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Abstract
Recent advances in high-throughput biotechnologies have led to the rapid growing research interest in reverse
engineering of biomolecular systems (REBMS). ‘Data-driven’ approaches, i.e. data mining, can be used to extract
patterns from large volumes of biochemical data at molecular-level resolution while ‘design-driven’ approaches, i.e.
systems modeling, can be used to simulate emergent system properties.Consequently, both data- and design-driven
approaches applied to ^ omic data may lead to novel insights in reverse engineering biological systems that could
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not be expected before using low-throughput platforms. However, there exist several challenges in this fast growing
field of reverse engineering biomolecular systems: (i) to integrate heterogeneous biochemical data for data mining,
(ii) to combine top^down and bottom^up approaches for systems modeling and (iii) to validate system models ex-
perimentally. In addition to reviewing progress made by the community and opportunities encountered in addressing
these challenges, we explore the emerging field of synthetic biology, which is an exciting approach to validate and
analyze theoretical system models directly through experimental synthesis, i.e. analysis-by-synthesis. The ultimate
goal is to address the present and future challenges in reverse engineering biomolecular systems (REBMS) using
integrated workflow of data mining, systems modeling and synthetic biology.

Keywords: reverse engineering biological systems; high-throughput technology; ^omic data; synthetic biology;
analysis-by-synthesis

INTRODUCTION
Recent advances in high-throughput biotechnolo-

gies have impacted the progress in reverse engineer-

ing biological systems, especially for biochemical

pathways and cells. The large volume of biochemical

data at molecular-level resolution has made ‘data-

driven’ approaches possible, where patterns may be

extracted directly from the data to reveal new insight

[1–6]. Such data-driven approaches are also known

as ‘data mining’. At the same time, ‘design-driven’

approaches are also increasingly used to replicate

features of biological systems such as scale-free

organization [7], motif distribution [8] and feedback

[9] so as to simulate and abstract emergent properties

of biological systems [10, 11]. Such design-driven

approaches may also be called ‘systems modeling’.

Thus, high-throughput data mining coupled with

design-driven systems modeling for biochemical

pathways and cells represents a new era of reverse

engineering biological systems, which we refer to

as ‘reverse engineering biomolecular systems’

(REBMS) in this context (Figure 1).

On the whole, the key challenges in REBMS

are to (i) integrate heterogeneous biochemical data

for data mining [12–16], (ii) combine top–down

and bottom–up approaches for systems modeling

[17–22] and (iii) validate system models experi-

mentally [23–28]. In this article, we first present

an overview of common high-throughput plat-

forms to recap existing data acquisition issues in

Section 2. In Section 3, we review challenges

and strategies for data mining and systems model-

ing, and in Section 4, we illustrate some recent

progress made in the field of REBMS using two

case studies. We close in Section 5 by exploring

the emerging field of synthetic biology, which is

an exciting approach to analyze and validate the-

oretical system models directly through experimen-

tal synthesis.

DATA ACQUISITIONAND
HANDLING
In this section, we review high-throughput data

acquisition technologies for genomic, proteomic,

metabolomic and cytometry data such as microarrays

[29], next-generation sequencing (NGS) [30], mass

spectrometry [31] and microfluidics [32]. It is im-

portant to recap existing issues encountered during

data acquisition in the hope of recognizing the

potential ‘garbage in—garbage out’ problem during

downstream mining, modeling and validation. Then,

while recognizing that ever-increasing data volumes

present associated challenges in data handling such as

storage security, retrieval efficiency, manageability of

databases [33], we also review minimum information

standards in particular because of its development as a

community-driven effort to manage and integrate

different data types and formats through standardized

database schema and visualization [15].

High-throughput omic data acquisition
DNA microarrays [29] are a common high-

throughput technology to acquire genomic data,

namely gene expression, at relatively low cost. Data

artifacts in microarrays regularly arise due to hybrid-

ization and spatial effects [34], slide variation [35] and

dye-related signal correlation bias in two-color assays

[36]. Subsequently, various engineering and statistical

solutions have been developed to handle these arti-

facts [37, 38]. Recently, NGS technologies, such as

Illumina/Solexa, Roche/454 and SOLiD, have also

emerged as high-throughput genomic data acquisi-

tion platforms but not without some technical and

analytical issues. NGS data volume is much larger

than that of DNA microarray data, leading to issues

in data storage, transfer and analysis [39]. However, it

is still difficult to determine expressions from NGS

data because of the low specificity of sequence align-

ment and the presence of splice variants [40].
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Accordingly, several algorithms and tools have also

been developed to address such NGS-specific issues,

namely to improve the accuracy of sequence

alignment, quantifying gene expression and to pre-

sent sequence data visually [41–44]. Two common

types of transcriptome assembly strategies are: (i)

reference-based algorithms, such as SpliceMap [45],

Blat [46] and TopHat [47], that work with a refer-

ence genome for assembly, (ii) the so called ‘de novo’
strategies, such as Trans-ABySS [48] and Trinity [49],

that work by traversing collapsed De Bruijn graphs

constructed from all substrings of reads with a specific

length. In recent years, the advent of these methods

in conjunction with high performance computing

frameworks provided us with a complete landscape

of full set of transcripts (Figure 1).

For proteomic and metabolomic data, mass spec-

trometry is a popular technology with applications

ranging from proteomic characterization to perturb-

ation analysis of model organisms [31, 50]. Further-

more, recent research in tissue imaging mass

spectrometry (TIMS) effectively adds a second di-

mension to traditional mass spectrometry data by

acquiring multiple mass spectra at different spatial

locations of the same tissue sample. Consequently,

TIMS may be used to study spatial progression by

identifying and quantifying biomarkers of interest

that are associated with particular tissue regions.

For instance, the human cancer proteome may be

analyzed in situ using MALDI TIMS [51] and

TIMS image pixels may be correlated spatially with

mass spectra clustering to highlight functionally simi-

lar regions in tumors [52], among other applications

[53–55]. Detection sensitivity and data reproducibil-

ity [56–58] remain problematic for mass

spectrometry.

On the level of whole cells, microfluidics is an-

other high-throughput platform that enables the

study of live cells, including unicellular organisms,

in both population and single-cell settings by manip-

ulating various chemical and physical conditions of

the micro-environment. The functionality of micro-

fluidics that enables a variety of experiments to be

performed on a single device is also sometimes

referred to as ‘lab-on-a-chip’. While microfluidics

facilitates real-time observation of live cells under

real and artificial conditions [32, 59], it remains chal-

lenging to design and manufacture appropriate chip

features so as to capture the phenotype or behavior

of interest from a given group of cells.

Minimum information standards
The development of minimum information stand-

ards is a community-driven effort to provide

Figure 1: Integrated pipeline for reverse engineering biomolecular systems (REBMS) using high-throughput ^ omic
data that combines data mining, modeling and simulation and testing and validation
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guidelines for sharing high-throughput –omic data in

the challenge of large datasets. The goal of these

standards is to guide researchers to systematically an-

notate experimental protocols and results. Different

standards have been proposed for different types of

data and different studies. For example, the MIAME

(Minimum Information About a Microarray Experi-

ment) and MIFlowCyt (Minimum Information

about a Flow Cytometry Experiment) standards are

based on specific data acquisition modalities [60, 61],

while MIAMET (i.e. Minimum Information About

a Metabolomics Experiment) and MINI (i.e. Mini-

mum Information about a Neuroscience Investiga-

tion) are based on specific research areas [62, 63].

For REBMS, MIRIAM (Minimum Information

Requested In the Annotation of biochemical

Models) provides standards for describing and sharing

computational models [64], while MIASE (i.e. Mini-

mum Information About a Simulation Experiment)

provides a framework to document in silico, or simu-

lation, experiments performed using a model [65].

Some minimum information standards are now

well-accepted by the community-at-large. For

example, adherence to MIAME is required by a

number of high-profile journals, including Nature

and Science [66]. Additionally, some curated biolo-

gical databases encourage data submissions adhering

to these community standards; Table 1 presents a

selected list of these databases. Accepted minimum

information standards may also guide the develop-

ment of other community standards; for example,

accommodation of MIRIAM annotations in Systems

Biology Markup Language (SBML) [67, 68]. How-

ever, because minimum information standards are

developed by various interest groups, there is some

uncertainty with regard to the appropriate standards

for interdisciplinary research. The MIBBI portal

(http://mibbi.org) makes an attempt to address this

problem by providing a resource hub for minimum

information standards. The MIBBI project aims to

promote the accessibility, transparency and collab-

orative nature of interdisciplinary research by provid-

ing a central resource, from which standards can be

tracked, compared, coordinated and adopted [61]. At

the time of writing, 32 minimum information pro-

jects are registered in the MIBBI portal.

DATAMININGAND SYSTEMS
MODELING
Data mining and systems modeling are complemen-

tary efforts for REBMS. Data mining processes large

datasets by extracting correlated data features, while

systems modeling creates a unified theoretical frame-

work, through time and space, by aggregating and

Table 1: Resources for REBMS using ^ omic data

Type Name URL Description

Genomic data GenBank www.ncbi.nlm.nih.gov/genbank Annotated collection of all publicly
available DNA sequences;
international collaboration
among USA, Europe and Japan

EMBL Nucleotide Sequence Database www.ebi.ac.uk/embl
DNA Database of Japan (DDBJ) www.ddbj.nig.ac.jp

Proteomic data UniProt www.uniprot.org Protein sequence and function
BRENDA www.brenda-enzymes.org Enzyme functional data
SABIO-RK sabio.villa-bosch.de Biochemical reactions, kinetic equations

with parameters and experimental
conditions under which these
parameters were measured

Metabolomic data LIPIDMAPS www.lipidmaps.org Comprehensive resource for lipid
biology, e.g. structure and
lipid-associated proteins

Pathways KEGG www.genome.jp/kegg Integrated resource for building
blocks and functions of
biological systems

Reactome www.reactome.org Open-source, manually curated and
peer-reviewed pathway database

System models BioModels www.ebi.ac.uk/biomodels-main Peer-reviewed, published, computa-
tional models from systems biology

Portal sites Pathguide www.pathguide.org Pathway- / molecular
interaction-related

ExPASy expasy.org Bioinformatics
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associating relevant data features to predict other

system behaviors.

Challenges and strategies for data mining
Data mining typically involves (i) exploratory ana-

lysis, i.e. discovering biologically interesting relation-

ships in the data, (ii) feature selection, i.e. mining for

biomarkers or interesting features and (iii) prediction,

i.e. building statistical models for either diagnostic/

prognostic applications or predicting system behav-

ior. Exploratory analysis methods can reveal the nat-

ural organization of high-throughput data and

identify patterns [69]. The most common unsuper-

vised clustering method applied to high-throughput

data is hierarchical clustering [70], others include

k-means clustering [71], principal component ana-

lysis (PCA) [72] and bi-clustering [73]. For example,

unsupervised clustering identifies groups of genes

with similar expression patterns, or groups of samples

with similar molecular profiles [74]. On the other

hand, many high-throughput data experiments gen-

erate samples with known underlying grouping or

clustering information. Thus, we can use this infor-

mation to supervise the identification of features that

are important for modeling. Many supervised feature

selection methods exist for mining gene expression

data, but these methods may be applied to

high-throughput data in general [75]. Exploratory

analysis and feature selection ultimately lead to

prediction analysis, an important aspect of systems

modeling. Regardless of the biological application

(e.g. clinical diagnosis/prognosis or systems model-

ing), statistical modeling must be systematically eval-

uated to overcome challenges and avoid common

pitfalls [76].

A well-known issue in –omic data mining is

‘curse-of-dimensionality’, where the number of

biological samples is significantly smaller than the

number of feature dimensions [77]. Especially for

REBMS, the power of data mining is limited by

this issue. Pooling several datasets across different

studies for training to increase sample size and filling

in missing data may improve data quality and quan-

tity [78]. Extensive cross-validation during training is

also proposed to overcome the limits of poor data

such as small sample size and sample noise [79, 80].

In a recent issue of Nature Biotechnology, using

DNA microarrays as a common high-throughput

platform to measure gene expression, multiple chal-

lenges for data mining such as ‘batch effect’,

‘cross-platform difference’, ‘classifier selection’,

‘performance metric’ and ‘prevalence’ etc., and stra-

tegies to counter these challenges were studied by an

international consortium consisting of 100 s of data

mining researchers across 36 institutions. The out-

come of this study is the publication of sensible

‘good-practice’ guidelines for each of these issues

[78, 81–84].

Models must be predictive in nature in order to

be scientifically useful [85]. Recently, omic-based

predictive models have received increased attention

in the scientific literature because of their potential

for clinical applications [84, 86, 87]. That is, for high-

throughput measurement such as genomic (or prote-

omic) expression, data mining is expected to lead

to diagnostic and prognostic models that can predict

disease state. Thus, another challenge in data mining

is to ensure consistent performance of prediction

models across both training and testing datasets (i.e.

the cross-validation performance within training

datasets is similar as the external-validation perform-

ance with testing datasets). Simon et al. and

Quackenbush [76, 86] examine key steps and

common pitfalls involved in building and evaluating

predictive models. Simon stresses the importance of

correctly estimating the accuracy of prediction

models on future samples. This involves proper

division of samples into training and testing sets be-

fore any analysis, so that none of the test samples are

used in training predictors. Michiels et al. [88]

reinforce this recommendation after re-analyzing

several large cancer prediction studies. Their results

show that many of these studies predict no better

than random chance, and the selection of features

greatly depends on the samples. They recommend

a method of repeated random sampling to better

estimate the mean and variance of prediction error.

Besides, the process for building and evaluating

predictive models, and identifying factors that affect

predictive performance has been studied extensively

[76, 84, 89, 90]. The observation is that, for

genomic-based diagnostic models, prediction per-

formance is difficult to evaluate. It involves either

(i) retrospective evaluation after collecting an

adequate number of future samples, or (ii) estimation

of predictive performance using cross validation or

other statistical sampling methods [91–93]. Despite

the difficulties and pitfalls involved in building pre-

dictive models, -omic predictor models are feasible

for diagnostic or prognostic in clinical use [94]. Once

the features are extracted from the high-throughput
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data, they can be analyzed to build networks for

REBMS.

Systems modelingçstatic network
inference
Static network inference is the process of reconstruct-

ing the topology of biological systems to represent

data features (e.g. genes, proteins or metabolites) as

nodes and interactions as edges to predict new inter-

actions. Static networks can be deterministic or prob-

abilistic. However, they are only able to model a

snapshot of complex dynamics of biological systems.

The availability of extensive databases and sharing of

high-throughput datasets has promoted genome-

scale static network modeling. The modeling meth-

ods include correlation networks and Bayesian

networks etc. The correlation network is one of

the simplest models [95] and has low computational

cost: two genes are predicted to interact if their ex-

pression profiles are highly correlated. Several other

network inference algorithms such as ARCANE [96]

and RELNET [97], which are based on mutual in-

formation have also been proposed. The limitation of

correlation networks is that only instances of pairwise

interaction are captured, and epistasis, where one

gene interacts with several other genes, is not.

Bayesian networks are also increasingly used for

static network inference. The power of Bayesian net-

works comes from the provision to capture uncer-

tainty in any contributing factor, including model

parameters, hidden variables and observations, using

probabilistic methods. This makes Bayesian inference

a useful framework to model inherent uncertainty in

biological data, which may be a result of biological or

technical variability [98]. Bayesian networks may also

be used to model epistasis where standard statistical

tools such as multivariate logistic regression models

have failed [99, 100].

In recent disease-centered applications of static

network inference, Sebastiani et al. [100] used

Bayesian networks to identify SNPs predictive of

stroke in sickle cell patients; Tran et al. [101] used

Bayesian networks in combination with copy

number variation analysis to identify potential

driver genes in breast cancer; and Carro et al. [102]

used the mutual information-based algorithm

ARACNE to identify key transcriptional regulators

of the mesenchymal cellular phenotype in gliomas,

which is associated with more aggressive disease and

poorer prognosis. In another study, Faith et al. [103]

used both their own microarray data and data from

nine other publications to perform genome-scale

network inference on Escherichia coli, a model organ-

ism for which substantial information about tran-

scriptional regulatory interactions is known.

Existing data was thereby used as a test-bed for eval-

uating the performance of network inference algo-

rithms. The authors showed that at 60% precision,

the predictions of the best-performing algorithm,

based on mutual information, included 338 known

interactions documented in the database RegulonDB

and 741 novel interactions. Of the predictions at all

precision levels, 268 interactions were experimen-

tally tested via ChIP and 21 were confirmed. In an-

other recent study, Zhu et al. [104] performed

large-scale gene network inference by integrating

genotypic, gene expression, transcription factor-

binding site and protein–protein interaction datasets

in yeast, which is one of the few model organisms for

which comprehensive high-throughput datasets of

multiple types are available. The authors showed

that in terms of predicting known causal regulators

in gene sets, the Bayesian networks constructed using

multiple data types were superior to the Bayesian

network based on gene expression data only; in add-

ition, five previously unknown interactions made by

the Bayesian network built using all four data types

were experimentally confirmed.

While static network inference has produced pro-

mising results, it still faces several challenges: (i) when

performing genome-scale analysis, the number of

possible parameters to be found can greatly exceed

the number of data points, which leads to high com-

putational complexity; (ii) limited data availability

from the available measurement may require simpli-

fying assumptions about the complex, non-linear

biological mechanisms [105], and (iii) algorithm per-

formance can vary greatly, even for the same

algorithm applied to different datasets. Marbach

et al. [106] recently published the results of the

DREAM3 in silico community-wide challenge, in

which simulated network data was used to perform

double-blind tests of gene network inference meth-

ods. Notably, a large proportion of the tested meth-

ods (11 of 29) performed poorly, with results not

significantly improved over random guessing.

Additionally, systemic errors in prediction were asso-

ciated with ‘fan-in’, ‘fan-out’, ‘cascade’ and

‘feed-forward loop’ motifs, which describe situations

including coregulation and combinatorial regulation.

Similar variation in performance was linked to the

properties of different biological networks by Ooi
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and Phan [107], who recently used known gene–

and protein–scale interactions from enriched

pathways of different classes in keloid fibroblasts to

compare the performance of ARACNE [96] and

BANJO (Bayesian Network Inference with Java

Objects) [108]. Their findings indicated that the

transcriptional networks were better suited to net-

work inference analysis [107]. These results indicate

that there are substantial opportunities in researching

static network inference of REBMS such as to

develop increasingly practicable methods that take

into account fundamental biochemical mechanisms

and motifs.

Systems modelingçnetwork dynamics
REBMS is not complete without modeling system

dynamics in addition to static network topology. A

fully deterministic model that can be used to capture

the complex dynamics of biological systems is the

Boolean network. It is noteworthy to mention that

models can be categorized in different types. They

can be considered as static versus dynamic or deter-

ministic versus probabilistic. For example, the

Bayesian network is a probabilistic network that is

static, but the Boolean network is a deterministic

rule-based model that can capture dynamics. The

Boolean network model [109] is a major effort in

gene regulatory network inference, where gene

expression is quantized to only two states: ON and

OFF. The Boolean state of each gene is functionally

related to other genes using Boolean functions. This

assumes a fully deterministic environment that does

not account for innate uncertainty in biological sys-

tems, data and model selection [110]. Beside this, the

use of Boolean networks for network topology in-

ference is limited by two major challenges: (i) gene

expression cannot be described adequately by only

two states and (ii) inference of Boolean functions for

a large number of genes is computationally expen-

sive. Introducing probabilistic Boolean networks was

a major breakthrough to capturing not only

dynamics of biological systems but also uncertainty

in data, model selection and biological systems [110].

As the probabilistic Boolean network is the

‘unrolled’ version of Boolean networks in time, the

dynamic Bayesian network [111] is the counterpart

for the standard Bayesian network. Besides probabil-

istic Boolean networks and dynamic Bayesian net-

works, Ordinary Differential Equations (ODEs) have

been used as an alternative to model gene regulatory

networks. Tyson etal. [112] and Goodwin [113] have

used non-linear differential equations to reverse en-

gineer a kinetic model of gene regulation process.

There are some issues in modeling biological systems

dynamics using linear and non-linear ODEs. First,

these models need a detailed a priori knowledge

about the form of reaction rate functions usually

not available in practice. Second, the limited

number of samples commonly available for these

studies makes inference of parameters used in reac-

tion mechanisms very difficult. Piecewise-linear dif-

ferential equations have been proposed to alleviate

the aforementioned problems for modeling reaction

mechanisms [18, 114]. Savageau [20, 115] has

proposed power-law simplification of non-linear

differential equations as an alternative approach.

Furthermore, the stochastic master equation has

been used to capture the delays induced by various

reaction rates of biochemical processes [21].

Because reaction rate parameters are critical to

these traditional models, the methods for modeling

systems dynamics are sometimes reduced to param-

eter estimation problems. Examples of reaction rate

parameters include rate constants for mass action kin-

etics [116], kinetic orders in biochemical systems

theory [20, 115], stoichiometric coefficients and

flux rates for flux balance analysis [117] and control

coefficients and elasticities for metabolic control ana-

lysis [118]. Parameter estimation cannot be avoided

and can easily lead to the problem of data

over-fitting. In cases of over-fitting, parameters are

overly sensitive to data noise, and fitted values differ

clearly from measured values [119, 120]. In biolo-

gical systems measured by high-throughput ‘-omics’

technologies, significantly more parameters are

required than measurements available in terms of

temporal points and in terms of number of samples.

Thus, the parameter estimation problem is worse. In

addition, dynamic biochemical systems need to be

able to predict the behavior of real systems and to

extrapolate components of the system at future time

points.

Based on the observation that certain emergent

properties in biological systems, namely robustness,

resemble properties of engineering systems, this has

led to a recent (or renewed) wave of efforts in

REBMS in terms of cybernetics and control theory

[10, 11, 121]. Cybernetics is the study of structural

complexity in animal and machine that enables com-

munication and control [122] and is closely related to

control theory. In the context of biological systems,

this approach was first applied to study organ systems
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in physiology, for instance, in circulation [123],

immunology [124] and the central and peripheral

nervous systems [125, 126]. More recently, cyber-

netics has been applied to study metabolic pathways

[17, 127] at molecular levels. While cybernetics

emerged as the science for effective organization

within systems, control theory was developed to

guide the behavior of dynamic systems. On the

other hand, control, i.e. regulation of motion, is suf-

ficient to achieve system stability and robustness. For

instance, bacterial chemotaxis in E. coli is an example

of relatively simple but robust cell behavior that may

be modeled in terms of classical control theory.

Specifically, exact adaptation in bacterial chemotaxis

is observed to be robust and not affected by changes

in protein levels [128, 129]. Consequently, such

behavior may be modeled as the result of

single-variable integral control that ensures conver-

gence to steady state without error [22], which is a

global systems property. Furthermore, details of pos-

sible mechanisms that enable the robust behavior can

be probed using time-varying stimuli [130]. Modern

control theory may also be useful to model regula-

tory behaviors in larger metabolic pathways [19].

Although recent studies do show promise in the

use of cybernetics and control theory to model

dynamics in REBMS, at the same time, the key chal-

lenge remains: conditions for robustness established

using cybernetics and control theory are sufficient

but not necessary. Thus, substantial experimental

validation is required to prove the uniqueness of

proposed system models for REBMS.

PROGRESS IN REBMS:TWO CASE
STUDIES
In this section, we present two case studies to illus-

trate recent progress in the field of REBMS. In the

first case study, we discuss the data mining and

analysis of genomic interactions in breast cancer by

integrating gene expression, SNP, CNV and DNA

methylation data. In the second case study, we dis-

cuss the systems modeling of robust adaptation in

bacterial chemotaxis by integrating bottom–up and

top–down approaches. Ultimately, for REBMS

using –omic data, integrating various data and meth-

ods is necessary and most likely fruitful.

Integrative analysis of genomic
interactions in REBMS of breast cancer
To date, there are several studies that attempt to use

integrative omic analysis to understand human

diseases, most of which were focused on cancer

due to the availability of disease tissue besides

blood samples [131–137].

A recent published paper by the Cancer Genome

Atlas Research Network [137] conducted integrative

analysis of the single nucleotide polymorphism

(SNP), copy number variation (CNV), expression

profiling of coding and non-coding RNAs and

global DNA methylation profiling datasets with

309 clinically annotated high grade serous ovarian

cancer patients and an additional 180 patients

with all but SNP data. The authors mapped the

original DNA reads to the human genome, exclud-

ing duplicate reads, used CHASM [138] and

MutationAssessor to identify functional mutations,

used GISTIC analysis to extract quality copy

number data, used consensus clustering [139] to ana-

lyze mRNA, miRNA and methylation data, used

HotNet [140] to analyze protein–protein inter-

actions and used PARADIGM [141] to estimate dif-

ferential integrated pathway activity. They found

that late stage ovarian cancer tumors have specific

mutations of interest at both high and low preva-

lence; TP53 mutations were found in 96% of tumors

and somatic mutations in nine genes including

BRCA1, BRCA2, CDK12, NF1, RB1 and were

statistically recurrent, despite low prevalence. They

went on to identify 113 significant copy number

aberrations in DNA and 168 genes with promoter

methylation events. Furthermore, they characterized

four subtypes of ovarian cancer transcription, three

subtypes of miRNA and four subtypes of promoter

methylation. Survival duration was found to be asso-

ciated with a transcriptional signature, explaining the

impact of BRCA1/2 and CCNE1 aberrations on

tumor survival. Lastly, in about half of the tumors

considered, they identified defects in the homolo-

gous recombination pathways, suggesting a role for

Notch and FOXM1 in the pathophysiology of

serous ovarian cancer. The outcomes of this case

study show that in the era of high-throughput

data, it is possible to integrate different data to

derive a holistic view of the biomolecules for

REBMS.

Modeling robust adaptation in bacterial
chemotaxis
The E. coli chemotaxis network is a model system

that has been successfully reverse engineered in

terms of (i) establishing a framework to describe ro-

bustness of a biological system and (ii) elucidating the
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mechanisms that may be responsible to achieve the

robustness. That is, in bacterial chemotaxis, it is

observed that the steady-state tumbling frequency

in a homogeneous ligand environment is insensitive

to the value of ligand concentration [129]. Pre-

viously, researchers thought that the rates of specific

network reactions need to be fine-tuned in order to

maintain the same steady-state behavior under

different conditions [142]. However, more recent

studies suggest that adaptation is a robust network

property that is independent of particular rates of

reaction [128, 129] and the robust adaptation in

chemotaxis may be the result of integral feedback

[22], which is a common setup in engineering mod-

eling that ensures the convergence to the desired

steady-state.

The robust adaptation in bacterial chemotaxis by

feedback has led to the integration of bottom–up and

top–down approaches in systems modeling. From a

bottom–up perspective, individual network compo-

nents (i.e. biochemical reactions) are quantified and

characterized using rates of reaction. Because these

individual reactions constitute the network, the

observed system properties arise directly from

adding all pieces of biochemical reactions together

with parameter estimation. On the other hand,

from a top–down perspective, the system demon-

strates robust behavior even when the system input

is perturbed. Thus, the bottom–up approach may be

viewed as an ‘open-loop’ system based on mass

action modeling and parameter estimation, while

the top–down approach may be viewed as a ‘close-

d-loop’ system. In this case study, both bottom–up

and top–down approaches are integrated to describe

robust adaptation in bacterial chemotaxis.

MODELVALIDATIONAND
ANALYSIS-BY-SYNTHESIS: DUAL
ROLESOF SYNTHETIC BIOLOGY
Recently, research in synthetic biology has emerged

as an exciting opportunity for model validation and

analysis-by-synthesis, serving dual roles in REBMS

(Figure 2). Synthetic biology, i.e. the creation of

novel biological components (macromolecules),

devices (pathways) and systems (organisms) by mod-

ifying existing ones or using artificial materials, is

promising but also challenging because of the

unpredictability and poor reproducibility of experi-

mental results.

Analysis-by-synthesis is gaining more interest in

REBMS because of its potential to design, manufac-

ture and observe viable biomolecular components

and devices within predictive, scalable and reprodu-

cible systems. It is an active process, common in the

field of speech and communications, to analyze sig-

nals where only and all the signals to be analyzed can

be generated [143]. Biomolecular components and

devices refer not only to individual biochemical me-

tabolites but also to stable self-contained modules.

Then, biomolecular systems may mean any process,

computational or otherwise, that is the result of

clever combinations of biomolecular components

and devices. Furthermore, such systems may also

give rise to other components and devices. Thus,

in the context of synthetic biology, the premise of

analysis-by-synthesis is to be able to generate a rep-

resentative variety of artificial biomolecular compo-

nents, devices and systems.

Successful methods for generating biomolecular

components and devices need to be scalable with

fast growing high-throughput technologies. For in-

stance, ontology mining tools such as GoMiner [144]

are scalable to handle large ontology datasets so as to

mine for biomolecular components and devices from

Figure 2: Dual role of synthetic biology in reverse en-
gineering biomolecular systems (REBMS): (left) to test
and validate models as a result of upstream mining and
modeling, i.e. as the third step in a conventional work-
flow and (right) to create biomolecular components,
devices and systems for analysis-by-synthesis, i.e. syn-
thetic biology is the driver for REBMS
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linked ontology terms. On the other hand, the

synthesis of artificial biomolecular components and

devices using equivalent circuits in systems modeling

and synthetic biology is not yet scalable. The efficacy

and efficiency of assembling metabolites is directly

correlated to the dexterity with which researchers

may manipulate the biochemistry of the particular

metabolites. Additionally, because of the diversity

and heterogeneity of biomolecular systems and sig-

nals, individual (groups of) efforts in analysis-

by-synthesis must be communicated effectively to

make any collective progress as a community and

to create impact through clinical translation.

Examples include the IUPS Physiome Project

(www.physiome.org.nz), where biosensors, bioreac-

tors and multi-scale models for diagnosis and treat-

ment. Thus, through an iterative process of data

acquisition, mining, modeling and validation, emer-

gent properties of reverse engineered biomolecular

systems predicted by mathematical models may be

verified and validated in synthetic biology for

REBMS.

Synthetic biomolecular components
(macromolecules), devices (pathways)
and systems (organisms)
The primary challenge of synthetic biology for

REBMS is to create and reproduce synthetic biomo-

lecular components (macromolecules), devices (path-

ways) and systems (organisms) that can replicate the

functions of its natural counterparts in vivo. For ex-

ample, synthetic enzymes that mimic metabolism

have been created [145] even though most results

to date are relatively simple proof-of-concept

creations; toehold reactions have been created to im-

plement DNA circuit control mechanisms without

enzymes [146], which has potential uses in automatic

drug delivery; and synthetic pathways such as gene

networks have also been created to mimic pathways

for pathogenic virulence [147]. However, the inabil-

ity to manufacture and splice DNA reliably, together

with the need for extensive post-synthesis modifica-

tion, has hindered the synthesis of larger, more

intricate gene networks. On the other hand, a

number of advancements have been made in terms

of regulating gene networks, for instance, by mod-

ulating the expression of specific proteins [148] with

synthetic ribosome-binding sites [149] and selectively

introducing mutations in the TATA boxes of pro-

moters to reduce unwanted network interactions

(or noise) [150]. At the level of whole cells, including

unicellular organisms, a number of experiments

have recently demonstrated the potential of syn-

thetic biology to modify the existing genome

of bacterial cells to perform novel functions, e.g.

to detect light–dark edges in images [151],

implement a genetic clock [152] and inhibit bio-

film formation [153]. More recently, Gibson et al.
[154] reported the creation of a bacterial cell

controlled by a synthetic genome, which opens the

possibilities of creating minimal cells with desired

properties [25].

The reliability and reproducibility of synthetic

biology may be improved by in silico modeling and

simulation, such as in computational structural biol-

ogy for synthetic macromolecules to simulate folding

and tertiary interactions. Blake et al. [23] described a

method for scalable, cost-effective, sequence-

independent assembly to construct large DNA com-

ponents. For synthetic pathways, there are a variety

of simulation software using BioBricks to construct

standardized models of biochemical networks to pre-

dict kinetic outcomes [24], such as SynBioSS [155],

Eugene [156] and TinkerCell [157]. While

computer-aided design (CAD) tools may be useful

to design and simulate synthetic macromolecules and

pathways in silico, the challenge remains to: (i) valid-

ate such designs experimentally and (ii) close the

simulation-experimentation information loop by

incorporating CAD knowledge to improve synthetic

biology in practice. Crosstalk, i.e. noise, can also

occur between host and synthetic circuitry that vio-

lates the modularity of components and devices in

expressing synthetic biomolecular systems through

host organisms. This problem is difficult to fully

address because of the complexity of intracellular

signaling, but an optimization protocol, which

was tested in E. coli, has been developed to allow

targeted modification of existing circuits that simpli-

fies design and testing [27]. Wang et al. [28] also de-

veloped multiplex automated genome engineering

(MAGE), which enables large-scale cell program-

ming and evolution.

The challenges and opportunities make synthetic

biology an exciting topic for REBMS, where theor-

etical outcomes from data mining and systems mod-

eling may be verified and validated directly through

analysis-by-synthesis. While there is some progress

toward addressing the overall key challenge of

model validation directly through synthesis in terms

of macromolecules, devices and systems, issues

remain to ensure the fidelity, reproducibility and

REBMS using �omic data 439



scalability of such synthetic biomolecular compo-

nents, devices and systems [24–26, 28, 158].

Synthetic biology: a case study
Recent breakthroughs in synthetic biology made it

possible to synthesize and implant an entire genome

to create living cells. Specifically, a bacterial genome

can be synthesized and transplanted to another bac-

terium [154]. This bottom–up approach involves

constructing a very small genome and re-engineering

a reduced version of the entire genome for implant-

ation and viability testing. In this study, Gibson et al.
resequenced the Mycoplasma mycoides genome and

disassembled it into 1078 overlapping cassettes of

1080-bp long. Then they implanted the chemically

synthesized cassettes into yeast, whose DNA-repair

enzymes linked the short sequences together. These

generated medium-sized stings of DNA were then

transferred into E. coli and back into yeast. By repeat-

ing this procedure three times, a complete genome

of M.mycoides, comprising 1.08 Mb was constructed.

The complete M.mycoides genome was then trans-

planted into another bacterium, namely Mycoplasma
capricolum. Although few genes were deleted or

disrupted in this genome insertion, they observed

that properties of the transplanted M. capricolum are

the same as M.mycoides. While this first construct of a

living cell is just a proof of concept, the methods and

technologies developed hold great promise for many

other applications.

CONCLUDING REMARKS
Data-driven mining and design-driven modeling

have led to significant progress in REBMS using

high-throughput –omic data. In addition to theoret-

ical analyses, the next step is to combine analysis with

synthesis through synthetic biology. Research in syn-

thetic biology is shown to serve dual roles

for REBMS in model validation and analysis-

by-synthesis. Thus, the overall key challenges in

REBMS are to (i) integrate heterogeneous biochem-

ical data at molecular-level resolution for data

mining, (ii) combine top–down and bottom–up

approaches for systems modeling and (iii) validate

theoretical system models directly by experiment,

in particular synthesis (Table 2). While significant

progress has been made toward addressing specific

problems, key issues remain to (i) increase the accur-

acy of feature extraction in data mining, (ii) improve

the simulation and abstraction of emergent system

properties in systems modeling and (iii) ensure the

fidelity of assembled macromolecules and pathways

in synthetic biology. By incorporating data mining,

systems modeling and synthetic biology to create an

integrated and iterative research pipeline, we are

hopeful that these remaining issues in REBMS will

be overcome.

Table 2: Summary of challenges, progress and remaining issues and opportunities for REBMS

Key challenge Progress Issues/opportunities

Data
mining

Integrate and analyze
high-throughput data

� Minimum information standards for data storage and re-
trieval [60^63, 65, 66]

� Data combination to fill in missing values and increase
sample sizes [12, 82, 83]

� Iterative cross-validation [77, 80]

Increase accuracy of feature extraction

Systems
modeling

Use top^down with
bottom^up
approaches

� Static network topology inference using correlation,
Boolean and Bayesian networks [13, 95, 97^99, 110, 111,
159^162]

� Dynamics modeling using bottom^up approaches, e.g.
probabilistic and dynamic Bayesian networks, mass
action, flux balance and S-systems [18, 20, 21, 114,115,118,
163,164]

� Dynamicsmodelingusing top^down approaches, e.g. cy-
bernetics, classical and modern control theory [19, 22,
121^127]

Improve integration of top^down and
bottom^up models

Synthetic
biology

Validate systems
models

� Macromolecule synthesis [23, 26,145,146]
� Gene pathway simulation using CAD tools [24, 148^150,

154^157]
� In vivo artificial organisms using synthetic genetic circuits

[25, 27,151^154,165]

Ensure fidelity of assembled synthetic
components and devices
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Key Points

� To dealwith high-throughput data in REBMS, data-drivenmining
approaches can extract patterns and features for downstream
modeling.

� Motivated by similarities between biological stability and engin-
eering robustness, design-driven approaches can simulate and
abstract emergent properties of complex biomolecular systems.

� Challenges in data analysis andmodeling forREBMSmaybe over-
come by integrating heterogeneous datasets for mining and
combining both top^down and bottom^up approaches for
modeling.

� Synthetic biology is an emerging field that proves to be an excit-
ing opportunity for REBMS, serving dual roles in validation and
analysis-by-synthesis.
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