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Abstract

Feature subset selection has become an important challenge in areas of pattern recognition, machine learning and data mining. As different
semantics are hidden in numerical and categorical features, there are two strategies for selecting hybrid attributes: discretizing numerical
variables or numericalize categorical features. In this paper, we introduce a simple and efficient hybrid attribute reduction algorithm based on a
generalized fuzzy-rough model. A theoretic framework of fuzzy-rough model based on fuzzy relations is presented, which underlies a foundation
for algorithm construction. We derive several attribute significance measures based on the proposed fuzzy-rough model and construct a forward
greedy algorithm for hybrid attribute reduction. The experiments show that the technique of variable precision fuzzy inclusion in computing
decision positive region can get the optimal classification performance. Number of the selected features is the least but accuracy is the best.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Attribute reduction, also called feature subset selection is
a common problem in pattern recognition, machine leaning
and data mining as there usually are many candidate attributes
collected to represent recognition problems. Databases expand
quickly not only in the rows (objects) but also in the column
(attributes) nowadays. Tens, hundreds even thousands of at-
tributes are stored in databases in some real-world applications
[1]. Some of attributes are irrelevant to the learning or recog-
nition tasks. Experiments show irrelative attributes will deteri-
orate the performance of the learning algorithms for the curse
of dimensionality, increase training and test times [2,3]. Fea-
ture subset selection can also facilitate data visualization and
data understanding. What is more, measuring and storing all
of the attributes relevant and irrelevant to the recognition prob-
lems is very expensive in practice. It is likely that the omission
of some features will not seriously increase error probability.
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In such cases, the loss of optimality may not only be tolerable
but even desirable relatively to the costs involved [4].

Roughly speaking, there are two strategies in attribute subset
selection. One is called wrapper [5], which employs a learning
algorithm to evaluate the selected attribute subsets. As eval-
uating the attributes subsets by training and test a classifier,
wrapper is usually time consuming. The other is called filter,
which selects attributes with a significance measure, indepen-
dent of learning algorithms, such as distance [6], information
gain [7], consistency [8], similarity [9,10] and dependency [11].
In essence, all the measures can be divided into two classes:
the distance-based measures and consistency-based measures.
Linear discriminant analysis (LDA), principle component anal-
ysis (PCA), neural networks [12] and SVM [13] are the rep-
resentatives of algorithms based on distances. In this process,
all attributes are considered as numerical. They are coded as
integral numbers if there are some categorical features in data.
However, methods based on consistency take all the attributes
as symbolic values. The numerical attributes are discretized
into several intervals and the intervals are assigned with a set
of symbolic values [14–16]. Consistency measures do not at-
tempt to maximize the class separability but try to retain the
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discriminating power of the data of original features. Rough set
based attribute reduction presents systematic theoretic frame-
work for consistency-based feature subset selection [17,18].

It is unreasonable to measure similarity or dissimilarity with
distance metric as to categorical attributes. For example, as to
outlook attribute, it takes values in set {sunny, rainy, overcast}.
We can code the value set as 1, 2 and 3, respectively. However,
we can also code them with 3, 2 and 1. It is nonsense to com-
pute the distance between the coded values. On the other side,
discretizing numerical attributes usually bring information loss
because the degrees of membership of values to discretized val-
ues are not considered [19]. It is clear that some reduction al-
gorithms for hybrid attributes should be developed. In order to
deal with this problem, Tang and Mao [20] presented an error
probability-based measure for mixed feature evaluation. For a
mixed feature subset, the entire feature space is first divided
into a set of homogeneous subspaces based on nominal features.
The merit of the mixed feature subset is then measured based
on sample distributions in the homogeneous subspaces spanned
by continuous features. In Ref. [21] Pedrycz and Vukovich con-
sidered features to be granular rather than numerical. Shen and
Jensen [18,22,23] generalized the dependency function defined
in classical rough set model into the fuzzy case and presented
a fuzzy-rough QUICKREDUCT algorithm. In Refs. [24,25]
Bhatt and Gopal showed that QUICKREDUCT algorithm is not
convergent on many real data sets due to its poorly designed
stopping criteria; and the computational complexity of the al-
gorithm increases exponentially with the number of input vari-
ables and in multiplication with the size of data patterns. They
gave the concept of fuzzy-rough sets on compact computational
domain, which is then utilized to improve computational ef-
ficiency. As Shannon’s information entropy was introduced to
search reducts in classical rough set model [26,27], Hu et al.
extended the entropy to measure the information quantity in
fuzzy sets [28] and applied the proposed measure to calculate
the uncertainty in fuzzy-rough approximation spaces [29] and
reduce hybrid data [30].

Granular computing has attracted much attention in the last
decade. Both Pedrycz’s work and fuzzy-rough set-based hy-
brid feature selection algorithms are involved with a basic idea,
which is to generate a family of fuzzy information granules
from numerical features and transform numerical attributes into
fuzzy linguistic variables, which keep the semantics of the data
and are easy to understand. Fuzzy information granulation and
granular computing are important concepts in fuzzy set and
rough set theories in recent years [31,32]. Fuzzy set, rough set
and their combinations seem to be efficient tools for granular
computing [33–36]. The approaches to generating fuzzy infor-
mation granules from data [34,35,37,38], the models for granu-
lar computing [39–41], the applications of granular computing
[21,42–44] were discussed, respectively. In this paper we will
show a fuzzy-rough model for granular computing and hybrid
data reduction.

The classical rough set model, proposed by Pawlak [45],
is based on crisp equivalence relations and crisp equivalence
classes. It is applicable to categorical attribute reduction and
knowledge discovery. Categorical attributes partition the object

set into some mutually exclusive crisp subsets, called elemen-
tal sets, or elemental information granules. Arbitrary subset X
in the universe can be approximated by the union of the ele-
mental information granules. The maximal union of the infor-
mation granules, which objects are contained in X, is called the
lower approximation of X. The minimal union of the informa-
tion granules, which can contain the objects in X, is called the
upper approximation of X. The categorical attributes yield a
granularity of the universe, and then we approximate any con-
cept in the specific granularity level. The finer the granulated
space, the more precise the approximation. In order to deal with
numerical and fuzzy attributes in information systems, rough
set and fuzzy set are combined together [46–49]. Fuzzy infor-
mation granules are the foundation stone of these models, fuzzy
information granulation and fuzzy equivalence relations were
introduced to form fuzzy granule systems. The fuzzy granules
can be generated from numerical or fuzzy data by fuzzy parti-
tion [50], fuzzy clustering [21,51] and genetic algorithms [55].

In this paper, we do not discuss how to generate a family of
fuzzy information granules from a hybrid data set. We will fo-
cus on studying the relations and structures of the fuzzy infor-
mation granules. We present a novel fuzzy-rough model based
on the inclusion degree [52,53] and show that the proposed
model is a natural extension of Pawlak’s model. Then we de-
fine the attribute significance measure based on the proposed
model, which is applicable to both categorical and numeric at-
tributes, and construct a greedy hybrid attribute reduction for
classification analysis. The experiments show that the proposed
method can keep or improve the classification power with very
few features.

The rest of the paper is organized as follows. Section 2 shows
some basic concepts on rough sets and fuzzy-rough sets. Sec-
tion 3 presents the novel fuzzy-rough set model. The signifi-
cance measure for hybrid features and reduction algorithm are
introduced in Section 4. The experimental analysis is given in
Section 5. Then conclusion comes in Section 6.

2. Fundamentals on Pawlak’s rough sets and fuzzy-rough
sets

Pawlak’s definition on rough sets starts with an equivalence
relation and a family of equivalence classes. A finite and
nonempty universe of objects U = {x1,x2, . . . , xn} is charac-
terized with a collection of attributes. Each attribute generates
an indiscernible relation R on U. Then 〈U, R〉 is called an
approximation space. The equivalence classes [xi]R are called
elemental information granules in the approximation space.
They form a family of concepts to approximate arbitrary subset
of objects. Given an arbitrary subset X ⊆ U , one can define
two unions of elemental information granules:{

RX = ∪{[xi]|[xi] ⊆ X},
RX = ∪{[xi]|[xi] ∩ X �= ∅}.
Equivalently, they can also be written as{
RX = {xi |[xi] ⊆ X},
RX = {xi |[xi] ∩ X �= ∅}, .
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They are called lower and upper approximations of X in the
approximation space. We say X is a definable set if RX = RX,
otherwise, X is a rough set. Rough sets are the object subsets
which cannot be precisely described by the corresponding ele-
mental information granules.

There are two kinds of attributes as to a classification
problem: condition A and decision D. Assume the ob-
jects are partitioned into N mutually exclusive crisp subsets
{X1, X2, . . . , XN } by decision D, where Xi corresponds the
object subset with decision i. Given arbitrary subset B ⊆ A,
then we can define the lower and upper approximations of the
decision D as

{
RD = {RX1, RX2, . . . , RXN },
RD = {RX1, RX2, . . . , RXN },

where R is the equivalence relation induced by attributes B. RD

is also called the positive region of D with respect to condition
B, denoted as POSB(D).

A dependency function involving B and D is formulated as

� = |POSB(D)|
|U | ,

where |Q| is the cardinality of a set. Dependency function re-
flects B’s power to approximate D. 0���1. We say D com-
pletely depends on B if �= 1. It means that the decision can be
precisely described by the elemental information granules gen-
erated by attributes B. This function measures the significance
of categorical attributes relative to the decision. In practice, the
attributes may be numerical or fuzzy. Correspondingly, the re-
lation and partition induced by these attributes are fuzzy. In
this case, we are involved in approximating a fuzzy or crisp set
with a family of fuzzy information granules.

Formally, a fuzzy classification problem can be described
as follows. A set of fuzzy input and output attributes
{P1, P2, . . . , Pp} and d are given to describe the objects
U = {x1,x2, . . . , xn}. Each attribute is limited to a small set
of fuzzy linguistic terms A(Pi) = {Fik|k = 1, 2, . . . , Ci}.
Each object xi ∈ U is classified by a set of classes
A(Q)={Fl |l =1, . . . , CQ}, where Q is a decision attribute and
Fl can be a fuzzy set or a crisp set. One can generate a family
of fuzzy information granules with P, where the fuzzy parti-
tion is defined as U/P = {Fik|i = 1, . . . , p; k = 1, . . . , Ci}.
Given arbitrary fuzzy set A in U, uA(x) : U → [0, 1], ∀x ∈ U

and Fik ∈ U/P , one define a tuple 〈uA, uA〉, where lower and
upper approximation membership functions are defined as

uA(Fik) = inf
x∈U

max{1 − uFik
(x), uA(x)},

uA(Fik) = sup
x∈U

min{uFik
(x), uA(x)}.

The positive region of a fuzzy set Fl is the maximal mem-
bership degree with which a unique class can be classified by

fuzzy set Fik , written as

uPOS(Fik) = sup
Fl∈A(Q)

{uFl
(Fik)}.

The membership of x ∈ U to the fuzzy positive region is given
by

uPOS(x) = sup
Fik∈A(Pi)

min{uFik
(x), uPOS(Fik)}.

With the definition of fuzzy positive regions, one can compute
the dependence function as

uP (Q) =
∑

x∈UuPOS(x)

|U | .

In [24,25], Bhatt proposed the concept of fuzzy-rough sets
in the compact computational domain based on fuzzy t-norm
and t-conorm, where the membership functions of lower and
upper approximations are defined as

uA(Fik) =
{

inf
x∈DA(Fik)

max{uFik
(x), uA(x)}; DA(Fik) �= ∅},

1, DA(Fik) �= ∅,

uA(Fik) =
{

sup
x∈DA(Fik)

min{uFik
(x), uA(x)}; DA(Fik) �= ∅},

0, DA(Fik) = ∅,

where DA(Fik) and DA(Fik) are compact computational do-
mains for lower and upper approximation membership func-
tions, defined as{

DA(Fik) = {x ∈ U |uFik
(x) �= 0 ∧ uA(x) �= 1},

DA(Fik) = {x ∈ U |uFik
(x) �= 0 ∧ uA(x) �= 0}.

3. A new fuzzy-rough model and attribute properties in
fuzzy-rough approximation spaces

In most of the cases, a classification problem can be formu-
lated as 〈U, Ar ∪Ac, d〉, where U is the universe of objects, Ar

is the subset of condition attributes with numerical values and
Ac is categorical attributes; d is the decision with N finite val-
ues. The learning task is to build a mapping f : Ar ∪ Ac → d

with the given objects. Here, the universe is partitioned into
N crisp equivalence classes by the decision; whereas, Ar ∪ Ac

generate some fuzzy information granules in the universe. The
task is to approximate the crisp decision classes with the fuzzy
information granules.

3.1. Fuzzy-rough set model

Definition 1. Assumed R is a fuzzy equivalence relation in-
duced by a numerical attribute or fuzzy attribute. ∀x, y, z ∈ U ,
it satisfies:

(1) reflexivity: R(x, x) = 1;
(2) symmetry: R(x, y) = R(y, x); and
(3) transitivity: R(x, z)�

∨
y(R(x, y) ∧ R(y, z)),
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Fig. 1. The lower approximation and upper approximation of a crisp set.
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Fig. 2. Lower and upper approximation regions.

where ∧ and ∨ mean the operations “min” and “max”, respec-
tively. The relation can be written as a matrix as

M(R) =

⎡
⎢⎢⎣

r11 r12 · · · r1n

r21 r22 · · · r2n
...

...
. . .

...

rn1 rn2 · · · rnn

⎤
⎥⎥⎦ .

Definition 2. The fuzzy equivalence class [xi]R of xi induced
by the relation R is defined as

[xi]R = ri1

x1
+ ri2

x2
+ · · · + rin

xn

,

where “+” means the union. Obviously, [xi]R is a fuzzy infor-
mation granule. It is easy to find that the definition of fuzzy
equivalence classes is a natural extension of crisp one. If the
attribute is categorical, the relation, relation matrix and equiv-
alence class will degrade to the classical case.

Definition 3. R is a fuzzy equivalence relation on the uni-
verseU; X ⊆ U is a crisp subset of objects. Then the lower and
upper approximations of X can be defined as

RX = {xi |[xi]R ⊆ X, xi ∈ U},
RX = {xi |[xi]R ∩ X �= ∅, xi ∈ U},
where A ⊆ B means ∀x ∈ U , uA(x)�uB(x).

Correspondingly, the boundary region of X is given as

BN(X) = RX − RX.

In Fig. 1, X is the crisp set. A and B are two fuzzy sets
generated by a fuzzy relation. A ⊆ X, we say xi is the object
belonging to the lower approximation of X. B /⊂ X and B∩X �=
∅, then we say xi belongs to the upper approximation.

In Fig. 2, X is the crisp set of points in the interval [x0,x1].
We granulate the x space with a family of triangle fuzzy sets.

In Fig. 2(1), the fuzzy information granules with the center xi

and xj is the limits of the lower approximation of X because
two fuzzy sets are completely included in X and the fuzzy
sets beyond them are not. Then the lower approximation is the
shadow in Fig. 2(1). Similarly, the upper approximation is the
shadow in Fig. 2(2).

It is easy to find that the lower and upper approximations
of a crisp X are crisp, which will bring much convenience in
computing them in real-world applications and overcome the
problem proposed in Ref. [25].

The inclusion operator “⊆” for fuzzy sets was introduced by
Zadeh [54], called Zadeh’s inclusion. It is too strong in real-
world applications. Some generalizations were proposed.

Given a fuzzy set A, we say x �-belong-to A, when and only
when x ∈ A� where A� is the �-cut of A. ∀x ∈ U if we have
x ∈ (A ∪ B)� we say that fuzzy set A �-belong-to B, denoted
by A − <�B.

Equivalently, the weak inclusion can be defined as follows:

∀x ∈ U, max(1 − uA(x), uB(x))��.

On the other hand, we can introduce inclusion degree func-
tion to loosen Zadeh’s inclusion.

Definition 4. Let A and B be two fuzzy sets in the universe U,
the inclusion I (A, B) is defined as

I (A, B) = ||A ∩ B||
||A|| ,

where ||A|| = |A|/|U |, |A| = ∑
x∈UuA(x).

We denote A⊂�B, meaning I (A, B)��.

Definition 5. Based on the inclusion function, the lower, upper
approximations and boundary region of X ⊆ U can also be
defined as

RX = {xi |I ([xi]R, X) = 1, xi ∈ U},

RX = {xi |I ([xi]R, X) > 0, xi ∈ U},

BN(X) = {xi |1 > I ([xi]R, X) > 0, xi ∈ U}.

Definition 6. The variable precision lower and upper approx-
imations of a crisp subset X by a family of fuzzy information
granules are defined as

RkX = {xi |I ([xi]R, X)�k, xi ∈ U},

RlX = {xi |I ([xi]R, X) > l, xi ∈ U},

where 1�k�0.5, 0.5 > l�0.

And the variable precision boundary region is

BNkl = RlX − RkX = {xi |k�I ([xi]R, X) > l, xi ∈ U}.
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Fig. 3. Variable precision fuzzy-rough sets.

The variable precision fuzzy-rough model allows partial in-
clusion, partial precision, partial certainty, which is the coral
advantage of fuzzy information granulation [31], and simulates
the remarkable human ability to make rational decisions in an
environment of imprecision (see also Fig. 3).

The forms of the proposed definitions of fuzzy-rough sets
are quite similar to Pawlak’s one. The unique difference is that
the elemental sets or elemental information granules are gener-
ated with a fuzzy equivalence relation, therefore they are fuzzy.
This generalization of rough sets make the theory applicable
to deal with hybrid data learning and classification, which is
most often the case that the values of attributes may be both
crisp and real-valued. It the same time, the proposed model
is easy to implement and understand compared with those in
Refs. [18,24,46,49].

3.2. Hybrid information systems and hybrid decision tables

A hybrid information system can be written as 〈U, A=Ar ∪
Ac, V = V r ∪ V c, f 〉, where U is the set of objects, V r is the
domain of real numbers for real-valued attributes Ar , V c is the
domain of categorical values for categorical attributes Ac, f is
an information function f : U × A → V . As to classification
problems, there is a decision variable in the information system.
We called the information system as a decision table in this
case.

A categorical attribute can induce a crisp equivalence rela-
tion on the universe and generate a family of crisp information
granules, whereas a numerical attribute will give a fuzzy equiv-
alence relation and form a set of fuzzy information granules.
As crisp information granules are a special case of fuzzy ones,
we will consider all of them as fuzzy ones in the following.

Given a hybrid information system 〈U, A, V, f 〉, B, B1, B2 ⊆
A, we means RB as the relation induced by the attribute subset
B. Then we have

(1) RB = ∩a∈BRa ;
(2) RB1∪B2 = RB1 ∩ RB2 ;
(3) [x]B = ∩a∈B [x]a ;
(4) if B1 ⊆ B2, RB1 ⊇ RB2 ; and
(5) if B1 ⊆ B2, [x]B1 ⊇ [x]B2 .

Definition 7. Given a hybrid decision table 〈U, A ∪ D, V, f 〉,
X1, X2, . . . , XN are the object set with decision 1 to N, [xi]B is
the fuzzy information granules including xi and generated with
attributes B ⊆ A. Then the lower and upper approximations of

the decision D are defined as

BD = {BX1, BX2, . . . , BXN },
BD = {BX1, BX2, . . . , BXN },
where

BX = {xi |I ([xi]B, X) = 1, xi ∈ U},
BX = {xi |I ([xi]B, X) > 0, xi ∈ U}.

The decision boundary region of D with respect to attributes
B is defined as

BN(D) = BD − BD.

Definition 8. The lower approximation of decision D also
called positive region, denoted as POSB(D). As to a classifi-
cation problem, one hopes the positive region is as great as
possible and the boundary region is as little as possible. We
define a dependency function as the ratio of positive region to
the universe as follows:

� = |POSB(D)|
|U | .

Obviously, 0���1. The dependence function reflects the
approximation power of a set of hybrid condition attributes and
it can be used as the significance of attribute set.

Theorem 1. 〈U, A ∪ D, V, f 〉 is a hybrid decision table; A is
the set of hybrid condition attributes, D is the decision. B1 ⊆
B2 ⊆ A, then we have

POSB1(D)�POSB2(D) and �B1
(D)��B2

(D).

Theorem 2. 〈U, A ∪ D, V, f 〉 is a hybrid decision table. If
the decision table is compatible, namely, RA ⊆ RD , we have
�A(D) = 1.

Definition 9. Given an hybrid decision table 〈U, A∪D, V, f 〉,
B ⊆ A, we say attribute set B is a relative reduct if

(1) �B(D) = �A(D) and
(2) ∀a ∈ B, �B(D) > �B−a(D).

The first condition guarantees that the reduct has the same ap-
proximation power as the whole attribute set, and the second
condition guarantees there is no redundant or superfluous at-
tribute in the reduct.

As to the variable precision fuzzy-rough model, the lower
and upper approximations, boundary and dependence function
also can be defined as so.

Definition 10. Given a hybrid decision table 〈U, A∪D, V, f 〉,
X1, X2, . . . , XN are the objects with decision 1 to N, [xi]B is
the fuzzy information granules including xi and generated with
attributes B ⊆ A, Then the k-lower and l-upper approximations
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of the decision D are defined as

BkD = {BkX1, BkX2, . . . , BkXN },
BlD = {BlX1, BlX2, . . . , BlXN },
where

BkX = {xi |I ([xi]B, X)�k, xi ∈ U}, 1�k�0.5,

BlX = {xi |I ([xi]B, X) > l, xi ∈ U}, 0.5 > l�0.

The k–l decision boundary region of D with respect to at-
tributes B is defined as

BNkl(D) = BlD − BkD.

Here BkD are also called k–l decision positive region of D
with respect to B, denoted as POSkl

B (D).

Definition 11. k–l dependency of D on B is defined as

�kl
B (D) = |POSkl

B (D)|
|U | .

Correspondingly, we also have the following theorems.

Theorem 3. 〈U, A ∪ D, V, f 〉 is a hybrid decision table; A is
the set of hybrid condition attributes, D is the decision. B1 ⊆
B2 ⊆ A, then we have

POSkl
B1

(D)�POSkl
B2

(D) and �kl
B1

(D)��kl
B2

(D).

Theorem 4. 〈U, A ∪ D, V, f 〉 is a hybrid decision table. If
the decision table is consistent, namely, RA ⊆ RD , we have
�kl
A (D) = 1.

Definition 12. Giving a hybrid decision table 〈U, A∪D, V, f 〉,
B ⊆ A, we say attribute set B is a k–l relative reduct if:

(1) �kl
B (D) = �kl

A (D) and
(2) ∀a ∈ B, �kl

B (D) > �kl
B−a(D).

Compared with Pawlak’s rough set model, we can find that
the forms of the proposed fuzzy-rough models are quite similar
to the classical. However, the model is generalized and can deal
with numeric and fuzzy attributes in the information systems.

4. Attribute reduction algorithms for hybrid data

As mentioned above, the dependency function measures
the approximation power of a set of condition attributes. In
rough set framework, attribute reduction is to find some at-
tribute subsets which have the minimal attributes and the
maximal approximation power. To construct an attribute
reduction algorithm three problems should be made clear: at-
tribute evaluating measure, search strategy and stop criterion.
What is more, it is easy to induce a crisp equivalence relation
with categorical attribute; however, as to numerical feature, it
is not so straightforward. We should construct an algorithm to

generate fuzzy information granules from the data with hybrid
attributes. In this section we will deal with the problems.

4.1. Significance measures for hybrid attributes

The dependency function calculates the approximating power
of an attribute set. It can be used as an attribute significance
measure.

Definition 13. Given a hybrid decision table 〈U, A∪D, V, f 〉,
B ⊆ A, ∀a ∈ B, one can define the significance of a in B as

Sig1(a, B, D) = �B(D) − �B−a(D).

Note that an attribute’s significance is the function of three
variables: a, B and D. An attribute a may be of great signifi-
cance in B1 but of little significance in B2. What is more, the
attribute’s significance will be different for each decision if they
are multiple decision attributes in a decision table.

The above definition is applicable to backward feature selec-
tion. Similarly, a measure applicable to forward selection can
be defined as follows.

Definition 14. Given a hybrid decision table 〈U, A∪D, V, f 〉,
B ⊆ A, ∀a ∈ A−B, one can define the significance of a in B as

Sig2(a, B, D) = �B∪a(D) − �B(D).

As 0��B(D)�1 and ∀a ∈ B: �B(D)��B−a(D), we have

0�Sig1(a, B, D)�1, 0�Sig2(a, B, D)�1.

We say attribute a is superfluous in B with respect to D if
Sig1(a, B, D) = 0, otherwise a is indispensable.

As pointed out before, the definitions of lower and upper
approximations in fuzzy-rough model is too strict to tolerance
noise in data. The variable precision fuzzy-rough model simu-
lates the human ability making rational decision in the condi-
tions of imprecision. This is just Zadeh’s intention in proposing
fuzzy information granulation [31] and computing with words
[40]. Therefore, the variable precision fuzzy-rough model is an
efficient implementation of granular computing. It will have
good robustness and will work well in the environment with
noise.

Two definitions of attribute significance can be defined based
on the variable precision fuzzy-rough model.

Definition 15. Given a hybrid decision table 〈U, A∪D, V, f 〉,
B ⊆ A, ∀a ∈ B, one can define the k–l significance of a in B as

Sigkl
3 (a, B, D) = �kl

B (D) − �kl
B−a(D).

Definition 16. Given a hybrid decision table 〈U, A∪D, V, f 〉,
B ⊆ A, ∀a ∈ A − B, one can define the k–l significance of a
in B as

Sigkl
4 (a, B, D) = �kl

B∪a(D) − �kl
B (D),
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Fig. 4. Some similarity relation functions for numeric data.

where k and l are two thresholds, which reflect users’ tolerance
degrees of noise. The less the k and l, the more the users can
tolerance noise.

This section presents four measures for computing the sig-
nificance of hybrid attribute set. We also can construct some
measures based on the size of boundary region or upper ap-
proximations.

4.2. Generating fuzzy information granules with hybrid
attributes

In Ref. [31] Zadeh suggested that among the basic concepts
which underlie human concept there are three that stand out in
importance: granulation, organization and causation. Granula-
tion of a set of objects U results in a collection of granules of
U, with a granule being a clump of objects which are drawn
together by indistinguishability, similarity, proximity or func-
tionality. Models of information granulation in which the gran-
ules are crisp play important roles in a wide variety of meth-
ods and approaches, such as interval analysis, quantization and
rough set theory. However, crisp information granulation fails
to reflect the fact that in much of human reasoning and concept
formation the granules are fuzzy rather than crisp. In human
cognition, fuzziness of granules is a direct consequence if fuzzi-
ness of the concepts of indistinguishability, similarity, proxim-
ity and functionality. Fuzzy information granulation underlies
the remarkable human ability to make rational decisions in con-
ditions of imprecision, partial knowledge, partial certainty and
partial truth.

Fuzzy information granulation plays an important role in hu-
man reasoning with uncertainty. As to categorical attributes,
we can only generate a family of crisp equivalence relations
and crisp equivalence information granules. However, we can
produce a series of fuzzy information granules from numerical
data with some granulating techniques. There have been some
methods to find fuzzy information granules from data. In Ref.
[33] several definitions of information granules are proposed
based on equivalence relations, tolerance relations and so on.
The concepts of elementary granules, sequences of granules,
sets of granules, dynamic granules and labeled figure granules
were given. Oh and Pedrycz introduced GA hybrid scheme to
conduct fuzzy information granulation and to guarantee both
global optimization and local convergence [55]. A series of
work introduced fuzzy clustering for information granulation,
where FCM based on 2-norm [21], FCM based on Tchebyschev

distance [51], fuzzy-rough clustering [56] were studied. Here
we will introduce a simple method to generate fuzzy equiva-
lence relations and fuzzy information granules. There are two
steps. First we generate a fuzzy similarity relation from the
data with a symmetric function. Then transform the similarity
relation into an equivalence one.

〈U, A ∪ d, V, f 〉 is a hybrid decision table. No matter ob-
ject set is described by nominal attributes or numeric features,
the relations between the objects can be denoted by a relation
matrix: M(R) = (rij )n×n.

B1 ∈ A is a nominal attribute set, then

rij =
{

1, f (xi, a) = f (xj , a), ∀a ∈ B1,

0 otherwise.

If attribute a is a numeric attribute, the value of the relation
between xi and xj can be computed with a symmetric function:

rij = f (|xi − xj |),
where |xi − xj | means the Euclidean distance between xi and
xj , and function f should satisfy that:

(1) f (0) = 1, f (∞) = 0 and f (Q) ∈ [0, 1]; and
(2) x�y: f (x)�f (y).

A fuzzy similarity relation matrix will be produced by the
function because relation R satisfies reflexivity and symmetry.
Employing a max–min closure operation, we can get a fuzzy
equivalence relation M(R) = (rij )n×x [57] (see also Fig. 4).

The fuzzy information granule induced by relation R and
including xi is

[xi]R = r1i

x1
+ r2i

x2
+ · · · + rni

xn

.

4.3. Greedy algorithm for hybrid data reduction

The objective of rough set-based attribute reduction is to
find a subset of attributes which has the same discriminating
power as the original data and without redundancy. Although
there are usually multiple reducts for a given decision table, in
most of applications, it is enough to find one of them. With the
measures of attributes, greedy search algorithms for attribute
reduction can be constructed.

Two search strategies can be introduced. One is forward
search and the other is backward search. The forward search
starts with a nonempty set, and adds one or several attributes



3516 Q. Hu et al. / Pattern Recognition 40 (2007) 3509–3521

with great significances into a pool each time until the depen-
dence does not increase. However, the backward search begins
with the whole attribute set and deletes one or several features
with the significance zero until the dependence decreases. For-
mally, a forward algorithm can be formulated as follows.

Algorithm. Forward attribute reduction based on variable pre-
cision fuzzy-rough model (FAR-VPFRS).

Input: Hybrid decision table 〈U, Ac ∪ Ar ∪ d, V c ∪ V r, f 〉
and Threshold k//Ac and Ar are categorical and numerical
attributes

//k is the threshold for computing the lower approximations
Output: One reduct red.
Step 1: ∀a ∈ A :compute the equivalence relationRa ;
Step 2: � → red; // red is the pool to contain the selected

attributes
Step 3: For each ai ∈ A − red

Compute SIG(ai, B, D) = �kl
red∪a(D) − �kl

red(D), // Here we
define �kl

∅ (D) = 0
end
Step 4: Select the attribute ak which satisfies:

SIG(ak, B, D) = max
i

(SIG(ai, red, B))

Step 5: If SIG(ak, B, D) > 0,

red ∪ ak → red

go to step 3
else
return red
Step 6: end
If there are N condition attributes, the time complexity for

computing relation is N, the worst search time for a reduct is
N×N . The overall time complexity of the algorithm is O(N2).

5. Experimental analysis

The ability of classical rough set theory to categorical at-
tribute reduction has been shown in other literatures [17]. The
objective of these experiments is to show the power of the pro-
posed method to select numerical or hybrid attributes. The data
used in the experiments are outlined in Table 1. We can find

Table 1
Data description

Data set Abbreviation Samples Numerical features Categorical features Classes

1 Australian credit approval crd 690 6 9 2
2 Pima indians diabetes diab 768 8 0 2
3 Ecoli ecoli 336 5 2 7
4 Heart disease heart 270 7 6 2
5 Ionosphere iono 351 34 0 2
6 Sonar, mines vs. rocks sonar 208 60 0 2
7 Small soybean soy 47 35 0 4
8 Wisconsin diagnostic breast cancer wdbc 569 30 0 2
9 Wisconsin prognostic breast cancer wpbc 198 33 0 2
10 Wine recognition wine 178 13 0 3

that there are some numerical features in all of the databases.
There are also some data sets with categorical and numerical
attributes in the same time.

Two classical classification learning algorithms CART and
RBF-SVM are introduced to evaluate the selected attributes.
Firstly we normalize the numerical attribute x into the interval
[0, 1] with

a′ = a − amin

amax
.

The value of the fuzzy similarity degree rij between objects
xi and xj with respect to numerical attribute a is computed as

rij =
{

1 − 4 × |xi − xj |, |xi − xj |�0.25,

0 otherwise.

As rij = rji and rii = 0, 0�rij �1, the matrix M = (rij )n×n

is a fuzzy similarity relation. We can get a fuzzy equivalence
relation from M with max–min transitivity operation. In prac-
tice the operation cannot be conducted and we directly search
reducts with a similarity relations.

As to the classical rough sets-based feature selection, nu-
merical attributes should be discretized before selection. In or-
der to compare these methods with the proposed one, fuzzy
c-means clustering (FCM) is introduced to discretize numeri-
cal attributes. We conduct the reduction algorithm on the dis-
cretized decision tables and get a series of reducts, and then
used the corresponding numerical attributes to construct clas-
sifiers. CART and SVM are introduced to evaluate the selected
features. All of the results are obtained with 10-fold cross val-
idation. Table 2 shows the comparisons of numbers of selected
features and accuracies with the discretization method. Table 3
shows the comparison of the fuzzy information entropy-based
method [30], where N1 and N2 are the numbers of attributes
in the original data and reducts, respectively. Accuracy 1 and
accuracy 2 are the classification accuracies with the original
data and the reduced data, respectively.

It is easy to find from Table 2 that some of data sets ob-
tain higher classification accuracies when some attributes are
deleted. However, there are also some data sets where the
accuracies greatly decrease. Especially as to data diab and
heart, there are no attributes selected as all of the single at-
tributes get dependency zero, no attribute can be selected in the
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Table 2
Feature selection based on classical rough set model where numerical attributes are discretized

Data Feature CART SVM

N1 N2 Accuracy 1 Accuracy 2 Accuracy 1 Accuracy 2

crd 15 12 0.8217 ± 0.0459 0.8274 ± 0.1398 0.8144 ± 0.0718 0.8058 ± 0.0894
diab 8 0 0.7227 ± 0.0512 0.0000 ± 0.0000 0.7747 ± 0.0430 0.0000 ± 0.0000
ecoli 7 1 0.8197 ± 0.0444 0.4262 ± 0.0170 0.8512 ± 0.0591 0.4262 ± 0.0170
heart 13 0 0.7407 ± 0.0630 0.0000 ± 0.0000 0.8111 ± 0.0750 0.0000 ± 0.0000
iono 34 10 0.8755 ± 0.0693 0.9089 ± 0.0481 0.9379 ± 0.0507 0.9348 ± 0.0479
sonar 60 6 0.7207 ± 0.1394 0.6926 ± 0.0863 0.8510 ± 0.0948 0.7074 ± 0.1004
soy 35 2 0.9750 ± 0.0791 1.0000 ± 0.0000 0.9300 ± 0.1135 1.0000 ± 0.0000
wdbc 30 8 0.9050 ± 0.0455 0.9351 ± 0.0339 0.9808 ± 0.0225 0.9649 ± 0.0183
wpbc 33 7 0.6963 ± 0.0826 0.6955 ± 0.1018 0.7779 ± 0.0420 0.7837 ± 0.0506
wine 13 4 0.8986 ± 0.0635 0.8972 ± 0.0741 0.9889 ± 0.0234 0.9486 ± 0.0507

Average 24.80 5 0.8176 0.6383 0.8718 0.6571

Table 3
Feature selection based on fuzzy information entropy

Data Feature CART SVM

N1 N2 Accuracy 1 Accuracy 2 Accuracy 1 Accuracy 2

crd 15 13 0.8217 ± 0.0459 0.8144 ± 0.1416 0.8144 ± 0.0718 0.8144 ± 0.0718
diab 8 8 0.7227 ± 0.0512 0.7213 ± 0.0404 0.7747 ± 0.0430 0.7747 ± 0.0430
ecoli 7 7 0.8197 ± 0.0444 0.8197 ± 0.0444 0.8512 ± 0.0591 0.8512 ± 0.0591
heart 13 9 0.7407 ± 0.0630 0.7593 ± 0.0766 0.8111 ± 0.0750 0.8074 ± 0.0488
iono 34 13 0.8755 ± 0.0693 0.9068 ± 0.0564 0.9379 ± 0.0507 0.9462 ± 0.0365
sonar 60 12 0.7207 ± 0.1394 0.7160 ± 0.0857 0.8510 ± 0.0948 0.8271 ± 0.0902
soy 35 2 0.9750 ± 0.0791 1.0000 ± 0.0000 0.9300 ± 0.1135 1.0000 ± 0.0000
wdbc 30 17 0.9050 ± 0.0455 0.9193 ± 0.0318 0.9808 ± 0.0225 0.9702 ± 0.0248
wpbc 33 17 0.6963 ± 0.0826 0.7103 ± 0.1092 0.7779 ± 0.0420 0.8087 ± 0.0601
wine 13 9 0.8986 ± 0.0635 0.9097 ± 0.0605 0.9889 ± 0.0234 0.9833 ± 0.0268

Average 24.80 10.70 0.8176 0.8277 0.8718 0.8783

first loop. The results shown in Table 3 are more robust than
those in Table 2. Although there are more attributes selected in
the reducts, the classifications have been improved compared
with discretization methods.

As to variable precision neighborhood rough set model, we
first specify the threshold k=1 and conduct the algorithm FAR-
VPFRS. We get reducts of the data. The numbers of selected
attributes and classification performances are shown in Table 4.

From Table 4, we can find that the features in iono, sonar,
soy are greatly reduced. Especially for soy, only two attributes
are preserved, and the accuracy is greatly improved at the same
time. However, as to data diab, ecoli, heart and wine, almost
all of the attributes cannot be reduced by the algorithm. As a
whole, the numbers of the attributes cannot be greatly reduced
when the algorithm takes 1 as the threshold.

According to the idea of granular computing, partial cer-
tainty and partial inclusion will be more robust to noise and
uncertainty in the data. Therefore, we do not limit the threshold
k = 1 because it is too strict for computing the fuzzy inclu-

sion. We try k = 0.5–1 with step 0.05 and then we show the
maximal classification accuracies, the corresponding thresh-
olds and numbers of selected attributes are given in Tables 5
and 6.

Table 5 presents the classification results with CART algo-
rithm, where k is the threshold with the maximal accuracy. We
can find that the features are substantively deleted in most of
data sets. As to data crd, soy, wpbc, wdbc and wine, only a few
attributes are selected in the reducts, which allows the classi-
fication problem visualization. Surprisingly, the classification
performances are improved for all the data sets except diab.

Table 6 shows the results with SVM. Comparing Tables 5 and
6, we can find SVM learning algorithm requires more features
to get good performance than CART. Accordingly, the average
optimal threshold is 0.77 for CART, whereas 0.83 for SVM.

Fig. 5 shows that classification accuracy varies with the spec-
ified threshold as to four data sets crd, ecoli, sonar and wine.
We can find the performance does not monotonously increase
with the threshold. There are optimal points for feature selec-
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Table 4
Feature selection based on the fuzzy-rough model with threshold k = 1

Data Feature CART SVM

N1 N2 Accuracy 1 Accuracy 2 Accuracy 1 Accuracy 2

crd 15 9 0.8217 ± 0.0459 0.8321 ± 0.0667 0.8392 ± 0.0356 0.8392 ± 0.0405
diab 8 7 0.7227 ± 0.0512 0.7253 ± 0.0485 0.7745 ± 0.0430 0.7747 ± 0.0430
ecoli 7 7 0.8197 ± 0.0444 0.8168 ± 0.0429 0.8512 ± 0.0591 0.8512 ± 0.0591
heart 13 12 0.7407 ± 0.0630 0.7407 ± 0.0630 0.8111 ± 0.0750 0.8074 ± 0.0694
iono 34 23 0.8755 ± 0.0693 0.8980 ± 0.0525 0.9379 ± 0.0507 0.9461 ± 0.0366
sonar 60 30 0.7207 ± 0.1394 0.7062 ± 0.1081 0.8510 ± 0.0948 0.8410 ± 0.0691
soy 35 2 0.9750 ± 0.0791 1.0000 ± 0.0000 0.9300 ± 0.1135 1.0000 ± 0.0000
wdbc 30 24 0.9050 ± 0.0455 0.9122 ± 0.0296 0.9808 ± 0.0225 0.9790 ± 0.0215
wpbc 33 26 0.6963 ± 0.0826 0.6547 ± 0.1093 0.7779 ± 0.0420 0.7934 ± 0.0479
wine 13 13 0.8986 ± 0.0635 0.8986 ± 0.0635 0.9889 ± 0.0234 0.9889 ± 0.0234

Average 24.80 15.30 0.8176 0.8185 0.8742 0.8821

Table 5
Comparison of the best accuracy with different thresholds (CART)

Data N1 N2 Accuracy 1 Accuracy 2 k

crd 15 3 0.8217 ± 0.0459 0.8639 ± 0.0499 0.65
diab 8 8 0.7227 ± 0.0512 0.7253 ± 0.0485 1
ecoli 7 6 0.8197 ± 0.0444 0.8173 ± 0.0554 0.75
heart 13 6 0.7407 ± 0.0630 0.8259 ± 0.0742 0.6
iono 34 23 0.8755 ± 0.0693 0.9065 ± 0.0490 0.95
sonar 60 28 0.7207 ± 0.1394 0.7400 ± 0.1020 0.85
soy 35 2 0.9750 ± 0.0791 1.0000 ± 0.0000 0.5
wdbc 33 2 0.9050 ± 0.0455 0.9298 ± 0.0261 0.95
wpbc 30 1 0.6963 ± 0.0826 0.7484 ± 0.0862 0.75
wine 13 2 0.8986 ± 0.0635 0.9049 ± 0.0451 0.7

Average 24.80 8.10 0.8176 0.8462 0.77

Table 6
Comparison of the best accuracy with different thresholds (SVM)

Data N1 N2 Accuracy 1 Accuracy 2 k

crd 15 3 0.8392 ± 0.0356 0.8639 ± 0.0499 0.65
diab 8 8 0.7745 ± 0.0430 0.7745 ± 0.0430 0.85
ecoli 7 7 0.8512 ± 0.0591 0.8512 ± 0.0591 0.80
heart 13 13 0.8111 ± 0.0750 0.8111 ± 0.0745 0.80
iono 34 21 0.9379 ± 0.0507 0.9518 ± 0.0332 0.95
sonar 60 30 0.8510 ± 0.0948 0.8410 ± 0.0691 1.0
soy 35 2 0.9300 ± 0.1135 1.0000 ± 0.0000 0.5
wdbc 33 24 0.9808 ± 0.0225 0.9790 ± 0.0215 1.0
wpbc 30 26 0.7779 ± 0.0420 0.8034 ± 0.0482 0.95
wine 13 13 0.9889 ± 0.0234 0.9889 ± 0.0234 0.8

Average 24.80 14.70 0.8742 0.8865 0.83

tion, where the number of the selected attributes is the least
and the accuracy is the best. We should give an optimal thresh-
old. For simpleness, we recommend the threshold should be in
interval [0.75, 0.85].

We can find that 2 features are kept for data wdbc and wine
from Table 5. We present the scatter plots of the data in the
selected 2-dimensionality space, shown in Fig. 6. It is easy to
find the data in the selected subspaces are easy to recognize.



Q. Hu et al. / Pattern Recognition 40 (2007) 3509–3521 3519

0.5 0.6 0.7 0.8 0.9 1

0.65

0.7

0.75

0.8

0.85

0.9

Threshold

A
c
c
u
ra

c
ie

s

Sonar

0.5 0.6 0.7 0.8 0.9 1

0.81

0.82

0.83

0.84

0.85

0.86

0.87

Crd

Threshold

A
c
c
u
ra

c
ie

s

CART

SVM

1

10.5 0.6 0.7 0.8 0.9

0.7

0.75

0.8

0.85

0.9

0.95

1

Wine

Threshold

A
c
c
u
ra

c
ie

s

0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

Threshold

A
c
c
u
ra

c
ie

s

Ecoli2

43

Fig. 5. Classification accuracy changes with the threshold.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Feature 28

F
e
a
tu

re
 2

1

WDBC

0 1 2 3 4 5 6

0

5

10

15

wine

feature 7

fe
a
tu

re
 1

0

Fig. 6. Scatter plot of data wdbc and wine.

6. Conclusion

Selecting optimal numerical and categorical features is an
important challenge for pattern recognition and machine learn-
ing. There are two strategies for selecting mixed attributes. One
is to discretize numerical attributes into several intervals and
take discretized attributes as categorical one. The other is to
code a categorical attribute with some integral numbers and
look it as a numerical variable. These techniques lose the orig-
inal information in the data.

In this paper, we show a simple but efficient feature subset
selection technique based on a proposed fuzzy-rough model.
This approach does not require discretizing the numerical data,
whereas classical rough set just work on categorical data. We
introduce a symmetric function to compute fuzzy similarity re-

lations between the objects with a numerical attribute and trans-
form the similarity relation into a fuzzy equivalence one. We
compute the positive region of the decision by fuzzy inclusion
and variable precision fuzzy inclusion. Four attribute signifi-
cance measures are defined. Based on the measure, we con-
struct a forward hybrid attribute reduction algorithm, named
FAR-VPFRS.

With 10 UCI data sets, a series of experiments are conducted
for evaluating the proposed method. The results show that most
of the features in raw data can be eliminated without decreasing
classification performances. What is more, most of classifica-
tion are improved. We also find that the optimal thresholds for
computing variable precision positive regions depend on the
learning algorithms. The experiments show a default threshold
should be in the interval [0.75, 0.85].
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