easier to work with in the log-space, i.e.



Symbol Distn. Mean Cov. Description

d LN p', d r.v. for demand on T due on t for d
l(#'4) N p' E' logarithm of tr'd

OT LN EOT CT,1, r.v. for total demand on T; equals Et,d t'd

ln(#T ) N pT E, logarithm of d

Table 4.6: Mathematical notation for demand parameters, in units of desktops. Dis-
tributions (Distn.) are either Normal (N) or Log-Normal (LN). The index i represents
a triplet (t, T, d), Cov. is the covariance, and r.v. means random variable.

ln(or) or ln(#t'd), we convert between the Log-Normally distributed and Normally

distributed counterparts frequently. f and E are the mean and covariance matrix of

the Normally distributed logarithm of daily demand. We wish to derive p' and ',

the mean and variance of the Normal random variate ln(<k), in such a way to match

the first two moments of Zt,d t'd and or. To do so, we first estimate ft and E and

then use equation (4.11) along with some extra structure. A summary of the notation

used for various demand parameters of interest is provided in Table 4.6.

The data was largely analyzed using linear regression on 1n(4T) as 4$ consistently

gave worse results, using the following independent variables: Day of the Week (in-

dicator for each of the seven days of the week), Weekend (indicator for whether r

is a Saturday or Sunday), Weeknumber (in which the first Sunday in 2007 has a

Weeknumber of 1 and Weeknumber increases by one for each subsequent week, the

first week of 2008 having Weeknumber of 53 or reset to 1, and so forth), Demand k

Days Ago for k C {1,. . . ,9}, and Data Set (as explained in §4.4 in {1, 2, 3} or as

indicators). Our major metric of regression power is the adjusted R-squared

-2 K - 1 ()2

K - p - 1 E(r~z - -' )2

where z, is the data, - = y z is the mean of the data, Z4 is the regression's

prediction, p is the number of independent variables, and K is the number of samples.

We begin by estimating p- using regression. While all of the independent variables

had significant (under 5%) p-values, the coefficients for Weeknumber and Demand

k Days Ago are too small to have non-negligible impact on the total demand value.



Intercept
DataSet1
DataSet2
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Weeknumber
1 Day Ago
2 Days Ago

Table 4.7: Regression of

k days ago. R2 = 0.941.

Coefficients P-value Lower 95%
7.659
0.347
0.199
2.073
2.274
2.309
2.344
2.635
0.272
0.002
0.000
0.000

i

ln(<') (log desktops) for ft with Weeknumber and Demand

Intercept
DataSeti
DataSet2
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Coefficients
8.038
0.342
0.184
2.113
2.313
2.343
2.278
2.361
0.092

P-value Lower 95%
2.45E-307
2.79E-20
9.52E-06
1.40E- 116
1.71E-126
5.98E-128
8.18E-125
5.01E-130
1.01E-01

7.950
0.274
0.103
2.003
2.203
2.234
2.168
2.253
-0.018

Upper 95%
8.127
0.409
0.264
2.223
2.423
2.453
2.388
2.470
0.202

Table 4.8: Regression of ln( T ) (log desktops) for - used in demand generation.

f2 = 0.939.

The results of regression with and without Weeknumber and Demand k Days Ago

are listed in Table 4.7 and Table 4.8, respectively. We use the latter table as the

structural model for EW; that is, for each day r, we can use the coefficients in Table

4.8 to obtain A.

In order to estimate E, we first note that our samples ln( ') are not independent

and identically distributed; they are temporally dependent and interrelated. To gain

tractability, we assume there is some constant coefficient of variation #0 such that

7.259
0.012
-0.002
1.963
2.162
2.200
2.169
2.450
0.120
-0.005
0.000
0.000

1.74E-115
4.23E-02
5.18E-02

9.28E- 114
1.73E-121
2.02E-126
4.29E-80
7.94E-86
4.93E-04
6.03E-01
6.OOE-03
7.61E-02

Upper 95%
8.058
0.682
0.400
2.183
2.387
2.418
2.518
2.819
0.425
0.008
0.000
0.000



E-rI =/ (#0 T)2 which gives us normalized samples

ln(#) - AT
L(OT) := ~T N(0,#02).

To deal with the lack of independence, we assume that our 310 samples provide

sufficient mixing that short-term inter-temporal correlations can be ignored; that is,
we have enough samples to have a representative view of the sample space and can

treat these observations as independent. We then estimate #0 by flo = Var(L(<))

which yields #o = 0.0277 with a 95% confidence interval of [0.025,0.030]. We then

use this to generate the diagonal of E by P,, (, 0#)2. We refrain from developing

the off-diagonal entries of E and instead construct the off-diagonal of E indirectly in

subsection §4.5.2.

We can then convert lnTto 4T by the well known formulas for Log-Normal dis-

tributions

Eekr = e-+2 TT/2 VT

CTT, = Cov(k7,kT') = (erT' - 1)eT ++ 2 =.

We can now apply (4.11) to have y = E0.

We now develop the diagonal entries of E, the covariance matrix of q, by deter-

mining their relationship to the above quantities. Again, we make the assumption that

there is a constant coefficient of variation /T such that Ei,i = (r pN)2 Vi E {(t, r, d)}.

In order to gain further tractability, suppose that, on each day r, orders from different

destinations d and due dates t are independent; we will adjust for this in §4.5.5 by

re-normalizing the final covariance matrix to match the empirical variability. Then

we have

CT ,8 EpT

t,d t,d

and therefore # TT = _ and hence we have the diagonal of E.

Later, we will wish to generate random variates 4; to do so, we follow some sug-

gestions outlined by Law [Law]. We generate a multivariate Gaussian N = N(p', E')



and set 4j = eNi Vi where
2

Ini

and

E0,1 = in 1+ 'ie

with E;, = E',j, = 0 Vi #- i', i.e. that all demand components are independent. Using

this, we also know that Ni = + Zi T/' where Zi ~ N(O, 1) is a standard Normal

random variable. Having a basic structure for the demand 4, we now address the

independence assumption.

4.5.2 Correlation Structure

In this section, we incorporate dependency between components of the demand vec-

tor <k. Correlation in demand can arise from many factors, ranging from temporary

market trends and fluctuations in the economy to corporate sales promotions. Kahn

[Kah87] and Maccini and Zabel [MZ961, show that serial (temporal) correlation in

demand for backlogged system causes greater production variance than demand vari-

ance. We also expect that, without dynamic re-balancing, geographic correlation in

demand can cause imbalances in factory utilization. Fluctuations in the total de-

mand for large subsets of the demand vector, i.e. positive correlations among those

components, can cause some factories to have insufficient capacity to meet demand

and induce order lateness. Correlating large geographically and temporally contigu-

ous subsets of the demand vector allows us to analyze how the firm's supply chain

production and capacity respond to large changes in demand under various solution

policies. Incorporating correlation improves the realism of the model and can illus-

trate the supply chain's flexibility.

Attempting to construct the off-diagonal entries of E using inter-temporal and

geographic correlations proved too dense for computation purposes. Although corre-

lations in demand cannot be observed from the available data, we must model it in

order to evaluate the performance of policies in solving the DP. The following sim-



ple technique introduces correlation in an understandable and controllable form. It

separates the demand into the weighted sum of two vectors, one where all of the com-

ponents are independent and the other with perfect correlation between large subsets

of the vector; changing the weight parameter allows us to analyze demand situations

from complete independence to perfectly correlated subsets.

We introduce correlation by decomposing #; into

= [(1 - a)u + av] (4.12)

where a E [0, 1] and

ui ~vi #i LN(pE') Vi;

that is, ui and vi have the same distribution as 4i . The components of u are

independent while large subsets of the components of v are completely dependent,

but each subset is independent from each other.

We divide the nation's geography into thirds (West, Central and East) and the

due dates t into three "months," all having similar average demand. We then have

nine subsets, denoted g E G and set

with

Zy = Z) V(i,i') E g x g c G x G

when generating vg rather than sampling them randomly. The rather large size of

these subsets is sufficient to drive imbalances across factories and throughout the

horizon, allowing us study the impact of correlation in demand upon the performance

of various policies, while being simple enough to easily generate, evaluate, analyze,

and understand.

All components of u are generated independent of each other. Within g c G, all

components of v have a correlation of one. Choosing a = 1 makes all components of

q within g have a correlation of one. Similarly, choosing a = 0 makes all components



of 4 within g independent and hence have a correlation of zero.

Using the structure of equation (4.12) maintains E4 = p. However, for any a > 0,

we will have V(i, i') E g x g

Var(<t') = i1+ i,e, > C,, = Var(&

t,d t,d t,d tft',dfd'

since Ejg = pi,g \Ei,iEg > 0 as i and i' are positively correlated. Any demand

generated by using this technique will induce greater variance than that observed

empirically; this is corrected in §4.5.5. The value of a is chosen to ensure that

variation in total demand matches historical quantities, as is explained in more detail

in §4.5.5.

4.5.3 Additional Adjustments

Two additional adjustments must be made to the model. These are to 1) make

demand discrete and 2) to incorporate an end-of-quarter phenomena that appears in

production control in practice.

Randomized Rounding

Our demand generation process is continuous, but in practice, orders come in discrete

numerical quantities. For some regions, such as early due dates in low population

destinations, the average demand per day can be close to zero. In such cases, using a

continuous approximation to demand would be misleading. To conservatively correct

for this, we use randomized rounding to create discrete demand with the same mean

and slightly higher variability than the continuous demand described previously.

We round a fractional demand x.y to

x w.p. 1 - y
zr =

X + 1 w.p. y

(w.p. stand for "with probability") which maintains E{x.y] = Ejz,] but will have



slightly higher variability.

Hockey-Stick Effect

The firm claimed that demand traditionally has followed a "hockey-stick" effect,
wherein demand rises sharply at the end of the quarter as sales teams try to finish deals

to meet sales quotas. The following t-tests, for the two populations with unknown

means and variance on the residuals ln( T) - AT, exemplifies how our data does not

reflect this effect. The data points ln(qY) - A are split into two groups, those when

r represents a day in the last two weeks of a fiscal quarter and those in the first

eleven weeks. The Null Hypothesis that E[ln(O7 ) - Tr]T>12 = E[ln(O7 ) - JT<1u has

a p-value of 0.240 on weekdays and 0.315 on weekends and hence cannot be rejected.

Alternatively, the Null Hypothesis that Etln(( T)- TI|7 ;>12 > E[ln( T )-tAT]|I< would

be rejected at a 16% but not at a 10% significance level. Therefore, it is reasonable

to proceed as if demand did not follow the "hockey-stick" effect.

However, the firm did have a policy of trying to "clear the ATB" by the end-

of-quarter, i.e. all orders that arrive during a fiscal quarter were to be shipped by

the last day of the quarter, day K, if possible, which does create such an effect on

production. We illustrate this in §6.1 when describing the firm's production capacity

for the planning problem. We emulate the firm's end-of-quarter "hockey-stick" effect

by shifting demand that arises during {1, ... , K} but is due after K back to day K

by setting

t>K

Note that 1 k = 0 Vk > 14, so we have at most "two weeks" of extra orders due at

the end of a thirteen week horizon.

This shift in end-of-quarter demand is also applied to the cumulative demand

parameters when we compute them via

tl<t



and
-rid y T,dtd

tf<t T'<T

This technique not only reflects reality, but it ensures that all demand arising

within the Dynamic Program's horizon is due within the horizon. The penalty P for

not producing such orders acts as a cost structure on the terminal state of the system.

4.5.4 Forecast Error

The demand model is largely concerned with modeling uncertainty in the dynamic

programming problem and the results in §4.8 reflect the impact of demand uncer-

tainty upon the performance of various policies. The policy that we recommended

to the firm uses a point forecast of that demand F, which obviously differs from

the actual demand 4j due to this uncertainty; for this policy to be useful as a solu-

tion, it must be able to adapt to the difference between its forecast and the actual

demand that arises. Mathematical programs are often extremely sensitive to their

input data, which is a cause for concern that such solutions may not be useful when

demand differs significantly from the forecast. We are interested in the following two

questions: 1) How does this policy that depends on the forecast perform when the

forecast differs significantly from the true demand? 2) Can improving forecasts for

this policy or developing more complex stochastic techniques provide significantly

better performance? In order to answer these questions and to evaluate this policy's

performance overall, we must model the inaccuracy in this policy's forecast.

The scope of our project did not involve determining new forecasting techniques

for the firm's operations team; instead, we use a forecast based on the data available

from the firm. As described in §4.4, forecast data in the Lookahead spreadsheets

was rarely updated because forecasts were made based on quarterly sales targets and

distributed across the horizon; furthermore, this makes any error in the forecast, at

more granular levels, perfectly (positively) correlated 1 . After cleaning the data, only

fifteen data points of F = Ztd Ftd were available to understand forecast error. With

such limited data, we could not use the firm's forecasts directly; instead, we construct



a forecast by distorting the mean of the true demand distribution by an error term

whose magnitude is estimated from empirical data, as follows.

It is common to assume that a forecast is unbiased, i.e. that

EF = E4; Vi, (4.13)

as otherwise one could adjust the forecast by the difference of an estimate of E4!.

However, it would be unrealistic to have F = E4;. Because the forecast is an attempt

to estimate the sum of many somewhat independent choices to purchase desktops, we

model forecast error as being Normally distributed. A reasonable choice for F is to

perturb it about the mean via

F = yt(1 + c) (4.14)

where c ~ N(0, 2) is Normally distributed with zero mean and standard error a.

This makes F unbiased and have a constant (across i) coefficient of variation o.

Also, by using the same c for each i, the perfect correlation in the empirical data is

captured. We now determine the forecast's variability about the mean, a.

Because most forecasts attempt to estimate the mean of the demand distribution,

we compare our data on daily forecasts F' to the mean daily demand p, := E4T.

The relative forecast error was calculated for these fifteen data points; they

had a variance of o' 2 = 0.160, which is the square of our point estimate for the

coefficient of variation. Using our assumption of the Normality of ej, the estimator

for variance in daily demand should be x 2 distributed and have a 95% confidence

interval of 10.087,0.383].

We must re-normalize this variance o'2 from daily values to a 2, the co-efficient of

'The assumption that forecast components are perfectly correlated makes cost estimates about
the recommended policy conservative, because positive correlations yield the highest variance in
aggregate and higher variance forecasts contain the least amount of useful information.



variation for a triplet i. To do so, note that

a'2,2= Var(F)

= Var(( F)

i3T

= ( Cov( Fi , Fe )
137 i'3r

= (Z p1 ,STD(Fi)STD(Fi,) (4.15)
3T i'3W

= (E 1 (Upi) (ope)

i3T i')T

i3r i'97

The notation i D r represents the indices i for demand that arises on T, {i = (t, r', d)

r' = r}. The first and fourth equalities follow from our assumption of a common

coefficient of variation or standard error in the forecasts, with pii = 1 coming from

perfect correlation. Because we do not have enough data to calculate o'2 for each r,

we sum both sides of (4.15) over r, and solve for a to get

a=o' =TIT 4.79% (4.16)

with a 95% confidence interval of [3.54%, 7.41%].

We use the standard error value a = 4.79% in (4.14) to generate the Forecasts Fi.

We then apply the hockey-stick effect of §4.5.3 via

Fpgd := (jF'dVr, d. (4.17)
t>K

-k d
On day k of instance w, when 4' (w) is known Vt, d, the forecast for r < k is set to

reflect past demand via
(-rd d

Ft +t (W) Vt Id7 T< k. (4.18)



For future periods T > k, the cumulative forecast is

T

k= 4'() + d . Fr'' Vt, d,> k (4.19)
t'<t T'=k+1

where the first term is known demand from <T and the second term is the cumulative

forecast for the next day onward.

4.5.5 Validation

Having made many assumptions to generate the demand vector q, including modeling

the sum of Log-Normal random variables as Log-Normal, incorporating correlation,

and implementing the hockey-stick effect, one might be concerned that 4 no longer re-

flects reality. To test this, we develop four metrics, based on available data, to validate

whether the demand model is generating demand that is appropriate for evaluating

the efficacy of various policies in solving the dynamic program. The relevant data to

benchmark ourselves against is Id, Fk, A, and fo.

The first two metrics are

1i.Z 1 EZ,#i(w)
2 ||7d(w)

and
1 1 d, 4(0

M2 = IF-|k ' |

which give us the mismatch between the empirical and generated distributions of

demand at an aggregate destination or due-date level.

Similarly,

M3 =k IA - ln(E j(w))|
T W t,d

yields the average mismatch between the empirical and generated mean daily log-

demand. We will also use
e +M3 -T = e - 1

eA



as an estimate of the percentage difference between the generated and empirical mean

daily demand.

Lastly, our best information on demand variability, #0, gives us

1 ln( _ (U)) -

M4 = 0o- K|| I: 'W ,T

the mismatch between the estimated co-efficient of variation and that produced by the

model. Because the sum of Log-Normal random variables is not actually Log-Normal

and because we introduce correlation in the model after computing its variance, this

last metric reflects enormous error if we choose to set the parameter 0 (coefficient of

variation of daily demand used for demand generation) to the estimated coefficient

of variation &. To fix this, we choose #l so that the metric above is nearly zero;

different values of 0 will be necessary for various levels a, as shown in Table 4.9.

As we introduce more correlation into demand, we reduce the coefficient of variation

to maintain the same amount of total covariation. Except where noted otherwise,

results are reported for a = 0 and 0 = 0.0370 for clarity of analysis and exposition.

Several thousand random variates 4 were generated using the structural models

detailed in this section. Table 4.9 presents how these simulated demand values com-

pare to the empirical demand values, via the above metrics. The columns for M1 and

M2 indicate that, for either choice of a, the demand model generates vectors 4 whose

distribution of due-dates and destinations differ from IF and -y respectively by no more

than 1% total. The values of M3 indicate that the demand model generates vectors

4 that differ from the empirical mean daily demand by at most 0.034% and 0.0196%

for a = 0.00 and a = 0.16, respectively. Our choices of #, for a given a, make

M4 nearly zero, indicating that the demand model generates vectors 4 that match

the empirical daily log-demand variability. Overall, the data in Table 4.9 validates

that, for these choices of a and #, our demand model generates demand vectors that

match historical statistics.



a #0 M1 M2 Ma M4
0.00 0.0370 0.0089 0.0044 0.000335 0.0000
0.16 0.0277 0.0099 0.0029 0.000197 0.0001

Table 4.9: Demand model validation metrics for various values of #0 and a. Note
that # = 0.0277 and (a, #o) is chosen to zero M4.

4.6 Policies

In this section, we formalize the four policies whose performance is to be analyzed

in-depth. Those polices are

1. Greedy (G)

2. Historical (H)

3. Rolling-Horizon Certainty-Equivalent Linear-Programming (LP)

4. Perfect Hindsight (PH)2.

As described in detail in §2.4, when we first began this study, the firm used

a heuristic policy, called "geographic manufacturing," which focuses on minimizing

outbound shipping costs, to generate feasible solutions to the problem3 . We call

this policy Historical (H). It is derived from a much simpler policy, a set of "default

download rules." This simpler policy essentially assigns each order to the factory

that has the lowest shipping cost for that destination, making it a Greedy (G) policy.

Using G as a baseline, the firm employed human oversight to re-balance factories by

"moving" orders from factories with excessive workloads to ones with excess capacity;

the historical policy (H) reflects this.

We developed and tested many alternative solutions policies. Many of these were

improved upon and evolved into the solution that we eventually recommended to the

firm: a Rolling-Horizon Certainty-Equivalent Linear-Programming (LP).
2Although the Perfect Hindsight policy is not a policy but more of a benchmark in the sense

that its decisions depend on future information, we refer to it as a policy for notational convenience.
Later, we show that its cost performance is a lower bound on the optimal policy's performance.3During the course of our study, the firm began to use a second heuristic policy which focuses
on minimizing the labor costs; it was also greedy algorithm with human oversight. This policy is
analyzed in §5.3.2 when the firm's production facilities were in Winston-Salem, USA and Juarez,
Mexico.



In order to benchmark the suboptimal (with respect to the optimum of the orig-

inal dynamic programming (DP) problem) policies, we solve an anticipative Perfect

Hindsight (PH) linear programming problem, which has perfect knowledge of demand

throughout the horizon and satisfies ZPH !5 ZP < z, for any non-anticipative pol-

icy p, where z denotes the cost of a policy. In general, this PH policy can perform

arbitrarily better than any non-anticipative policy; however, in our case, some de-

terministic policies achieve values near the ZPH, indicating that this bound is nearly

tight and that those policies perform well.

We now formalize these four policies.

4.6.1 Greedy Policy

Although rarely executed without alteration by the firm, the Greedy Policy is used as

a default solution for the firm's production planning team and as a tool for the firm's

management team to understand the impact of their own actions. Furthermore, since

G represents the default plan, it serves as a baseline for comparison of the policies.

The Greedy policy is based on "default download rules," described in §2.4.1, that

determined which factory an order would be built at based on various attributes of

that order. By far, the most relevant rule was to allocate orders to factories based on

a geographic manufacturing (or "geoman") map. Other order attributes that played a

role in the default download rules include parts availability, technical labor expertise

for particular product lines, and legal issues. However, the most prominently used

rule for determining where orders were assigned was the geographic destination. At

the time, the firm had a map of the United States divided into three approximately

equal (with respect to demand contained) thirds, each corresponding to one of three

factories, in Austin, TX; Nashville, TN; or Winston-Salem, NC; this is illustrated in

Figure 2-4. Orders to be shipped to a particular third were by default allocated to

the factory corresponding to that third.

This map was designed with outbound shipping costs in mind. The westernmost

factory, TX, in Austin, Texas, was responsible mostly for orders destined for the U.S.

West Coast. The easternmost factory, NC, in Winston Salem, North Carolina, was



responsible for most orders destined for the East Coast. TN, the factory in Nashville,

Tennessee, covered most orders from the middle third of the United States. Because

each factory had nearly the same amount of production capacity, and demand was

split approximately evenly among them based on geography, this heuristic does a

great job of minimizing the total shipping cost, as shown in §6.6 for the planning

problem which includes inbound shipping costs.

In order to model this policy mathematically, we need an ordering for the factories;

according to the geo-manufacturing map, this is naturally TX < TN < NC, going

from West to East, numbered 1, 2, 3. We also must choose an ordering for the

destinations d E D, to help us decide which states' production will be most cost

effective to re-assign to another factory. Our choice was in increasing order of Cc -

C, numbered 1, ... , D|, so the first items in the list are cheapest to ship from TX

(mostly West Coast states) and later items on the list are cheaper to ship to from

NC (mostly East coast states), while many destinations in the middle of the ordering

will have similar shipping costs across factories but often be cheapest to ship to from

TN. Alternative greedy cost structures are possible, but this choice best reflects the

geo-manufacturing map that the firm used historically, as described in Chapter 2. In

problems with more factories, where a single dimensional ordering is not obvious, a

simple linear assignment problem could be solved.

Let D be the set of destinations whose production is assigned to factory 1. Recall

that -yd is the historical (and mostly static) percent of all orders that arise from

destination d. We wish for ZdE, 7d > -* Vt, where -* < 1/L (L is the number

of factories) is a threshold for the minimum percentage of total demand that each

factory should have. In our case of L = 3 we took -* = 32%. Using the orderings

above, we implement Algorithm 1 to assign factories to destinations. Following this

procedure yields an assignment of destinations to factories that is very similar to the

geo-man map that the firm historically used in its default download rules. Assigning

destinations to factories is not enough to constitute a policy for the original dynamic

programming problem; we need more detailed production decisions y and capacity

decisions h.



Algorithm 1 Algorithm for assigning destinations to factories for the Greedy policy's
default download rules.

d := 1 and D := 0V
for 1 1 to L do

while ZdED, Yd < 7* do
D, := DI u d
d:= d-+ 1

end while
end for

Before we can specify the production decisions, we need to specify how the how

the firm adjusted capacity. First, we briefly develop some notation, which may seem

excessive at first, but will be necessary to define the Historical policy as well. Note

that Edikd -1 E -I]+ is the number of outstanding orders at the beginning of day

k and is often called the Available-To-Build backlog of orders. By default, the firm

would allocate these outstanding orders among factories according to DI, as given by

Algorithm 1, yielding

ATBk, = y - d 1,1]+, (4.20)

dED, I

the Available-To-Build at factory 1 at the beginning of day k.

The amount of capacity used by the firm usually depended on a few states that

are defined by ATBk,,, the minimum capacity Hk, the nominal capacity Hg, and

the maximum capacity HA,,. Note that H: < H, < Ih,5. We now define a quantity

A that indicates which regime a factory's Available-to-Build (ATB) to Capacity ratio

lies within. Let Al E {1,... , 4} for factory I (always for day k) be defined by the

following

1 if ATBk, <IIk,1

At =2 if H < ATBkjI <c (4.21)

3 if HN < ATBkg <H,,

4 if HkI < ATBk,.

Then the capacity hk, on day k at factory I is set to match ATBk,l as much as



possible via the following:

_kH, if At = 1

h Hk, if Al = 4 (4.22)

ATBk, otherwise.

Now that we have D, and hk,, we can now determine the production decisions y&,i

by executing Algorithm 2.

Algorithm 2 Algorithm for determining production decisions yd1 given D, and hk,
for the Greedy and Historical policies.

Y := y_1,, V1, d where yd,= 0 Vld.
for 1' = 1 to L do

for t = k to K do
for d' E Dr, do

d' ~-,d'_+
ukd' d t E D[ , ,d

of,:=min{ [ p ]+, UkwhL, -,ii, - Yk_1,L',

dED1, I d

-d' :d' + u- (4.23)

end for
end for

end for

In Algorithm 2, vli is the fraction of ATB at factory I on period k due on period

t that is destined for d and v, is the lesser of 1) the total ATB at factory I on

period k due on period t and 2) the remaining capacity at factory I on period k

after producing orders due before period t. This ensures that highest priority is given

to orders with the earliest due date. Note that for each due date t, we will either

produce all currently known orders assigned to I due by t or use the entire remaining

capacity at, 1 on period k. In the case of using the entire capacity, production is split

proportionally to the amount of demand arising from each destination due on t.

We are now ready to compute the policy for all demand instances over the entire



horizon, by executing Algorithm 3.

Algorithm 3 Algorithm for computing the Greedy Policy.

for w E {1,..., Ado
for k E {1,...,K}, do

run Algorithm 1 to compute D, Vl
compute ATBk,l by (4.20), Al by (4.21), and hk,l by (4.22) V1
run Algorithm 2 to compute yk, VI, d

end for
end for

The Greedy Policy does not allocate destinations to factories exactly according

to the geoman map in Figure 2-4 because the outbound cost structure and the firm's

manufacturing capacity changed between 2006, when the geoman map was generated,

and 2008, when these policies were analyzed. To ensure that G does mirror the firm's

decision to focus on outbound shipping cost, we compared the shipping cost-per-box

of the two solutions in the following manner. Let Xd = 1 if policy p allocates orders

destined for d to factory 1 and X'd = 0 otherwise, where p = G is the Greedy policy

and p = M is the geoman map. Then EdydC(XfG - Xfi) = $0.02 is the difference

in expected shipping cost-per-box; given that the expected shipping-cost-per-box is

nearly $10, the shipping costs of these policies differ by 0.2%, which is insignificant

compared to the results we find in §4.8. Hence, we are confident that the allocation

strategy in G represents the firm's geoman map and default download rules well.

4.6.2 Historical Policy

The Greedy Policy uses the firm's default download rules to split demand "evenly"

among factories throughout the quarter. However, from day to day, imbalances in

the ATB to Capacity ratio between factories may occur. In the policy historically

employed by the firm, which we call the Historical policy (H), the firm's production

planning team attempted to account for these imbalances by "moving" orders (almost

equivalently destinations) between factories, on a daily basis. In order to maintain

"fairness" between factories, ATB, 1 was moved to ensure that A = Ali Vl,1' if

possible.



We now mathematically adjust the default Greedy solution to incorporate the re-

allocation of orders among factories which were made manually by the firm, yielding

the Historical policy that the firm actually used. Our modeling here captures what

the human oversight at the firm executed on a regular basis. The ordered set of

destinations {1,. ,ID I } is partitioned into three components by two breakpoints;

all destinations less than and including the first breakpoint are assigned to TX; all

destinations greater than the first breakpoint and less than and including the second

breakpoint are assigned to TN; all destinations greater than the second breakpoint

are assigned to NC. The historical policy attempts to equalize the components of A

by shifting these two breakpoints along {1,...,ID|}. Let d' be the greatest (last)

destination in the ordered set that is assigned to factory 1, as in

d' := max{d E D1}. (4.24)

These destinations d, for 1 E {1, ... ,L - 1 } are the breakpoints.

To determine the Historical Policy for all instances and time periods in the horizon,

run Algorithm 4. It begins by initializing D, VI to the same map as in G via Algorithm

1. The only major change from G is that H iteratively updates D until At = A V(l, 1'),

computing the same capacity quantities as in G repeatedly. It does so by moving a

destination from factory l to factory I' if A, > Ai, through the updates to D, and

Dr, in the two 'if' statements, effectively shifting some breakpoint d, up or down by

one. Once all values of A, are as similar as possible, it finishes by using Algorithm 2

to compute the production decisions yk, .

4.6.3 Linear Programming Policy

After many iterations of developing alternate solution techniques for the Dynamic

Programming problem with the firm, we recommended the following solution, which

we call the Rolling-Horizon, Certainty-Equivalent, Linear-Programming Policy, or
4Due to the discrete nature of the assignments, A may not stabilize after several iterations; if so,

exiting the while loop after |D||L| iterations will leave the ATB to capacity ratios nearly equal even
if there exists (1,1') such that A, 4 A . This reflects the firm's historical actions well.



Algorithm 4 Algorithm for computing the Historical Policy.

for w E {1, . .. ,AO do
for k E {1,... K}, do

run Algorithm 1 to compute D, Vl
while A $ A 1 for some I do

compute d' by (4.24), ATBk,l, by (4.20), AL, by (4.21), and hkl by (4.22)
Vl'
if A, > A 1 then

D, := D, \ d' and D1+1 = D1+1 U d'
end if
if A, < A,+1 then

Di:= D U d' + 1 and D1+1 = D1+1 \ d' + 1
end if

end while 4

compute ATBk,I, by (4.20), A, by (4.21), and hk,u, by (4.22), Vl'
run Algorithm 2 to compute yk,

end for
end for

Linear Programming (LP) policy for brevity. Relevant literature on similar techniques

is provided in §3.1.3.

On each day k in some instance w, when information has been gathered on the

previous day's activities, the past day's orders have been collected, and forecasts for

future days have been updated by other organizations within the firm, the LP policy

solves Linear Program (4.25) with decision variables 1), 7j, 0, and q. The solution is

to then implement the decisions hk,l = ilkj and yk = pgJ immediately (on day k) but

leave the decision of hiq and ytj with t > k for later days, when more information

will be available.



minimize: ( Citd +(( Ht1rit'I + Ot,10tl) + pqt'd

t,l,d tj
T

Demand: VT, d - q <- k+T
1 t=1

Capacity : Vt, I

Labor : Vt, 1

Overtime :

NN:

Past :

Vt, 1

Vt < k, l, d

o#d; < rqt,

d

t

61',3 E [ r/, - fit,

T=6(t)

01b, , 0, q 0

t'I = yj, r/t, = ht,j

Linear Program (4.25) is exactly the same as the original Dynamic Programming

problem, except that the uncertain term * is replaced by a deterministic term F.

This can be seen by noting a few transformations. First, note that for T = k we have

k

qk! pkd~Z d=1
I t=1

(4.26)

-kd --k d
along with Fk' - b' (w) and E, E__l t', = E, y ,,. At optimality, either (4.26) or

q 2 0 holds with equality because P > 0 and we have no other constraints on qk.

Substituting these yields

I = [W'(w) - EZd]+ Vk, d (4.27)

from the original problem. Similarly, for t = k, either

k

0k,I > E rI, - k,
T=6(k)

(4.25)

(4.28)



or Ot, > 0 holds with equality at optimality because Otj > 0, yielding

k,1 = [hk,l - Skt,1i+ Vkd (4.29)

because Zr=(k) j-, = hk,I since O(k) is the last time period that reset ht, to zero.

It is clear now that the objectives are equivalent. The remaining constraints are

drawn directly from the Dynamic Programming control space (4.7), except that

E: Z, p < F'+T holds for more than just r = k and may be tighter because

Fk ' d <_- d for each decision stage k. By replacing the uncertain term 4 with the

deterministic forecast F, the difficult Dynamic Programming problem becomes a Lin-

ear Program, which is tractable. However, the solution given by this sequence linear

programs will be sub-optimal for the Dynamic Programming problem. In §4.8, we

show that the optimality gap is relatively small.

As opposed to the previous policies, the LP policy does use a forecast, which

is detailed in §4.5.4. It is common practice to assume that a forecast is unbiased,

i.e. EF = E ; an optimization problem where the uncertain term is replaced by

its mean is known as the Certainty Equivalent problem, giving our policy that part

- Id Trd 
-rd

of its name. Note that F' = (' (w) Vt, d, r < k, is known demand while Ft' =

kt(W) + E,,4 E I=k+1 F,'' Vt, d, r > k is a combination of known and forecast

demand. Furthermore, we assume that the indices r and t obey r < k + T and

t < k + T for sonic lookahead value T; for the firm and for our analysis here, T

is taken to be fourteen days. This limits the number of periods into the future for

which the policy has a forecast and therefore is able to plan for, limiting the policy's

"horizon;" because this updates daily or on "a rolling basis," it has the name "Rolling

Horizon."

In §4.3.2 we noted that our model ignores the managerial rule that extending shift

hours beyond the nominal value requires advanced notice. For realism regarding the

analysis of this policy and to ensure that the decisions it suggests could be used by the

firm, we often constrained the model to disallow extending shifts without advanced

notice. To model it, we do the following: if ilk+,1 < Hk+1 on day k, i1k+14 replaces



Hk+1,1 when generating day k + 1's policy, because day k's plan indicated that no

more than that r/k+1,l capacity would be necessary. In all other policies, advanced

notice is always given, since it is optimal for the DP, even though it may degrade

factory morale. Imposing this condition on the LP Policy can only increase its total

cost and make statements about LP's efficacy conservative. The results in §4.8 do

include advanced notice.

To compute the LP policy for all demand instances over the entire horizon, execute

Algorithm 5.

Algorithm 5 Algorithm for computing the Rolling-Horizon, Certainty-Equivalent,
Linear-Programming (LP) Policy.

for w E {1, ... ,} do
for k E {1,..., K}, do

solve the linear program (4.25)
set hk, = r/kI and ydI = O V, d

end for
end for

4.6.4 Perfect Hindsight Policy

In order to evaluate the performance of various policies as solutions to the Dynamic

Programming problem, which is too difficult to solve to optimality, we develop a lower

bound on the optimal cost. We do this by solving a single linear program per instance

w that makes decisions for the entire horizon while knowing all values of uncertainty,

something that cannot be done in practice. It generates the same decisions that one

would if one were at the end of the horizon, knowing all of the uncertainty, and made

the best possible decisions; this gives it the name "Perfect Hindsight" (PH) and makes

it perform better than any policy.

For each w E {1,... , }, PH solves the same linear program that LP solves K

times, but with k := K and no "Past" constraints. In particular, it solves the Linear

Program 4.30. For the same reasons as in LP, this is exactly the same problem as

the original Dynamic Programming problem but with the previously unknown term

1 replaced by its eventual value 4(w).
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minimize : ( Cf/$ + E(Hp9t,1 + O + Pqr'
t,l,d t,

T

Demand: VT,d t' -q 7 % r +T
I t=1

Capacity : Vt, 1
d

Labor : Vt, HO :, qt,l Hf,1  (4.30)
t

Overtime : Vt, Ot, > E ,i -fit,

T=6(t)
NN: , ,, q > 0

To compute the PH policy for all demand instances over the entire horizon, execute

Algorithm 6.

Algorithm 6 Algorithm for computing the Perfect Hindsight (PH) Policy.

for W E{1,..., Q} do
solve the linear program (4.30)
set hk,1 = 77j, and yk, = 1 Vk, 1, d

end for

Although the PH policy cannot be implemented, it provides a lower bound on the

best possible cost. If any policy performs close enough to this cost of the PH policy,

that policy cannot be far from optimal.

4.7 Evaluation Criteria and Simulation Structure

For many academics, improving upon the mathematically stated objective is often the

most important criteria. In a business context, this criteria is improving profitability,

often referred to as the bottom line. In our case, the objective is to minimize the

total relevant supply-chain cost including lateness penalties5. Although this is not

the full supply chain cost of delivering desktops to consumers, it does account for

5The lateness penalty incorporates the cost of poor customer service on future sales; otherwise,
revenue should not be affected by the decisions made within the scope of this problem.
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the relevant supply chain costs that can be significantly affected within the decision

making scope. Profitability or financial impact is measured by (4.5).

Note that the term within E in (4.5) is stochastic due to the constraints on the

lateness quantities q which involve the uncertain demand T. We must incorporate

this uncertainty into our analysis in order for statements about costs to be well-

defined, to mitigate risks and increase confidence in using various solutions, and to

garner insights into how various policies should and do behave. As commonly done in

Economics and Operations Research literature, we focus most of our attention on the

expected cost of a policy. However, we also look at the distribution of costs, including

extreme quantiles and the stochastic dominance of various policies over each other.

Because the demand model has a high-dimensional uncertainty space, analytical and

even numerical integration prove too difficult. As a proxy for integration, it is common

to use simulation wherein random points are drawn from the uncertainty distribution,

the policy is evaluated at those points, and the cost is averaged over them. The point

estimate derived from such simulation is an unbiased estimator for the expected cost

that would be obtained from direct integration. In order to determine the profitability

of the policies described in §4.6, we perform such a simulation study using the models

and data described throughout this chapter.

For each demand instance W E {1,... , } (which determines the values of 4(w)

throughout the horizon) and for each period k in the horizon 1, ... ,K, a policy

maps the state Xk to capacity decisions hkl and production decisions yd - Note that

0 k,L [k,(W) - Hk,l + and qL ,(w) _ - ()]+ are auxiliary decisions; their

minimal values are fixed once h and y are fixed. To evaluate the cost of a policy,

for each w E {1, ... ,Q}, and for each k E {1,... ,K}, we generate yd4(w) and and

hk,(w), V1, d, which are the decisions implemented on day k given the state Xk.

We then evaluate the cost of the policy on day k of instance w. The four relevant

cost categories, indexed by c E {y, q, h, o}, are the shipping costs zY : Cdyk1 (w),

the direct capacity costs z^j := HkghkL(w), the additional cost of overtime capacity

zi :=Ok,1[hkj(w) - ftk]+, and order lateness Zk:d P1k'(w) - E yd(w)+ = Pq.

We are interested in comparing both costs and decisions along many dimensions.
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Table 4.10 lists the major dimensions, our notational index, the domain of values

for that dimension, and how we aggregate across that dimension when computing

summary statistics. It indicates that we are interested in averaging (or standard

deviation of or quantiles of) costs and decisions across demand instances w, adding

costs (but not decisions) across categories c (shipping y, lateness q, capacity h, and

overtime o), and adding costs and decisions across time periods k, factories 1, and

destinations d, always aggregating over instances last. Often we will compare across

a few dimensions while aggregating across the rest.

Dimension Name Index Domain Summary Aggregate
Policy p G, H, LP, PH Not Applicable (N\A)

Instance w 1, ... ,Q Average, Quantiles, Std. Dev.

Category c y, q, h, o Add costs, N\A for decisions
Period k 1,... , K Add (occasionally Average)
Factory 1 TX, TN, NC Add

Destination d U.S. States Add

Table 4.10: Dimensions to aggregate results by for evaluation.

With these summary statistic aggregation techniques in mind, we introduce a

useful summary statistic notation. Let '*' be some set of index values and let u. and

z, be the decisions and costs respectively that have index '*' and are aggregated along

all other dimensions. For example, if * = "LP, y, TX", then ULPTX = U is the LP

policy's (p = LP) production (c = y) at the TX factory (I = TX); we will add all of

the LP Policy's production at TX across destination and periods in the horizon and

then average these values across instances.

In addition to summarizing decisions and the total cost, another important metric

is the "cost-per-box" (CPB). Let e be a vector of all ones of appropriate size and recall

that O(w) is the vector of demands from all arrival-dates, due-dates, and destinations

for instance w, making e-4(w) the total demand on instance w. Note that z,/(e-4(w))

is the total cost divided by the total demand in that instance. We average this

quantity across instances to get the CPB. CPB differs from the total cost divided by

average demand z/(e -E4); normalizing by demand before averaging across instances

6Occasionally we may also be interested in averaging across time periods k to get the the cost
per period, but this is a constant factor 1/K times the cost added across the horizon.

103



w makes instances with higher demand (and thus higher cost) more comparable to

other instances, leading to higher confidence in cost estimates. We use the same

notation CPB, to indicate that we aggregate the cost-per-box across all dimensions

other than those fixed by '*.'

We are most often interested in comparing two policies. In doing so, it is often

worth noting the aggregate decisions upc, cost z,, and CPB, of each policy p, the

difference between these aggregate values (e.g. (zpH - ZLP)), and the relative dif-

ference (e.g. (zLP - ZPH)/zpH). Furthermore, we will often discuss these at a more

granular level, by not aggregating across one or more dimension. For example, one

quantity of interest is the percent of total demand for destination d that is produced

at factory 1 by policy p, given by uy,,,,/Uy,,,; this quantity will let us understand

which destinations are assigned to which factories and with further granularity on w

which destinations change factories between instances. Other quantities of interest

include cumulative production EZ ,v Uy,t, cumulative capacity Et,< Uh,t, cumulative
-'d

demand due EdD " over time, and how much overtime u,,,t, is used when and

where.

We are now prepared to discuss the results of the simulation study on policy

profitability.

4.8 Simulation Results and Insights

Now that we have formally defined our notation, the problem, the demand struc-

ture, the policies, and our evaluation criteria, we instantiate the data described in

§4.4, generate the demand vector according to the model in §4.5, and compute the

corresponding policy decisions and costs as described in §4.6 and §4.7. Results are pre-

sented for the case of independent demand components where a = 0 and #o = 0.0370

unless otherwise noted.

As a high level summary of the results, Table 4.11 gives the mean, standard

deviation (across instances w), and 95% confidence intervals for the cost-per-box of

each policy, CPB,. The data in this table suggest that we can conclude with high
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confidence that

CPBPH < CPBLP < CPBH < CPBG (4.31)

in expectation, as the confidence intervals are nearly non-overlapping. The Historical

policy nearly halves the cost of the Greedy policy and the recommended LP policy

nearly halves the cost of the Historical policy, achieving nearly the same cost as the

Perfect Hindsight policy. Furthermore, the standard deviation of the costs has the

same ordering; the more costly policies have a higher variance in their costs while the

LP policy repeatedly performs near-optimally.

Metric\Policy G H LP PH
Mean 72.81 32.87 18.76 17.64

Standard Deviation 38.87 19.57 2.12 1.25
95% Lower Bound 59.74 26.29 18.04 17.22
95% Upper Bound 85.88 39.45 19.46 18.06

Table 4.11: 95% confidence intervals on total Cost-Per-Box by policy in dollars per
desktop.

Figure (4-2) depicts this more explicitly by plotting the relative optimality gap

CPBP,w - CPBPHw (4.32)
CPBPH,w

against w in increasing order of CPBrH, for each policy. The variability in CPBG,

and CPBHw is readily apparent, even among scenarios in which CPBPH, is relatively

low, while CPBLP, is consistently near the lower bound of CPBpH,,. Furthermore,

G never outperforms H and H outperforms LP only once, in 34 instances, according

to this metric.

With an average total demand of nearly three million desktops, the total cost is

approximately three million desktops times the cost-per-box, or at least fifty million

dollars. Table 4.12 reiterates the cost ordering of (4.31) but in terms of total relevant

supply chain costs z,:

ZPH < ZLP < ZH < ZC-

Note that although z,,e - O(w) = CPB,,, it not true that zE4(w) = CPB.; Table
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Figure 4-2: Relative Optimality Gap (4.32) of each policy on each instance W in
increasing order of CPBPH,,.

4.12 emphasizes instances w with larger total demand e -#(w) more than Table 4.11.

Nonetheless, we see similar results with or without normalizing by the total demand.

The Operations Center's current practice for solving the execution problem, which is

represented by the difference in costs between G and H, saves the firm $126M in this

fiscal quarter; clearly the Operations Center's plays a key role in cost management.

The most striking result is that the recommended LP policy offers $47M in quarterly

cost savings or $516K per day, a significant cost savings opportunity.

Metric\Policy
Mean

Standard Deviation
95% Lower Bound
95% Upper Bound

H LP PH
232
130
189
276

106
68
83
129

56
3

55
57

Table 4.12: 95% confidence intervals on the total quarterly cost z, by policy in millions
of dollars.

Table 4.13 details the cost-per-box of each policy broken down by category, CPBC.
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Category\Policy G H LP PH

Shipping CPB 10.42 10.51 10.97 11.03
Late CPB 56.06 16.28 1.09 0.20

Capacity CPB 6.19 6.05 6.46 6.17
Overtime CPB 0.14 0.02 0.24 0.23

Total CPB 72.81 32.87 18.76 17.64

Table 4.13: Cost-Per-Box by policy and cost category in dollars per desktop.

Contrary to CPB, in (4.31), the ordering for the shipping costs CPB,, is reversed:

CPBPH,y < CPBLPy < CPBH,, < CPBG,,. (4.33)

The Greedy policy proves to be a good heuristic for minimizing the shipping cost,

which without considering customer service makes up more than 62% of relevant costs

for all policies. The other policies pay more to ship desktops from other facilities that

have capacity available to serve demand more promptly. The PH solution spends the

most on shipping in order to better match capacity with demand over time.

The Historical policy spends the least on capacity and overtime, producing as early

as possible from all factories with available capacity. The Greedy policy also spends

less on capacity than optimal, producing orders as soon as possible at each factory.

The LP policy uses the most capacity because it occasionally delays production when

capacity is available with the incorrect expectation that a less expensive factory will

be available in the near future.

Lateness is the largest differentiator between policies, ranging from 1% of the PH

total cost to 77% of the Greedy policy's cost. Even though H produces orders as early

as possible, if all factories are beyond their maximum capacity, H does not re-prioritize

orders; if one factory's orders become late while the other factories are busy on not-

yet-due orders, the sets Di do not change. In G, factories do not aid each other even

if ATBk, is less than maximum capacity, further exacerbating order lateness. On the

other hand, LP dynamically re-balances orders every day, accounting for where orders

are currently late. This reflects the advantage of using more dynamic policies to more

frequently and more comprehensively re-evaluate and re-balance factory loads.
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We are interested in how correlation in demand affects the performance of policies.

As described in §4.5.2, we introduce correlation by increasing a in the demand model.

As described in §4.5.5, we must also reduce the coefficient of variation for log-daily

demand, 0 to maintain the same total covariation. Table 4.14 contains CPBAC, the

cost-per-box of each policy broken down by category, for a = 16% and #o = 0.0277.

When demand is heavily correlated, as in this scenario, the relative efficacy of each

policy is similar to the uncorrelated results and the explanations above still hold.

However, average cost of each policy is generally greater with more correlation but

the same variance in total demand, due to regional and temporal spikes and lulls in

demand. Furthermore, the variability, measured by the standard deviation of CPB,W,

is 28% to 565% higher.

The lateness cost of G more than doubles, on average, after introducing correlation

because it cannot move production from factories whose destinations have demand

spikes to those with lulls. The costs of LP and PH rise slightly as well because using

the network's flexibility in capacity does have slightly higher shipping and capacity

costs. The total cost for H actually decreases because less total variation helps with

smoothing demand for capacity across the whole system; H addresses the month-long

regional demand spikes by repeatedly bailing out any factory facing consistently high

demand; having all factories at maximum capacity with one being far behind is less

likely to happen with lower total variance and hence H has a lower lateness cost.

Category\Policy G H LP PH
Shipping CPB 10.33 10.64 11.15 11.24

Late CPB 122.18 15.14 1.23 0.18
Capacity CPB 6.46 6.37 6.72 6.49
Overtime CPB 0.13 0.03 0.28 0.26

Total CPB 139.10 32.18 19.39 17.88
Standard Deviation 219.53 25.14 4.30 2.70

Table 4.14: Cost-Per-Box by policy and cost category in dollars per desktop when
demand is correlated via a = 16%.

Given that these results are largely driven by lateness, we analyze the model's

sensitivity to the lateness penalty P. The solutions for policies G and H do not
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depend on the value of P. On each day, once orders are assigned to factories, these

policies either satisfy all orders or use all available production, making the lateness

quantity up,, (number of desktop-days late) constant as P varies. For these policies,

changing the value of P only changes the lateness cost zp,, = Pu,,. Policies LP and

PH do depend on the value of P. Figure 4-3 depicts the lateness quantity U,,,w for

several values of P on a particular instance w that displayed significant order lateness,

for policies H, LP, and PH. Policy G had a lateness quantity of 744,341 which is not

displayed. For values of P less than about 16 ($/desktop/day), the shipping and

capacity costs outweigh the lateness penalty, leaving no incentive for LP or PH to

produce desktops on time, causing a sharp rise in the lateness quantity, especially at

the end of the horizon when there are few days for the penalty to accrue. Although

changes in the lateness quantity as P varies tend to occur near the end of the horizon,

in some cases, the lateness quantity changes mid-horizon, indicating that lateness can

influence decisions throughout the horizon. For P > 30, the lateness quantity is fairly

stable, having one slight change between P = 60 and P = 70; for P > 30, customer

service (avoiding order lateness) is the dominant term of the objective (4.5), forcing

the model to produce desktops by their due-dates as much as possible. Sensitivity

to changes in P for other demand instances w displayed a similar pattern, becoming

stable when P > 30, even though the magnitude of the lateness quantity varies by

instance. Because we used the empirical value P = 109.30, which was estimated

from the work of Dhalla [DhaO8] and lies well within a relatively flat interval, we are

confident that this section's results would yield similar conclusions for most reasonable

values of P.

In §4.5.4, we modeled forecast error so as to understand the performance of LP.

Recall that the forecast F was generated by F = p( 1+ ) where p is the mean demand

and e is a zero-mean scalar Normal random variable with standard error a = 4.79%.

The error c is applied to the entire demand vector, making this an e error for the

total demand during the horizon. The scatter plot in Figure 4-4 shows the relative

optimality gap (4.32) of LP for several demand instances (generated independently

of c) that had different forecast errors c. Fitting a line to this via linear regression
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Figure 4-3: The lateness quantity uq,p,, for several values of the lateness penalty P
on a particular instance w that displayed significant order lateness, for policies H, LP,
and PH.

indicates that the optimality gap is (6.14 + 11.9c)% with an R 2 value of 0.0095; for

errors c as large as 10%, this predicts a 1.19% decrease in optimality. Surprisingly,

this also indicates that the optimality gap decreases as the forecast underestimates

demand. The scatter plot for the case of correlated demand and the scatter plot for

the absolute cost of LP zLp,IA appear similar to Figure 4-4. With no apparent pattern

and such a low R2 , these results suggest that forecast error has little impact on the

performance of LP; even when the forecast differs significantly from true demand,

the LP continues to perform near optimally, leaving little room for improvement by

more complex forecasting or stochastic optimization techniques. This occurs because

the already known demand in ATB is crucial to today's decisions whereas better

information about future demand will become available before those orders need to

be satisfied; the forecast only needs to be on the correct order of magnitude to guide

today's decisions.

We would also like to understand how these policies differ in their decisions. Some

of these differences can be inferred from the cost results, such as Table 4.13. LP

spends more per desktop in shipping, capacity, and overtime capacity than G or H.

Similarly, PH spends more per desktop in shipping and overtime than G or H and
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Figure 4-4: A scatter plot of the relative optimality gap (4.32) against the forecast
error c for the LP policy.

more on capacity than H. This is the price that LP and PH pay to reduce the number

of desktops that are late. Beyond order lateness and the cost results, we analyze the

distribution of production and capacity among factories, the number of destinations

that each factory serves, and the use of overtime.

The distribution of production among the factories is given by !" for each policy

in Table 4.15, where uy,pL is the average number of desktops produced at a factory

I under policy p. G splits demand close to evenly among the three factories. The

other policies differ from this by moving production from TN mostly to NC. The

distribution of capacity "!h'' was similar to this; because capacity necessarily exceeds
Uh,p

production, we show the excess capacity "'''' - 1 for each l and the total excess

capacity "h' - 1 in Table 4.16. It indicates that each policy used almost all capacity

at TN while other factories are not fully utilized. With perfect hindsight, the total

excess capacity was not be reduced beyond 1.1%. The historical policy H was more

efficient with its use of capacity than LP because H produces any order in backlog if

it has capacity available; the LP policy sometimes delays production when capacity

is available if the LP forecast indicates cost savings can be acquired by producing the
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order at a later time at lower cost.

Factory \Policy G 11 LP PH
TX 34.1% 35.6% 32.7% 34.5%
TN 32.8% 26.4% 29.4% 28.3%
NC 33.1% 37.9% 37.9% 37.3%

Table 4.15: Distribution of production among factories, "!i'', for each policy.
Uly,p

Factory \Policy G H LP PH
TX 9.9% 4.9% 9.5% 1.9%
TN 0.0% 1.8% 1.8% 0.0%
NC 12.6% 6.6% 7.3% 1.2%

Total 7.5% 4.7% 6.4% 1.1%

Table 4.16: The excess capacity U*p' -1 at each factory I and the total excess capacity

- under each policy.UV,P

In order to understand how the manufacturing network is utilized by each policy,

Table 4.17 presents the number of destinations for which each factory produces (at

least one desktop or at least 1000 desktops); that is, it contains DpL := I{d E D :

UV,p,l,d > 1}| and D'000 : {d E D : Up,,d > 1000}j for each (p, l) where - is the

cardinality of a set. Note that IDI = 51. Policy G has the least number of destinations

per factory; in fact, G assigns each destination to exactly one factory and never re-

allocates it. Policy H however, uses almost the full flexibility of the network, shipping

to 50 of the 51 destinations from each factory. LP and PH strike a balance between

these two extremes, using some of the network's ability to satisfy some destinations

from multiple factory locations, incurring greater shipping costs but avoiding capacity

discrepancies and order lateness. They usually avoid using all three factories for one

destination, transferring imbalances between TX and NC through TN. For example, if

TX cannot satisfy all demand from the western destinations it usually serves and NC

has excess capacity, rather than having NC satisfy TX's excess orders, these policies

will have TN satisfy some of TX's eastern-most destinations and NC satisfy some of

TN's eastern-most destinations. This is illustrated by DOM being nearly two-thirds

of D1,, for each factory under H, LP, and PH and TN serving the most destinations

for all policies.
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D' G 11 LP PH D'O,/ G H LP PH
TX 14 50 41 30 TX 14 34 24 24
TN 20 51 51 46 TN 20 37 35 32
NC 17 50 49 36 NC 17 36 29 29

Table 4.17: The number of destinations that have more than 1 or 1000 desktops
produced for it by each factory for each policy.

The amount of overtime used in each factory u,, is depicted in Table 4.18. One

might expect that overtime is used more often at factories that have less excess

production capacity. By comparing Table 4.18 to Table 4.16, we see that this is not

the case, as TX had excess capacity in most policies but also used the most overtime

while TN (excluding G) had relatively little overtime even though it had little excess

capacity. This largely stems from the overtime cost structure; nominal labor levels,

which vary by factory, were determined with the static geo-manufacturing map, which

G is based on, in mind; labor in excess of the nominal amount for a pay period accrues

as overtime. The nominal labor levels at NC were high enough that it need not incur

much overtime while TX had planned for less production and required more overtime.

TN had little overtime for H, LP, and PH because they moved production to the other

factories. H needs significantly less overtime because it produces orders as soon as

possible while LP and PH can delay production.

Factory \Policy G H LP PH
TX 14,957 7,953 76,886 75,663
TN 38,150 1,460 3748 672
NC 75 0 1523 980

Table 4.18: Average overtime capacity (in units of desktops) per quarter for each
policy at each factory.

According to the evaluation criteria of minimizing (4.5), the human oversight that

re-balances factories in the firm's Historical policy is a significant improvement over

the static map used by the Greedy policy. The Rolling-Horizon Certainty-Equivalent

Linear Program significantly improves upon the Historical policy, offering $47M per

quarter in cost savings, coming very close to the lower bound for this model. The

primary driver of these cost savings is using flexibility within the network to dynam-
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ically re-balance factories so as to best match demand patterns while accounting for

the costs of capacity and shipping from each factory.
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Chapter 5

Execution Problem:

Implementation

5.1 Introduction

This chapter discusses the implementation of a mathematical optimization model for

the firm's execution problem. See §2.2.2 for a detailed, qualitative description of

this problem. Chapter 4 evaluates the performance of several policies in solving a

simplified version of this problem. This chapter covers many implementation details

that are too intricate or unintuitive for the in-depth stochastic analysis of Chapter 4,

many of which are discussed in §4.3.

The purpose of the model presented in this chapter was foremost to solve the

firm's problem. The model was also used to understand the source of potential cost

savings by using mathematical optimization techniques. Furthermore, many practical

issues, relevant to anyone interested in the use of similar solutions, arose in solving

the problem. Additional insights were gained from the firm's employees using the

model daily, giving valuable feedback as to what makes a model usable.

A large Mixed-Integer Linear Programming (MILP) formulation is developed in

§5.2, where we discuss many issues encountered in modeling the problem and we

present the formulation that was implemented at the firm in full detail. Results

comparing this model's decisions with the firm's actual decisions in two different time
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periods and the insights gained through the implementation process are discussed in

§5.3.

5.2 Model Development

We first describe the model qualitatively in §5.2.1. We then develop the mathe-

matical formulation of the model, starting with some additional notation in §5.2.2.

Constraints on production, parts, and labor are modeled in §5.2.3, §5.2.4, and §5.2.5,

respectively, followed by factory bottlenecks in §5.2.6 and costs in §5.2.7. All of

these modeling details, including many complex substitutions and extensions dis-

cussed herein, are combined and presented in the complete formulation in §5.2.8.

Additional practical challenges beyond the scope of modeling and our solutions to

them are given in §5.2.9.

5.2.1 Qualitative Description

We formulate a large MILP, with all necessary details, for use by the firm in solving

the problem posed in §2.2.2. The model is deterministic; up to a few days worth of

demand are already known from past demand and the firm's point forecast is used to

help plan for production of future, unknown orders. The time horizon is up-to two

weeks, often only ten days, limited by data availability. Although modeled in time

increments of shifts, of which there are three per day, the model is intended for daily

use to align itself with the firm's decision-making time-frame; any decisions for the

first three shifts are intended to be implemented; later decisions are postponed until

additional information is available and the model is re-run on a subsequent day.

The objective of the MILP is to minimize the sum of the following five quanti-

ties: 1) outbound shipping costs, 2) labor costs, 3) part shortages, 4) order lateness,

and 5) deviation from prior allocation decisions. Multiplier penalties ensure the last

three quantities are measured in dollars; varying these penalties offered flexibility in

emphasizing various parts of this objective. Outbound shipping costs are the costs to

ship desktops from factories to the customers (destinations) via third party logistics
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providers. Inbound shipping costs, which are the costs to ship desktop parts compo-

nents from the firm's suppliers in Asia to the firm's factories in the United States,

are ignored because their cost is sunk at this problem's scope; inbound parts routing

decisions are made at least one month in advance while this problem only looks two

weeks into the future; this problem treats parts availability as input that constrains

production at each factory. Labor costs include only the variable cost of increasing

available staff to produce additional desktops; this includes both their standard wages

and overtime wages. A penalty is applied for each day that any one part component

that the model suggests using when we expect it to be unavailable. Similarly, for

each day that any desktop is due but not yet delivered, we apply another penalty. In

order to avoid the solution changing for insubstantial gains, a very minor penalty is

applied for re-assigning a desktop from one factory to another factory.

The primary decisions fall into four categories: 1) allocation of subsets of demand

for desktops to factories, 2) production quantities over time for those desktops, 3) the

shift-lengths for work-teams, determining how long factories operate, and 4) transfer

of parts between factories. Often, multiple orders must be allocated (or assigned)

to the same factory, making allocation a discrete decision. However, the timing of

their production at a factory can be spread over multiple days, making them non-

negative, continuous decisions; the discrete nature of producing "whole" desktops

is ignored because most solutions return integral production decisions and because

model parameters are likely inaccurate at such a small scale. Decisions for known

orders (those already in ATB) are treated separately from those for future forecasted

orders because we know the quantity, parts requirements, destinations, geo-eligibility

and due-dates of known orders with certainty and can produce them immediately if

capacity is available while we can only plan for forecasted orders. Shift lengths are

also non-negative and continuous decisions, but involve other discrete decisions to

overlap two consecutive shifts. Production and shift-length decisions are separated

into those in overlapping and non-overlapping parts of shifts. Part transfers are also

modeled continuously, but the number of pallets used to transfer those parts are

non-negative integers.
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Our formulation also includes many auxiliary decisions that follow from these

primary decisions. Auxiliary decisions tracking the quantity of late desktops can be

determined from desktop production. Similarly, auxiliary decisions for the quantities

of parts available and parts short can be determined from production and parts

transfers. Many costs are treated as auxiliary decisions that can be computed after

making the primary decisions. All of these auxiliary decisions are piece-wise linear

functions of the primary decisions; using multiple linear lower-bounding inequalities,

along with their positive costs in the minimization objective, ensures these auxiliary

decisions take the correct values (determined by the primary decisions) at optimality.

The major constraints in the formulation fall into five categories: 1) production,

2) labor, 3) parts, 4) factory bottlenecks, and 5) cost computations.

Production constraints includes allocating each subset of orders to a factory, pro-

ducing desktops on-time or counting them as late, not producing desktops before

orders for those desktops are configured by the customer, and restricting the eligibil-

ity of various desktops for production at different factories.

Most labor constraints model the labor-force staffing structure at the firm's facto-

ries. Production can occur within a factory nearly 24 hours per day, seven days per

week; work-teams operate the factory in shifts, which are typically scheduled to be

eight, ten, or twelve hours in length. However, one of the decisions within the scope

of the model is to change this shift length. Shift lengths have upper and lower lim-

its; the upper limit can increase if factory employees are given advanced notice that

their shift may be extended. Shifts can overlap; i.e. two work-teams are operating in

the same factory simultaneously. The overlapping portions of shifts must be tracked

separately because some constraints apply to individual work-teams (e.g. minimum

shift lengths) and some to the whole factory (e.g. physical production bottlenecks)

during the interval of overlap. This also forces us to separate production and shift

length decisions into those made during periods of overlap and non-overlap. Compli-

cated overtime calculations involve each work-team's nominal schedule and number of

hours worked so far this pay period. Most importantly, shift length decisions constrain

production because each work-team produces computers at a particular rate.
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Constraints on parts track parts inventory and shortages by accounting for the

current inventory, expected future deliveries, the consumption of parts during planned

production, and the transfer of parts between factories. It also includes computing

the number of pallets required to execute such parts transfers.

Factory bottlenecks constrain production based on shift-lengths and the physical

layout of factories.

Cost computations are mostly equalities used to simplify exposition of the objec-

tive.

A summary of the ways in which the model developed in this chapter differs from

the model developed in Chapter 4 is given below.

" Demand is deterministic.

" Already known orders are treated separately from future demand.

" Groups of orders must be produced in the same factory, making part of the

decision space discrete.

* Products are differentiated into Lines of Business and product families.

" Eligibility of an order for production at different factories is captured in several

ways.

" Parts availability limits production and parts transfer decisions can be made.

* Time is measured in shifts, which can overlap, rather than days.

" Capacity is measured by length of work-teams' shifts rather than in desktops.

" Advanced notice must be given before capacity (shift lengths) can be increased.

* Overtime is modeled much more accurately, accounting for hours worked in

pay-periods.

" Capacity is separated into labor productivity and physical bottlenecks.

" Deviation from previous solutions is penalized.
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Details and justifications of these modeling choices are discussed in the following

subsections. Although all of the solution policies in Chapter 4 treated demand as

deterministic, we analyzed the model stochastically and found that the deterministic

optimization-based policy performed near-optimally in the stochastic problem. By

refraining from stochastic analysis in this chapter, many additional details can be

incorporated to make the model useful in practice.

5.2.2 Notation

As much as possible, the notation in this chapter mirrors that in Chapter 4. However,

the large number of additional details to make the model usable in practice requires

additional notation. Here, we develop most of the notation as we describe each part

of the formulation.

t, g, k, 1, i, d, p, m, and w are indices and when capitalized represent the cardi-

nality of the index set. When unspecified, assume that we consider all possible values

of each index. Any other upper case letters denote input data parameters. Other

lower-case letters represent decision variables, including x, i, y, y, y*, #*, 8, 8-, Z, ,

h, h0, o, o, and c. Subscripts are reserved for indices. Superscripts are mostly used

to add further notational depth for data or decisions.

We break the time index t into "shifts" and have exactly three shifts per day,

possibly of zero length. The timing for parts transfers and assembly lead times are

rounded to be measured in time units of shifts. The time horizon is denoted by T;

the upcoming shift is t = 1; the last shift in the current labor pay-period is denoted

T; t = 0 represents the initial state. Occasionally we refer to labor hours and factory

hours; a labor hour is one person working for one hour; a factory hour is all people

in a factory working for one hour.

To use all available information, allocation and production variables are separated

into two types: 1) decisions whose demand has already been realized (orders in ATB

or known orders), which are represented by unmarked variables, e.g. "x," and 2)

decisions based on forecasted demand, which are marked by a hat, e.g. "i."
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5.2.3 Production Constraints

Desktops can be differentiated by 1) the time t, measured in shifts, that it becomes

known, is due, or is assembled, 2) the order's destination d, usually a U.S. State, such

as "TX" or "MA," 3) the Line of Business (LoB) k it belongs to, such as "Consumer"

or "Corporate," 4) the product family it belongs to, which itself is a part of a LoB, 5)

the group, g, of orders they are associated with, and 6) the current factory location 1

to which the order has been assigned.

D is the number of destinations; we use the 50 U.S. states, Washington D.C. and

"non-geo-eligible," the latter being explained in §4.3.1.

K is the number of LoBs we consider; we use "Consumer" and "Corporate." Each

LoB is composed of several product families, a more granular category of products;

we only use this attribute to differentiate between groups of orders and to limit pro-

duction of some product families to particular factories; otherwise, the LoB attribute

captures the relevant distinctions between desktop configurations in the data that

was available. Known orders, which are Available-to-Build (in ATB), are grouped

together and organized by index g of cardinality G; orders within a group have ad-

ditional information associated with them, such as the number of parts required to

build all desktops within the group, and must be produced in the same location.The

groups are chosen to be tractable for both computation and implementation. Group

sizes could theoretically range from individual orders, to all orders for a particular

destination, to one LoB across many destinations with a particular due date. Because

there are often several hundred thousand individual orders in ATB, using individual

orders becomes intractable for optimization. Nonetheless, we would like to be able

to make decisions for subsets of orders that share the same LoB, destinations, and

due-dates. In our results, we chose to group orders by 1) by product family, 2) their

due date (overdue, today, tomorrow, 2 days out, or extended), 3) their destination,

and 4) the location at which they are currently scheduled to be built. This choice

of groups allows the model to move orders at least at the granularity that the firm's

Operations Center had done while keeping the number of such groups manageable.

121



Although we group orders in ATB by index g, future demand is tracked by LoB k

and destination d, because additional information to distinguish them is not available.

Where necessary, we convert groups g into LoBs and destinations using B, a K x G

matrix of data that encodes the proportion of desktops of each LoB k that are in

group g. Furthermore, E is a L x K binary matrix of data that indicates whether (1)

a LoB k can be produced (is eligible) at factory 1 or (0) it cannot.

Input data Ft,k,d is the demand forecast (in number of desktops) input for period

t, for LoB k, with destination d. It is obtained by adding sales across factories in the

firm's lookahead spreadsheets, which are described in §4.4.

YtL, is the non-negative production decision (number of desktops) for known orders

for group g at facility 1 in period t. Similarly, it,j,k,d is the non-negative production

decision (number of desktops) for forecasted demand for desktops of LoB k with

destination d in period t.

All orders in a particular group g (or for LoB k destined for d in the case of

forecasted demand) must be moved together; this makes executing these decisions

manageable in practice and ensures that individual orders for multiple desktops are

kept together, a firm policy. We define binary allocation decision variable xz, , E {0, 1}

to indicate whether (1) or not (0) group g will be produced at factory L. Similarly,

it,j,k,d is the binary allocation decision during period t for LoB k with destination d

that assigns all forecasted demand to facility 1 via Xti,k,d = 1. Exactly one production

facility must be chosen, so we require

Zxi, = 1 Vg

Xt,k~d 1 Vt, k) d.

In order to capture due dates for assembly of orders that are already known, let

Y,., be the number of desktops in group g that are due on shift t if g is to be produced

at location L We require that cumulative production exceed the cumulative number
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of desktops due via

t t

/t"'l9 > X1,g t' l t 1 9- (5.1)

In order to enforce timely production of forecasted desktops, we use F, (0 < F,

1, non-decreasing in T) which represents the percentage of forecasted demand that is

due to the customer within T shifts after the demand becomes known, as described

in §4.5. Ll,k,d is the input average manufacturing (assuming typical work-in-progress)

and shipping time, both in units of shifts, from factory I to destination d for LoB k.

Let fT,,k4, Fr+Llkd Vr, 1, k, d be the percentage of forecasted demand that must

be produced within r shifts after demand is realized if desktops of LoB k destined for

d are served by factory 1. Then, in order to ensure that Ft+r,1,k,dFt,k,d desktops are

produced by t + T for each E {0. .t - T}, given that F,k,d is served by 1 (which is

decided by it,i,k,d), we require that

t t

E t'lj,k,d ! Et-t',j,k,aFe,,4,,d, V0, l k, d, (5.2)
t1=1 t'=1

which forces cumulative production up to t to be sufficient.

In order to ensure that desktops are built to order instead of built to stock (i.e.

backlog is non-negative), we require that cumulative production be no more than

cumulative demand. The constraint

t t

$t',l,k,a Ft,,d Vt, k, d
t'=1 I t'=1

does this but we choose to implement it more explicitly (i.e. more constraints but

possibly stronger LP relaxations) as

t t

t',j,k,a ! E Ft,,-astl,,d, Vt, 1, k, d (5.3)
t'=1 t'=1

to make the MILP formulation stronger.
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LoB k can only be built at factory 1 if it is eligible. We can express this by

eliminating assignments based on the binary matrix Ek, via the following constraints:

Bk,gXi,g < Ei,k Vl, k, g

.ht,i,k,d < Ei,k Wvt17 k d.

We also check whether an order's more granular product family can be built at a

particular factory by Bi,gx,g !5 Ei where B and E are similar to B and E but use

this more granular product family, indexed here by i, instead of LoB which is indexed

by k. Other than in defining groups g of orders currently in ATB, this is the only

other place where we use the more granular product family instead of Line of Business

(consumer or corporate).

In addition to some groups or LoBs, many individual orders are marked as having

a "non-geo-eligible" destination, which we denote by destination 'n', indicating that

they can only be produced in one particular factory. International orders fulfilled

from North America, labor intensive orders, and orders with low-volume parts are of-

ten considered non-geo-eligible. To capture these individual orders within forecasted

demand, we let Fn, be the forecast for the additional number of units of LoB k

demanded in period t that must be satisfied by factory 1. We then implement con-

straints similar to (5.2) and (5.3) to enforce due dates and build-to-order production

for non-geo-eligible, forecasted demand via

t

(9t,,,'n' - ft-t,1,k,1n'FRL,k) > ) Vt,1, k (5.4)

t

(it',,,,n' - t,,,k) 0 Vt, 1 k. (5.5)
t'=1

(5.6)

Note that we cannot simply fix xL,'n' because multiple factories may have non-geo-

eligible demand and must instead constrain non-geo-eligible production at each fac-

tory.
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5.2.4 Parts Constraints

Parts components from suppliers that are assembled into a final desktop can be dif-

ferentiated by 1) the particular type of part, p, 2) the location of the parts, 1, and

3) the time period that they available, t. We only consider parts that are causing

or are expected to cause significant shortages, as determined by the firm's logistics

team, because the relevant data is collected only for those parts. P is the number of

different parts considered. This usually includes at least some chassis and monitors

and occasionally includes other significant items, such as memory and processors.

St,,, is the expected the number of parts of type p that will arrive at I at the

beginning of period t. Data for this was collected from several supplier databases and

lookahead spreadsheets that contained information on part shortages.

A is an input data matrix of size G x P where each entry A,,p is the known average

number of parts of type p required to produce a desktop in group g. This is computed

by totaling the number of type p parts required to produce all desktop in group g

divided by the quantity of desktops in group g.

A is a K x P matrix of data where each entry Ak,p represents the expected number

of parts of type p required to build a forecasted desktop of LoB k. Although A does not

apply to known orders, the data for A was estimated by averaging the number of parts

required among known orders for desktops in available ATB snapshots. Combined

with the quantity of orders for each group, A provides the exact number of parts

required for currently known orders which differs from the expected number of parts

required for the same number of forecasted orders. A is estimated from a much larger

set of orders because the currently required parts can significantly differ from the

parts required in the near future. For example, if there is a shortage for a particular

part, orders that require it will accumulate in backlog; the proportion of orders in

backlog requiring that part will exceed the proportion of future demand requiring

that part.

Zt,Ll',P is the decision variable representing the number of parts of type p to transfer

from factory I to factory ' starting in shift t. We assume that transfers from 1 to
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1' take Liji shifts to reach their destination, and hence an item shipped during shift

t - Lr,1 will arrive at the beginning of shift t.

st,,,p is the auxiliary inventory stock level decision for part p at factory I at the

end of shift t. so,,,p := So,1,, is the current inventory of part p at facility 1.

We model parts inventory by setting the inventory at the end of period t equal

to the previous period's ending inventory, plus forecasted part arrivals, minus parts

used in production, plus net transfers, via

8 t'l'P =7 t-i,1,p + SoLp - E Ak,p~t,L,k,d - Ag,pYt,,,g
k,d g

+ zt-Ly,,,p ~ Zt,L,,p) Vt, 1, p.

Because data errors during live use often made s > 0 infeasible but solutions must be

generated anyway for the model to be useful, we allow s < 0 and penalize its negative

component by introducing a negative stock variable, s-, 0 with st,,p + s-,, 0.

We then substitute recursively and use the following instead:

t'
8-+ s0,1,P + Z(st'i'P - Ei Akptlk - E Ag,pYt,Ig

t=1 k,d g

+ ± (zt,,, g,, - ztg,,p)) 0 Vt', 1, p. (5.7)

This relaxation was also necessary because, during a stock-out for part p, if Ak,, = a >

0 for some LoB k, the model believes that no products of LoB k can be produced;

however, it would usually be the case that only a fraction a (for a < 1) of future

orders for LoB k cannot be produced. This relaxation allows the model to continue

generating production plans without directly modeling data errors and uncertainty

in parts availability.

Although the Operations Center did not make transfer decisions, another closely-

related department within the firm did. Foreman [For08] analyzes parts transfer and

inbound supply routing decisions in much greater detail than we do here. The firm has

many parts transfer mechanisms, many of which we have not modeled, such as semi-
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weekly "Redball" shuttles that travel between factories on somewhat complicated

schedules and full truckloads. Because the other department ships parts that we do

not account for, we cannot determine whether a full truckload is cost-efficient. We

capture the flexibility of the firm's parts transfer abilities with only one mode of

transit, less-than-truckload shipping on pallets, which is always available and allows

for the smallest volumes of cost-effective transfers. We assume there is a cost-per-

pallet (calculated by cost-per-truck divided by pallets-per-truck) where the number

of pallets used must be integral, because parts are shipped with only one type of part

on each pallet. Let 1,,,,p be the integer number of pallets filled with part p leaving

on shift t from 1 to 1' . Let Z, be the number of parts of type p that fit on a pallet.

Then zt,,,, < Zpzs,,, where zt,1,',,p E N and the cost is E t,,,P C,3,,,.

5.2.5 Labor Constraints

Labor is a complex, prominent and expensive bottleneck in desktop production ca-

pacity.

Shift hours or shift length ht, is a (rational) decision variable, with units in hours,

that represents how long the active work-team during period t at factory 1 should be

producing desktops.

Associated with each work-team is that team's average production rate, often

referred to as Units-per-Hour (UPH), Ut, which is the number of desktops that work-

team (t, 1) is able to produce every hour. Ut,1ht1 is then the total number of desktops

that can be assembled during shift t. In practice, the UPH for a production line varies

for each desktop, often due to each desktop configuration having different parts and

complexities. However, because the number of desktops that can be produced in each

labor hour does not vary significantly based on LoB and this determines the cost of

such labor, we do not need to determine how much labor works on each LoB. UPH can

also vary significantly based on the expertise of the labor force. The planning problem

considered in Chapter 6 decides how much permanent and temporary staff to hire. For

the execution problem which we consider in this chapter, those staffing decisions are

already fixed. Although temporary labor could be sent home earlier than permanent
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staff, allowing UPH to vary within a shift, we do not model it because this decision

often has an insignificant impact on costs and capacities or it is unimplementable due

to complex labor management issues.

Labor management considerations constrain the length of each shift. Each shift

length ht,1 satisfies

0 <H, 1 5 ht, Hts, + Nt,1Hj Vt, 1

where _H and Ht, are the minimum and maximum number of hours that a shift

can assemble desktops during shift t at plant 1, respectively, when given no advance

notice. These minimums and maximums are based on a variety of factors, including

promises made by management to labor and timings of other operations within a

facility. N is a binary input data matrix whose entries Nt, indicate whether advance

notice has (Nt, = 1) or has not (N, 1 = 0) been given for shift t at facility 1, which can

allow the shift length to be extended. If advance notice has been given, Hi additional

hours can be added to shift t. To avoid confusion, we call these "additional hours"

instead of "overtime"; we use the name "overtime" to denote hours in excess of the

nominal hours per pay period that induce a higher labor pay-rate. In every scenario,

No = 1 Vt > 6 because notice never needs to be given more than 48 hours (6 shifts)

in advance. Similarly, for shifts that are part of the normal work schedule, Nt,1 = 1

if t > 3. However, as advance notice is only given when the firm expects to need

additional hours a few days in advance, Nti is often zeroed for t < 6. In all other

cases, Nt,1 actually depends on whether the firm has given advanced notice to that

shift.

The labor constraint on production during shift t at factory 1 is then simply

# igk,d + E y4,, 5 Ut,1ht, Vt, 1. (5.8)
k,d g

However, this simple model does not account for an important interaction effect

between shifts. The ordering of the shifts may not be strict and there may be periods

of (possibly complete) overlap between two work-teams operating simultaneously in

the same factory. Overlaps between shifts tend to occur when one shift is extended
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beyond its nominal (planned) length by more than an hour or two. We must modify

many previous decisions and constraints to account for this overlap between a shift

t and a previous shift t - 1 because some constraints will apply to both work-teams

combined (e.g. factory bottlenecks) and some will apply to individual work-teams

(e.g. shift length minimums) during the overlap. We denote decisions made during

the overlap of shift t and t + 1 by a superscript 'o'. The decision htj is actually

composed of three segments: the overlap with the prior shift, denoted h' 1,1; the

non-overlapping time which we still denote hti; and the overlap with the next shift,

hO1. The shift length quantity ht,1 in previous constraints is replaced by h_1,1 + ht,1 +

hyj. Furthermore, production decisions y and Q are replaced by y* + y and #* + y,
respectively. All of these variables are non-negative.

We now discuss when and how constraints on production y and i account for

overlapped shifts. In the due date constraints (5.1), (5.2), and (5.4), we allow the

overlap with the next shift to help meet demand on-time. In the build-to-order con-

straints (5.3) and (5.5), which disallow production before demand arrives, we do not

count production during the overlap with the next shift, as new demand information

will have arrived and the next shift may need to produce for it. Similarly, we do

not count parts consumption in (5.7) during overlap with the next shift, allowing the

next shift to consume parts that arrive during it, even if it still overlaps with the

current shift. Labor constraints on production (5.8) use the sum of both work-teams'

UPH values during overlap. Physical capacity bottlenecks and constraints (5.14) and

(5.15), which we describe later, retain the same capacity per hour; the production ca-

pacity during the overlap of two shifts is enforced separately from the capacity during

non-overlapping time periods. The objective function includes decisions during both

non-overlap and overlap. These redefined constraints appear in the final formulation

in §5.2.8.

We must do the accounting to ensure that the model captures overlap if and only

if the labor schedule indicates it will occur. Input data H is the number of hours

between the start of shift t and the start of shift t + 1. Overlaps occur when shift t at

factory I exceeds Hts. We create the binary decision v which indicates whether (1)
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or not (0) to force ho_ I + ht,= HIJ. The relevant constraints defining shift overlaps

are:

ht 1,1 + ht H<I Vt,l (5.9)

h, vt,1(II, + NtLHi - H ) Vt,1 (5.10)

h 1 1 + h, > vjH Vt,l (5.11)

Inequality (5.9) limits the non-overlapping shift-length to be less than the time until

the next shift begins, HS. Inequality (5.10) defines the maximum length of any

overlap: zero if there is no overlap and the remaining time for that shift in excess of

HS otherwise. Inequality (5.11) forces the non-overlapping shift-length to be exactly

HS if overlap does occur.

Cost accounting for labor is also quite complex to model accurately and requires

many additional constraints. We first describe the relevant cost parameters. We then

develop some notation using modular arithmetic to map work-teams and the pay-

periods that they work to the time (shift) index t. We then define auxiliary decision

variables for the cumulative overtime using inequalities and convert this to overtime

for individual shifts by subtracting the difference between subsequent cumulative

terms.

The cost per labor-hour of non-overtime ("straight-time") direct-labor wages Cf
and the unit-per-labor-hour production rate U, are empirical averages estimated from

the firm's data, based on the current permanent to temporary laborer mix. In order

to maintain Utj units-per-hour of production with U units-per-labor-hour, the firm

must be paying
Ut1l

^Cis
U

dollars per factory hour when not in an overtime situation.

Overtime costs CIO dollars per labor-hour, also computed using an average of labor

costs weighted by the permanent to temporary labor mix. Overtime is only paid

when the total straight-time hours H' (input data given in hours) for work team w
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at factory 1 has been exceeded.

w E {1, 2, 3} indexes the work teams; we assume that each factory only has one

work-team per shift; work team w works every third shift. Here, 'mod' is the modulo

operator and 'div' is the division operator that returns integers by rounding down.

At time t the working shift is

w(t) = ((t + 2) mod 3) + 1.

We know the number of hours that work team w has already worked this week and

denote it H10,. The last of shift of the current pay-period is T < T. We let

W1 (t) := (t - 1) div 3 Vt < T

represent the number of shifts that work-team w(t) performs before shift t for t < T,

i.e. in the current pay-period. We let

W 2(t) = (t - T - 1) div 3 Vt >._T

represent the number of shifts that work-team w(t) performs before time t after time

T, i.e. in the pay-period after the current pay-period. Also, we let

w(t) = t - 3W2 (t)

represent the first shift that w(t) works after T.

Auxiliary decision variables bt, > 0 represent the cumulative overtime hours for

work-team w(t) at facility 1 up to shift t. The following inequalities, at optimality,

will cause the cumulative overtime to be the non-negative difference between the total

shift lengths and the total straight-time hours for each work team w(t) during the
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pay-period that contains t:

0I Wt(t )

I > ( hw(t)+3i,l + H, - HNW() Vt < T,l (5.12)
i=0

V2(t)

Ott ; h - H Nw(t),l Vt > T, 1. (5.13)
i=0

These inequalities also need the substitution ht, = hto-, + ht, + h,1 . By requiring

that Ot, ;> 0 Vt I we ensure that all work teams get at least HN hours of work per

pay-period, a policy used by the firm to be fair to its employees.

For cost-accounting purposes, the number of hours in each shift that are considered

overtime is ot, and is computed by one of the following four equations:

ot,i = zitj Vt < min{3, T}, 1

otL = UVT + 1 < t < min{T + 3, T}
0tL Ot, 5 V 4 <t T

otj = jr~ - Ot-3,1 V4 -t -_1

ot,L = UtL -t-3,1 VT +4 < t < TI.

The first two equations deal with the first shift for each work-team in the current and

next pay periods; that period's overtime is simply the cumulative overtime so far in

the pay-period. The last two equations compute the current shift's overtime as the

difference in cumulative overtime between t and the most recent shift for w(t) in the

same pay-period.

5.2.6 Factory Bottlenecks

Each factory has physical limitations or production bottlenecks that would constrain

production even if they had unlimited staffing, as discussed in interviews with the

firm's factory managers and illustrated in §2.3. These constraints are best described

using the maximum achievable production rate for a given mix of different LoBs.

Special consideration must be given when only one LoB k is considered.
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Factory hours h, are multiplied by a productivity factor a, to approximate the

effective time that a factory is assembling desktops, accounting for down-time due to

rest breaks, machine failures, and other unexpected events. The factor a, is not used

for modeling labor capacity because the labor capacity parameters Utj are estimated

from the empirical production achieved whereas the physical limitations are based on

engineering specifications that assume constant utilization.

Input data parameter R,k is number of desktops-per-effective-factory-hour that

can be produced at factory 1 if it only produces LoB k. Input data parameter Ql,k,i

defines, for each factory 1 and each constraint i, the k-intercept for the number of

desktops-per-effective-factory-hour that can be produced at factory 1. Here, the index

i is used to differentiate between multiple constraints whose indices are otherwise the

same; in Figure 2-2, we see that TN encounters different bottlenecks when producing

mostly consumer desktops than it does when mostly producing corporate desktops;

to model this, we need more than one mixed-production physical capacity constraint.

By k-intercept, we mean that if constraint i were the only physical bottleneck and

only produced LoB k is produced, QL,k,i desktops-per-effective-factory-hour can be

produced. Dividing the production for LoB k at factory 1, Ed t,,k,d + Eg Bk,,Yt,i,g,

by R,& or QIk,i yields the number of effective hours needed to produce that many

desktops of LoB k if that constraint is the active bottleneck.

For each bottleneck, the number of effective hours needed to produce desktops for

all LoBs cannot exceed the number of effective factory hours available. Mathemati-

cally, physical bottlenecks limit production by the following constraints:

St,1,k,d + Z Bk,gYtIg < R,khtlal Vt, k, l (5.14)
d 9

Ed Pt,t,k,d + E, B Yt,Ig < ht,La, Vt, 1, i. (5.15)

These constraints are also enforced during periods of overlap, in the compete formi-

lation in §5.2.8.
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5.2.7 Costs

This section describes how we modeled many costs at the firm. For clarity, enforcing

penalties, and efficient post-processing, many cost components are defined by addi-

tional auxiliary variables constrained by inequalities. Because we minimize total cost,

these cost coefficients are positive, and the decisions are non-negative, these variables

will equal the actual cost of the primary decisions at optimality.

The cost to ship a desktop of LoB k from factory I to destination d is C (

units of $ per desktop), which we call the outbound shipping cost. Normally, we

could multiply Clkd by the production decisions to get the total cost of shipping

produced desktops; however, because this model allows orders to be delayed past the

time horizon, we instead calculate outbound shipping costs by using the allocation

decisions and the number of desktops due, via

= X,gYt4,gg,dk,gCj Vg (5.16)
t,l,k,d

,k,d = it,,d,kFFFt,,,da Vt, k, d. (5.17)

Inbound shipping cost, or the cost of sourcing parts from Asia to the Supply Logistics

Centers near the firm's factories, is ignored because its decisions are beyond the scope

of this model and are by this point sunk costs.

However, the cost of sourcing parts from within the firm's factories is within the

scope of the model. Each pallet transferred from factory I to ' costs Cf, (in units of

$/pallet). The cost of transferring parts is then

c=( zzL, 1 jc,I.
p,1t

Each hour of straight-time labor costs C, (in units of $/Iabor-hour); the cost of

straight-time labor, which does not include any overtime-hours, for shift t at factory

I is

c,= Cf (h ,1 + htj + h, - ot ).
U,
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Here, straight-time hours are computed as the difference between the shift-length and

the number of overtime hours and Cf8 k7 is the cost per factory-hour. Similarly, each

hour of over-time labor costs CO where CO > C8; the cost of over-time labor for shift

t at factory 1 is

c = Cf on1 .
U,

We use penalties to relax the constraints on cumulative production due, (5.1) and

(5.2), and parts non-negativity constraints, which would often otherwise be infeasible,

in order to have a solution that can at least be partially used. These infeasible

instances arose because the firm occasionally encountered parts shortages or was

unable to satisfy a few orders by their due-date, no matter the decisions they made,

making the problem of satisfying orders on-time impossible. For instance, orders

in ATB can be past-due before the first day of the horizon. Data errors in parts

availability, such as vendors reporting negative parts inventory, and data errors in

production eligibility, occasionally caused by incorrect manual data entry, also led to

infeasible instances. Nonetheless, for the model to be useful, it must return solutions

in these circumstances.

To do so, we let Pq ($/unit/day) be the late penalty applied for each overdue

desktop on each day and P' ($/part/day) be the stock penalty per part per day for

a part that is used but is predicted to be unavailable. Because customer service is a

high priority for the firm, these penalties were often set to values larger than their

estimated cost, so that late orders and parts shortages are highly discouraged in the

model. Typical values for these penalties were $500/unit/day, whereas the estimated

costs were well under $200/unit/day. As seen in §4.8 when discussing Figure 4-3, the

cost to the firm of a late order justifies producing as many orders on-time as possible.

Similarly, part shortages induce order lateness if demand arises for that part and

should be avoided as much as possible. Furthermore, the model's solutions are not

sensitive to the value of these parameters in a wide range.

We let P"' ($/unit) be the penalty associated with moving a desktop in ATB away

from its original factory. This penalty is used to encourage only moving orders when
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significant savings are predicted, so as to help mitigate uncertainty for parts supply

and labor planners, who have a longer planning horizon than this model. P" was

often given the value $0.01/desktop. This helps significantly when multiple optimal

solutions exist, which easily occurs because many decisions share the same cost pa-

rameters. Adding this penalty addresses the second managerial concern of §4.3.3,

ensuring that significant changes in the model's solution only arise from significant

differences in model input, making its solutions more stable between subsequent uses.

qj,, and 4t,,,k,d are auxiliary decision variables representing the quantity of desk-

tops that are not fulfilled by their due date. We relax inequalities (5.1) and (5.2);

qt,i,g and 4t,L,g represent the amount by which the due date constraints, for orders and

forecasted orders respectively, are violated. Similarly, the parts inventory constraints

in (5.7) can be violated but auxiliary decision s-, tracks the amount that each con-

straint is violated and is penalized. The amount that an allocation strategy deviates

from the original plan, u, is defined by

UI,g X1,9 - OI,g Vg1 1

U ;,g 0 1,9 - XI,g Vg,1

where 0 is a binary matrix representing which groups in the ATB are currently

assigned to which factories. We also use O1, to ensure that non-geo-eligible groups

of orders g remain allocated to their original factory.

The complete objective function is included below in the complete formulation.

5.2.8 Complete Formulation

We now present the complete Mixed Integer Linear Programming formulation that

was used in the software prototype that the firm used in the live implementations of

§5.3. This includes all of the substitutions suggested above but previously left out

for clarity of exposition. It also includes many initial and terminal conditions. The

results in this chapter are based on this model.
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k* +' V"',.Z I+c8l+eminimize: E e + E et t, +Uj
g t,k,d tL

+q~ qt,i,g +t E qt,l,k,d) + P8 E t8L,p +
i,', 9 t,l,lc,d t,1,p

2

The production constraints arc:

1 , =

Z Xt,L,k,d =1

- Yt,,xI,g) + qt,i, 9 ! 0

t

i:W(t',L,k,d + Yi'4I,k,d - ft-t,1*k,dFt,k,dit,,k,d) + 4t,i,k,d > 0
t,=1

Ei(yt,, 9 + Yt"-,,I,g - Yt,i,gXL,g) < 0
t,=1

E~t/~k~d+ Yi'-1,1,k,d - Ft',k,dit,,,k,d) - 0

t

t,=1n

t

E3 (t',,Ic,'n' ± Yt'l-1,L,k,'n' - ',L,k) < 0

0

YO,L,k,d 0

-tl~~ E,,k < 0

BkQgXL, 9 E,

X119 -01

Vg,l1

Vt, 1,k, d

Vt,l17k

vt,1, k

Vl, g

VIl k, d

Vt 7lkld

VIl k,g9

V17 i7

VI7g: Dg,ln' 1
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The parts constraints are:

St,L,p = St-1,Lp +j-- m - E Ak,p(Pt,1,k,d + ?/t-1,1,k,d)

Ic,d

- g,p(yt,i,g + yt-1',,)

g

8 + 8t,L,p > 0

8 0,1,P = SO'Imp

ZO,l,LI"p= 0

+ E Z-,,'"~
it

Vt,17p

vt,1,p

vi) P

v1, 1i',

Vt, ) I 'P.
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The labor constraints are:

Hj, - (ho-*1I + ht,,, + h* ) 0

(h*1,' + ht,,, + h*,) - (Ht, + Nt,,1H) 0

h*L - Vt,i(Ht, + N -, HQ ) - (0

h"_1,1 + htl - H < 0

h" 1,t + h - VtH > 0

h= 0

h,= 0

wi1(t)

Do - E(h"t 3-1 + hw(t)+3i,i
i=O

+h* -, 0 + Hi, - H g,j) > 0wt3i + HW(t),1 - W

02(t)

Ot,- ( ±ys-+ h+(t)+3i,
i=O

+h)3y - Hwgy,) > 0

otj - bt, = 0

Otc - d, = 0

otI - -5t-3,I) = 0

ot,i - (5t,I - Dt-3,l) = 0

yt,1,g + E 9t 1,k,d - Ut,Lht, 0
g k,d

Yt,L, + 9, - (Ut, + Ut+1,,)h*', < 0
k,d

Vt,1

Vt, I

Vt, I

Vt,I

Vt,l

VI

Vl

Vt < T,7

Vt > T,

Vt < min{3, T}, I

VT+ 1 < t < min{T + 3,T}

V4 < t < T,1

VT + 4 < t < T,l.

Vt, i

Vt,L.
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The factory bottlenecks are:

E Yt,,k,d + j Ak,g Yt,1,, R,kht al
d

Yti,k,d + $k,gYt,, R< ,hkh,ia

Ed $t,l,k,d + Zg Bk,gYt,l,g

QLk

Ed ?/t,1,k,d + Zg Bk,gyti,g
QI,k

< h, 1a1

The constraints regarding costs are:

cI Cf (h"_1,1 + ht, + h 1 -
U1

c", = l Cf 'l-t,l)

U1

Xl,g t,l,gLg,dFamg,k"lLd

t,L,k,d

,k~d Xt,l,k,dFt,k,dClkd

Ul,g O1,g - Xl,g

The vectors of decision variables are:

x, i, V

non-negative integer

unrestricted sign

non-negative.
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5.2.9 Practical Challenges and Solutions

Many difficulties arose in making the mathematical model work in practice. In order

to make the model usable for the firms employees, the model's user interface and data

connections needed to be intuitive, visually informative, and somewhat fail-proof. A

large amount of effort was necessary to make both input and output data accessible

and accurate.

The largest area of difficulty was data acquisition. Data was maintained by dif-

ferent employees in different formats. A large number of data parameters or viable

substitutes were not readily available. Acquiring some data, such as actual dura-

tion of shifts, required asking employees to take on the additional task of tracking

such data. Other data, such as the factory capacities in §2.3, required interviewing

employees at each factory. A large amount of data was automatically updated by ex-

tracting information from databases or spreadsheets that were already actively being

maintained. However, a significant amount of effort is needed to maintain data and

eliminate errors to make the model useful; we found the most useful techniques to be

automating the process and visually alerting the user to errors.

In order to help the firm keep the model's data up-to-date, we developed a mainte-

nance schedule, depicted in Figure 5-1, which the user would check before solving the

problem to see if any data updates were necessary. Figure 5-1a includes the name or

description of the data, the units of measurement, the location within the spreadsheet

that the model reads that data from, whether updates were manual or automatically

done, the frequency with which the data needed to be updated, the last day that it

was updated, the number of days since the last update, a ranking of which data needs

updating the most, and the person responsible for (owner) or to contact about the

data. Conveniences such as the buttons in Figure 5-1b, some of which initiate macros

to update data, save inputs, or indicate that all data was just updated, help keep

the schedule and data accurate. Figure 5-1c shows the automated color coding of

the schedule and most data throughout the spreadsheet which helps the model's user

know what. needs to be updated and at what frequency. Often new product families
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Update Most Recent Days Urgency Owner/
Data Name and Description Units Location ManualAuto Frequency Update Overdue Rank Contact

Build Rates systerns/hr 3 Lookahead Tabs: Bottom Rows Autornatc Wooly Auto Karnra
Sales Forecast systems/wk 3 Lookahead Tabs: Top Rows Automaic Wed Auto Karmra
Daily Shift Structure hours 3 Lookahead Tabs: Middle Rows Manual Quart 4/21/2009 -8817 Kamra
Advanced Notice (1 indcator 3 Lookahead Tabs: Middle Rows 17 Kamra
Cost per Pallet 'Stpallet Transfer Tab: Upper Left Manual Quarterly 1364 John
Transfer Lead Time days Transfer Tab: Upper Left Manual Quarterly 4/21/2009 -88 17 John

(a)

Retrieve Pats Into

Update Backgound Data

Update Names

Update DB and Se A p Iputs

as

Save and Open Results

(b)

Color Codes
Autonatic Manual

Quartedy Automatic Quarterly Manual Quartedy
Weekly Autornatic Weeldy
Daily Aranalic D#*

Needs Update

(c)

Figure 5-1: The maintenance schedule, convenient buttons for updating, and color
codes used to help employees keep data up-to-date.

were introduced (or had their names mistyped) and had no data on factory-eligibility

available; to avoid this, unknown product families were automatically given a default

set of factory-eligibility information and the name and number of desktops from this

unknown product family were displayed prominently in model output to alert the

user that this family was given default parameters. New or misspelled destinations

were considered non-geo-eligible. Parts components often had many different aliases,

often because the same part was made by multiple manufacturers; to account for this,

frequent updates from the firm's MRP system were necessary. All of this made data

maintenance simpler on the user.

Another difficult issue was dealing with infeasible model instances; usually this

occurred due to incorrect input data. One useful technique was relaxing constraints

and harshly penalizing violations of those constraints in the objective, as has already
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[V [1] Allocation of Groups Sums To One
[v [21 Allocation of Forecasted Sums To One
[] [3] Groups are Due Over Tme
[v [4] Forecasted Orders are Due Over Tme
[j] [5] Build ATB to Order, Not to Stock
[V] [6] Build Forecasted to Order, Not to Stock
[ [7] Non-Geo Forecasted Orders are Due Over Tine

(a)

Figure 5-2: User interface to easily toggle sets of constraints on and off.

been done for due-date and part-shortage constraints in §5.2.7. Doing so allows the

optimization engine to return infeasible solutions which often can either be imple-

mented anyway, because many constraints are 'soft' or concern future actions, or can

be used to alter the model's input in attempt to make the problem feasible by helping

the user identify constraint conflicts. Another useful technique was adding a simple

user interface for toggling large sets of constraints on or off, depicted in Figure 5-2.

This interface was used to test solution sensitivity, to evaluate "what-if?" scenarios,

and to narrow down the list of conflicting constraints. Additionally, automated data

checking mitigated the occurrence of many common data errors that caused infea-

sibility. For example, if Hg > Hj for some (t, l), i.e. the minimum shift length

exceeds the maximum, those data cells were automatically highlighted in bright red,

alerting the user to the data entry error.

The model often presented solutions that did not conform to the firm's normal

thought process or procedures; in some cases, this is because it found unorthodox,

excellent solutions; in other cases, the solution was unacceptable, often because sev-

eral of the firm's internalized constraints had not been expressed because they were

thought to be obvious. For example, having different allocation decisions x for each

Line of Business had not been evaluated by the firm and was welcomed with enthusi-

asm. Additionally, the firm appreciated that the model sometimes delayed production

in anticipation of a lull in future demand. However, it was unacceptable for the model

to frequently choose shift lengths below their nominal values because of labor manage-
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ment issues. Often such solutions were eliminated by adding additional constraints

that could be toggled on and off or by the user adjusting input data parameters

manually. In order to identify such issues quickly, model output was post-processed

and formatted to help the user understand the model's reasoning and quickly decide

the solution's value to the firm. For example, summaries of model output include

comparisons to the "planned" solution which would take effect if the firm did noth-

ing. Making the model's solution understandable by providing meaningful summary

statistics was crucial for its use in practice.

5.3 Results and Insights

The above model was implemented virtually, solving the model daily using live data,

in two different time periods. Much of the data described in §4.4 was acquired during

these two live implementations of this model and are the basis for the analysis of

this model; additional data was necessary to capture individual orders, more detailed

products, numerous exceptions, and additional constraints. We present results from

Fall 2008 in §5.3.1 and Spring 2009 in §5.3.2. Between these two time periods, the firm

discontinued desktop production at TX and TN and began outsourcing production

to JM. We conclude with §5.3.3.

5.3.1 Results from Fall 2008

We analyzed the performance of this model from September 7th to October 14th

2008. This time period is representative of typical time periods at the firm, having no

exceptional promotions or emergencies. At this time, the TX, TN, and NC factories

were all still active. The NC Lean Lines (NCLL) had recently become operational

and were incorporated into the model.

Over this period, on most weekdays, we collected and saved all relevant model

parameters; this includes daily snapshots of ATB (the already known orders), the

lookahead spreadsheets with demand, shift structure, and parts availability forecasts,

most decisions the firm made such as order moves, parts transfers, and shift lengths,
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and up-to-date model input and output from a firm employee actively using the model.

The majority of our analysis was done for three consecutive days, September 29th,

September 30th, and October 1st, which was the ninth week of the third fiscal quarter

for the firm. We chose this period because critical data was missing on other days

and this set of days had plenty of recorded Operations Center activity (e.g. order

moves). Doing so allowed us to reconstruct most of the firm's decisions for the whole

horizon, allowing for a more direct comparison than in other periods.

We tracked what the firm did and compared it to what the model would have

done. We solve the linear programming formulation above twice with almost the

same set of inputs, once to optimality and once with most of the firm's decisions

fixed to their historical values (which we inferred from data collected on later dates).

We knew the firm's default allocation scheme, the actual length of shifts as recorded

in later lookahead files, and the availability of high-priority parts, in this time-frame.

However, because we did not know the timing of the firm's production decisions, we

had the optimization engine determine the firm's production decisions by using the

same model but with some variables pre-determined; this makes predictions about

the firm's order lateness and parts shortages lower than they may have actually been.

We then evaluated the performance of the firm's policy by comparing it to the model

optimum. With many of the firm's decisions fixed, the the firm's solution had a

significantly smaller feasible space and hence guaranteed worse performance in every

scenario.

Because the firm was not confident in some of the input parameters or constraints,

we analyzed many different scenarios. To test the sensitivity of the model to surges

in demand and to test the limits of the firm's supply chain flexibility, we evaluated

the firm's solution and the model optimum with forecasted future demand set to

100%, 120%, and 150% of the empirical demand. As the lean lines at NC were just

becoming operational, the firm was interested in analysis with and without the lean

lines enabled. The model often suggested shorter shift lengths than the firm felt

comfortable with; as a result, we analyzed three labor flexibility scenarios: inflexible

(where all shifts must be at least their empirical length), some flexibility (where the
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sum of all shift lengths must exceed the empirical sum at each factory), and full

flexibility (where only the shift-structure, as described in §5.2.5, constrained shift

lengths). Lastly, each scenario starts on a specific date and uses the data available

on that day. To summarize, a scenario consists of choosing one element from each of

the following four sets:

Demand {100%, 120%, 150%}

NCLL {Enabled, Disabled}

Labor {Inflexible, Some Flexibility, No Flexibility}

Start Date {9/7/2008,...,10/14/2008}.

The firm's Operations Center was also interested in the impact of its actions; to

this end, we also evaluated a solution we call "plan," which uses default download

rules, no order moves, default or nominal shift lengths, and no parts transfers. The

solution called "actual" uses the firm's actual shift length, order allocation, and parts

transfer decisions. Although the order moves that the firm made were known, we

did not know which orders were produced when; to account for this, the timing

(as opposed to location) of production is optimized in all three solutions, making

estimates of the optimal solution's cost savings conservative. The model optimum,

often denoted "opt" is the solution to the MILP in §5.2.8.

Comparing the firm's actual solution to the model's optimum in the scenario with

the actual demand (100%), NCLL enabled, and inflexible labor is the best benchmark

and will be our main focus. Understanding the scenarios with 150% demand instead

gives interesting insights into how the solutions behave in more extreme situations.

Figures 5-3 and 5-4 display shift lengths for various solutions and illustrate the

difference in labor flexibility scenarios, for scenarios that begin on September 29th

2008 with NCLL enabled and 100% of forecast. Similar displays were automatically

generated as model output to help the user understand various solutions. Sub-figures

5-3a and 5-4a give the date and the work-team, which are equivalent to shifts, indexing

time. Sub-figure 5-3b contains the nominal or default shift-length, corresponding to
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the "plan" solution, in hours for each shift and factory. Sub-figure 5-3c contains the

"actual" shift-lengths for the firm's empirical solution. Similarly, sub-figures 5-4b,

5-4c, and 5-4d show the optimal shift lengths when labor is restricted to be inflexible,

to have some flexibility, and to have full flexibility, respectively. Values are colored if

they deviate from the nominal shift-length in sub-figure 5-3b by at least half an hour,

pink if the shift is extended and light-blue if it is shortened. These figures illustrate

that, for these scenarios, the firm extended almost every shift within the horizon;

with some flexibility, the optimal solution extends other shifts; with full flexibility,

the optimal solution shortens almost every shift. We discuss the impact of these

decisions later in this section.

Nominal Sht Hours Actual Shift Hours

Date Tearm X TN N NCLL T TN NC NCLL
1A 8 8 0 8 8.0

Mon. Sep 29 18 0 0 8 8 00 00 80
2 0 8 12 0 0.0 . 12.0 00
IA a 8 10 8 0. 0 101

Tunp.O0 18 0 0 0 8 00 0.0 &0
2 0 8 0 0 0.0 0 0 00
1A 8 8 10 8 8.0 100

Wd, Oct 0 18 0 0 8 8 0.0 0.0 8

2 0 8 0 0 0.0 0.0 0.0
1A 8 8 10 8 0.0

Thu, Oct 07 1D 0 0 8 8 0.0 0.0

2A 0 0 0 0 0.0 0 .0 0.0
1A 8 0 10 0 . 0 10

Wd, Oct 08 1B 0 0 8 8 0.0 0.0

2 0 8 0 0 0.0 0.0 0.0

(b) (c)

Figure 5-3: Planned and actual shift lengths for each factory and shift on September
29th, 2008 with NCLL enabled and 100% of forecast.

Table 5.1 displays the average daily difference between actual and optimal labor

costs, shipping costs, quantity of late desktops, and quantity of parts short. Quantities

are given as daily averages; when unspecified, we have averaged across the other
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Optimal with No Flexibility

Date Tearn TX TN HC
IA 8

Mon Sep 29 16 0 0

Tue Sep 30 1B 0 0
2 0
1A

Wed, Oct 01 1
2
1A

Thu, c 02 1B
2

1A
Fi. Oct 03 lB

2
IA

Sat Oct 4 1B
2

IA
Sun.O.t06 IR

2
1A

Mon, Oct 06 1B

Tue, Oct 07

Optimal with Somue Flexbilty

U11111111111 I U V.11 VI, VIF V.11 WU VIF V.11

0 0 0 ~ 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0
0 0 12 0 0.0 0.0 12.0 0.0 0.0 0.0 10 0.0

000 00 00 00 00
0 00 00 00 00 00

12 0 0 0 0.0 12.0 0.0 0.0 0.0
8 0 7.1t
00 *0.0

0 12 0 0.0

00 00
00 00

1"2 0.0
0.0 6.0
a 0 0
Sa all

1A 8 8.01
1B 0 0 00
2 0 0 0-0o

A 8
1B 0 0
27 l

N 0.0

0 0 0.0|1
E 0.0 0.0 0.0. CH

(c) (d)

Figure 5-4: Optimal shift lengths for each factory and shift on September 29th, 2008
with NCLL enabled and 100% of forecast, when labor is restricted to no flexibility
(flex), some flex, and full flex.
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Forecast Labor Flex. Labor Cost Shipping Cost Qty Late Parts Short
100% Full Flex. $239,562 $3,592 -6 -11
100% Some Flex. $17 $4,778 0 15
100% Inflexible $(293) $4,778 0 37
120% Inflexible $(373) $4,851 422 36
150% Inflexible $(647) $4,490 4913 45
150% Full Flex. $239,665 $(262) 4913 -8

Table 5.1: Average daily difference between actual and optimal quantities from
September 7th to October 14th, 2008, with NCLL enabled for several scenarios with
varying labor flexibility (Flex.) and forecasted demand.

unspecified aspects of scenarios. The firm did not transfer any parts that we tracked

nor did the model suggest parts transfers in any scenario on any instance; hence we

do not display transfer costs.

Not indicated in the table are baseline figures: typical labor costs are almost two

million dollars; typical shipping costs are a few hundred-thousand dollars; the optimal

solution almost always had zero late orders; every solution had several thousand parts

short.

The most striking figure is labor cost. With full flexibility, the model suggests that

several hundred thousand dollars in cost savings is possible; the firm was skeptical that

such drastic changes in the labor force were possible, and hence suggested focusing

on less flexible labor. As flexibility decreases, the labor costs for actual and optimal

solutions become more similar and the optimal solution begins to focus on shipping

cost savings.

Several thousands of dollars per day can be saved in shipping costs by simply

producing desktops in different factories. This is in stark contrast to the results of

§4.8 and §6.6 which indicate that the historical (and greedy) policies came close to

minimizing the outbound shipping cost. Those policies are our best representation

of what the firm planned to do; however, their actual actions differed at the time of

execution, as seen in the results of this section. The firm moved orders from their

default factories to re-balance factory loads; given that labor costs are significantly

higher than shipping costs, this makes sense. However, the firm's manual choice

of which orders to move to which factories left several thousand dollars per day in
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improvement potential; optimization techniques offer the opportunity to capture these

savings by dynamically analyzing the network's cost structure in relation to factory

loads.

When demand rises, costs rise marginally, cost savings potential increase almost

proportionally to demand, and most metrics behave as they do in the 100% demand

scenario. However, the number of late desktops rises swiftly for the "actual" solution

because its production capacity is not adaptive; this does not indicate that the firm

cannot respond to rising demand. Nonetheless, it does illustrate that an optimized

solution can respond well to upward variations in demand. Figure 5-5 graphs the

cumulative production and capacity (as a fraction of total production) at each factory

over the horizon for the 150% demand scenario with full flexibility, which corresponds

to the last row of Table 5.1. Both graphs indicate excess production capacity at NC,

near the third and fourth day of the horizon. Sub-figure 5-5a shows further excess

capacity at NC at the start of the horizon for the actual solution. It also shows

the firm's actual production matching labor capacity at TX and TN throughout the

horizon, with a sharp increase in late orders, which were assigned to TX, starting

seven days (nineteen shifts) into the horizon. Even though NC is producing near its

full capacity at this time, TX has much more urgent orders to satisfy. The optimal

solution avoids this by moving many orders from TX and TN to NC to use NC's

excess capacity early in the horizon, before orders become late. Responding early

to forecasts indicating that a factory will not be able to produce all of its demand

allows for more opportunities to reduce order lateness and mitigate costs. Even if the

optimal solution did not respond to this imbalance before orders became past-due, it

would immediate re-prioritize producing TX's late orders before not-yet-due orders

at other factories. This indicates that the proportion of late orders at a factory, in

addition to the ATB to capacity ratio, is a good indicator of imbalance in factory

loads.

The most representative scenario in Table 5.1 is the third row, with 100% forecast

and inflexible labor. The optimal solution spends several hundred dollars more each

day on labor while saving several thousand dollars in shipping costs, while building
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Figure 5-5: Cumulative production and labor capacity (as a fraction of total produc-
tion during the horizon) at each factory over the horizon starting on September 29th,
2008 with 150% demand and NCLL enabled, for the firm's actual solution (a) and
the optimal solution with full labor flexibility (b).
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orders on time and avoiding a few more part shortages. In developing the model for

use, we repeatedly found that the model offered reductions in shipping costs, order

lateness, or part shortages, while maintaining similar labor levels. Order lateness

and part shortage reductions occur in a manner similar to that of Figure 5-5, where

orders are moved to match production with capacity or part consumption with part

availability.

Figure 5-6 illustrates the order moves suggested by the model. It suggests moving

many orders for consumer desktops across the United States from TN to TX for

more western states and to NC for more eastern states. For corporate desktops,

which had significantly higher volume at the time, most order moves were made for

orders that were previously assigned to TN or were assigned to a factory on the

other side of the United States. Given that the objective function depends explicitly

on these assignments, they are the major driver of several thousand dollars in daily

shipping cost savings potential. Table 5.2 gives the total (over the horizon for the

same scenario) outbound shipping cost, for orders that were in ATB at the start of

the horizon, broken down by factory and line of business, depicting the source of cost

savings just described. The firm typically moves orders in the "right direction" but the

model suggests that additional order moves can significantly improve the objective. In

this case, the model suggests moving a large portion of consumer desktops from TN to

NC; the firm did this, but not to the extent that the model suggested. Furthermore,

the model re-balances the distribution of corporate desktops to exploit idiosyncrasies

in the outbound cost structure; shipping costs are not always proportional to the

distance between factories and destinations; third-party logistics providers often set

contract prices according to their infrastructure. For example, in Figure 5-6, the

model suggests moving orders for corporate desktops destined for Maine and New

Hampshire, the north-eastern most U.S. states, from NC to TX; at the same time,

it suggests moving orders destined for Nebraska and North Dakota, states directly

north of TX in Texas, to NC in North-Carolina. Orders that were moved in the

past to mitigate imbalances in factory loads can be returned to their original cheaper

location if factory loads even out. Similar savings were seen in all scenarios.
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- NC

To

Corporate Order Moves
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(b)

Figure 5-6: Optimal solution's suggested order moves for 100% demand, inflexible
labor, NCLL Enabled, starting on September 29th, 2008. Each factory has a color;
each state is colored to match the factory that had the most orders moved from or to
it from that state. More intense colors indicate higher portions of that states desktops
being moved.
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Solution Line of Business TX TN NC Total
Actual Consumer $3,885 $66,414 $26,796 $97,095
Actual Corporate $150,326 $64,899 $175,539 $390,765
Actual Total $154,211 $ 131,314 $ 202,335 $ 487,860
Optimal Consumer $ 31,308 $ 3,918 $ 58,946 $ 94,173
Optimal Corporate $ 155,566 $ 1,994 $ 197,623 $ 355,183
Optimal Total $ 186,875 $ 5,911 $ 256,570 $ 449,357

Table 5.2: Outbound shipping cost of already known orders for Actual and Optimal
policies, by factory and line of business, for the horizon starting on September 29th,
2008.

5.3.2 Results from Spring 2009

From April 16th 2009 to May 6th 2009, we performed another study similar to the

one in §5.3.1. During almost every week-day, the firm's data files were updated,

our software prototype retrieved relevant input data, an Operations Center employee

updated a few relevant parameters, the MILP was repeatedly solved under a few

varying conditions, and model input, model output, and actual decisions enacted by

the firm were saved. We then studied these results and analyzed the potential impact

of the model.

This study was based on the full history of relevant, live, data from the firm. This

includes daily ATB snapshots of all outstanding orders, lookahead forecasts with

plans for the next weeks, all order moves made by the firm, the actual length of every

shift at each factory, up-to-date outbound shipping costs and lead times, updated

factory bottleneck and productivity data, and the prevailing shift structure (labor

constraint data). At the time, part shortage lookahead files which contain data on

parts availability were unavailable; however, the study in §5.3.1 does include analysis

of parts.

During this time period, only the North Carolina (NC) and Juarez, Mexico (JM)

factories were assembling desktop computers. The firm still had control over which

computers were built in each factory, though it had little control over labor decisions

at JM, instead paying proportional to the number of desktops produced. The results

and insights gained by this new and different setting for implementation are still
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Quantity Late Shipping Cost Labor Cost
Historical 1579 $230K $5006K
Optimal 183 $169K $4849K
Hist - Opt 1396 $61K $157K

Table 5.3: Average daily quantity of late desktops, shipping cost, and labor cost for
the historical and optimal solutions in the Fall of 2009.

relevant to many build-to-order network settings.

Other than having had discussions with us to develop the model, the employ-

ees responsible for order moves, parts transshipment, and labor scheduling enacted

decisions independent of the model. The firm's decisions were not the same as the

model's, making it difficult to find parameters to evaluate the model in a rolling

horizon manner. Furthermore, because many orders are produced between the daily

ATB snapshots, it is difficult to reconstruct the details of every order. However, the

model's data was updated daily after having implemented the firm's decisions the

previous day; using this data, we had knowledge of the volume of daily demand by

Line of Business. We use this data to compare the model's optimal solution to what

the firm actually did and the corresponding costs over a nine to fourteen day horizon.

A quantitative summary at the most aggregate level is given in Table 5.3. It

gives the daily average quantity of late desktops, shipping cost, and labor cost for

the firm's empirical solution and the model's optimal solution. Again, the firm did

not transfer any parts that we tracked nor did the model suggest parts transfers in

any scenario on any instance; hence we do not display transfer costs. Large sunk

costs from previous shifts and minimum shift lengths that must be included in the

labor cost calculations make labor costs appear disproportionately large. However,

given that Dhalla (Dha08] suggests that each day a desktop is late costs about $100,

labor cost savings potential tends to be about the same order of financial impact as

cost savings or delivering more desktops on time. The model suggests up to a 75%

reduction in outbound shipping costs worth $61,000 each day, about triple that in

potential labor savings, and a significant reduction in the number of late orders.

Figure 5-7 illustrates the shift-lengths that the firm had planned (nominal hours),
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Historical Shift Hours

Date Team JM C NW.
1A 8 8 8

Thu. Apr 23 18 8 8 8
2 0 0 0

1A 8 8 8
Fn, Apr 24 18 8 8 8

2 0 0 0
1A 8 0 0
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2 0 0 0

1A 0 0 0
Sun Apr 26 18 0 0 0

2 0 0 0
1A 0 8 8
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2 0 0 0

1A 8 8 8
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Figure 5-7: Planned, actual (historical), and optimal shift lengths for each factory
and shift for the horizon starting on April 23rd, 2009.

the actual or historical shift lengths, and the optimal solutions' shift lengths. At this

time, each of NC, NCLL, and JM were to have two eight-hour shifts on weekdays.

Values are colored if they deviate from the nominal shift-length in sub-figure 5-3b by

at least half an hour, pink if the shift is extended and light-blue if it is shortened.

Due to the results in §5.3.1, the optimal solution here is for the scenario of some labor

flexibility, where each work-team had to receive at least their total nominal (planned)

hours over the horizon. Historically, the firm cut the second shift at NC but extended

almost every other shift at NC or NCLL and extended some shifts at JM. The model

optimum extended shifts early in the horizon to avoid order lateness and reduced

the length of shifts near the end of the horizon. At other starting dates, we saw the

optimal solution reverse this, conserving labor now when expecting a future lull in

demand.

By re-arranging the timing and location of labor, the optimal solution matches

capacity and production with demand. This is illustrated in Figure 5-8, which depicts
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the cumulative production and capacity (as a fraction of total production) at each

factory over the horizon starting on April 23rd, 2009 for (a) the firm's historical

solution and (b) the optimal solution. The firm stopped producing at NC once JM

could handle all production. This reflects the firm's policy at the time to outsource as

much as possible to .JM, using NC to handle 1) demand that JM could not, 2) more

complex products that required more skilled labor, and 3) non-geo-eligible orders, such

as those for the U.S. govermnent. They did so, in part, because the firm believed

that the labor cost was less expensive at JM and the firm had plans to outsource

all North American desktop production over the next few years; reducing reliance on

NC at this time eased that transition. Our analysis suggested that the two factories

had similar labor costs, which made shipping costs and delivery lead time relevant.

Hence, the model moved many orders from JM to NC, as can be seen in Figures

5-8b and 5-9, where NC capacity is maximally utilized at the start of the horizon, to

reduce the number of late orders from 3.9% to 2.3% of total production during the

horizon and reduce costs by $343K per day. This is an example of a solution that

did not meet unexpressed executive concerns. Nonetheless, it does provide insight

into the cost of such executive decisions and illustrate the model's ability to adapt to

new network configurations. The model moves orders to reduce outbound shipping

costs and deliver orders on-time. It also re-arranges the timing and amount of labor

to improve throughput.

5.3.3 Conclusions

In order to solve the execution problem G2.2.2, we implemented a more detailed and

discrete version of the rolling-horizon certainty-equivalent linear program analyzed

in Chapter 4. Individual orders and their already known details are distinguished

from future forecasted orders. To model labor, we introduced overlapping shifts,

overtime, and lean lines at NC. Parts transfers were included. Practical concerns

largely regarding data acquisition, model usability, and infeasibility were addressed.

After several iterations with the firm's Operations Center employees, the model was

solved daily using live data in two time periods, providing insights into how the firm
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Figure 5-8: Cumulative production and capacity (as a fraction of total production)
at each factory over the horizon starting on April 23rd, 2009.
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Figure 5-9: Optimal solution's suggested order moves when the horizon starts on

April 23rd, 2009. Each factory has a color; each state is colored to match the factory
that had the most orders moved to it from that state. More intense colors indicate
higher portions of that state's desktops being moved.

did and should act.

The firm's static map allocates orders to factories based solely on the shipping

destination. The Operations Center improves this by executing order moves based

on destination, due-dates, and the amount of ATB relative to capacity. However, the

order moves that the firm made left room for several thousand dollars in further daily

cost savings.

The results above, such as the Inflexible 100% scenario in Table 5.1, suggest that

significant improvements can be made by distinguishing between different products,

even if only two categories (Consumer and Corporate) are used. Exploiting the dif-

ferent production capacities of each factory, as described in §2.3, allows for more

production in the same amount of time. This is re-iterated in the results for the

planning model in Chapter 6. Further shipping cost savings can be captured by

accounting for idiosyncrasies in the shipping cost structure.

Although parts transfers were not observed in the solutions we observed in the

instances we analyzed and a more detailed investigation of alternate parts deploy-

ment techniques are beyond the scope of this project, this work shows that the parts
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transfers we modeled were less cost effective than moving the orders to the parts or

delaying production and adjusting capacity appropriately, as seen under Parts Short

in Table 5.1.

The most significant source of cost savings potential was labor cost, as capac-

ity exceeded demand in most scenarios. This is in part because desktop sales were

declining as notebook computers became more popular. Both the model and the

firm responded to this change in demand by adjusting the labor force, the firm by

discontinuing its own production and the model by reducing shift lengths where pos-

sible. Although management was not comfortable with the drastic reductions in shift

lengths that the model suggested, additional constraints on the minimum amount of

labor can help strike an acceptable balance. Even with no labor flexibility, the model

still provides significant cost savings.

The results also suggest that accounting for order lateness, not just capacity uti-

lization, can significantly improve customer service in a network with multiple man-

ufacturing facilities, especially if predicted in advance. Satisfying orders from a more

expensive factory can provide future cost savings if the inexpensive factory becomes

over-loaded.

As in Chapter 4, the model in this chapter shows cost saving potential of several

hundred thousand dollars per day. Table 4.12 indicates the recommended solution

outperforms the historical one by $47M on average over 91 days, or $516K per day.

Table 5.1 shows $243K in daily cost savings and Table 5.3 shows $218K in daily cost

savings, with further cost savings via reduction of order lateness and part shortages.

Because two different models, using several different parameter estimation techniques

and analyzing different periods of time, report similar estimates of potential financial

impact, these results seem very consistent.

Using mathematical programming, we balance several competing objective simul-

taneously and at a much more detailed level than simple heuristics and human over-

sight. Not only does our model account for shipping costs like the firm's static map,

but it also accounts for differences in labor costs and customer service. Repeated

re-optimization allows one to incorporate new information much more quickly and
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easily adapt to changes in circumstances. Mathematical optimization can exploit pe-

culiarities in both the shipping and labor cost structure as well as delivery times. The

impact of delaying or expediting production and its impact on shift lengths and the

timely satisfaction of customer orders is much more readily apparent. These criteria

are much easier to evaluate and adapt to in a mathematical optimization environment,

which revealed that re-scheduling labor and moving orders to match capacity has po-

tential for several thousand dollars in daily cost savings while improving customer

service by delivering more orders on time.
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Chapter 6

Planning Problem: Formulation,

Implementation, and Analysis

This chapter discusses mathematical optimization models for the firm's planning prob-

lem. In §2.2.1, we give a detailed, qualitative description of this problem. One purpose

of these models was to understand the effectiveness of and improve the firm's default

download rules that allocated orders to factories. Another purpose of developing

them was to inform other decision-making groups within the firm, such as labor man-

agement and parts sourcing teams within the firm, of plans for production across the

manufacturing network, helping them make their decisions. With a typical horizon of

a quarter year and time discretized into weeks, the primary decisions are allocation of

groups of orders to factories, production of the desktops in those orders, the amount

of labor to hire, and how much time that labor should spend in the factory.

We begin by describing two models that were developed as planning software

prototypes in collaboration with and for use by the firm. We first formulate a de-

terministic MILP based on the firm's point forecasts for demand, which we call the

nominal model, in §6.1. Whereas the execution problem had plenty of data on daily

demand for desktops, data on demand for the planning problem's larger temporal

scope was scarce. To address concerns about the model's sensitivity to demand,

which arose largely because the model suggested significantly less labor capacity was

necessary to maintain adequate production and customer service levels, we introduce
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Robust Optimization techniques in §6.2, formulating what we call the robust model.

Challenges such as maintaining tractability and modeling uncertainty sets for Robust

Optimization are addressed while modeling the problem. We extend both of these

models to the case of multiple products in §6.3. We discuss details of implementing

the MILP in §6.4. The methodology for validating model accuracy and evaluating

solutions is presented in §6.5. Numerical results and managerial insights showing

significant cost savings potential acquired from using the models are given in §6.6.

Input data will be denoted by upper-case letters while decisions will be denoted by

lower-case letters, excepting t, d, 1, k, and s, which are indices whose capital letters

are the cardinality of the index set. We consider a planning horizon T, typically one

quarter of a year, with time discretized into weeks which we index by t. The firm's

three factories are indexed by 1, the demand destinations are indexed by d, and the

firm's Lines of Business are indexed by k. Index s is used for further differentiation

of some sets of constraints or variables.

6.1 Nominal Formulation

In the planning model, the objective is to minimize the sum of inbound shipping costs,

outbound shipping costs, and direct labor costs. The relevant decisions are allocating

and producing demand at factories and planning permanent and temporary staffing

levels, including planning for overtime. The major constraints are that demand must

be satisfied by the end of the horizon in a build-to-order manner, labor restrictions,

and the resulting capacity at each factory.

The firm has a forecast of future demand F,d for each period t and destination

d, which this model treats as being the true future demand. The plan allocates

this forecasted demand among factories, represented by the decision Xt,d, E {0, 1} or

its relaxation XtdL E {0, 1], with El Xts, = Vt, d. The plan includes non-negative

production decisions Ytd,l for each period t, destination d, and factory 1. Because of

the firm's build-to-order business model, cumulative production must not exceed the

cumulative demand to date. Because the firm fulfills all outstanding orders by the end
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of each fiscal quarter, which is the typical planning horizon, demand is reset to zero at

the start of the horizon and cumulative production must equal cumulative demand by

the end of the horizon; this termination criteria forces the model to produce desktops

promptly. An inbound shipping and outbound shipping cost of Cd,1 dollars is incurred

for every unit shipped from factory I to destination d.

Staffing decisions regarding the amount of permanent labor p, and temporary

labor rti are made for each factory 1, measured in units-per-factory-hour, i.e. the

number of desktops that can be produced for each hour that the staff works in the

factory. Permanent labor takes several weeks to recruit and train, making it difficult

to change the permanent labor level during the horizon; however, because we are

planning in advance, permanent labor levels can be adjusted once before the quarter

begins. The temporary workforce is more flexible and can be adjusted with a few days

notice, making it a weekly decision. For quality assurance purposes, the temporary

labor force cannot exceed MI percent of the permanent labor force. Both types of

labor work SI "straight" factory-hours every week (a fixed quantity determined by the

factories staffing structure) and otI overtime factory-hours, a decision to extend the

amount of time they work for additional pay. Each labor-hour provides approximately

U (units-per-labor-hour) production capacity per period, regardless of labor type, but

costs CT' < C* < C, < C'"s where the superscripts denote the type of labor, which

is either permanent (p) or temporary (r), and either straight-time (S) or overtime

(o). Furthermore, each factory produces at most At units-per-factory-hour due to

physical bottlenecks within the factory, as described in §2.3.

Formulating the above, we have the following nominal model:

1i CS Crsminimize: E Cda,dja~ + S, o, ] I "P (6.1)
t~ ~ IU, Q* C ,'*J rt4_
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subject to:

Xt,,= 1 Vt, d (6.2)

t t

Yr,d,i E FdXT,d,l Vt, d,l (6.3)
T=1 T=1

T T

E Y,d,I =j( FT,dxT,d,i Vd, 1 (6.4)
T=1 T=1

rt, Mip Vt,l (6.5)

Yt,d,l (pI + r,i)(Si + ot,) Vt,l (6.6)
d

SYt,d,I At(St + ot,I) Vt, 1 (6.7)
d

x, y, o, p, r > 0

The first term of the objective (6.1) accounts for shipping costs and the second term

captures the four different types of labor costs. Equation (6.2) ensures that demand

for each destination d and week t is allocated to a factory. Inequality (6.3) pre-

vents the model from building desktops before customers demand them; however, the

termination criteria, equality (6.4) ensures that (6.3) holds with equality for t = T

forcing all demand to be satisfied by the end of the horizon. Inequality (6.5) provides

the quality assurance upper bound on the temporary labor force. Inequalities (6.6)

and (6.7) define the production capacity in terms of labor productivity and physical

bottlenecks, respectively. All of the decisions are non-negative.

At the beginning of this study, the firm's information technology and management

allocated orders to factories in large geo-graphic groups, the smallest being U.S. states;

as such the binary constraints x E {0, 1}I1DIL were necessary for implementation

purposes. Binary constraints are later used to tractably model the structure of the

labor force, making the binary allocation constraints less of an additional burden on

solving the problem. However, later in the study, the firm's software could handle

more granular commands, such as filters by zip code or product families. Demand

could then be distributed among factories according to a fractional x by allocating
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a proportional number of zip codes (weighted by their relative demands) within that

destination without significant cost impact. Allowing x to be fractional also permits

us to eliminate x and re-write many constraints in a much more convenient format

that enables the Affinely Adjustable Robust Counterpart technique to capture the

firm's supply chain flexibility in §6.2.3. We present the formulation in terms of x

here because it is useful for interpreting the problem, solutions, and results and it

also exposes difficulties in solving the problem and some necessary transformations

to make Robust Optimization formulations feasible.

Production plans must be developed within a few days and may require running

the model under multiple instances to understand implications of different user-input

parameters. Note that the above formulation is not linear; in particular, the objec-

tive function (6.1) and the labor-capacity constraint (6.6) contain the product of oj

and (pl + rt,). Because the firm's management and information technology required

that the components of x be binary for implementation of the model, the problem

becomes a non-linear integer program which can be difficult to solve quickly without

additional structure. Because CPLEX 10.1.1 did not return satisfactory solutions

in an acceptable amount of time under a variety of options settings, we exploit the

structure of the firm's labor force to develop a more tractable mixed integer linear

program.

Production gradually rises over the course of a quarter due to end-of-quarter sales

and the firm's requirement that all orders are satisfied by the end of the quarter,

which is referred to as "The Hockey Stick Effect." The firm's production capacity

follows a similar pattern, as illustrated in Figure 6-1 which displays the firm's his-

torical production capacity (p, + rt,)(SI + ot) at TX, TN, and NC during the Fall

quarter (Q3) of 2007. Theoretically, time can be divided into three time intervals,

which can shift from quarter to quarter: 1) when only permanent straight-time labor

is used (Baseline), 2) when temporary labor is "ramped up" or when permanent and

temporary straight-time labor is used (Ramp-up), and 3) when permanent and tem-

porary workers do overtime in addition to straight-time (Overtime). In the figure, it

can be seen that each factory begins with below-average production capacity, ramps-
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Figure 6-1: The Hockey Stick Effect - The historical production capacity at TX, TN,
and NC during Q3 2007 and the model's theoretical production capacity are depicted
rising throughout the quarter in three intervals.

up to higher production levels, and then stabilizes once near the maximum possible

production capacity. Overtime tends to only occur after the temporary workforce is

at its maximum Mjp. We re-structure the labor constraints into these three intervals.

At the beginning of the horizon, a permanent baseline workforce is chosen and

temporary labor levels vary but overtime is not used. Near the end of the horizon,

temporary labor is fixed to its maximum but overtime can vary. Because there are

only three factories, a discrete search over a small set of baseline permanent labor

levels P,, where s indexes the options available at each factory 1, is fairly tractable.

Using this approach, either overtime is zero (otL = 0) or the labor force is one of a few

discrete values, i.e. there exists an s such that (pt + re,1) = P},(1 + M). In order to

enforce this logic, we introduce two new binary decision variables, q,, and wt,1, which

respectively represent the choice of permanent labor level P,, and the decision to use

(1) or not use (0) overtime. We then transform the above formulation into an MILP
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by replacing the original objective (6.1) with

minimize: S CdYt,d,, + U (C['8pst + Csrt,i) + vt,] (6.8)
t,d,l tj , I

and inequality (6.6) with the following inequalities:

qi,, = 1 Vl (6.9)

P= P1,8 qi,8  V (6.10)

rt M1P1,,(wt,1 + ql,. - 1) Vt, 1, s (6.11)

oti K wuOi Vt,1 (6.12)

Yt,d, (1 + M)(P,(S + Ot,i) + P(S + O)(1 - q,,)) Vt, l,s (6.13)
d

Yt,d, (pi + rt,1)St + P(1 + MI)otj Vt, 1 (6.14)
d

VtL ±(cI'T + OT'OTM)(O, 1P1,, - (1 - q%,,)OP) Vt, 1,8 (6.15)

wte , qi,, E {0, 1}

Vt, > 0.

Here, 01 is an upper bound on the amount of overtime that can be used and P =

max'{Pi,,} is the largest allowable permanent labor force; both are used in disjunctive

"big-M" constraints to provide upper bounds when the constraint is not intended

to be active. Equations (6.9) and (6.10) discretize the permanent labor decision.

Inequalities (6.11) and (6.12) force temporary labor to be at its maximum or overtime

to be zero. Inequalities (6.13) and (6.14) provide production capacity constraints

when there is overtime and when there is not overtime, respectively. At optimality,

inequality (6.15) forces auxiliary decision vtL to be the cost of overtime at factory

I during week t. Figure 6-1 also contains an illustration of how we have modeled

production capacity theoretically, through the lines for 1) the (Baseline) permanent

labor capacity pS, , 2) the (No Overtime) capacity during the labor ramp-up (p +
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rt,1)SI, and 3) the (Theoretical) total production capacity (p + rt,i)(S + ot,i).

In order to be useful to the firm, the model must address some managerial con-

cerns described in 4.3.3, regarding fairness in balancing factory workloads. The firm

preferred solutions that do not give overtime to some factories while under-utilizing

others; enforcing this was not necessary because in every scenario that we analyzed

it was optimal to do so. The firm also desired a limit on the average cycle-time from

customer order to delivery (the total time spent in backlog, manufacturing, and ship-

ping); however, these constraints were never active. Lastly, arrangements with the

local government led to minimum staffing requirements at NC; we include these lower

bounds on pi in some of our analysis, providing interesting insights into the cost of

having made those agreements.

"Non-geo-eligible" demand, which is described in 4.3.1, cannot be re-allocated to

other factories. Sometimes, major corporate customers provide their own outbound

transportation but will pick up their order from a particular factory. Alternatively,

some rarer parts are not stocked at all locations and can only be fulfilled by one

factory. Non-geo-eligible demand has its own forecast and production decisions but

we fix its allocation decision. In a typical solution, non-geo-eligible demand consumes

a fixed amount of capacity in the week it becomes known.

6.2 Robust Formulation

Although the formulation in §6.1 is an accurate representation of the firm's problem

and its solutions suggested significant cost savings, as discussed in §6.6, the firm's

management was concerned that it was overly reliant on the firm's forecasts Fd, which

often varied significantly from the true demand. Make-to-order manufacturers often

maintain excess or flexible production capacity to quickly meet variations in demand.

Because the formulation is deterministic, its solutions suggest that the firm can meet

demand with significantly less capacity than the firm historically used. In order to

address this and protect the above MILP formulation against uncertainty in demand,

we investigate approaches to incorporating demand uncertainty which can exploit the
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manufacturing network's flexibility by planning for factories to compensate for each

other. Because demand data was available for less than three quarters of a year,

we did not have sufficient data to employ techniques similar to the detailed demand

model and simulation that we did for the execution problem in Chapter 4, which had a

smaller temporal scope. The lack of demand data also makes stochastic optimization

limited in its usefulness. Instead, we use methods that can protect against uncertainty

with very limited demand information. In particular, we adopt Robust Optimization.

Formulating the robust counterpart of a MILP that is already difficult to solve requires

significantly more elaboration. We review the Robust Optimization literature in 6.2.1.

We develop an uncertainty set that contains the demand values that our solution must

be able to satisfy in §6.2.2. We then introduce an affinely adjustable policy that allows

the nominal model to respond to fluctuations in demand and show how to incorporate

this without making the problem size too large, in §6.2.3. Finally, we develop the

robust counterpart to all other constraints in §6.2.4.

6.2.1 Robust Optimization Literature

Because of the large-scale nature of instances for our deterministic formulation, and

because multi-period problems tend to allow for recourse after uncertainty is realized,

we restrict ourselves to simple, tractable approaches to dealing with uncertainty. Dy-

namic Programming would suffer from the curse of dimensionality due to the large de-

cision and state spaces. Though we could attempt a multi-stage Stochastic Program,

sampling from the demand distribution and solving a large number of deterministic

instances with the additional constraint that early stage-decisions required to be the

same across instances, the sample space grows far too quickly, even for simple, crude

approximations of the uncertainty. Furthermore, the lack of demand data at this

scope makes determining a demand distribution difficult. Many other approaches

have similar challenges. Robust Optimization seemed to be most tractable method

available and provided a reasonable interpretation of uncertainty.
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Robust Optimization (RO) addresses the problem

max{c'x : Ax < 0 VA E D}

where x E R' and A is a matrix of uncertain coefficients that lie in some uncertainty

set D. The major contrast between RO and Stochastic Programming (SP) is that

RO addresses hard constraints that must be satisfied for any realization of the data

(and hence limits itself to bounded uncertainty sets) whereas SP tends to employ soft

constraints that can either be violated with an objective penalty cost (recourse) or

with at most some desired probability (chance constraints).

Soyster [Soy73] presented the first RO approach which, along with other early

works, was very conservative and hard to generalize. In the late 1990s, Ben-Tal

and Nemirovsky [BTN99] [BTN98] as well as El Ghaoui, Oustry, and Lebret [EGL97]

[EGOL+98], independently introduced many important RO formulations, results, and

applications. The most notable result is that the robust counterpart (RC) of convex

optimization problems that have ellipsoidal uncertainty sets can be formulated as

optimization problems that are (approximately) tractable. Bertsimas and Sim [BSO4]

develop a robust approach for LPs and Integer Programs (IP) using linear constraint-

wise uncertainty sets whose robust counterpart remains an LP or IP respectively.

They introduce the notion of a "Budget of Uncertainty" that limits the number of

parameters that can deviate from their nominal value.

Bertsimas, Pachamanova, and Sim [BPSO4] elegantly characterize robust counter-

parts of LPs with uncertainty sets described by arbitrary norms, showing that they

are convex optimization problems whose constraints are defined in terms of their dual

norms. "The dual of the L, norm

n

|Ix||, = (E IzI|P) ",
j=1

is the Lq norm |-| llqwith q = 1+ ." Most notably, | and ||-||1 are dual to each

other and the dual of || - 112 is itself. They compare the most popular special cases,
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in particular, the ellipsoidal (11 -112) uncertainty sets of Ben-Tal and Nemirovsky and

those of El Ghaoui, Oustry, and Lebret against the D-Norm (a combination of 11-1and

|| - ||,) of Bertsimas and Sim. (BPSO4] also gives loose but very general probability

guarantees against constraint violations for the above special cases. Importantly,

having parameters depend on other parameters in multiple rows and columns can be

modeled by the uncertainty set

D = {A: |IM(vec(A) - vec(A))| < A}

where M is an invertible matrix and vec(A) is a constant vector in R" 1 . How-

ever, the dual norm may be extremely difficult to optimize over and most practical

implementations restrict their attention to row-wise uncertainty.

The R() papers above focus on what are typically referred to as single-stage pro-

grams, i.e. where none of the uncertainty is known before the decisions are made.

Implementing them with a rolling horizon is akin to Open-Loop Feedback Control

which can often be overly conservative. In many contexts, including ours, some de-

cisions are made before any uncertain values are known, while other decisions are

made after some uncertain values are known. Additionally, decisions such as slack

and surplus variables, as well as, auxiliary variables used to transform piecewise-

linear functions such as max{0, xi} or Ixil into linear functions, do not correspond to

actual decisions and should be allowed to tune themselves to varying data. Multi-

stage SP often addresses these issues but is not tractable for large-scale problems.

The RO equivalent of multistage SP is called the Adjustable Robust Counterpart

(ARC.), wherein some variables can adjust to (depend on) the uncertainty. These are

both akin to Closed-Loop Feedback Control. Ben-Tal, Goryashko, Guslitzer, and Ne-

mirovsky [BTGGN04] propose the Affinely Adjustable Robust Counterpart (AARC)

as a tractable approximation to the (ARC). The AARC relies on a notion from Control

Theory, that of restricting the search to policies that depend affinely on the uncertain

parameters, in order to gain tractability . It effectively allows for recourse decisions

that are affine functions of the uncertain parameters. Chen, Sim and Sun [CSS07]
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compare RO against chance-constrained SP, including multi-stage problems and the

AARC, and discuss why RO is often much more tractable and tends to satisfy soft

probabilistic constraints well.

Ben-Tal, Golany, Nemirovski and Vial [BTGNV05] implement the AARC for a

two-echelon multi-period supply chain problem known as the retailer-supplier flex-

ible commitment using a min-max cost function and test the AARC's probability

guarantees through simulation. Bertsimas and Thiele [BT04] apply the approach in

[BSO4] to a discrete-time inventory-network management problem with some of the

typical extensions. They show that the robust solution is identical to the optimal

solution (under some conditions) when the character of the optimal solution is known

(via analysis of the Dynamic Program) and show that the robust approach is effi-

cient to implement and performs well in scenarios when the optimal solution is not

known. Bertsimas, Brown, and Caramanis [BBC10] surveys a large portion of the

available Robust Optimization literature and results. It also has a large number of

applications, including a large section on multi-stage problems that use the AARC

developed in [BTGGN04]. Bertsimas, Iancu, and Parrilo [BIP10] prove the near-

optimality of affinely adjustable policies in multi-stage optimization problems and

provide an example of its use in inventory management. Although we are not aware

of any other implementations of multi-period Robust Optimization in supply chain

planning problems, the above papers suggest strong potential for tractably modeling

the firm's unique planning problem.

6.2.2 Uncertainty Model

Constructing an uncertainty set for a Robust Optimization (HO) model can be dif-

ficult. Much of the literature either assumes that the set is known a priori or gives

simple examples. For the planning problem, we restrict our attention to uncertainty

in the demand vector F and investigate the interaction of its elements with each

other. Furthermore, though it is not necessary beyond this section, we adopt a natu-

ral probabilistic interpretation of uncertainty to develop a bounded uncertainty set.

The firm's long-term sales forecasting group generates Ff4 , a point-estimate of
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the number of systems that will be sold in each week t to customers at destination

d, which we assume to be unbiased. The firm's historical production quantities per

week for a few quarters were also available, which, when aggregated over factories,

provide an estimate, o,2 of actual demand variance for each destination.

Using uncertainty sets that only consider errors for individual forecasts Ft,d would

not capture the impact of uncertainty on production capacity which deals with large

subsets of demand; the robust counterpart would be equivalent to adjusting each com-

ponent of the forecast upward. Instead, we consider "groups" G c D of destinations,

which are subsets of the set of all demand destinations D, to protect against; that

is, our uncertainty sets will limit the total demand within a group G. Using groups

of destinations allows us to make stronger guarantees regarding demand satisfaction

without generating more conservative solutions because aggregate demand will have

less variability than demand for individual destinations.

Uncertainty over time is treated more simply. Note that only constraints (6.3)

and (6.4) involve more than one time period; because most orders are satisfied in the

same week that they are made, i.e. the backlog of orders turns in less than a week,

the problem is essentially decoupled across time periods, excepting the permanent

labor decisions. Because the key constraints we wish to protect, those regarding

production capacity such as (6.13) and (6.14), consider only one week at a time, we

can ignore aggregation of uncertainty over time, as otherwise the robust counterparts

would ignore uncertainty in other time periods anyways.

Consider a particular grouping G. Let F,G be the random variable representing

the total demand from group G during week t. For developing uncertainty sets, we

assume that the demand F is Normally distributed according to

F,,G- N(F,,, or,)

where a group's demand variance is defined by a o >il'EC od. This differs from

our Log-Normal fit for demand in §4.5 because the scope is larger for a few reasons:

1) the Central Limit Theorem more readily applies to the sum of a large number
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of somewhat independent consumer decisions or the sum of each many days worth

of demand; 2) the distribution parameters are sufficiently far from zero, making the

Normal and Log-Normal decisions appear similar; 3) limited data availability makes

estimates of the tail of the Log-Normal distribution inaccurate. Results for other

reasonable distributions were similar.

Consider the probability

P(IFt,G - Ft,G| <; Ft,G) aG (6-16)

where aG is some desired service level for group G and FtG ZdEG Ft,d is the

forecast or mean demand for G. The choice of aG determines the constant Ft,G

which defines the support of (or uncertainty set for) F in our robust counterpart to

the nominal problem; shortly, we show how to determine Ft,G. In (6.16), we have

used a linear (effectively ||-||1) constraint on F to ensure that our robust counterpart

is also a mixed-integer linear-program. We now solve for Ft,G, to obtain

- 1 +aG
Ft,G= Ft,G + z( 1 + t,G,

where z(.) is the inverse of the Standard Normal cumulative distribution function.

Requiring that we can produce for every demand in the range (Ft,G -Ft,G, Ft,G+Ft,G],

guarantees that demand in (t, C) is met with probability aG, where aG can be chosen

by the user to ensure any desired service level. However, if the groupings G are not

disjoint and constraints are applied to F for all groups simultaneously, the probability

of violation is much more difficult to compute. A lower bound on the guarantee is

the product of their service values, a = 1]G aG, which for identical aG values decays

geometrically with the number of groups. We later avoid this issue by testing the

model with a single group G and finding that it is not significantly different from

solutions when some overlapping groups are used.
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6.2.3 Affinely-Adjustable Production

Before we can begin incorporating the uncertainty set into the nominal formulation,

we first simplify the model structure. Note that only (6.3) and (6.4) contain the

uncertain parameter Ft,d. Because we would like factories to help each other compen-

sate for fluctuations in demand, we aggregate these constraints across factories 1; we

change

t
Z (Yr,d,l - Fr,dX,d,L) < 0 Vt, d,I (6.17)
r=1

with equality for t = T to

(ZYT,dj, - Fr,d) 0 Vt, d (6.18)
r=1 I

with equality for t = T, by relaxing the binary constraint on x and using the fact

that E Xt,d, = 1. Note that, in (6.18), the only decision variable is the production

quantity y and the uncertain parameter F is not the coefficient of a variable. Now

that we have developed uncertainty sets and have isolated the uncertainty F, we are

ready to develop the robust counterpart to this slight re-formulation of the nominal

problem presented in §6.1.

Herein, let ft,d := Fd - Ft,d and ft,G : dEG ft,d be the deviation of demand

from its mean. As discussed in §6.2.2, we must produce a solution that satisfies the

nominal constraints for any demand vector F such that

F E {'+ f : Ift,G| !5 Vt,G Q (6.19)

We also define

F A {f : Ift,G| !5 t,G Vt, G}.

Because the termination criteria (t = T) in (6.18) must hold with equality Vf E F,
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f must be constant almost surely or y must depend on f. The prior case corre-

sponds to the nominal model of §6. 1. We now address the latter, which the literature

refers to as the Adjustable Robust Counterpart. In order to maintain tractability, we

will use the Affinely Adjustable Robust Counterpart (AARC) approach developed in

[BTGGN04], wherein we restrict our attention to decisions y that are affine functions

of f. The most general dependency would allow each production decision Yt,dl, to de-

pend on {ft',,, : t' < t, d E D}. However, it seems unreasonable to vary production

for a particular destination based on demand for some other destination; furthermore,

allowing the most general dependency would cause the problem's temporal dimension

to increase by a factor on the order of T2 after taking the robust counterparts. It

may be the case that demand for a particular period t' is satisfied during a different

period t; however because orders tend to be fulfilled in the same week that they are

made, it would be reasonable to assume that production decision yt,d,l depends only

on ft,d. This will be key to keeping the robust counterparts simple. Thus, we replace

every instance of Yt,d,l in the nominal formulation with the simple affine function

yt,dL + ft,dYt,d,l. (6.20)

We now return to the constraints in (6.18) and write their robust counterparts,

using Ft,d Ft,d + ft,d with f E F and y replaced by (6.20), as

t t

maxfEF fd(E YT,d,- 1) (FTr,d - Ej Y,dL) Vt, d (6.21)
T=1 I r=1 I

with equality required when t = T. Note that we do not care solely about f that

maximize the LHS of (6.21), but in the case of an inequality, if it is satisfied for a

maximal f, it is satisfied Vf E F. We now prove and then explain a theorem that lets

us avoid solving this sub-problem.

Theorem 1. For a full-dimensional, convex uncertainty set F, the constraints in

(6.21) air satisied Vf E F if and only if y and p satisfy
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Yt,d= 1 Vt, d (6.22)

t t

ZZYT,d,l :5 E , Vt, d (6.23)
=1 r=1

where the last inequality holds with equality for t = T.

Proof. If (6.22) holds, then substituting it into (6.21) yields 0 Z< =(Fr,d- E yTdg)

which is exactly what (6.23) guarantees.

Conversely, suppose (6.23) does not hold and substitute f = 0 E F into (6.21) to

yield a contradiction. Instead, suppose y and y satisfy (6.23) but violate (6.22) for

some (t', d'), i.e E, yttd,, - 1 # 0. Consider (6.21) for t = T and d = d' and note

that the right-hand-side is zero because (6.23) holds with equality for t = T. Then

for (6.21) to hold, we need

T

Z fr,d' (Y ,',l - 1) = 0 Vf E F (6.24)
T=1 I

Because F is full dimensional and convex,

If' E F, f" E F s.t. f",d # f,d, but f'id filadV(t,d) # (t',d'). (6.25)

Suppose that (6.24) holds for both f' and f" and subtract (6.24) for f" from (6.24) for

f', noting that all terms except (t', d') cancel, yielding (ft,d, - f',)(EZ yt,,f - 1) = 0.

Then E, yi,d,L - 1 / 0 implies f,',,d' = f'd,, which contradicts (6.25). D

We now interpret Theorem 1. Note that (6.23) is the same as (6.18) but with

the nominal y replaced by Y, the constant of the affine function, and the nominal F

replaced by its mean, F, indicating that i represents the average production level.

Additionally, (6.22) indicates that Yt,d4 represents the fraction of ftd, the deviation

in demand from destination d during period t, that factory I will produce. By not

requiring non-negativity of y (but still of y + yf), some production can be negatively
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correlated with demand deviations when F - F > 0. We use Theorem 1 to avoid

actually having to implement the Robust Counterpart in (6.21) which would otherwise

involve dealing with demand uncertainty over time; this is crucial to keeping the size

of the Robust Counterpart tractable.

Note that our definition of affinely adjustable in (6.20) was not unique; instead,

had we used y + yF for F E [F - F, F + F] we would get y = 0 along with (6.22)

and Yt,d, would be interpreted as the fraction of total demand for (t, d) served by

1. This would correspond to an affine function through 0 instead of E, F. This

alternate approach corresponds to the intuitive idea of allocating demand to factories

proportionally (y, oc x1) and hence it is easier to implement in practice, e.g. there

is no need to wait until the end of the week for computations relative to the mean.

However, it forces factories that help with worst-case demand to also help with typical

demand. We choose (6.20) instead because it is centered and symmetric about the

mean, median, and mode of the demand distribution and, at the typical values, it

allows some factories to commit to a portion of typical demand levels without concern

for uncertainty while allowing other factories to take on most of the uncertainty. In

essence, our choice of affine dependency models contingency plans; if demand deviates

significantly from the mean, our solution indicates how to respond.

Because we allow f < 0, the definition in (6.20) cannot assign y, > 0 unless

y > 0 when we take the Robust Counterpart of the original non-negativity constraint

i + yf > 0; if instead we only consider f > 0, which will simply change the dual

constraints we re-inject from inequalities to equalities but change the meaning of our

uncertainty set, we can have a factory aid another in production only for demand

above the nominal value F. By symmetry of the Normal distribution,

P(ftAGI Ft,c) = P(ft ,G Ft I f 0),

so our service level aG gives the same Ft,G. In fact, using f > 0 with the same

F will de-emphasize negative correlations in demand and lead to more emphasis in

protecting against demand deviations from destinations with lower shipping costs
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because their demand cannot be "given" (by the inner maximization problem) to

states with higher costs. In fact, it will even avoid the complication of negative

demand that arises when using a Guassian distribution for modeling demand. We

investigate both of these approaches (f ;> 0 and f unrestricted in sign) simultaneously

due to the minimal effort required to alter the uncertainty set of (6.19).

6.2.4 Robust Counterparts

Although Theorem 1 lets us avoid solving the maximization subproblem (6.21) for

each of those constraints, the affine production function (6.20) introduces the uncer-

tain term f into several other constraints. We must now solve maximization subprob-

lems for these constraints; however, these subproblems do not involve the aggregation

of uncertainty over time, making them much smaller in size and less conservative in

protecting solutions.

We now develop the Affinely Adjustable Robust Counterparts for constraints in-

volving the production variables, the only remaining constraints containing uncer-

tain parameters. Each constraint involving uncertain parameters will be enforced

by taking the dual of the maximization (with respect to uncertainty) problem and

re-injecting the dual objective with additional constraints on the dual variables. We

denote all dual variables to Robust Counterpart subproblems by either P or p which

will be associated with the upper and lower bounds on the deviations of f, respectively.

For the most part, we need separate dual variables for every constraint containing un-

certainty (and hence a maximization problem in which dual variables will appear) in

the nominal problem, but our notation will ignore this for simplicity of presentation.

However, it is important in implementation to index which dual variables pertain to

which constraint.

The dual variables y or p are shadow prices for -F < f F and therefore only

one of each pair can be non-zero in any solution. Each p is only involved in constraints

for its own subproblem. We could re-write them as the absolute value of a single dual

variable and if we desire use the max{I, -p} approach to linearizing absolute value

instead of separating it into two non-negative variables. However, to maintain the
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ability to adopt f > 0, we refrain from doing so.

We begin with protecting the capacity constraints (6.7), (6.13), and (6.14), which

all involve Ek,d Yt,d, as the only source of uncertainty and hence have the same rele-

vant uncertainty sets

Ft I {ft : | ft,a I <Ft,G VG}
deG

for each t E {..T}. In fact, for fixed (t, 1), the coefficients of the uncertain parameters

in (6.7), (6.13), and (6.14) are the same and therefore they will have the exact same

dual solution (including for each s), which will slightly reduce our computational

burden. Constraints (6.7), (6.13), and (6.14), can be re-written as

SYt,dft,d (St + ot,)Ai - yE,d, Vt, 1 (6.26)
d d

E Yt,dft,d (1 + M)(P,.(S + O )
d

+ P1(St + O)(1 - ,)- j yt,,, Vt, l, s (6.27)
d

Yt,dft,d (p + rt,L)S + -P(1 + M)ot, - [ Yt,d, Vt, 1 (6.28)
d d

Choose one of the three sets of constraints and fix t, 1, and where appropriate, s.

Let RHS denote the right-hand-side of the constraint and let #d be the coefficient of

ft,d. Then the robust counterpart for that constraint is simply

maxfEFt E P4ft,s RH S
d

which, by re-injecting the dual and applying strong duality (F is bounded and f =

0 E F is always feasible), will hold if

-p, p 2 0 : (p - p) = Pd Vd and E Ft,o(pG + p YRHS (6.29)
G3d G

where G 3 d is the set of groups C that contain destination d.
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In order to protect the objective function (6.8) against uncertainty , we rewrite it

(6.30)minimize ( subject to E ft,d(Z Cd,lyt,d,l) ( -

t,d I

where

r/ A 2 Cd,it,d,1 +
t,d,l t,L

U,(CfPSp', + Csrt, ) +

If we maximize the left-hand-side of the constraint in (6.30) over f E F, take the

dual, and re-inject it, we get

minimize C subject to S Ft,G(At,G + C-,G 77
t,G

(6'31)

with non-negative dual variables - t > 0 and the following constraints

Gii (Ad ,
G:)d

- 1, ~ Cd,iYt,d,L Vtj d. (6.32)

The robust counterparts of the non-negativity constraints are

minlflF Q + yf > 0

+=> |yF <

More explicitly, and using the same notation as before, we need -P > 0 to satisfy

F + p) y

pA - P = -y.
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If we were to have f > 0, the robust counterpart would be

mino<<-F Q + yf 0

+== Q 0, -yF Q

= - 0 : ptF Q, t -y (6.33)

which is clearly less restrictive on y and Q. For the other constraints above, if f 0, we

would simply delete I and the additional equality constraints would become "greater

than or equal to" (>) constraints.

In summary, we do the following: we replace each constraint in (6.7), (6.13), and

(6.14) with the new set of decisions and constraints in (6.29); similarly, the objective

is replaced by (6.31) and (6.32); the non-negativity constraints are replaced by (6.33).

By doing so, we have protected against uncertainty in the nominal formulation and

developed a robust mixed-integer linear formulation.

6.3 Extension to Multi-Product Setting

Although the firm builds customized desktops for each individual customer order,

the above formulation does not model this for clarity in the exposition of Robust

Optimization. However, the model made for use by the firm and our analysis in the

next section distinguish between the firm's "Lines of Business." For the time period

of the available data, the firm had two desktop product lines, one for large corporate

customers and one for individual consumers. The major differences are that their

demand is forecast separately, the chassis are of different weight and size, they have

different shipping requirements, and factory bottlenecks depend on the proportion of

different products being produced. The latter, which is illustrated in §2.3, is shown

to be of utmost importance to efficient production in §6.6. The Lines of Business do

have some similarities; it takes each laborer approximately the same amount of time

to assemble desktops from different product lines, avoiding further complications in

the labor capacity constraints. In this subsection, we describe how we extend the
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above formulation to a multi-product setting.

The implication for the model is that we introduce an additional index k for

the production decisions y and y and the dual variables j and p, along with the

demand parameters F and F and the physical production capacity parameter A.

Furthermore, we must divide the production variables Yt,d,L,k by the corresponding

Ai, in the physical production capacity constraint to normalize them properly. This

will then necessitate separate dual variables for the physical capacity constraints.

We enforce the build-to-order and dual-defining equality constraints for each product

line k and we aggregate production over k in the capacity constraints. The labor

production rate U is independent of k. Because demand for various lines of business

is fairly independent, we do not aggregate demand uncertainty over them.

Although this extension seems rather simple, it allows for a very interesting addi-

tional dimension in the computational analysis of the results, which we discuss next,

by showing how the firm can exploit differences among their product lines, factory

capabilities, and customer segments.

6.4 Implementation Details

We used a planning horizon of one fiscal quarter, which begins and ends with no

backlog of orders, with time discretized into thirteen weeks. At the time, the firm's

three US desktop manufacturing factories were TX in Austin, Texas; TN in Nashville,

Tennessee; and NC in Winston Salem, North Carolina. We used the firm's two major

desktop lines of business, consumer and corporate. The demand destinations were the

50 US states along with Washington D.C. We protected against demand uncertainty

for the following groups G: 1) the 50 US States and Washington D.C., 2) the thirteen

regions identified by the firm on the geo-manufacturing map, depicted in Figure 2-4,

3) Western, Central, and Eastern US, defined by the bold lines in the same map, and

4) nationwide, i.e. the sum of all demand.

Almost all data used for this model is described in §4.4 and §4.5, although some

conversions were necessary to match the scope. Many input parameters were collected
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internally by the firm's planners, including the sales forecast F, inbound shipping,

outbound shipping, and labor costs C, units-per-labor-hour U, and the maximum

permanent-to-temporary labor ratio M. The maximum number of straight-time and

overtime hours that a factory can effectively operate, S and 0, respectively, along

with the factory bottlenecks A were acquired in interviews with factory managers,

described in §2.3.

This led to implementations of the robust formulation with about 25,000 variables

and constraints. On a Intel Pentium 1.6GHz processor with 768Mb of RAM, CPLEX

10.1.1 typically required one to twenty minutes of computation time. However, for

some choices of the discrete set of permanent labor levels P, such as providing a wide

range of choices that were far from optimal or empirical values and would make the

"Big-M" constraints (6.13) and (6.14) have poor upper bounds, the optimization soft-

ware could require weeks to close the optimality gap to within 0.1%. Even after much

tweaking of algorithm parameters, it had trouble developing strong lower bounds on

the optimal solution and would exhaustively branch on the binary overtime decisions

w and permanent labor levels q. To address this, we terminated the solver early,

removed poor choices of P after testing that they did lead to sub-optimal solutions,

and then the model ran smoothly.

As in §5.2.9, challenges arose in making the model user-friendly. Given that the

planning model uses significantly less data and is used less frequently, data man-

agement issues were not such a large concern. However, significant effort was still

required to make the interface accessible and informative. For example, Figure 6-2

displays a screen shot of the interface that the firm's employees used to control the

model. The top left most part of the interface allows the user to specify whether the

backlog of orders is allowed to accumulate between weeks, whether the model should

use the larger regions of Figure 2-4 instead of states, whether the model must give

the same allocation decisions x for both Lines of Business, and which factories can

produce which Lines of Business. Below this, the user can change the time horizon

and can let x change at different frequencies, from weekly to annually. Below that

are buttons that help the user quickly access output data, update data parameters,
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and access automatically-generated visual maps of the most recent solution, which

looks like the map pairs in Figure 6-3 which we will discuss later. The center part

of the control interface in Figure 6-2 allows the user to force the model to assign any

LoB-destination pairs to a particular factory; in the screen shot, TX has been forced

to produce all Texas orders for consumer desktops; this was useful to enforce non-geo-

eligibility or disallow parts of the solution that the firm did not agree with, such as

shipping to Alaska and Hawaii from NC. The right-most part of the interface shows

how the permanent labor levels were discretized into the values of P1,; occasionally,

multiple model runs were necessary to find a satisfactory set of choices. Similar to

the Execution Model, model output was displayed in a visually-informative format

with summary statistics and comparisons to a baseline solution.

Baseline
Base +p
Base -p
Base +2p
Base -2p
Base +3p
Base 3
Ease

Ease

Dase i5
-a se -ap

BEas e 61 1

3a's + p 1
Ease+8 1

Bae 1

La 1

Bas lp 1

la i tp 2Bas '+11p
6ae 1 p 2

Base 12p 2

Base + 13P 2

Base -13p 2
Base + 14)
Base 1ap 2

Figure 6-2: User interface for the planning model, including controls to make popular
changes to input parameters and easily access the model output.
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6.5 Validation and Analysis Methodology

The purpose of the following validation effort is to understand any discrepancies

between the planning model's prediction of firm's decisions (and their monetary im-

plications) using the collected input data compared against actual decisions made

and financial costs incurred by the firm. In addition, we wish to understand how the

model's suggestions differ from the actual decisions the firm made, what managerial

insights can be extracted, and how much cost savings dynamic order allocation can

offer.

In addition to the input parameters described in §6.4, the following financial fig-

ures from Q3 (August to October) and Q4 (November to January) 2007 were available

from the firm: 1) total outbound and labor costs per factory per week, with benefits

and wages separate and distinctions between wages made in straight-time versus over-

time and by permanent employees versus temporary employees; 2) total production

quantities for each line of business (LoB) at each factory for each destination state

during each week; and 3) total labor hours split by straight-time versus overtime and

permanent versus temporary at each factory during each week.

Though the total cost figures and production quantities given by the firm's fi-

nancial figures and the model can be compared directly, the model's labor decisions

and assumptions do not fit the firm's data quantities perfectly and require some data

conversions. As can be seen in 6-1, the firm's historical production capacity fluctuates

more than our theoretical model of it; it does so for the following reasons. First, the

firm's straight-time permanent labor level varies slightly from week to week and must

be smoothed to an average value to match the model. Second, the model ignores the

fact that the firm occasionally uses overtime before saturating the maximum tempo-

rary labor bound and that temporary laborers might not stay for as much overtime

as permanent laborers. Last, the units-per-labor-hour rate U varies with labor type

and even between laborers of the same type, but the model treats it as fixed, possibly

causing bias in labor cost calculations. In order to compare similar objects, we made

reasonable conversions of the firm's historical decisions to ones that fit the model's
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structure so that we may inject some or all of their solution into the model, opti-

mize over the remaining decisions, and make comparisons. The firm considers these

conversions to either be consistent with their current planning considerations or not

significantly far from reality. In addition to comparing the model's cost prediction for

historical decisions, we are also interested in comparing the model's ability to predict

the firm's decisions and find better ones given that only some decisions are already

set.

We report and compare costs and decisions from the following scenarios:

1. The firm's reported financial cost totals.

2. The firm's production quantities multiplied by the appropriate outbound costs

and the firm's total labor hour figures multiplied by average wage rate per hour.

3. Using, the conversions just described, fix some decisions to their empirical value

and optimize any other decisions as follows:

(a) Fix all decisions (production, permanent and temporary labor, and overtime

factory hours).

(b) Fix permanent labor and optimize production, temporary UPH, and over-

time factory hours.

(c) Repeat (b) but use the robust formulation and vary aNat.

(d) Fix total demand (sum of historical production levels across factories) and

optimize all decisions.

(e) Repeat (d) but require a minimum permanent labor force at the North

Carolina factory.

(f) Repeat (d) but use the robust formulation with and without f ;> 0 and (i)

aNat = 95%, (ii) GNat = 99%, and (iii) ac = 99%VG.

We evaluate shipping costs at the mean demand F. For robust solutions, labor

costs are based on the labor levels necessary to meet the worst-case demand, as

labor was not adjustable in the robust formulation. This provides an even basis for
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comparison. It allows us to understand how much additional staffing may be necessary

and how much more we are willing to pay in outbound shipping for a particular level

of customer service. aNat refers to the service guarantee for the sum of all demand,

i.e. the national (Nat) group.

Scenario (a) serves as the baseline for almost all comparisons and represents the

model's projection of the firm's historical decisions. Scenarios (1) and (2), when

compared with (a), depict the model's accuracy. The remaining scenarios demonstrate

the cost savings potential of various dynamic order allocation strategies.

6.6 Results and Insights

A summary of the total supply chain costs for the ten scenarios above, computed for

Q4 2007, is included in Table 6.1. Similar results held for Q3 2007 but contained no

additional interesting insights. On average, of the total relevant supply chain cost,

inbound shipping constituted 15%, outbound shipping 45%, and labor 40%.

Inbound Outbound Labor Total
Scenario Cost Cost Cost Cost

(1) 0.0% 0.0% 3.4% 1.40%
(2) 0.0% 0.0% -0.1% -0.04%

3(a) 0.0% 0.0% 0.0% 0.0%
3(b) -0.2% 3.5% 13.2% 6.98%
3(c) 0.4% 3.6% 11.9% 6.57%
3(d) 3.9% 2.7% 21.5% 10.66%
3(e) -1.5% 2.9% 19.9% 9.27%
3f(i) 2.1% 3.3% 15.8% 8.34%

3f(ii) 3.3% 3.4% 12.8% 7.08%
3f(iii) 2.5% 3.1% 12.6% 7.05%

Table 6.1: Relative inbound, outbound, and labor cost savings for each scenario as a
percent of the cost of baseline scenario (a) in Q4 2007.

We now consider how well the model predicts the firm's costs to validate the

model's accuracy. First, the product of the labor cost parameters with the firm's total

reported labor hours mismatched the firm's reported labor costs by 3.4%. Second,

the assumption that permanent and temporary workers stay for the same amount of
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overtime added an additional 0. 1% error of the opposite sign. For Q3 2007, because we

smoothed the permanent labor level to its mean, there was insufficient labor available

for the model to find a feasible allocation if permanent labor was fixed, indicating

that the conversion assumption for permanent labor is rather conservative. Taken

together, these errors partially mitigate each other, because the model estimates that

labor costs less than it actually does but requires more labor than is actually needed.

The outbound shipping costs matched financial figures almost exactly. Although we

had no basis for comparing the model's inbound shipping costs to financial figures,

they are likely to be accurate on average because the model's costs were constructed

by averaging historical inbound shipping costs. Because typical labor cost savings

in Table 6.1 range from 10-20% with a bias of at most 3.4%, along with the fairly

accurate shipping costs, we are fairly confident in the model's total supply chain cost

predictions.

We now examine the model's suggested solutions to the firm's problems in sce-

narios (a) through (iii). Table 6.2 presents the suggested permanent labor levels as

percentages of the total baseline permanent labor force in scenario (a). Scenarios (a),

(b), and (c) have their labor force fixed to the model's estimate of the firm's Q4 2007

permanent labor force. Figure 6-3 contains eight U.S. maps, one for the consumer

product line and one for the corporate product line, for the four nominal scenarios (a),

(b), (d), (e), ordered from top to bottom. The map depicts which factory produced

the most desktops for that product line in Q4 2007. Note that in (a), other than

in Alaska, the production followed the static geo-manufacturing map in Figure 2-4,

using the same allocation decisions for both product lines, making this scenario highly

representative of the firm's default download rules. These results are consistent with

our analysis of the Greedy policy in §4.6.1 but are contrary to the findings in §5.3.1

where the execution model's "actual" solution did not match the map in Figure 2-4

because the firm had actually moved orders. Scenario (a) matches this map and the

firm's historical costs; in Q4 2007, the firm was producing desktops largely accord-

ing to that map which was within a few percent of the optimal shipping costs. The

Greedy policy in Chapter 4 also did so. However, in Q3 2008, the Operations Center
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moved orders in a sub-optimal manner, which is reflected in the results of Chapter 5.

Scenario TX TN NC
3(a)(b)&(c) 28.8% 24.1% 47.1%

3(d) 22.8% 30.5% 16.3%
3(e) 21.6% 14.4% 41.3%
3f(i) 27.9% 36.8% 24.8%

3f(ii) 28.6% 37.0% 27.7%
3f(iii) 31.4% 35.8% 25.3%

Table 6.2: Permanent labor capacity at each factory as a percent of the baseline (a)
total permanent labor force.

Scenario (b), which uses the same permanent labor force, suggests significant labor

savings and some outbound cost savings potential from timely and optimal allocation

of demand. In particular, as seen by comparing (a) and (b) in Figure 6-3, it suggests

having TN cover more of the consumer desktops while having TX and NC cover more

of the corporate desktops, resulting in 6.98% cost savings. The major underlying

cause for this shift is that production rates depends on product mix, which is discussed

in §2.3 and §6.3, and the associated production capacity parameters AL,k. TN was

originally built to handle the more variable and customized consumer desktops, while

TX has better technology to sort, bundle, and shrink-wrap large corporate orders;

NC was flexible. With less factory hours necessary when running a higher consumer

product mix at TN and the opposite at TX, making allocation decisions for each

product line accordingly offers the firm significant savings potential.

Another cost savings opportunity is exploiting anomalies in the shipping cost

structure. Domestic shipping costs are usually proportional to the shipping distance.

However, some third-party logistics network configurations defy this rule of thumb.

For example, as we verified in the cost data and illustrate for consumer desktops

in Figure 6-3 (b), shipping to Utah, Vermont, and New Hampshire from TN was

more cost effective than first shipping to intermediate states, such as Colorado or

Pennsylvania. Optimization software facilitates exploiting such cost discrepancies

while maintaining balanced factory loads.

In scenario (c), we were able to protect against up to twelve standard deviations
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in national demand above its mean (f > 0, aNat ~ 1) before the firm's permanent

staffing level was insufficient. Results are shown for aNat - 99% and suggest that

the additional temporary and overtime staff necessary to serve any of all but 1%

of all possible demand realizations, at that relatively high permanent staffing level,

would cost 1.3% of the labor cost or 0.41% of the total supply chain costs. For many

managers, this is a small price to pay for such strong service guarantees.

Scenario (d) represents the optimal nominal solution, wherein the model is allowed

to re-allocate production and make all labor decisions. In Table 6.2 we see a dramatic

reduction in NC's permanent workforce along with a significant labor decrease in TX

and increase at TN. The solution for scenario (d), represented by the third pair of

maps in Figure 6-3, suggests TN should cover 75% of the consumer products and

30% of corporate products and that NC should not produce any consumer products

and only 30% of corporate products, even though it is the most flexible factory in

terms of physical manufacturing lines and production capacity. Although scenario

(d) suggests 10.66% savings in total supply chain costs, the firm would find this

imbalanced arrangement unsatisfactory. We rectify this in scenario (e) by showing

that even if the NC permanent labor force remains at its minimum (89% of the NC

baseline or 41.7% of the total baseline), which is considerably higher than the staffing

levels at TX and TN, total savings of up to 9.27% are still possible by reducing the

TN workforce and letting NC and TX handle 90% of the consumer desktops. This

scenario illustrates both the cost of such arrangements with local governments and

the firm's supply chain's flexibility to adapt to such restrictions. The immense savings

from two very different solutions, along with the desire to both balance and maintain

somewhat higher staffing levels, indicate that the Robust Optimization solutions,

which we discuss next, should simultaneously provide strong service guarantees and

cost savings.

Scenarios (i), (ii), and (iii) introduce protection against uncertainty in the demand.

For all three, without f 2 0, the non-negativity constraints p + yf 2 0 resulted in

infeasible instances. One workaround would be to truncate F from below at 0, but

this heavily complicates the probability of constraint violation. Instead, as discussed
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in §6.2, the interpretation for f 2 0 is simple and only requires aNa < 1 which implies

Zd ft,d Pt,Nat < 00 Vt to generate a bounded uncertainty set. Hence, results are

shown only for f > 0.

The solutions for scenarios (i), (ii), and (iii) suggest significant increases in the

labor force at TX and decreases at NC. Interestingly, as is apparent in Table 6.1, these

three scenarios focus more on inbound costs than other solutions do, mostly because

shipping costs for large demand deviations are emphasized by the maximization in the

lower bound on the objective, but scenario (iii) does so to a lesser extent by applying

less protection against extreme demand. Demanding 95% protection against nation-

wide uncertainty costs 2.32% of the optimum but still saved 8.34% over the firm's

decisions. Raising the service level to 99% cost an additional 1.2% of the optimum

but retained 7.08% savings.

The solution for scenario (ii) assigns all uncertain demand to TN via the y in

(6.20), excluding the corporate uncertainty which it allocates to TX in week 2 and 11,

while (iii) assigns all uncertain consumer demand to TX but splits consumer desktop

uncertainty (which was much less variable) evenly across the nation. The negligible

cost difference between (ii) and (iii) suggests little need to apply upper bounds on

individual demand uncertainties Ft,d. Additionally, the predicted cost savings in Table

6.1 is uniformly lower for (iii) than (ii) even though the uncertainty set in (iii) is a

strict subset of the set for (ii). Although this is at odds with intuition, in Table

6.1, the shipping cost is evaluated at the mean value of the demand distribution;

this phenomena arises from non-linearities in the objective value as a function of

uncertainty.

In collaboration with this large build-to-order desktop manufacturing firm, we

developed a realistic large-scale planning model that is robust to fluctuations in de-

mand and offers significant cost savings in an industry with rapidly shrinking profit

margins. The model optimizes the process of dynamically balancing factory loads

and geographic transportation costs, helping to reduce both transportation and labor

costs, while maintaining quantifiable service level guarantees.

The model indicates that making separate allocation decisions for each product
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line while considering their joint impact on factory bottlenecks and staffing require-

ments, alongside shipping costs, appears to be a major venue for cost savings. Ad-

ditionally, it shows that setting minimum staffing requirements or service guarantees

can cost 1-4% percent of the "optimal" total supply chain cost but also offer immense

benefits, such as government incentives or satisfied customers, respectively. Even

then, with the model's suggestions, one could still save 7-9% in total supply chain

costs.
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Figure 6-3: Maps of the United States colored by which factory produces the most
desktops for that destination state in scenarios (a), (b), (d), and (e), for both Lines

of Business. TX is red; TN is green; NC is blue.
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Chapter 7

Conclusion

In collaboration with a large make-to-order desktop manufacturing firm that has

multiple production facilities, we explored the intricacies, practical difficulties, and

cost saving opportunities of using optimization techniques to solve complex produc-

tion planning and control problems. The decision of which orders are allocated to

each factory plays a significant role in shipping costs, expensive labor decisions, and

customer service. Throughout the development of three distinct mathematical formu-

lations of the problem, which were grounded by the firm's data, testing, and feedback,

we discussed practical challenges to balancing tractability and realism. All three mod-

els consistently indicate that further optimization beyond the firm's current practice

offers several hundred thousand dollars in daily cost saving opportunities.

We first modeled the execution problem as a stochastic Dynamic Program with a

detailed demand model and evaluated solution policies via simulation. The rolling-

horizon, certainty-equivalent Linear Programming policy solved the problem to near-

optimality despite being deterministic and offered significant savings over the firm's

Historical policy, which itself outperformed the static geoman map of the Greedy

policy by a large margin. Solutions were shown to be insensitive to forecast errors

and the cost of order lateness. Although the cost of each policy varied with demand,

their relative efficacy did not.

We then developed a much more detailed Mixed Integer Linear Programming for-

mulation of the execution problem, sacrificing the stochastic demand model in order
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to incorporate knowledge of individual orders, product lines, parts availability, limi-

tations of the labor force, and geo-eligibility. Data acquisition and estimation, model

usability, managerial issues, and the flexibility of labor were discussed at length. Re-

sults from two time periods that had different manufacturing network configurations

both show significant savings potential, similar to the previous model.

For the planning problem, a Mixed Integer Linear Program formulation determines

how to allocate geographic regions to factories. The joint capacity decision of how

to hire labor over the horizon and how long the factory should operate is handled by

breaking the hockey-stick-effect of production capacity into simpler intervals. Robust

Optimization is introduced and uncertainty sets are developed to give probabilistic

service guarantees despite having limited demand data. Production becomes an affine

function of demand and constraints are reformulated to maintain realism and make

robust counterparts tractable. The model and data is validated in comparisons to the

firm's financial figures. Again, results suggest significant cost savings potential even

when strong service guarantees are made.

Because the firm began focusing on retail rather than make-to-order sales chan-

nels and it began closing its North American factories while we studied this problem,

there was insufficient time to fully integrate these solutions into the firm's operating

environment. Although we linked software prototypes to live data, the firm's infor-

mation technology department would require several months to two years to develop

secure, fail-proof software implementations of the solutions that we recommended.

Future work in similar settings should strive to make the transition from modeling

and solving the problem off-line to regular on-line use easier and faster, including

robust data acquisition and estimation, making input and output understandable

and adjustable, handling exceptions to almost every rule, and early incorporation of

managerial concerns such as fairness.

Nonetheless, the firm did find many of the models' managerial insights useful.

The insight that the firm was most excited about was that differentiating the geoman

map by line of business could take advantage of each factory's distinctive production

capabilities while still focusing on outbound costs; most of our recommended solu-
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tions moved orders for corporate desktops to the Texas factory while emphasizing

consumer desktop production at the factory in Tennessee, mitigating the impact of

factory bottlenecks. When balancing loads across distant factories, moving orders

through an intermediate factory can help maintain low shipping costs. Because di-

rect shipping costs are not always proportional to the geographic distance between

factories and customer addresses, the geoman map need not assign contiguous regions

to factories; for example, in some cases, New Hampshire, Vermont, and Utah were

better served by the factory in Tennessee even though all surrounding states were

assigned to other factories. Another important insight was that producing as much

as possible at each factory every day can be sub-optimal; delaying production today,

by not extending shift lengths beyond their nominal value, when forecasts predict low

demand relative to capacity in the near future, can reduce labor costs. The insight

worth the most in cost savings was recognizing that the ATB to capacity ratio does

not convey imbalances in order lateness; at times, all factories may have ATB in ex-

cess of their maximum capacity, but if one factory has so many past-due orders that

it cannot produce them within the day, other factories should help. These lessons

learned from the analysis of our models are not only quick fixes to drastically improve

the performance of the firm's current practices but are also applicable to many other

production planning and control settings.

Accounting for all of these opportunities throughout the network and weighing

them simultaneously is difficult. As information becomes more available and com-

petitive advantages such as proprietary technology, geographic specialization, and

legal protections deteriorate in many industries, competing on cost, customer service,

and network-wide solutions becomes more important. This work demonstrates that

make-to-order manufacturers with multiple production facilities have much to gain

by adopting optimization techniques to quickly and effectively respond to customer

demands by leveraging their network's flexibility.
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Appendix A

Glossary of Terms and

Abbreviations

AARC Affinely Adjustable Robust Counterpart

ARC Adjustable Robust Counterpart

ASRS Automated Storage and Retrieval System

ATB Available-to-Build

BTO Build-to-Order

Cap Capacity (for producing desktops)

DP Dynamic Programming

G Greedy Policy

Geoman Geographic Manufacturing

H Historical Policy

IP Integer Programming

JM Outsourced factories that builds desktops for the firm, located in Juarez and
San Jeronimo, Mexico

LN Log-Normal(ly distributed random variable)

LP Linear Programming or Linear Programming Policy

LoB Line of Business
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MRP Material Requirements Planning

MILP Mixed Integer Linear Programming

N Normal(ly distributed random variable)

NC The firm's factory in Winston-Salem, North Carolina (NC), USA

NCLL Lean Lines (efficient high-volume production lines) at NC

PH Perfect Hindsight

Prod Production (of desktops)

RO Robust Optimization

TN The firm's factory in Nashville, Tennessee (TN), USA

TX The firm's factory in Austin, Texas (TX), USA

ULH Units-per-Labor Hour, production capacity from one person working one hour

UPH Units-per-Hour, production capacity from a the factory operating for one hour
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