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Abstract—Mobile users face a tradeoff between cost, through-
put, and delay in making their offloading decisions. To nav-
igate this tradeoff, we propose AMUSE (Adaptive bandwidth
Management through USer-Empowerment), a practical, cost-
aware WiFi offloading system that takes into account a user’s
throughput-delay tradeoffs and cellular budget constraint. Based
on predicted future usage and WiFi availability, AMUSE decides
which applications to offload to what times of the day. To
practically enforce the assigned rate of each TCP application, we
introduce a receiver-side TCP bandwidth control algorithm that
adjusts the rate by controlling the TCP advertisement window
from the user side. We implement AMUSE on Windows 7 tablets
and evaluate its effectiveness with 3G and WiFi usage data
obtained from a trial with 25 mobile users. Our results show
that AMUSE improves user utility.

I. INTRODUCTION

The growing popularity of mobile devices has recently
caused a surge in data usage, driven by applications such as
mobile video, cloud services, and online magazines. According
to [1], mobile traffic is growing at 78% annually and is
expected to account for more than 54% of IP traffic in 2015. To
cope with this unprecedented demand, many wireless Internet
Service Providers (ISPs) have adopted tiered (usage-based)
pricing plans to discourage heavy usage. In addition, they have
begun to shift some traffic to other networks, offering free
WiFi hotspots and femtocells to offload their 3G traffic [2],
[3]. However, though beneficial for ISPs, these new data plans
and offloading measures do not always match the interests of
their customers [4], [5].

A. Empowering User Decisions

An end user is interested in using his cellular (e.g., 3G) data1

plan as efficiently as possible. While offloading to WiFi saves
users money on their data spending, they must also take into
account WiFi’s intermittent availability and higher throughput
performance. At some times, e.g., while out shopping, a
user does not have immediate WiFi access and must wait
for WiFi connectivity. The user then faces a tradeoff: she
can wait for WiFi access, saving money and experiencing
higher throughput performance, or she can consume 3G data
immediately but pay for this lower-throughput traffic. The

1While our systems apply to any form of cellular data, e.g., 3G or LTE
networks, we frame our discussion in terms of 3G data.

exact structure of this tradeoff varies for different types of
traffic. To fully exploit the benefits of WiFi offloading, a user
must balance these competing cost, throughput quality, and
delay tradeoffs for different applications.

Most users will not manually balance these three competing
factors in making offloading decisions. Thus, we propose a
user-side, automated WiFi offloading system called AMUSE
(Adaptive bandwidth Management through USer Empower-
ment) that intelligently offloads user traffic from 3G to WiFi
networks according to users’ preferences. AMUSE utilizes
WiFi access prediction and application usage prediction to
decide how long application sessions should wait for WiFi,
taking into account the amount of 3G bandwidth they will
receive should WiFi not be available after they wait. In order
to build such a system, we also require a way to automatically
enforce the 3G throughput rates for those application sessions
that wait for WiFi access. In solving these problems, AMUSE
makes the following contributions:

1) We develop a system for cost-aware WiFi offloading
that exploits a user’s delay tolerances for different ap-
plications and makes offloading decisions satisfying her
throughput-delay tradeoffs and 3G budget constraints.

2) To enforce AMUSE’s bandwidth allocation decisions for
each application, we implement a practical receiver-side2

rate control algorithm for TCP.
3) We surveyed 100 participants in the U.S. to evaluate

users’ tradeoff between the cost of 3G usage and their
willingness to wait for WiFi access. We incorporate the
resulting cost-throughput-delay tradeoff estimates into
our model, and evaluate AMUSE’s performance using
both these results and 3G and WiFi usage data collected
from 25 mobile users.

B. Components of AMUSE

Figure 1 gives an overview of AMUSE’s components and
architecture. AMUSE’s User Interface interacts directly with
the user, displaying the offloading decisions made as well as
the user’s app-level usage history. The user may also set her
preferences, e.g., the maximum budget for 3G usage and delay
tolerances for different applications. The Bandwidth Optimizer

2We assume that download traffic makes up most of users’ usage, so that
the receiver is synonymous with the user.
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Fig. 1. System implementation architecture.

makes offloading decisions for the user, given the preferences
set on the User Interface. It consists of three components: the
Future Usage Predictor, the WiFi Connectivity Predictor, and
a utility maximization algorithm. To calculate the expected
utility of waiting for WiFi, the Bandwidth Optimizer predicts
the probabilities of WiFi access at future times, along with
the usage volume of different application sessions. The TCP
rate controller on end-user devices enforces the 3G band-
width allocations and offloading decisions made by AMUSE’s
Bandwidth Optimizer. The app-level session tracker measures
the actual usage for each application. These usage data are
then used to update AMUSE’s prediction modules, and are
displayed to the user on the User Interface.

II. RELATED WORK

Recent studies of 3G and WiFi usage traces, e.g., [6],
showed that offloading 3G traffic to WiFi can significantly
benefit mobile ISPs. A similar study [7] of WiFi connectivity
data showed that the high predictability of WiFi access im-
proved the offloading of several example applications. Other
works have proposed different practical offloading algorithms:
Wiffler [8], for instance, proposes an online algorithm for
offloading WiFi traffic. While Wiffler does consider different
applications’ delay tolerances, it does not take into account
the available 3G bandwidth should WiFi not be available,
in contrast to AMUSE. Win-Coupon [9] takes a slightly
different perspective and proposes a reverse-auction scheme
to incentivize users to offload their traffic so as to decrease
the congestion experienced by all users.

One of AMUSE’s unique features is its use of receiver-side
TCP advertisement windows to control application-specific
3G bandwidth from the user side. While several commercial
applications (e.g., [10], [11]) provide user-side application rate
control, most require users to manually specify the desired
rates. AMUSE provides automated bandwidth rates and, by
conforming to TCP interactions, avoids the TCP timeouts
common to existing user-side rate control applications.

III. BANDWIDTH OPTIMIZER

In this section, we describe the individual components of
AMUSE’s bandwidth optimization algorithm. In the discus-
sion below, we first introduce practical algorithms to predict
WiFi access and application-specific usage (Sections III-A and
III-B). We then incorporate these predictions into a mathe-
matical allocation framework in Section III-C and propose

a heuristic algorithm for computing AMUSE’s bandwidth
allocations and offloading decisions in Section III-D.

To consider a user’s different delay tolerances on different
applications, we group a user’s traffic into different application
types, e.g., streaming, browsing, and downloads. For practical
implementability, we assume that only the most heavily used
(e.g., top five) applications are considered, and denote these
collectively as a set J . We suppose that the day is divided into
n discrete periods of time, e.g., 24 hours, and for each period,
we predict both WiFi access and application usage volumes.

Given these predictions, a user must decide which appli-
cations to offload when, subject to a maximum 3G usage
budget. By delaying sessions to future periods, users may gain
WiFi access and the ability to offload; however, if WiFi is not
available, the user must send these sessions over 3G, which
has a finite bandwidth capacity that must be shared among
the different application types. AMUSE therefore computes
a 3G bandwidth allocation when deciding whether to wait
for WiFi. We formulate this decision as a multiple choice
knapsack problem, and propose a heuristic solution algorithm.

A. Predicting WiFi Connectivity

Since WiFi availability is heavily location-dependent, we
predict the probabilities of WiFi access by combining user
location prediction with the probabilities of WiFi access at
different locations. We use a training set of empirical WiFi ac-
cess data to estimate time-dependent WiFi access probabilities
at each location, which are updated over time. For a location
l, we denote the probability of WiFi access during period k
as vk(l). We use Lk to denote the set of observed locations
in period k.

Given the time- and location-specific probabilities vk(l), we
then predict overall WiFi access by incorporating predictions
of users’ future locations. We define wk to be the overall
WiFi probability in period k. We use a second-order Markov
chain for the location prediction, which has been shown to be
highly accurate [12]. Algorithm 1 summarizes the calculation
of overall WiFi access probabilities. We use the notation
pk+2
l (lklk+1) to denote the probability that a user is at location
l ∈ Lk+2 during period k+ 2, given his locations lk in period
k and lk+1 in period k + 1. To calculate these pk, we define
Nk(s) as the number of times that s is observed, where s is
a sequence of locations observed that ends in period k; the
observed location in each period k is denoted by λk.

B. Predicting Future Usage

At the beginning of each day, we use previous data to predict
the size sj(k) of each application type j ∈ J’s usage in each
period k. To accommodate the dependence of session size on
the amount of bandwidth allocated, our definitions of session
“size” depend on the application: for fixed-volume application
sessions such as downloads, in which the volume (MB) does
not depend on the available bandwidth, we define the session
size as its volume. For fixed-time sessions such as streaming,
in which the volume does depend on the bandwidth, we define
the size as the time to complete. We use Jv to denote the set



Algorithm 1: Computation of WiFi access probabilities
over the rest of the day in period i.

if i = 1 then
for k ← 1 to n do

wk ←
∑

l∈Lk
vk(l)

Nk(l)
N , N is the number of days of data.

// Calculate WiFi probabilities for the next
n periods.

if i > 1 then
for k ← 2 to n do

forall the l ∈ Lk , lk−1 ∈ Lk−1, lk−2 ∈ Lk−2 do
if Nk−1(lk−2lk−1) > 0 then

pkl (lk−2lk−1)←
Nk(lk−2lk−1l)

Nk−1(lk−2lk−1)

else

pkl (lk−2lk−1)←
Nk(lk−1l)

Nk−1(lk−1)

wk ←
∑

l∈Lk
pkl (λk−2λk−1)vk(l)

of fixed-volume application types, and Jt the set of fixed-time
application types.

We estimate the future usage sj(k) by taking a moving
average of the observed usage sizes σj(k) of application j in
period k over some fixed number of days. In updating our
usage estimates, we modify the moving-average calculation to
take into account our deferral recommendations. Since a user
may delay application usage to another time in order to offload
it to WiFi, we “shift the usage back” in order to evaluate and
detect changes in the underlying usage pattern over the day.

C. User Utility Maximization

1) Utility Functions: To mathematically formulate the
user’s offloading decision problem, we need a concrete mea-
sure of the user’s tradeoffs between cost, throughput, and
delay. Thus, for a given application type j in period i,
we derive expressions for users’ utility of completing those
application sessions over 3G and over WiFi. This utility is
determined by the per-volume price p of 3G, the amount of
time t the session is deferred, the bandwidth speed r at which
the session is completed, and the size s of the session. We use
Uj(p, t, r, s) to denote the utility of application j ∈ J .

To derive reasonable utility function estimates, we con-
ducted an online survey of over 100 users, primarily students,
faculty and staff from U.S. universities. For each application
(email, browsing, video, social networking, downloads), we
gave participants the cost to complete one application session
over 3G, as well as the speed of WiFi relative to 3G. We
then asked the participants how long they would wait for WiFi
access instead of immediately completing the session over 3G.

We find that the following functional form provides a good
fit for our data:{

Uj(b, t, r, s) = Cj exp (−ν + rν − µt)− ηb j ∈ Jt
Uj(b, t, r, s) = Cj exp (−(s/r)ν − µt)− ηb j ∈ Jv,

(1)

where Uj denotes the parameterized utility function for ap-
plication types j; b denotes the cost of each session (ps
if j ∈ Jv and prs if j ∈ Jt); and Cj , µ, ν, and η
are nonnegative parameters that depend on j. For ease of

notation, in the discussion below we denote the utility as
Uj(b, t, r, s) = Uj(p, t, r, s).

2) Users’ Optimization Problem: We now use the utility
functions (1) to formulate the user’s optimization problem.
To represent possible 3G and WiFi bandwidth speeds, we
normalize the volume units so that the fixed per-second WiFi
speed equals 1. The 3G speed γ is chosen from a finite subset
of possibilities Γ. For each γ ∈ Γ and period k ≥ i, we define
the indicator variables cji (k, γ) to be 1 if a session of type j
is deferred from period i to period k and assigned 3G speed
γ, and 0 otherwise.

We obtain the optimization problem

max
cji (k,γ)

n∑
i=1

[∑
j∈J

(∑
k≥i

(∑
γ∈Γ

(
wkUj

(
0, k − i, 1, sj(i)

)
+

(1− wk)Uj
(
p, k − i, γ, sj(i)

))
cji (k, γ)

))]
(2)

s.t. p

n∑
i=1

[ ∑
j∈Jv

∑
k≥i

∑
γ∈Γ

cij(k, γ)(1− wk)sj(i)

+

∑
j∈Jt

∑
k≥i

∑
γ∈Γ

cij(k, γ)(1− wk)γsj(i)

] ≤ B
(3)

(1− wl)
∑
i≤l

∑
j∈J

∑
γ∈Γ

cij(l, γ)γ ≤ (1− wl)β ∀ l (4)∑
k≥i

∑
γ∈Γ

cij(k, γ) = 1 ∀ j ∈ J ; i = 1, 2, . . . , n (5)

cij(k, γ) ∈ {0, 1} .

The user’s objective is to maximize the sum of the expected
utility from WiFi and 3G in period k, over all (original) periods
i and application types j. The constraint (5) ensures that each
application j in period i is deferred to only one period k
(we may have k = i), with 3G speed γ. This optimization
is performed subject to two constraints: a budget constraint
on expected 3G usage (3), and capacity constraints on the 3G
bandwidth in each period (4).

We assume that the user specifies a maximum monthly bud-
get B for 3G usage. We then calculate a daily budget B, taking
into account both the number of days remaining in the month
(denoted by m) and the amount of budget Br that has not yet
been spent. To allow the user some flexibility, we multiply
the average usage Br/m by the factor exp

(
1−m−1

)
. The

3G bandwidth capacity constraints (4) ensure that the sum of
the bandwidth allocated to each application in a given period
does not exceed the fixed maximum bandwidth β.
D. Online Algorithm

Algorithm 2 presents our online algorithm, along with the
WiFi and app usage predictions (Sections III-A and III-B).
While various algorithms exist to compute solutions of the
knapsack problem, we use a Lagrange-multiplier based solu-
tion [13] that has relatively small computational overhead and



Algorithm 2: Bandwidth allocation over a day.
i← 1 // The current period is denoted by i.
B ← (Br/m) exp

(
1−m−1

)
// Calculate the budget for the

day.
Calculate WiFi probabilities using Algorithm 1 with i = 1.
Calculate predicted usage over all n periods using a moving average.
Allocate bandwidth by approximately solving (2-5).
for i← 2 to n do

B ← B − Si−1 // Remaining daily budget, given the
spending Si−1 in period i− 1.

Update WiFi probabilities using Algorithm 1.
Update bandwidth allocations by re-solving (2-5) for the remaining
n− i+ 1 periods.

generally returns good approximations to the optimum. At the
beginning of each day, the user computes an initial solution,
given estimates of the wk and sj(k). As the user consumes
data over the day, we update both the remaining daily budget
B and our predictions of future WiFi connectivity {wk}. The
new optimization problem over the remainder of the day can
then be solved by taking the existing solution as the initial
point of our Lagrange multiplier algorithm.

IV. IMPLEMENTATION

We implemented an AMUSE prototype on Windows 7
tablets with the system architecture shown in Fig. 1. We used
the Windows Filtering Platform (WFP) to track application
usage and implemented a user-side TCP rate control algorithm
to control each application’s download rate. The AMUSE
prototype displays both the total usage and the usage of
individual applications on a daily, weekly, and monthly basis,
as well as the current upload and download rates. We also
provide user interfaces from which the user can, if he so
chooses, set the download rate of each application, as well as
his billing starting date and data plan (e.g., 2GB per month).

We use TCP ACK clocking to shape the incom-
ing/downloading rates of TCP traffic, by modifying the TCP
advertisement window size (rcv wnd) field in each ACK
packet using the WFP driver. While we could instead adjust
the round-trip time (RTT) of each flow (i.e., stretching each
ACK packet), that approach increases the overall response
time. Modifying the advertisement window size does not
increase the RTT of each flow, making it suitable for all TCP
applications. Unlike current traffic control tools, our proposed
control mechanism does not forcibly drop incoming packets,
which can induce such undesirable side effects as frequent
TCP timeouts.

Algorithm 3 presents the pseudo code of our implementa-
tion. The algorithm periodically calculates the traffic through-
put for each application in each period. If the throughput
for a given period is smaller than the target bandwidth
(target BW ), we increase the advertisement window size by
an amount (inc) proportional to the deficit throughput. Simi-
larly, if the throughput is larger than the target bandwidth, we
decrease the size of the advertisement window by an amount
proportional to the surplus throughput (- inc). Depending
on the increase/decrease of the advertisement window, the
TCP sender will increase or decrease the rate of the traffic
accordingly. Here, we multiply the deficit/surplus bandwidth

Algorithm 3: Receiver-side TCP rate control.
Initialization:
target BW ← // Desired bandwidth (bytes/sec)
min adv win← 512 (bytes)
adv win← min adv win
last check time← current time (sec)
check period← 0.2 (sec)
bytes← 0 (bytes)

// accumulated received bytes for current period
α← 0.5 // smoothing factor

For each TCP data and ACK packet:
begin

if a data packet is received then
bytes← bytes+ packet len
if current time− last check time > check period then

interval← current time− last check time
throughput← bytes/interval

inc← adv win ∗ target BW−throughput
target BW ∗ α

adv win← adv win+ inc
if adv win > rcv buf size then

adv win← rcv buf size

else if adv win < min adv win then
adv win← min adv win

last check time← current time
bytes← 0

if an ACK packet is ready to be sent then
set the advertisement window of the ACK to adv win

TABLE I
BASIC RATE CONTROL TEST USING IPERF. PARENTHESES DENOTE THE

STANDARD DEVIATIONS.

Target rate 100 Kbps 500 Kbps 1,024 Kbps

Ethernet 103.8 (0.42) 506.2 (0.42) 1031.2 (1.81)
WiFi 83.14 (3.63) 459 (6.46) 902.4 (21.67)
3G 95.28 (1.52) 474.7 (11.86) 896 (47.28)

by a ratio α, in order to reduce the oscillation of throughput
due to the drastic window size changes. To verify Algorithm
3 in practice, we ran Iperf over Ethernet, WiFi, and 3G
networks with various target bandwidths. The experimental
results are shown in Table I.

V. EXPERIMENTAL EVALUATION

To evaluate the effects of AMUSE’s Bandwidth Optimizer
(Algorithm 2) on users’ offloading experience, we collected
3G and WiFi usage and mobility data from users. We then
simulate the performance of AMUSE’s bandwidth optimizer,
taking the recorded usage data as the historical usage, and
compare with two other known offloading algorithms.

We recruited 25 iPhone users to participate in our trial. We
recorded participants’ 3G and WiFi usage, WiFi availability,
and user location at a ten minute granularity by implementing
a usage monitoring app and installing it on their iPhones.
The data were recorded for one week. Since some of our
25 users exhibited very similar traffic patterns, we choose
eight representative users’ data on which to run the AMUSE
simulation. We use three days of data as each user’s usage
history, and run the simulation assuming hour-long periods.
Users’ monthly budgets for 3G data usage are chosen from a
truncated normal distribution between $20 and $40. We com-
pare AMUSE’s performance to two baseline algorithms: on-
the-spot offloading, which offloads only if WiFi is immediately
available, and delayed offloading, which waits up to one hour
for WiFi [6].
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Figure 2 compares each user’s utility under AMUSE to that
under our benchmark algorithms. For each user, both bench-
mark algorithms decrease the utility. On average, the utility of
on-the-spot offloading is 24% less than that of AMUSE, while
that of delayed offloading is 23% lower. AMUSE yields higher
utility values than on-the-spot offloading due to offloading
more traffic onto WiFi: Fig. 3 shows the amount of traffic
offloaded under both benchmark algorithms, as compared to
AMUSE. We see that for all users, the amount of traffic
offloaded is larger with AMUSE than it is with on-the-spot
offloading; thus, AMUSE leverages the delay tolerance of
some sessions by allowing them to wait for WiFi access. Users
then save money: Fig. 4 compares users’ amount spent under
the two benchmark algorithms to that spent with AMUSE.
Users consistently spend over 20% more with on-the-spot
offloading, and on average increase their spending by 37%
compared with AMUSE.

Though AMUSE does offload some delay-tolerant traffic
onto WiFi, it trades off between reducing users’ spending by
offloading traffic and completing some sessions immediately
due to their intolerance of delay. Figure 3 shows that delayed
offloading offloads more traffic than AMUSE for users 3, 6,
and 7: AMUSE sends some sessions over 3G without waiting
for WiFi, allowing users to spend more and delay less. On
the other hand, delayed offloading offloads less traffic than
AMUSE for users 1, 2, 4, 5, and 8: AMUSE allows delay-
tolerant traffic to wait more than an hour for WiFi. We see
from Fig. 4 that this additional wait for WiFi reduces these
users’ spending; the resulting gain in utility offsets the loss in
utility from delaying the session.

VI. CONCLUSION

In this paper, we propose AMUSE, a cost-aware WiFi
offloading system that maximizes the end user’s utility under
her 3G budget constraints. AMUSE consists of two main com-
ponents: a bandwidth optimizer and TCP rate controller. By
predicting future usage and WiFi availability, the bandwidth
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optimizer chooses how long an application should wait for
WiFi access, as well as a 3G data rate should WiFi not be
available. These choices are optimized so as to balance the
user’s tradeoffs between the cost of sending an application
over 3G, the higher throughput received over WiFi, and the
delay inherent in waiting for WiFi. The TCP rate controller
practically enforces the 3G rates chosen for each application
by controlling the TCP advertisement window from the user
side. We prototyped AMUSE on Windows 7 tablets and
evaluated its performance with mobile traces from 25 users.
Our results show that AMUSE can improve data users’ utility.
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