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S U M M A R Y  
This paper presents and analyses numerical techniques developed to investigate 
viscoplastic Stokes flows within a model of lithospheric deformation. In particular, 
the techniques are related to a subduction model of compressional orogens. The 
driving mechanism in the model corresponds to the near-rigid convergence and 
subduction of one mantle lithosphere beneath another in plane strain and this 
boundary condition forces flow in an overlying viscoplastic model crust. The 
numerical techniques use the arbitrary Eulerian-Lagrangian formulation in which 
flows with free surfaces and large deformation are computed on an evolving 
Eulerian finite-element grid that conforms to the material domain. A regridding 
algorithm allows the associated Lagrangian motion and fields to be followed, and, in 
addition, coupled back to the Eulerian calculation of the flow. Mass-flux boundary 
conditions are used so that the effects of erosion and deposition by surface 
processes, and mass loss by subduction can be included in the model calculation. 
The evolving model crustal layer is flexurally compensated using a general elastic 
beam formulation. The applicability of the numerical techniques to problems 
ranging from accretionary wedges to crustal and lithospheric scale deformation is 
discussed. Simple flows, a linear viscous subduction model, a whirl flow, and a 
quasi-convection model are used to show that the mass conservation, regridding and 
surface tracking errors are small. The broader applicability of the modelling 
techniques is reviewed. 

Key words: arbitrary Lagrangian-Eulerian techniques, finite element, numerical 
techniques, subduction models, tectonics, viscoplastic flows. 

1 INTRODUCTION 

1.1 Continuum mechanical models of tectonic flows 

The past decade has seen a growing number of attempts to 
model and compute tectonic flows (velocity, displacement 
and deformation), using continuum mechanics and numeri- 
cal simulations. Studies of flows at lithospheric scale (for 
example, Braun & Beaumont 1987; Dunbar & Sawyer 1988, 
1989), crustal- or subcrustal-scale tectonic wedges (for 
example, Emerman & Turcotte 1983; Stockmal 1983; 
Dahlen & Barr 1989; Willett 1992), at continental scale (for 
example, Tapponier & Molnar 1976; Vilotte et al. 1982) in 
mostly plane-strain or plane-stress conditions using thin 
sheet models (for example, England & McKenzie 1982; 
Houseman & England 1986; Vilotte et al. 1986; Bird 1989) 
have refined the plate-tectonics model at plate boundaries to 
help develop an understanding of the mechanics of diverse 

tectonic processes (for example, orogenesis or rifting). 
Various boundary conditions ranging from external 
kinematic forcing (indentor, basal motion, lateral motion, 
mantle plume) to more dynamically coupled models 
(stress-boundary conditions, surface processes, basal com- 
pensation) have been investigated. In addition, various 
mechanical properties have been used to provide a gross 
parametrization of complex and heterogeneous lithospheric 
materials. 

In this paper additional numerical techniques to solve the 
underlying equations are described and analysed, and it is 
explained how the methods are applied to the subduction 
model of compressional orogens. Some aspects of the 
subduction model application of these techniques have 
already been published, for example, Willett, Beaumont & 
Fullsack (1993), Beaumont, Fullsack & Hamilton (1994) and 
Beaumont & Quinlan (1994). The primary purpose of this 
work is to provide the mathematical/numerical foundation 
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for these papers and, to avoid duplication, they are 
referenced extensively. 

1.2 The subduction model of compressional orogens 

In the subduction model of compressional orogens it is 
assumed that crustal-scale deformation is caused by the 
near-rigid convergence of the mantle lithospheres of two 
plates and the subduction of one beneath the other. The 
equivalent mechanical model (Willett et al. 1993; Beaumont 
et a!. 1994) addresses the problem of the evolution in time of 
a layer of viscoplastic material attached to two underlying 
converging rigid plates in vertical cross-section plane-strain 
conditions. Fig. l(a) shows the initial state of the layer and 
the steady kinematical boundary conditions that are applied 
to its base in order to force the shortening of the layer. We 
choose for convenience an external reference frame, linked 
to plate B, which has its origin at S, the uppermost point of 
contact between plates A and B (Fig. lb). Plate A applies a 
driving convergence velocity V, to the base of the layer and 
the applied velocity decreases over some transition length 
scale (0 in Fig. 1) to a zero value at point S and all locations 
in plate B. By comparison with natural compressional 
orogens, the deforming layer represents the brittle (or 
brittle-ductile) crust and the underlying region represents 
the more competent lithospheric mantles, while S represents 
the point at which plate A subducts under plate B. In a 
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Figure 1. Basic subduction model. (a) Physical model. (b) Frame 
and boundary conditions. Horizontal basal velocities change from v, 
on the left of the singularity point S to 0 on the right of S. We refer 
to the length over which the decrease in velocity is distributed as the 
transition length. It is zero here. (c) Results that may be computed 
in the numerical simulations of the model for comparison with 
observations. See Willett el al. (1993, Fig. 1) for the tectonic setting 
of the model. 

related analogue sandbox model (Malavieille 1984), a layer 
of sand is dragged by a basal sheet driven with a small 
horizontal velocity and pulled out through a slit at point S. 
In contrast to the indentor or backstop model (Davis, Suppe 
& Dahlen 1983; Liu, McClay & Powell 1992), in which a 
vertical wall is moved laterally to push the layer, the present 
model gives rise to a doubly vergent orogen, a feature 
commonly observed in continental collision zones. Because 
the problem is fundamentally asymmetric, we give a pro- 
(retro-) label to the flow or structural elements-basin, 
wedge, step-up shear zone-occurring upstream (down- 
stream) of S (Willett et al. 1993). 

We need a numerical treatment of not only the basic 
model but one which also allows us to incorporate various 
other boundary conditions, material types and geological 
processes that occur in nature and leads to a range of 
orogenic styles. By style, we not only mean the evolution of 
the model topography but the complete path in space and 
time of the finite deformation and thermodynamical fields 
(stresses, pressure, temperature; Fig. lc). Hence we want 
the numerical model to handle. 

(1) Various boundary conditions: advance and retreat of 
the subducing layer (positive and negative V ,  of plate A) 
(roll back), double subduction, net extension, distributed 
mantle lithosphere compression. 

(2) Various material types: rigid-plastic materials, visco- 
plastic materials for which the brittlelductile transition is 
dynamically controlled by state parameters (e.g. pressure, 
temperature), strain softening and hardening. 

(3) Various material distributions: e.g. initial horizontal 
material zonation or weaklstrong inclusions. 

(4) Various geological processes: erosion or deposition 
(surface processes) may alter the free surface, while 
subduction of the pro-mantle can also entrain crust into the 
subduction. Hence, the free surface and the basal supporting 
surface may be open to mass fluxes and their net shape must 
be tracked through time. The net thickening may be 
compensated by flexure of the mantle lithosphere or local 
isostasy (Fig. 2). 

We make use of quantities related to the mass balance 

m , =  m,  + mE + m ,  

in describing the subduction models, where m,(m,) is the 
crustal mass input (mass accumulated) in the domain and 
m,(m,) is the crustal mass leaving the domain by erosion 
(subduction). The quantities m,lpH2, mA/pH2, mJpH2, 
and ms/pH2 are called normalized convergence, growth, 
erosion and crustal subduction of the model at any point in 
time, where p and H are the density and initial thickness of 
the crustal layer, respectively. 

2 EULERIAN AND LAGRANGIAN MODEL 
FORMULATIONS 

We now turn to the subject of continuum kinematics. Two 
classical descriptions of motion are the Lagrangian (L) and 
Eulerian (E) formulations. In the Lagrangian description the 
observer of the flow follows the material motion. Hence the 
observation and computation of velocities or flow 
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Figure 2. General subduction model. The basic subduction model 
(Fig. 1) can be modified by introducing isostasy and/or boundary 
mass fluxes. (a) Flexural or local isostasy. Every Eulerian column is 
displaced by the corresponding local or flexural deflection w of the 
base. (b) Mass fluxes crossing the boundaries may be: (1) the 
tectonic flux t+  into the domain, due to tectonic convergence; (2) 
the deposition flux et onto the domain, due to surface processes; 
(3) the erosion flux e -  from the domain, due to surface processes; 
(4) the crustal subduction flux cs- from the domain, due to the 
entrainment of crustal material by the subducting plate. 

increments are made at locations in space in some remote 
frame that are advected with the material velocity. This 
leads to the so-called updated Lagrangian (UL) method of 
numerical integration of the flow by which the mesh 
discretizing the medium is continuously updated in time to 
follow the last available prediction of current incremental 
motion. This approach was pioneered by McMeeking & 
Rice (1975) with velocity equations derived from Hill’s 
variational principle. In the Eulerian description of motion, 
the observer of the flow is fixed in the remote frame and the 
discretizing mesh used in the numerical integration of the 
flow does not move (Eulerian (E) formulation). 

A third description that generalizes the Eulerian 
formulation, and is the one which is used here, is the 
arbitrary Lagrangian-Eulerian (ALE) formulation (Hirt, 
Amsden & Cook 1974) in which the observers represent a 
non-material continuum that moves with arbitrary velocities. 
In contrast to the Eulerian method, ALE allows for moving 
material interfaces, such as free surfaces, surfaces within the 
domain, or its base. It has been applied to metal forming 
and rolling processes (Zienkiewicz & Godbole 1975). 
Because the ALE formulation considers both the material 
(or Lagrangian) medium and a non-material medium 
(loosely termed Eulerian), we choose the following 
convention (which is not the standard one). We call the 
velocity of the Lagrangian medium ‘Lagrangian velocity’, 
the velocity of the Eulerian medium ‘Eulerian velocity’, and 
velocity alone always means material velocity. 

Each formulation has distinct advantages and drawbacks 
when used in a numerical solver and we briefly review a few 
of them. 

Large strains 
For infinitesimal strains no special problems arise and we, 
therefore, confine the discussion to examples in which the 
medium undergoes finite deformation. Meshes advected in a 
UL analysis will suffer distortion and result in loss of 
accuracy of, for example, the elements in a finite-element 
(FE) computation. ALE analysis solves this problem by 
minimizing mesh distortion (remaining compatible with the 
domain shape). The Lagrangian motion on the other hand, 
which involves trajectories, strains, etc., needs additional 
computation when using ALE because the Eulerian and 
Lagrangian media are distinct. A description of the 
computational methods used to relate the two media is given 
later in Section 3. 

Boundary conditions 
ALE methods are most convenient for the treatment of 
open flux boundaries. In the case of erosion or deposition of 
mass, for example, birth and death of elements would be a 
solution to the creation or removal of mass when using UL, 
but these change the matrix profiles. In the ALE case, 
however, the mesh does not have to be material and we can 
erode its outer shape to account for the erosion mass flux 
and use an arbitrary mesher inside the Eulerian domain. 
Consequently, surface or basal processes only require that 
the domain geometry be modified in a way that is consistent 
with overall mass conservation. 

Flow type 
We make a broad distinction between flows with (M) and 
without (WM) memory. M flows need a material integration 
in time. In other words, the current dynamics (rate of 
deformation) depends on some control quantity (which we 
refer to as a Lagrangian control) that is attached to the 
material and may be fixed in time in the material frame or 
accumulated by the material during deformation. WM flows 
are governed by equations determined solely from the 
current domain shape, the time-independent material type 
and the boundary conditions. WM pose no problem in the 
ALE formulation and this approach is widely used in 
incompressible viscous-flow computations (Ladyzhenskaya 
1969). Compressibility (elasticity) puts flows in the M 
category by pressure (stress) control. M flows are easily 
integrated in UL, but there is an additional requirement in 
ALE to solve an advection problem because the values of 
the Lagrangian controls have to be recomputed on the 
Eulerian medium. This problem is usually cast as a 
first-order advection equation that is part of the equilibrium 
equations or is solved in staggered way with the diffusion 
step (Press et al. 1986). Special schemes, like upwind 
schemes or characteristics integration, are necessary to 
attain stability and accuracy. In the calculations described 
here we have opted for a more simple approach in which we 
replace the partial-differential equation approach by a 
regridding problem. We term it the ALE-R method. A UL 
computation could use the same technique by incorporating 
ALE-R steps. The elementary regridding approach we use is 
limited to problems in which the velocity does not change 
strongly on time-scales corresponding to the advection of 
the control fields through one element, and to Lagrangian 
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fields whose wavelengths are longer than the mesh 
resolution (this condition may deteriorate with flow 
advection). The method seems reasonably suited to creeping 
flows at low Courant-Lax-Friedrichs (CFL) numbers: 
uAt/Ax, where u is the scale for velocity, At the increment of 
time and Ax the cell size of the discretizing mesh. 

The ALE-R method is not new. It is a simple variant of 
the particle-in-cell methods, first developed by Harlow & 
Welch (1965). This class of method has long been used and 
brought to a high degree of sophistication in the context of 
plasma physics and supersonic flows (Brackbill & Ruppel 
1986). It has been applied more recently to geodynamics, 
especially in problems involving interface advection in 
convective flows (Christensen 1984; Poliakov & Podlad- 
chikov 1992). For these problems, the partial-differential 
equation approach is an alternative and can be used in 
combination with effective filtering techniques (see Lenardic 
& Kaula 1993, which also contains a clear description of 
'fitting' and 'capture' regridding methods and a useful 
bibliography). The potential of particle-in-cell methods lies, 
however, in their great generality, which could be more fully 
exploited to apply to any dynamical system. 

Most of this paper is devoted to viscoplastic flow 
problems, essentially WM flows in an ALE-R formulation, 
and to the tracking of Lagrangian motion and material 
fields. The general flowchart of an ALE-R computation is 
given for reference in Fig. 3. 

3 INTEGRATION OF CREEPING FLOWS IN 
THE ALE-R FORMULATION 

3.1 Quasi-static motion equations 

In creeping flows the acceleration is neglected, therefore, 
the material motion evolves through a series of equilibria: 

x = @(t, X), 
where the flow map is constrained by the current 
boundary conditions, conservation of mass and balance of 
stresses. x is the position at time t of a particle located at X 
at time t = 0. We use time stepping and solve for each 
interval of time [t, t +At] the incremental motion Ax from 
the current Eulerian positions x"(t), where the current 
material velocity at xE(t) is v=Ax/At. For M flows the 
values 4" at xE of all Lagrangian fields 4L controlling the 
incremental motion must first be evaluated. 4" and 6" are 
the values that a physical field 4 (for example, the 
temperature, the accumulated strain or the pre-stress) takes 
on the Eulerian medium and the Lagrangian medium, 
respectively. 

Incompressible flows are characterized by a power 
dissipation function /1 and governed by the system of 
equations which we refer to as (S) (Sedov 1975): 

(V T + pg = 0 

where T is the Cauchy stress tensor, p is the density, g is the 
gravitational acceleration and dE is a scalar control-like 
temperature, strain or strain rate, obeying an evolution 
equation C. For simplicity this equation is ignored in the rest 
of the paper. 

Equilibrium in hypoelastic flows obeys an incremental 
system of equations (SI): 

V. T + pg = 0 
Tv = %(T, +", Vv) (SZ) 1 BOUNDARY CONDITIONS 

which reflects the incremental nature of the second 
equation, and 

AT . Tv = - + [a, T ]  
At 

is an objective rate of stress (like the corotational rate of 
Kirchoff stress or the Green-Naghdi rate of stress), where 
h is a measure of the spin rate. The thermodynamics are 
totally dissipative or irreversible in (S) but is partly 
reversible in (SZ). (S) is the natural system occurring in the 
context of viscoplasticity and, if /1 is independent of 4E, the 
flow has no memory of the past except for the evolving 
distribution of weight resulting from the advection process 
that creates the new source for pressure gradients. Although 
our main emphasis here is on (S) systems, ALE 
formulations can be used for both categories of flow. While 
(S) must be formulated in velocity and only integrated 
forward in time for incremental displacements, (SZ) can be 
formulated either in velocity or incremental displacement. 
In the latter case, time stepping is limited by the 
convergence of the new stress balance (and in an ALE 
context by the accuracy of the Eulerian interpolation), and 
the model must be in mechanical balance at the end of each 
time step. The spatial integration of these systems is 
performed on the current Eulerian medium and in the case 
of (SI) needs the interpolation on this medium of the density 
of accumulated internal force (pre-stress). When the 
incremental displacement Au is known, it is used to define a 
new geometry and a Eulerian motion that minimizes 
distortion. The Eulerian medium is then advected and the 
Lagrangian fields are reinterpolated on new Eulerian fields. 
Boundary conditions are updated and time stepping 
continues. 

3.2 Constitutive equations 

We describe here a simple family of viscoplastic rheologies. 
The subscripts 'D' and 'T' indicate deviatoric and trace 
projections and we use the following notations: 

T is the Cauchy stress tensor 

TD = (TD:TD)In p v = o  

1 C(+", T, Vv) = 0 

(BOUNDARY CONDITIONS. p = -Tp 
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Figure 3. Flowchart of the computation for the subduction model using the ALE-R formulation. The finite-element computation is explained 
in Section 3 and the regridding computation in Section 4. No interpretation of the results is given in this paper. Instead, the focus is on the 
numerical techniques used in the model simulation. 

The rheologies are parametrized by a yield function, 
f ( T D , p ) ,  a plastic potential, g( TD,p)  (Prager 1956; both 
functions may contain other parameters) and a viscous 
constitutive law, h, which may be non-linear and thermally 
activated as a function of the absolute temperature, 8. 

If f (  TD, p )  < 0, the material behaves as incompressible 
viscous with 

& = ~ ( T D ,  8 )  

e.g. h(TD, 0) = aT& exp - - ( E:BPV) 
where the coefficients are those normally associated with 
thermally activated power-law creep (Ranalli 1987, p. 269; 

Perzyna 1988). Hence, 
D - ~ ( D D ,  pt ~ ) D D  = %,DD {v' ,=" 0 , 

where p and p, are the viscosity and effective viscosity. 
I f f (  T,, p )  = 0, the material behaves plastically with 

ag D = A -  
dT' 

where h is determined by the yield equation. 
We use Mohr envelopes: f ( T D , p )  = Tk + f i ( p ) .  The A 

parameter has therefore a unit of inverse viscosity in this 
convention (Fung 1965, p. 145). Any choice of J ( p )  except 
J ( p )  = a'p' introduces scales in the yielding process. For g 
we choose: g = T: + g , ( p ) .  For these 'decoupled' ( J  g) 
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functions, the flow rule separates into two parts: 

D, = AT, 

The material therefore behaves as a non-linear pseudo- 
viscous compressible fluid. If f =g, the flow rule is 
associative and automatically compressible except for 
constant g. Special cases are: 

(Von Mises) h ( P )  = -c2 
g l ( P )  =fib) 
c is the cohesion 

(Drucker-Prager) f i ( p )  = - p 2  sin2 cp - c2 

cp is the angle of friction 
9 is the dilatation angle 

2 ' 2  g l ( P )  = -P s1n 9 

(In plane strain this criterion is equivalent to the Coulomb 

(Griffith-Murrell) f i ( p )  = -T,p - cz is a stress scale 

(Modified Cam-Clay) f i ( p )  = - ( p 2  - 2ppJ sin' cp 

p c  is the consolidation pressure. 

criterion.) 

g l ( P )  = f i ( p )  

g l (P> =fib) 

The Von Mises criterion models materials in the pure 
cohesive limit, while the other criteria show a pressure 
dependence that may be in better agreement with 
rheological observation for rocks (Jaeger & Cook 1976). 
Coulomb's criterion (Coulomb 1773) can be used, for 
example, to interpret Byerlee's law of friction. Various 
extensions of these plastic potentials have been proposed 
(for example, Hobbs, Miihlhaus & Ord 1990) to account in 
some parametrized way for processes like localization of 
deformation and dilatation. Alternative models are the 
double sliding model (Spencer 1964) and Cam-Clay-type 
models (Collins 1990). The latter class represents an attempt 
to construct a single, internally consistent model and has 
been used extensively in soil mechanics (Schofield & Wroth 
1968). We note that the incompressible models we have 
used can generate levels of pressure that are not in any way 
limited by elastic or plastic compressibility and, conse- 
quently, might lead to unrealistic strength envelopes or to 
incorrect determinations of the dynamical brittle/ductile 
transition. Pressure and dilatation also directly affect 
velocity and stress characteristics and, hence, the interpreta- 
tion of faulting angles (Mandl 1988). Consequently, we will 
not discuss them in detail in the context of the simple 
models used here. Note also that when a 
hardening/softening parameter is introduced (like the 
consolidation pressure in Cam-Clay or hardening/softening 
of the cohesion c, dilatation angle 1,4, or friction angle cp) the 
yield equation does not imply a unique relation between 
stress and pressure but only local unicity at any point of the 
loading history. A distinction should, therefore, be made 
between stress profiles and stress envelopes in this case. 
More precisely, stress envelopes are particular stress profiles 
which assume a priori conditions like homogeneous strain 
rate, given geotherm or pressure distribution. These 
envelopes should not be confused with the stress profiles 
actually reached in the dynamical conditions of a more 
general physical model like the subduction model. 

In our models we currently use the viscous, Drucker- 
Prager and Von Mises incompressible rheologies, which are 
the lowest-order description of the mechanical behaviour of 
rocks, and we neglect the role of elasticity. Our model 
predicts stress-strain curves that should, in principle, be 
compared with results from carefully monitored laboratory 
experiments that test a variety of boundary conditions and 
deformation modes (triaxial or sandbox experiments may 
for example be used). Until this is done, we do not know 
how accurate the physics of the deformation is in our 
numerical experiments (which happily produce strains of 
several 100 per cent with no dilatation or compression and a 
single yield function) in comparison with the Earth's crust. 
We use the basic description in the belief that it captures 
some of the largest-scale features of the crustal tectonic flow 
in conditions approximating our model boundary conditions. 

The conclusion of this section is that the type of flow rule 
used here leads to pseudo-viscous behaviour where p e  is the 
effective viscosity. From now on we focus on incompressible 
flows. 

3.3 Spatial discretization 
We use the finite-element (FE) technique to discretize our 
problem. By applying the virtual power principle, we 
retrieve the discretized equivalent of the generalized Stokes 
problem: 

V - (2p,D) - V p  = -pg 
(S) v . v = o  

BOUNDARY CONDITIONS 

K,. V + K,(p) = Mg 

1 
which is: 

(SA) KT*(V) = o  [ BOUNDARY CONDITIONS. 

We note * the adjoint operator, and 
B =  (B,, B2.  . . . B, . . . .) 

K, = B*C,B dvol I 
K&) = B*G(P) dvol 

(Mx)ij = I NiN,p dvol 

M, = M, 

M=[". '1 
0 M, ' 
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where N, are the nodal shape functions, dvol is the 
infinitesimal volume element, and ij means the i, jth element 
of the matrix. 

The saddle point problem (S,) is transformed into a 
minimum problem by a Lagrangian constraint penalization, 
p = -kV - v, with a value of the pseudo-bulk modulus k that 
is large with respect to p,. Merely substituting this 
expression in the system of equations (S,) would not ensure 
the strong ellipticity of this problem: the pressure 
interpolation space must have an adequate dimension 
(Ladyzhenskaya 1969; Babuska 1973; Brezzi 1974). If shape 
functions 9, are introduced for the pressure, the system of 
equations (S,) becomes: 

(K,v + Kkp = Mg 

BOUNDARY CONDITIONS 

with 

For four noded elements, N ,  are bilinear and pressure has 
one internal degree of freedom that is the element averaged 
pressure. Internal pressure degrees of freedom are 
condensed out by incomplete Gauss factorization when the 
element stiffness matrices are computed, yielding a stiffness 
matrix operating only on velocity degrees of freedoms. 
Equivalently selective integration of the trace (order 1) and 
deviatoric (order 2) parts of the matrix can be used (Malkus 
& Hughes 1978). Efficient discretization of the penalized 
problem must satisfy three requirements (Park 1984): 

(1) the locking-free condition ensures velocity 
convergence; 

(2) the divergence-free condition ensures pressure 
convergence; 

(3) spurious or zero-energy mechanisms have to be 
monitored. 

The 411 element used here satisfies the first two 
conditions but has a checkerboard mode at the element 
wavelength. When combined with a smoothing filter it has 
been found to be reliable enough in the present application, 
although oscillations may appear in the basal boundary layer 
near the velocity discontinuity in the subduction model. An 
alternative approach would be to use the 914 elements, 
which include pressure gradient degrees of freedom, but this 
would be at the expense of a more complex element 
geometry. Another, simpler, alternative would be to 
reconnect the discontinuous pressures by using a fully 
integrated pressure-mass matrix in the pressure recovery 
from the velocity divergence. Note that this step is 
important for pressure-sensitive rheologies. High penalty 
ratios, k/pL,, are necessary to produce quasi- 
incompressibility but these lead to an ill-conditioned or even 
singular matrix if insufficient precision is used in the 
arithmetics of the computation. We have chosen here to use 
a high but finite penalty ratio, therefore avoiding the need to 
solve globally for pressures. This results in poorly 
conditioned linear systems that would be very difficult to 

solve with an iterative linear solver. This represents a strong 
limitation of the penalty formulation in large size (e.g. 3-D) 
problems. 

An alternative, which we have not used here, would be to 
use an infinite penalty ratio. In this limit no system can be 
formed for the velocity alone. The pressure equations are 
derived from the elimination of velocities in the system of 
equations (Si), and correspond to the discretization of a 
Laplace operator with appropriate boundary conditions. 
Uzawa’s method of solution (Chabard et al. 1987) consists in 
applying an iterative gradient algorithm to the pressure 
capacitance system, an algorithm that converges to the 
velocity-pressure solution. Most of the methods designed to 
solve incompressible flow problems in the velocity-pressure 
variables correspond to approximations or accelerations of 
Uzawa’s technique. Their use would be an improvement 
over the present penalization method. 

The shape functions are built from the Eulerian grid 
geometry and, because the Eulerian motion does not 
conserve volume, the mass matrix is updated each time step 
to discretize the mass distribution correctly. Another reason 
to update the mass matrix occurs when surface processes 
(erosion and deposition) affect the mass balance. To 
reiterate, erosion feedback for WM flows in ALE-R 
formulation becomes a simple geometric update of the mass 
matrix and domain shape. 

3.4 Non-linear solver 

We use a particular fixed point method, direct iteration, 
(Zienkiewicz 1977) to solve the system of equations (S,) 
iteratively. It belongs to the class of schemes operating on 
the total increment of displacement occurring in a time step 
by contrast with subincremental methods of the Newton 
type. For the non-linear rheologies used here, the algorithm 
essentially rescales the viscosity field locally and, as a 
consequence, determines the strain-rate field that is 
compatible with this viscosity distribution and the boundary 
conditions until convergence is reached. Fig. 4 shows how 
viscosities and material states (‘viscous’ under yield and 
‘plastic’ at yield) are updated. Rigidity is penalized in 
rigid-plastic computations by using a high penalizing 
viscosity: 

where DBC is the strain-rate scale imposed by the boundary 
condition (or body forces in other models) and f i ( p )  is 
estimated using the maximum static pressure. Viscosity is 
scaled down to its yielding value when the stresses it 
produces, with the current strain-rate prediction, are above 
the yield level. In the viscous or ‘creep’ regime non-linearity 
is characterized by the exponent n which is a function of 
mineral type and effective creep mechanism (for example, 
diffusion or dislocation climb; Perzyna 1988). We then 
simply use the predicted strain rate to recompute the 
viscosity, a procedure which, in our experience, converges 
for n > 1 (in this case the viscosity decreases when the 
deformation rate increases). The temperature field, 8, 
controlling creep activation is the Eulerian interpolation of 
the advected temperature field in the infinite Peclet number 
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1) Predictor VISCOSITY : Pi 

2) Compute VELOCITY : K&)v = Mg 

3) Compute STRAINRATE : DD = ( V v + V ' v ) / 2  

1 
2 

DD =-(DD:DD)l'z 

4) Compute PRESSURE : p = - k V . v  

5) Compute CREEP VISCOSITY : & =p(DD, 8 , p )  

6) Check if YIELDING OCCURS : 2p,DD 2 -fl(p)? 

correct viscosity to adjust stresses to yield: 

flag = plastic 
YES - (plastic branch) + 

&+l= Pv i flag = viscous NO - (viscous branch) + 

7) corrected VISCOSrrY : Pi+l 

Figure 4. Direct iteration method used for the determination of the effective viscosity when non-linear viscoplastic rheologies (Section 3.2) are 
used in the model. 

case and the result of diffusion advection for a full 
thermomechanical coupling. 

The convergence of this method is monotonic but slow 
and exhibits, for Von Mises and Coulomb materials, long 
periods with few iterations for each step interrupted by large 
correction steps when the viscosity field is no longer an 
acceptable predictor for the new stress balance. Typically 
three iterations for an average step and 20 or more for a 
large correction step are required for error levels on the 
velocity and the yield condition of order 1 per cent and 
CFL = .5. 

The following are a few observations on the behaviour of 
the non-linear solver in the plastic context. The algorithm 
may fail to converge when the Gauss point or element 
viscosity tends to zero as a consequence of a numerical 
'strain softening' positive feedback effect. This problem is 
not necessarily cured by choosing a minimum value that the 
viscosity can take because deformation may then propagate 
viscously along the system characteristics. This situation may 
be encountered near the developing pro- or retro- 
deformation fronts at the surface when the Coulomb 
criterion is used. The Coulomb envelope is singular at the 
surface and a minimum cohesion of a few per cent of the 
total layer pressure is imposed when such a problem occurs 
(see Beaumont & Quinlan 1994, Fig. 2c for model results). 
When no length-scale is imposed by the boundary 
conditions, the strain rate focuses along the characteristics 
until the grid resolution is reached. Until some form of 
multigrid acceleration is used to improve convergence, we 
accept some level of numerical diffusion to achieve 
reasonable computation cost. (Typical numerical costs are 
now comparable to a full Newton calculation because 
stiffness reconstruction and refactorization are needed but 
the element geometry is fixed and non-linearity is factorized 
in the viscosity array.) Points of minimum viscosity play a 
key role in the solution process and the algorithm appears to 
work, first, by searching for these points (during this phase 
the large wavelength part of the deformation is determined) 
and, secondly, by refining the active characteristics zones 

(this computationally costly phase operates in the 
small-wavelength range and may cause divergence). The 
large plastic deformation process can therefore be viewed as 
the accumulation of incremental strains on active charac- 
teristics that progressively evolve with the geometry. 

In conclusion, the non-linear solution method has been 
reasonably successful for the limited range of applications 
(simple rheologies and kinematical boundary conditions) 
that we have investigated (Wilett et al. 1993; Beaumont et al. 
1994; Beaumont & Quinlan 1994). In this context, the 
velocity range is known a priori and the problem is 
essentially to compute the non-linear diffusion of velocities 
from a known velocity source. We do not know how, in a 
systematic way, to prevent drifts that lead to divergence and 
more work is needed to optimize the solution search and to 
determine the solver ability to converge for hardening/ 
softening behaviour or elasto-viscoplastic materials. 

3.5 Corrections for flexural and local isostatic 
compensation 

The subduction model makes specific assumptions about the 
coupling style between crust and mantle. The crust deforms 
in a brittle/ductile manner, with low elastic strains in 
comparison with the large plastic or viscous strains, under 
the application of the basal traction exerted by the mantle. 
The uppermost mantle lithosphere is assumed to maintain 
the convergence velocity that is imposed as a kinematical 
constraint and the crustal flow decouples dynamically 
through a boundary layer from this 'conveyor belt' motion 
in order to keep stresses within the stress envelope imposed 
by the rheology. 

We decouple the crustal flow from local or regional 
compensation by not allowing the base of the crustal layer to 
deform during the crustal-flow computation. The computa- 
tion is followed by a correction step which determines the 
vertical displacement w (Figs 2a and 3) due to the isostatic 
compensation of the net crustal thickening (i.e. thickening 
including the effect of erosion and crustal subduction). The 
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sum of these two incremental motions defines the motion 
vAt used in the material advection. We also seek to 
investigate the effects of the mantle subduction process 
which accommodates the large relative displacement 
between the pro- and retro-mantles below the collision point 
S. 

We use two elastic beams to model flexure of the driving 
pro-mantle lithosphere and the resisting retro-mantle 
lithosphere and connect them at their common extremity S 
(Fig.2a). The deflection of the pro-mantle beam is solved 
first and may include the addition of an end load at S to 
represent the negative buoyance of the subducted material. 
The resulting deflection at point S is then imposed as 
boundary condition for the retro-mantle deflection problem. 
Each beam is loaded by its end boundary conditions (which 
can be torques, forces, displacements or rotations) and the 
laterally distributed differential static pressure between the 
crustal weight and an underlying asthenospheric fluid of 
density pr Tangential effects on the beam, such as those 
resulting from the basal traction transmitted to the crust, are 
ignored. Deflections obey the beam equation: 

K V 4 W  + prgw = A(p,gH), 

where K is the flexural rigidity, pc the crustal density and 
A(p ,gH)  the weight difference between the current and 
initial reference crustal column. A 1-D FE code with cubic 
shape functions (two nodes per element, a rotation and a 
deflection degree of freedom per node; Zienkiewicz 1977) 
computes the total deflection of each beam. Analytic tests 
show accurate results in the whole range of flexural 
parameters (i.e. from local to flexural compensation with a 
high flexural rigidity). Given the coarseness of the model, 
the non-linearity in the flexural calculation due to large 
deflection is not considered. 

This crude technique of crust-mantle coupling will be 
improved in larger-scale models which will attempt to model 
both the crustal flow and its coupling to the two mantle 
corner flows associated with the subduction process. Suction 
effects and viscous resistance to the subduction are currently 
ignored and we take the view of an effectively steady-state 
subduction. Treating vertical compensation as an indepen- 
dent correction to the tectonic flow also introduces a stress 
disequilibrium at each timestep, but this is accounted for in 
the next timestep when the crustal flow increment readjusts 
to the compensated geometry. Boundary conditions at the 
mantle boundary are updated by rotating the basal velocities 
to align them with the tangent to the mantle boundary 
(when crustal subduction is not imposed, see next section). 

3.6 Boundary fluxes 

Erosion modifies the incremental growth flux through the 
Eulerian upper free surface and crustal subduction can alter 
what is normally a zero mass flux imposed at the mantle 
boundary (Fig. 2b). 

Erosion 

Surface processes act by modifying the weight distribution 
and, consequently, partly control the crustal flow, the effect 
being further enhanced for pressure sensitive rheologies 
(Beaumont, Fullsack & Hamilton 1992). We use the model 
tectonic velocity to both uplift and advect a 1-D or 2-D 

planform topography on which an erosional-depositional 
surface processes model operates. The resulting incremental 
change in height (positive for deposition) is added to the 
tectonic incremental displacement of the surface to find the 
net Eulerian motion. For planform models, strike averages 
of the surface processes model are used for this coupling. 
This approach is heuristically justified when the topographic 
wavelengths along strike are much shorter than those forced 
in cross-section by the tectonic flow, due to surface 
processes (Beaumont et al. 1992). 

Crustal subduction 

Entrainment of crust by the subducting slab can affect to a 
great extent the crustal-flow pattern, large deformation 
process and material histories. We again use a forced 
kinematical approach by imposing an exiting non-zero 
crustal flux through the pro-mantle boundary on some given 
channel width adjacent to S (Fig.2b). The exit flux can 
either be constrained to be tangent to the basal boundary or 
can be rotated in time in the manner of an opening or 
closing flap to investigate forced complex tectonic episodes 
(for example, in the tectonic evolution of the Alps). The 
dynamics of the crustal subduction, including for example 
the interaction between channel width and lubrication 
(Shreve & Cloos 1986), is ignored in the present kinematics. 

4 L A G R A N G I A N  MOTION, REGRIDDING 
PROBLEM 

4.1 Interface tracking 

An interface in the present context is either of the outer 
boundaries of the domain (free surface or basal boundary), 
or an internal interface separating different materials. The 
first type of interface can be, as seen previously, the locus of 
a mass exchange and hence be non-material. The Eulerian 
grid must conform to the current domain shape and may be 
required to respect material zonation within the domain. In 
many applications we use a vertical Eulerian motion (to 
minimize grid distortion) to track the domain boundaries 
and then interpolate between the new boundaries. To solve 
for the vertical Eulerian motion vy of an interface, we apply 
the conservation of mass equation in an integral form and 
get a 1-D FE problem: 

I, (v:, n)Na dsurf = (v, n)Na dsurf 

where n is the unit normal of the interface a (evaluated at 
gauss points) and N, are the surface shape functions. This 
equation simply expresses that the vertical Eulerian velocity 
v: and the velocity v will produce the same net change of 
volume after advection across segments of the boundaries. 
Hence: 

( S a )  m;v: = m;vx + miv, 

with (mi),, = J, nxNaN’, dsurf and (m:)z,, = Ja n‘NaN’, dsurf. 
Clearly, the system of equations (S,) has a zero-flux mode 

at the element wavelength and this will be discussed in 
Section 5. The method represents a simple explicit technique 
to solve for the interface advection, but fails when the 

I, 
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interface folds over (i.e. when mi becomes singular) as 
eventually happens for material interfaces in many 
instances. The vertical regridding must then be replaced by 
the Lagrangian tracking technique (for example, by 
assigning a different number to each material zone and 
regridding on the Eulerian grid the advected value of these 
numbers). Whether mi is singular or not, tracking the 
advected interface by using Lagrangian nodes and choosing 
an interpolation scheme is always an alternative to (S,,) and 
is described below. 

4.2 Lagrangian mesh advection 

This section and the next one describe the details of the 
method used for the Lagrangian mesh advection and the 
regridding. A summary and an illustration are given in 
appendix. 

An arbitrary Lagrangian grid is defined at time t = 0 and 
we call its nodes Lagrangian particles. We store the 
coordinates, xL, of each Lagrangian particle and the number, 
I ,  of the Eulerian element that contains it ( I  5 0 when the 
particle is outside the Eulerian domain). When the 
incremental flow v has been determined on the Eulerian grid 
(including beam deflection), we update xL and I with the 
following simple algorithm. From xL and the vector of 
coordinates XI of all Eulerian nodes defining I we write, 
using the FE shape functions matrix N(r), the system of 
equations: 

( S N )  xL = N(r)x'. 

The system ( S N )  simply states that xL is the image of r from 
the reference domain through the interpolation map. This 
relation is inverted for the vector r and the Lagrangian 
velocity vL is found by the same mapping (isoparametric 
interpolation) from the vector of material velocities at the 
nodes of the Eulerian element I (these do not include an 
erosion or deposition correction for the surface processes). 
Then, by forward Euler integration: 

xL(t + Al) = xL(t) + vLAt. 

A local search process begins around I to determine which 
new Eulerian element, I , ,  contains the advected Lagrangian 
position. To decide if a particle belongs to an element, we 
choose between either a direct check in x space or a new 
inversion of the system ( S N )  using the advected position and 
the test element. The particle is in, or out, depending on 
whether its reference image does, or does not, fall in the 
reference domain. Elements adjacent to the boundaries are 
slightly dilated outwards to account for the unavoidable 
mismatch between the Eulerian and Lagrangian boundaries 
due to numerical errors, which occurs even in the absence of 
erosion or subduction fluxes. For these boundary elements, 
the reference vector r is projected back to the boundary of 
the reference domain to avoid extrapolation of the velocities 
outside the Eulerian grid. Usually, the local search succeeds 
for good Eulerian grid designs and CFL< 1, but when it 
fails a second broader search is used. Clearly, instances 
where particles cross several Eulerian elements in one 
timestep should be avoided because the Lagrangian 
advection would not use the full resolution of the velocity 
field computed on the Eulerian grid. When this broader 

search also fails, it implies that the particle has left the 
domain and its Eulerian element number is reversed in sign. 
Particles can only cross the boundaries as a result of erosion 
or subduction and when this occurs the now dummy particle 
is advected arbitrarily, e.g. with the velocity it had when 
crossing the Eulerian boundary. 

If Lagrangian fields are to be interpolated on the Eulerian 
grid, the Lagrangian grid must at all times cover the entire 
Eulerian domain. This is achieved either by the regular 
injection of new Lagrangian particles, where there is influx 
to the domain, or by defining an initial large Lagrangian grid 
whose nodes will progressively enter the domain. 

In addition to the entry flux, deposition on the boundary 
by surface processes represents a second material source. 
This sedimentary mass is regularly incorporated into the 
model by adding to, or 'coating', the Lagrangian grid with a 
new layer of nodes whose position coincides with the 
Eulerian surface nodes at the time of deposition. The line of 
nodes is then advected with the standard procedure 
explained above and may later be buried by subsequent 
deposition or partially exhumed by subsequent erosion. This 
procedure can be used to record the syn-orogenic sediment 
stratigraphy in models coupling tectonic and surface 
processes (Johnson & Beaumont 1994). 

4.3 Regridding problem 

In Section 2 the ALE-R formulation was defined as a 
fractional step method that alternates a diffusion-production 
substep on the Eulerian grid and an advection substep 
performed by regridding fields + L  defined on the Lagrangian 
grid, onto fields + E  defined on the Eulerian grid. We have 
used the three most elementary methods for the regridding 
operation: 

(1) symmetric nodal interpolation-Lagrangian fields are 
consistently interpolated from Eulerian nodal values and, 
symmetrically, Eulerian nodal values are consistently 
interpolated from Lagrangian nodal values. 

(2) Closest point nodal 'interpolation'-the value of +E at 
Eulerian nodes is the value of C$L at the closest Lagrangian 
node (we use CP to denote this operator). 

(3) Element mixing of nodal values-+E is constant per 
element and takes the average value of all nodal Lagrangian 
values inside the element. 

We may loosely distinguish two classes of advection 
methods: conservative methods, which are designed from a 
conservation principle and more general interpolation 
methods. A good scheme should be both conservative and 
minimize diffusion and dispersion errors (Lenardic & Kaula 
1993). Our schemes belong to the second category and 
define the regridding operator by a linear equation: 

+E = [ +LwF dvol, 
J 

with particular values of the weight functions w: and 
definitions of the approximation spaces for +E and +L. No 
correction filter enforcing conservation has been applied at 
this stage. If the field C$ obeys an evolution equation with 
non-zero Peclet number, a new diffusion-production 
increment A+Ep is computed on the Eulerian grid. The 
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operator regridding 4"+A4Ep onto dL is simple the 
Eulerian isoparametric interpolator. 

Resolution 

The simplicity of these techniques is in contrast to all other 
more elaborate methods developed to solve the advection 
problem. The best approach for given levels of robustness, 
accuracy and computational cost is probably problem 
dependent, but the control of resolution is central and 
therefore warrants some discussion. 

Regridding is only exact when the trivial UL formulation 
is used, but in this case the solution rapidly becomes 
inaccurate because grid advection causes loss of resolution 
in velocity gradients in the areas of flow divergence and an 
additional loss of accuracy due to the FE element distortion. 
Regridding generally involves a projection on the changing 
approximation space and cannot be consistent. Advection by 
the flow is essentially non-linear and modifies each error 
source and, in particular, the discretization error. A material 
discretization error is defined as the maximum distance 
between linear segments linking initially adjacent Lagran- 
gian particles and the current material line connecting these 
particles. The material discretization error is zero for linear 
flows and evolves generally as a function of time and 
velocity curvature (e.g. exponentially for flows with positive 
Lyapounov exponents). Material discretization errors 
measure the loss of material connectivity of the Lagrangian 
grid. It can be estimated, for example, from the error 
between computed and interpolated trajectories of the 
Lagrangian element centres. Symmetric nodal interpolation 
becomes inaccurate as soon as the material discretization 
error exceeds the Eulerian resolution. We therefore favour 
the other two schemes, which moreover, can be performed 
by forward bookkeeping inside the loop updating the 
Lagrangian nodal positions, although these are also sensitive 
to the material discretization error. The choice of numerical 
parameters (CFL, Eulerian and Lagrangian discretizations) 
should maintain a balance between the resolution of the 
physical model, Sp, the resolution of the Lagrangian grid, 
SL, and the resolution of the Eulerian grid, SE. An example 
of physical resolution is the scale at which the model fails to 
be homogeneous. Using continuum mechanics, homoge- 
neous rheologies set limits to the physical resolution and the 
process of large deformation might itself alter the necessary 
physical resolution (e.g. for localization or strain softening) 
unless diffusion processes limit the small wavelength 
gradients. 

In conclusion our regridding method is limited by: first, 
drift of the material discretization error (which requires 
either very dense initial Lagrangian clouds or the injection 
of new Lagrangian nodes), and second, the lack of Eulerian 
node motion (and injection mechanism) which would adapt 
the Eulerian grid to the flow (Hawken, Gottlieb & Hansen 
1991). 

5 NUMERICAL EXAMPLES 

In this section numerical errors are discussed in a 
semi-quantitative way, i.e. without formal analysis. The 
methods are analysed for their numerical aspects without 
special consideration to the application. The emphasis is on 

mass conservation and errors associated with the interface 
tracking and regridding processes. The basic subduction 
model is used in a test of the interface tracking but two 
different models, the whirl flow (Ottino 1989) and a 
quasi-convection flow will be used in the discussion of the 
regridding. As noted in the introduction, examples of results 
of the subduction model and its elaborations can be found in 
Willett et al. (1993), Beaumont ef al. (1994) and Beaumont 
& Quinlan (1994). 

5.1 Mass conservation 

Several sources of error explain why mass conservation can 
only be approximated and we have estimated them using the 
following quantities as indicators: 
ml( t )  = V,t is the total mass input in the domain in the 
time inverval [0, t ] ;  
Am,(t) = V,At is the incremental mass input in [t, t + At]; 

(1) Amp(t) = (At[*,, V - v dvol)/Am,(r) 

is the penalty error due to the finite ratio kip,; 

(2) Am,([) = (1 
is the error due to the finite advection 
that occurs in [t, t + At].  

dvol - 1 dvol)/Am,(t) 
(x,+ *Al )  (4 

As V - v is only a first-order approximation of the average 
rate of change of the Jacobian during a finite period of time, 
AmA differs from Amp; 

(3) Am,,(t) = Am,(t) - Amp(f)  is the non-linear part of 
the error AmA(t); 

(4) Am,(t) = (I 
is the total mass error in [t, t + At]; 

dvol - 6,) dvol - Am,(t))/Am,(t) 
(I, + vAr} 

is the total accumulated mass error in [0, t ] ;  

(6) AmR(t) = (1 dvol - [ dvol)/Am,(t) 

is the mass error that occurs in [t, t + At] as 
a consequence of the Eulerian regridding. 

We have assumed that density was initially uniform to 
simplify the discussion. If surface processes or other sources 
of flux, like crustal subduction, are coupled to the flow 
model, their mass balance is computed and the mass balance 
indicators are modified accordingly. Local mass conservation 
can also be used, for example, to test if the computed 
Lagrangian motion has departed from material motion and 
it, therefore, provides a criterion for the addition, or 
injection, of Lagrangian nodes. 

{x, +vAr) I, +&At) 

5.2 Interface tracking 

In this section the linear viscous subduction model is used to 
test and compare three different methods (A, B, C) for the 
Eulerian free surface tracing and the Eulerian grid motion. 
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The model is run in the high viscosity or, equivalently, low 
gravity limit. This corresponds to the case where forces 
produced by viscous shear are much higher than forces due 
to gravity, in short we use a dimensionless ‘viscosity’ 
R, =p.C/pgh = 100. This model is closely related to the 
corresponding flat (180” angle) corner flow model. However, 
in the present example the free surface upper boundary 
condition imposes a length-scale for the diffusion of 
velocities from the velocity source given by the lower 
boundary condition. The problem has a purely geometric 
solution but not a stationary solution because no time-scale 
exists for relaxation. 

Method A 

This approach combines the simple computation described 
in Section 4.1 for the Eulerian free surface tracking and 
vertical Eulerian motion. The tracking algorithm is purely 
explicit in time. As noted earlier, an unstable element 
wavelength, zero flux mode is present in the matrix of the 
system and grows exponentially with a time-scale dependent 
of the CFL number in the region where horizontal transport 
is dominant over the vertical uplift source, i.e. from the 
influx boundary condition. Experiments with artificial 
diffusion computed with the CFL numb,r show that this 
mode can be damped but at the expense of a loss of 
accuracy. For example, the introduction of diffusion in the 
determination of the Eulerian free surface creates significant 
errors between the Eulerian and the material boundaries, 
especially for topographies with strong curvature. 

Method B 

In this method the Eulerian motion is also vertical, but the 
top line of Eulerian nodes is first advected and cubic-spline 
interpolation (Press et nl. 1986) is used to determine the 
Eulerian vertical displacement. This method was tested to 
see how an arbitrarily chosen interpolator would perform in 
comparison with a potentially more conservative method, 
such as A. 

Method C 

In this method the Eulerian motion follows the velocities at 
the free surface and is obtained by vertical linear 
interpolation or pure shear. Therefore, the motion also has a 
varying horizontal component and the Eulerian grid is 
correspondingly compressed below the high curvature areas 
of the free surface. 

All runs were performed on a 200X 10 grid in 16 bit 
arithmetic, with a penalty ratio= 1000, CFL=0.5, until a 
normalized convergence of four has been reached. Fig. 5 
shows the different mass error indicators defined in Section 
5.1. The penalty error (error estimate 1, Fig. 5 )  is, as 
expected, of the order of the inverse of the penalty ratio. 
The finite advection error (error estimate 2, Fig. 5) is largely 
dominated by its non-linear component that scales like the 
incremental displacement per step. Doubling CFL for the 
same discretization doubles this error, and using a 50 X 10 
grid at CFL = 0.5 quadruples it. This error source could be 
reduced by using a higher-order representation of the finite 

volumetric strain, like the midpoint strain computed on the 
midpoint configuration for the period [t, t + At], or 
equivalently, by using a Runge-Kutta method. The 
regridding mass error (error estimate 6, Fig. 5) is of course 
zero for method C but shows a slight drift due to the 
higher-order interpolation when method B is used. 

Method A behaves in a different way and it can be seen 
that the regridding error corrects almost exactly the 
non-linear advection error. Although we do not have a clear 
explanation for this behaviour, we think that it is peculiar to 
the boundary conditions used here and suggest the following 
interpretation. The sign of the non-linear advection error 
(error estimate 3, Fig. 5) is controlled by the angle between 
the velocity and the strain-rate orientation and artificial 
dilatation (compression) occurs on the retro- (pro-) side; an 
error symmetry in sign when tracking the topography could 
account for a diminished total mass error. The total mass 
error (error estimate 5, Fig.5) has for this reason been 
found to be systematically lower for method A than for 
method B (when growth of the unstable mode in A was 
eliminated). As already mentioned, unstable oscillations 
may occur with method A and need stabilization by artificial 
diffusion. Such Lax schemes (Press et al. 1986) have been 
used to modify method A but did not systematically meet 
the stability and accuracy requirements. 

Overall, method B seems to be more robust than A, even 
though A gives a four times better Eulerian mass balance 
for this particular series of tests. Both the advection mass 
error that affects the Lagrangian motion and the regridding 
will need further improvement for higher accuracy. 

Figure 6 shows the corresponding evolution of the 
Eulerian free surfaces (lines) and the updated positions of a 
set of Lagrangian nodes (X’s) originally positioned on the 
initial free surface. The Eulerian surface motion is seen to 
be in close agreement with the material motion. We have 
computed the differences in x and z components of 
displacement resulting from the different methods after 400 
per cent normalized convergence and scaled them by the 
convergence. The notation A x A B  typically means max(x, - 
x,) where A, B, and C are the methods, pro- (retro-) 
locations are labelled by ‘P(R)’, and ‘L(E)’ identifies 
whether Lagrangian (Eulerian) advections are compared: 

LAzLc = 1.6% 

LhXic = 2.0% 

“AzPAC = 3.6% 

L b P  AB- - 0.8% 

LAzEc = -3.2% 

“Ax?c = 3.6% 

“AzZC = -3.6% 

“ AX;, = 2.0% 

EA~!& = -2.0% 

EA~:s= 12.0% 

The numbers are maxima and the errors are typically one 
order of magnitude smaller than these values. 

It should be appreciated that the example shown here is 
computationally easier than models that use more complex 
boundary conditions or rheologies. Both time and 
convective accelerations are, for example, very low as can be 
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Figure 5. Interface tracking. Evolution through time of the mass-error indicators defined in Section 5.1 for three methods (A, B, C) of tracking 
the free surface. Method A: flux formulation (Sections 4.1 and 5.2). Method B: cubic-spline interpolation (Section 5.2). Method C: horizontal 
Eulerian advection (Section 5.2). The linear viscous subduction model is applied to a layer of height h = .1 and width L = 2. See the caption of 
Fig. 1 for the definition of the transition length. 

seen in Fig. 6. Plastic subduction models, for example, 
produce strain-rate zones at the Eulerian resolution limit 
and, correspondingly, high curvature points on the 
topography (Beaumont & Quinlan 1994 Fig. 2c). This effect 
is cumulative on the retro-side where the direction of 
advection is close to the direction of shearing. When the 
front of deformation progresses slowly, the velocity 
gradients force Lagrangian particles to accumulate in an 
Eulerian cell. A close analogy is a velocity field that takes 
two different constant values on each side of a fixed location 
on the surface. In this case, the horizontal advection does 
not relax the velocity values exponentially as it should 
because of the explicit time integration and the Lagrangian 
surface can fold over. On the other hand, the Eulerian 
surface continues to be tracked on average for wavelengths 
larger than the Eulerian mesh resolution. If the Eulerian 
mesh is allowed to compress near deformation fronts, 
complete loss of stiffness may occur, resulting in a zero 
velocity field. 

5.3 Lagrmgian advection and regridding: methods 

The ALE-R method relies on a time integration and two 
interpolation processes between Eulerian and Lagrangian 
nodes, and we have presented a basic version of these 

components in Section 4. All applications of the subduction 
model that we have referred to so far have used forward 
Euler integration in time and either closest-point interpola- 
tion or element mixing for the regridding to the Eulerian 
grid in the cases where temperatures were used, in the 
advective limit, to activate creep. This technique was also 
used to track material zones in models (Beaumont et al. 
1994) which assume that the crust has a heterogeneous 
rheology. However, the combination of a first-order time 
integration and a regridding using a fixed-sue Lagrangian 
grid may give low accuracy in space and time. We show here 
slight modifications of the basic regridding scheme described 
in Section 4 and test this improved scheme on an analytical 
example and an M flow (Section 2). 

Time integration 

Forward Euler integration of trajectories neglects both the 
variation in time of the velocity field due to the temporal 
changes in dynamics and the variation in time of velocities 
induced along the trajectories by the advection through a 
spatially varying velocity field. Higher accuracy is obtained 
by using an implicit trapezoidal discretization: if xL is the 
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Figure 6. Interface tracking. Evolution through time of the Eulerian free surfaces (lines) and advected Lagrangian nodal positions (crosses) for 
the surface tracking methods A, B, C used in Fig. 5. Surface positions are shown for 50 per cent increments in the normalized convergence (as 
defined in Section 1.2). Eulerian nodes are not shown. The initial positions of the Lagrangian nodes are shown in the figure on the horizontal 
lines. Note that: (1) at any time, the Lagrangian positions are close to the current Eulerian free surface; and (2) the results of the three methods 
are almost identical (see Section 5.2). Note that, unlike Fig. 1, the pro-side is on the right. The retro-wedge is steeper than the pro-wedge, but 
this asymetry may reverse for lower viscosities (not shown here). 

Lagrangian particle whose trajectory is being solved for in 
the time interval [t ,  t + At] ,  then 

dxL 
dt 
- = v(xL, t )  

can be approximated by 

At 
2 ~ , " + , - X , " = - [ V ( X , L , ~ ) + V ( X , " + ~ , ~ + A ~ ) ] .  

For WM flows the Lagrangian advection can be computed 
when velocities are known for the period [ t  + At, t + 2Atl.  
For M flows we assume that velocities are stationary in time 
and get: 

At 
2 

x,",, - x," = - [v(x,", t )  + v(x,"+,, t ) ] .  

This poorer approximation still provides a significant 
correction when accelerations in time due to the changing 
dynamics are smaller than spatial or convective acceleration. 

Either equation is solved by a fixed-point method which 
converges if IlAt/2Vvll < 1. This modification gives to the 
Lagrangian trajectory a convective acceleration that 

increases accuracy in Space. Spatial variations of velocities 
within or across Eulerian elements are taken into account in 
this algorithm. 

We reiterate that the regridding algorithm works in 
essentially the same way whether a velocity or incremental 
displacement formulation is used for the equilibrium 
equations. In the latter framework, which is the basis of 
most elasto-viscoplastic solvers, the Lagrangian advection is 
simply performed by consistent interpolation because time 
integration is implicit in the determination of the new 
equilibrium. 

Spatial interpolation 

We use the Eulerian consistent interpolation to determine 
nodal Lagrangian values but several choices are possible for 
the interpolation from Lagrangian nodes to Eulerian nodes. 
These choices depend on whether a cloud or a grid structure 
is assigned to the Lagrangian nodes and we briefly discuss 
the respective merits of each approach. 

Both structures track the transport but grids need more 
bookkeeping especially when adaptive grid refinement is 
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needed because connectivities change in the course of 
deformation. On the other hand, the grid structure allows 
the determination of quantities like finite strain or length 
stretch and also provides an interpolation basis, for example, 
to perform symmetric bilinear interpolation. Clouds are 
simpler to handle and might be better adapted to mixing 
flows or flow regimes where only statistical measures of 
material configurations are available or relevant. In this 
case, however, the regridding must be associated with the 
computation of effective material properties at the Eulerian 
grid resolution, a question which will not be considered 
here. 

We now describe a particular cloud method that uses 
closest point interpolation (CP) and injection of new 
Lagrangian particles. CP could be replaced by a method 
weighting the Lagrangian values by a function of their 
distance to the Eulerian node, this function being zero 
outside some small disc centred at the Eulerian node to 
keep the interpolation local. Automatic injection of 
Langrangian particles is performed, based on the following 
bisection equations: 

xE+CP(xL) 
(position) 

2 X",, = 

eke, = $( eE + CP( eL)) (temperature) 

when the distance of the Lagrangian cloud to the Eulerian 
grid exceeds some limit S,(S,) in the x- ( z - )  direction. We 
could alternatively define the new nodes at the Eulerian 
location. Both the time integration and the interpolation are 
performed in the same forward loop over Lagrangian 
particles. We always choose CFL < 1, therefore every 
computation is local to the Eulerian cell and its eight 
neighbours. Consequently, the algorithm is suited for vector 
and parallel computation by numbering the Eulerian cells 
into nine groups of non-adjacent cells. The loop over the 
nine groups is sequential, but each group is totally 
disconnected and gather-scatter operations or distribution of 
computations to a large array of processors are possible and 
a gain of time of order nine can be expected, where nE is the 
number of Eulerian elements. 

5.4 Lagrangian advection and regridding: examples 

An analytical example: the whirl flow 

The whirl flow (Ottino 1989) is a flow with rotational 
symmetry in which concentric layers of material rotate 
around a centre with an angular velocity that has a single 
maximum at some finite distance r, from the centre. In this 
example a stationary velocity field is defined, on a fixed 
Eulerian grid of size 60x60, with the angular velocity 
distribution 

in the box [-0.5, +0.5] X [-0.5, +0.5], where r is the 
distance to the origin, ro=0.25 and cj =0.3. These 
parameters give a minimum period of rotation 7,,, - 60, and 
a value At = 1.0 is chosen for the time step. An initial 
regular grid of 60 X 60 Lagrangian particles is chosen in the 

smaller box [-0.3, +0.3] X [-0.3, +0.3] in order to increase 
the Lagrangian resolution and prevent particles from leaving 
the Eulerian domain. 

We examine first the advection and second the regridding 
errors. 

(1) The exact advection of the initial Lagrangian grid is 
computed and compared to the numerical advection of the 
same grid. For the numerical advection the trapezoidal 
method is used because forward Euler integration gives 
divergent spiral trajectories that rapidly drift from the 
solution. The maximum absolute displacement error is 
observed to increase linearly at a rate of 2.5 X giving a 
maximum error of 5 X (a third of the Eulerian 
resolution) after 200 steps. 

(2) Differential rotation creates shearing and any field I$ 
without rotational symmetry is eventually mixed at 
progressively smaller scales by the whirl flow. This can be 
demonstrated by choosing an initial field 4(x, z ,  0) = x, 
corresponding to a homogeneous gradient in the x-direction 
at time t = 0. The analytical solution for the Eulerian value 
4E(x, z ,  t )  of the field advected by the flow at time t is: 

4 E ( ~ ,  z ,  t )  = x cos (h(r)t) + z sin (cj(r)t) 

= cos ( h ( r ) t  + p(x, z ) )  

where x + i t  = r exp (ip(x, z ) )  in complex notation. 

The x-gradient &$"/ax evolves in time like: 

We therefore see that the amplitude of x-gradients tends 
linearly to + m  or --m with time for every point in space 
(except for r = 0, r = r, and r = + m )  at a rate that depends 
on the location (x, z ) .  Similar calculations apply to 
z -gradients. 

The error due to CP regridding is expected to behave like: 

Scp IIv4Ell, 

where Scp is the distance of the closest Lagrangian point to 
the Eulerian node. The function Scp is clearly time periodic 
in the case of the whirl flow and its maximum amplitude 
depends on the initial Lagrangian resolution. This behaviour 
is confirmed in Fig. 7, which shows the comparison between 
the analytical solution 4 E ( ~ ,  2, t) and its numerical value 
d " ( x ,  z ,  t )  for the three arbitrarily chosen Eulerian 
locations on the segment [0, r,] of the x-axis: 

(x,, z , )  = (.20r,, 0.) 

(x2, z2 )  = (.40r,, 0.) 

(x3, z3)  = (.60r,, 0.) 

(Fig. 7a) 

(Fig. 7b) 

(Fig. 7c). 

The number of flow cycles in the time period [0,200] at 
these Eulerian locations are respectively 1.57, 2.57 and 3.16. 
The short wavelength component of 8" (Fig. 7) due to the 
regridding process is the combination of two effects: a 
reduced number of points per wavelength for small radius 
(e.g. Fig. 7a) and the linear increase of the noise amplitude 
with time, noted above, at a rate which decreases as r = r, is 
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Figure 7. Whirl flow. Advection by the whirl flow of the initial field 
4 = x .  Flow parameters and geometry are defined in the text. The 
diagrams compare the evolution of analytical values (dashed line) 
and the numerical values (solid line) of the corresponding Eulerian 
field at the Eulerian locations indicated in the figure. The value of r, 
is 0.25. The numerical values of the Eulerian field are computed 
with CPL regridding (see Section 4.3). The differences between (1) 
the analytical and numerical Eulerian fields, and (2) the Eulerian 
fields at the locations (a), (b) and (c), are explained in the text. 
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time 
Figure 8. Whirl flow. Evolution through time of the fractional error 
E defined in the text. This error is a measure of the 
non-conservation of the Eulerian field. It is due to the low-pass filter 
effect of the Eulerian grid on a Lagrangian field which develops 
structures at progressively smaller scales. The linear variation 
observed is explained in the text. 

approached. The error therefore varies from a larger 
amplitude-smaller frequency in Fig. 7(a) to a smaller 
amplitude-higher frequency in Fig. 7(c). 

We show in Fig. 8 the variation in time of the 0th order 
moment of the field, which should be zero for the 
incompressible whirl flow. We define the fractional error: 

M"(t) - MO(0) 
MO(0)  ' 

E =  

where M"(t)(M"(O)) is the integral of the Eulerian field $ E  

at time r (at time t = 0). The fractional error increases 
linearly with time (Fig. 8) and this confirms our previous 
analysis of the regridding error. The short-frequency 
component corresponds to the selection of adjacent closest 
neighbours in the interpolation of the field to the Eulerian 
node. The particular field chosen has a zero curl symmetry, 
which explains why the periodicity of the flow does not show 
in the time evolution of the field integral and fractional 
error. For initial fields having other symmetries, like the 
field 1x1, a periodic component would be superposed on the 
linear trend in time. 

We speculate that the increase of the regridding error is 
polynomial (exponential) in time for systems with zero 
(positive) Lyapounov exponents. In the case of the general 
unsteady subduction model, the rheological and boundary 
conditions under which the flow has a positive Lyapounov 
exponent are not known. In all the subduction models 
refered to in this paper, the flow has only weak mixing 
properties (Ottino 1989). 

An M flow example: quasi-convection flow 
In this example the regridding not only performs field 
advection but also has a feedback effect on the dynamics. 
More precisely, this example uses thermomechanical 
coupling, in the Boussinesq approximation, between a linear 
viscous Stokes (and not Navier-Stokes) flow and a 
temperature field that evolves by conduction and advection, 
which explains our terminology 'quasi-convection'. This 
example is given because it is a better illustration and test of 
regridding than the subduction model for several reasons. 
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(1) All experiments with the subduction model have so 
far assumed an infinite Peclet number. The quasi-convection 
problem provides a test of the thermomechanical coupling 
which will be used in the next versions of the subduction 
models. This will, in particular, enable the computation of 
P-T-t (pressure-temperature-time) paths with material 
advection and thermal conduction fully included. 

( 2 )  No reference solution exists for a subduction model 
using regridding which couples temperature or strain to the 
rheology. By contrast, a large number of numerical 
experiments exist for convection flows and the results shown 
here could be compared to results obtained from other 
methods. 

( 3 )  In the quasi-convection model the velocity field is 
very sensitive to the regridding, especially for Peclet 
numbers of order 1 or less. Indeed, velocities are driven by 
density gradients created by the combination of temperature 
advection and diffusion. No scale is given to the velocity 
field by a kinematical boundary condition and the regridding 
error rapidly affects the dynamics. 

(4) The quasi-convection model achieves stationary 
velocity and temperature fields after an initial 'spin-up' 
phase. From then on variation in time is eliminated as a 
source of error in the advection of Lagrangian nodes and 
errors in the regridding can therefore be attributed to spatial 
interpolation. Errors due to the Eulerian motion are also 
eliminated because the Eulerian grid is fixed in the present 
model. 

Dimensionless parameters are used in this model. A 
symmetric heat flux varying from 1.08 X to a peak value 
of 3.25 X is applied to the base of a rectangular box of 
dimensions L = 1 and H = 0.4. The thermal conductivity, 
specific heat, acceleration due to gravity, initial density and 
uniform viscosity are respectively: 
k = 5 X 

c = 1.0 
g = 10. 
Po = 1.0 
p = 0.2. 
The temperature, 0, is assumed to control density by a 
linear relation, 

P = ~ ~ ( 1  - ae), 
with a =0.1. These parameters were chosen to allow the 
onset of convection and correspond on a stability diagram 
(Turcotte & Schubert 1982) to a Rayleigh number 
Ra-1200 and a dimensionless wavenumber 2.5. The 
mechanical boundary conditions are free slip on all sides and 
the thermal boundary conditions, other than the basal flux, 
are zero temperature on the top surface and lateral 
insulation. No exact analytical solution exists for this 
problem, but an order of magnitude solution is provided by 
the boundary-layer theory of convection that predicts a 
maximum velocity: 

k 
v0 - 2.71 - R:3 - 3 X lo-' 

pocH 
in the optimum case L = 2H. The corresponding value of the 
maximum stationary velocity in the numerical solution is 
1.4 X lo-*. The agreement is reasonable, given the 
approximative character of the boundary-layer theory, the 

non-optimum wavenumber used and the use of Stokes 
rather than Navier-Stokes equilibrium equations. The 
Peclet number k / v H  varies from approximately 0.1 to 1, in 
the convective cores, and the solution is therefore not 
dominated by conduction. The asymptotic stationary fields 
(temperatures and velocities) correspond to an equilibrium 
between advection and diffusion. 

The thermal diffusion of temperatures is solved on a 
Eulerian grid of low resolution (50 x 20) and closest-point 
interpolation and injection are used to solve the 
temperature-advection problem with an initial grid of 
200 X 20 Lagrangian particles and a resolution 8, = 6,  for 
the injection, equal to a quarter of the Eulerian resolution. 
The flow is followed in time for loo0 steps (At = l.), or 
approximately nine full rotations of the material layers 
peripheral to the convective cores. 

We compute and show (Figs 9 to 11) several estimates of 
the regridding error by inspecting the temporal and spatial 
elements of symmetry of the solution. The exact Eulerian 
(Lagrangian) temperature-velocity solution is stationary 
(periodic in time), therefore, the temporal variation of the 
numerical solution and its aperiodicity provide a measure of 
the noise introduced by the regridding. 
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Figure 9. Quasi-convection flow. Temperature profiles at time 
r = 250 (dashed lines) and r = lo00 (solid lines) along the lines (a) 
P-P', and (b) Q-Q' shown in Fig. 10(b). Temperature values are 
normalized by the maximum temperature T,,,= 1.9, as in Figs 
10(b) and 11. 
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Figure 10. Quasi-convection flow. (a) Shows the Eulerian domain of the flow (box) and the trajectories followed by three selected Lagrangian 
particles L1, L2, L3 during the time interval [0,1000]. The initial positions of L1, L2, L3 are indicated by small black boxes. The final positions 
at time t = lo00 are not shown. (b) Schematic representation of the Eulerian temperature spatial distribution at time t = 1o00. Normalized 
temperatures values are shown in the white boxes: 0. is the surface temperature, the temperature is maximum (1.) at the location shown, and 
approximate isotemperature contours for T = 1/3 and T = 2/3 are shown. The grey tone values are not proportional to the temperatures. 

(1) The 0th moment (as defined in the previous section) 
of temperature is varying in the stationary phase (after 100 
steps) between 0.26737 and 0.2615 with a very small average 
temporal trend (the regression line is 0 = .26737-3.09 X 
lo-'[). This result confirms that the temperature field is 
conserved. 

(2) Figure 9 shows the temperature profiles on the 
vertical line x = 0.25 across the left convective core (Fig. 9a) 
and on the horizontal line z = 0.2 passing through the two 
cores (Fig. 9b). In each case, only small wavelength 
oscillations of the order of the Eulerian resolution have 
been superimposed on the solution by the regridding. The 
difference between the profiles at time r = 250 and t = 1000 
is of the order of the temperature difference across one 
Eulerian element. 

(3) The short-wavelength oscillations and numerical 
non-stationarity of the temperature have a feedback effect 
on the velocity field and, therefore, on the trajectories of 
Lagrangian particles. Fig. 10( a) shows these trajectories of 
three selected Lagrangian particles. The trajectories are only 
quasi-periodic and slightly diffuse in space on a distance of 
the order of the Eulerian resolution. This numerical 
diffusion increases with curvature. We observe, without 
explanation, that this diffusion is more pronounced along 
the parts of the trajectories corresponding to predominantly 
vertical motion. Fig. 10(b) shows for reference the X - z  

distribution of the quasi-stationary temperature field in 
equilibrium with convection and diffusion. 
(4) Fig. 11 shows the time series corresponding to the 

evolution of the temperature for the same selected 
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Figure 11. Quasi-convection flow. Variation through time of the 
normalized temperature for the three Lagrangian particles (a) L1, 
(b) L2, (c) L3 shown in Fig. 10. The noise levels and 
quasi-periodicity in these time series is explained in the text. 

Lagrangian particles. These particles are quasi-periodically 
advected through the quasi-stationary temperature field. 
These time series would be smooth and perfectly periodic 
for an exact solution. The numerical solutions shown here 
incorporate errors due to the slight unstationarity of the 
Eulerian velocity field along the Lagrangian trajectories. 

They also include the error due to the slight unstationarity 
of the Eulerian temperature field along the Lagrangian 
trajectories. For these reasons, they are not strictly periodic 
and a fluctuation of approximately 5 per cent (which is the 
Eulerian resolution in temperatures as observed above) is 
observed on the amplitudes of each series. The maximum 
noise level in these series correspond to the passage of the 
Lagrangian particles in the zones of high temperature 
gradients, where the regridding error has a maximum 
amplitude. 

These qualitative tests show that the quasi-convection 
calculations exhibit only high-frequency/short-wavelength 
errors and give overall acceptable results. 

In this section the ALE-R method was used to solve an 
infinite Prandtl number thermal-convection problem. Similar 
methods have been used for the solution of incompressible 
(Christiansen 1973) or compressible Navier-Stokes equa- 
tions. In these cases, however, special techniques have to be 
introduced to prevent excessive diffusion of momentum 
(Brackbill & Ruppel 1986). 

6 DISCUSSION A N D  CONCLUSION 

This paper has presented the basic framework for the 
subduction model (SM) of compressional orogens and has 
described the numerical methods used in SM and other 
applications of the model to geodynamical problems. Here 
we review the applicability of this type of computation to 
SM and propose more general problems, relevant to 
geodynamics, for which the ALE-R techniques might be 
used. We conclude with an assessment of the numerical 
methods and review some future developments of this work. 

6.1 ALE-R computations related to geodynamics 

ALE-R computations and the subduction model 

SM is characterized by a particular set of boundary 
conditions while other model attributes, like the viscoplastic 
rheology, the coupling with surface processes andlor 
isostasy, are less specific to SM. The ALE-R technique is 
well adapted to these boundary conditions, which contribute 
to the presence of localized zones of high deformation in the 
domain of the flow. The usefulness of the numerical ALE-R 
simulations to SM is illustrated by the following points. 

(1) SM can be used to understand aspects of the dynamics 
of accretionary wedges. There is a good agreement between 
the geometrical predictions of the model computed by 
ALE-R simulation and the exact critical wedge theory 
(Dahlen 1984) when a cohesionless frictional (Coulomb) 
rheology is used. In particular, the computed pro-wedge 
develops into a critical wedge of constant slope and the 
value of this slope is close to that of the analytical solution. 
ALE-R simulations also indicate that the computed 
retro-wedge may develop with the maximum critical taper 
angle (S. Willett, personal communication). 

(2) SM possibly represents a unified mechanical model 
for natural compressional orogens in which style variations 
reflect crustal response. The range of ALE-R simulations 
encompasses this broad variety of problems, and more. 
Correspondingly, the complexity of the rheology and 
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boundary conditions makes it difficult to design tests for the 
numerical accuracy of general SM models. We therefore 
cannot draw conclusions on the quality of the numerical 
results in these cases and related analogue models offer the 
best prospect for tests. The numerical tests that have been 
presented above (Section 5 )  do, however, give some degree 
of confidence in each element of the ALE-R method. 

(3) ALE-R simulations of complex SM may nevertheless 
be useful because they allow the determination of quantities 
that would be more difficult (if not impossible) to obtain by 
analytical, physical analogue, or other less-adapted numeri- 
cal methods. Examples of such quantities are the spatial 
stress distribution, the topography, and Lagrangian time 
series: that is, the evolution in time of physical quantities for 
a Lagrangian particle as it is advected by the flow. 

P-T-t paths are Lagrangian time series that can be related 
to the metamorphic processes that transform rocks when 
they travel through an orogen (Jamieson & Beaumont 1988; 
Barr & Dahlen 1989). When erosion rates are significant by 
comparison with tectonic uplift rates, exhumation of the 
rocks produces high thermal gradients. These can only be 
resolved in the computed Lagrangian time series if the 
computation includes temperature calculations in the finite 
Peclet number range. The principle of this computation 
using the ALE-R formulation has been outlined in the 
discussion of the quasi-convection flow (Section 5.3) and will 
be used in future SM models to calculate P-T-t paths. 

The evolution of strain, or strain path, represent another 
class of Lagrangian time series which can be computed by 
ALE-R simulations. Strain paths are used in structural 
geology to understand the shearing processes operating in a 
deforming zone (Passchier 1988, for example). The 
observation of rocks at small scale (10 m to the scale of the 
polycrystalline aggregates) is used to reconstruct the strain 
path followed by rocks. We intend to use ALE-R 
simulations of SM to decide whether the computed strain 
Lagrangian time series are consistent with averages (at 
scales of the order of the Eulerian resolution) of these 
smaller-scale observations. It is doubtful, however, that the 
simplified rheologies currently used in the SM models will 
reproduce these average strains. Deformation complexity 
exists at all scales and this behaviour, as opposed to scalar 
quantities like those associated with PTt, is not resolved by 
our current models. 

ALE-R computations and analogue models 

Various materials varying from plaster (since Cadell 1889) 
to sand (Davis et al. 1983; Malavieille 1984) and layered 
composites (Lie et al. 1992) have been used in analogue 
‘sandbox’ experiments that are related to SM (Malavieille 
1984) and backstop models (Davis et al. 1983; Liu et al. 1992; 
Wang & Davis 1992; Byrne, Wang & Davis 1993). These 
experiments confirm and validate some of the results 
obtained with the present model, for example the prediction 
of the slope of compressive sand wedges. The complex 
rheology of sand makes it difficult for detailed comparisons 
to be made between our current incompressible Coulomb 
models and the sand experiments. It remains to be 
determined whether ALE-R numerical simulations with 
Granta-Gravel or Cam-Clay rheologies (Section 3.2) which 
approximate the mechanical properties of sand will yield 

finer-scale features seen in the sandbox experiments. 
Analogue experiments are important for the testing and 
development of the numerical methods and this is 
particularly true when the rheological properties of the 
materials are fully characterized and are not too complex. 
The analogue models are valuable regardless of the 
applicability of sand or other rheologies to the earth. 

ALE-R computations for more general models 

ALE-R computations can be extended to apply to more 
general models. 

(1) They could, for example, be used in models at a 
lithospheric as opposed to crustal scale. Flow models have 
been used with non-linear viscous rheologies in extensional 
numerical experiments at the lithospheric scale ( Christensen 
1992). Such models assume no kinematical boundary 
conditions at the base of the lithosphere and similar models 
with stress boundary conditions could be designed in 
compression. 

(2) They could be used in 3-D models, for example in the 
simulation of orogens created by transpression between 
plates (Braun, personal communication). This would 
usefully complement and complete the vertical plane strain 
and horizontal thin sheet models, which have a restricted 
range of validity. 

(3) It may also be possible to incorporate rheologies that 
have an elastic component. It is, however, premature at this 
stage to comment on the efficiency of ALE-R techniques in 
this category of problems, where regridding stresses is 
necessary. 

6.2 ALE-R computations; conclusions 

Our first motivation for the development of ALE-R 
methods resulted from difficulties encountered with earlier 
numerical simulations of compressional orogens. These 
simulations used a UL formulation and elasto-viscoplastic 
rheologies. The pseudo-viscous flow approach in an ALE 
formulation (Zienkiewicz 1977) was tested as an alternative 
and proved to be satisfactory for WM flows like 
incompressible Coulomb plastic flows (Willett 1992). The 
need to compute the material deformation suggested the 
need to initialize and track a Lagrangian grid. Finally, the 
extension to M flows was made possible by the addition of 
the regridding. The result is the ALE-R method, which may 
be applied to a variety of flow simulations. 

Modularity of the method 

ALE-R computations use a series of modules some of which 
are listed below. 

- Finite-element modules (1-D flexure code, 2-D velocity- 

- Surface-tracking module (1-D cubic-spline interpolation). 
- Eulerian remeshing module (vertical linear interpolation). 

pressure incompressible Stokes 2-D diffusion code). 



Arbitrary Lagrangian- Eulerian formulation 21 

- Linear solver module (Linpack symmetric positive-definite 
system solver). 

- Non-linear solver module (direct iteration on effective 
viscosities). 

- Lagrangian grid to Eulerian grid regridding module 
(consistent Lagrangian advection, closest point interpola- 
tion, Lagrangian nodes injection. 

Each of these modules has been used for some time in 
fluid-flow computations and we have referred in Section 2 to 
a few of the relevant works. The computations in 
Christensen (1992) have many aspects in common Nith the 
ALE-R as described above but differ in the module 
characteristics. Poliakov & Podladchikov (1992) have 
developed numerical techniques that are even more similar 
in their organization and characteristics to ALE-R. 

Although the modules are not necessarily optimum, they 
are simple and reasonably efficient for models which do not 
require highly accurate solutions. Their relative indepen- 
dence also provides flexibility. For example: 

- adaptive-node movement techniques (Hawken et al. 1991) 
could be used in the Eulerian remesher provided the 
Eulerian motion is continuous, and this would not affect 
the ALE-R structure; 

-the velocity-pressure FE module may be replaced by a FE 
module using displacements; 

- all modules may be restructured in higher dimensions and 
be vectorized. 

Developments of the method 

We wish to continue to develop the ALE-R method in 
essentially two directions. 

(1) The method should include a broader range of 
boundary conditions and rheologies. Boundary conditions 
should be designed to give a better model of the physics of 
lithospheric subduction or allow larger-scale computations 
including the mantle. Extension or cycles of extension/ 
compression should be tested. In 3-D, compressive-to- 
transpressive experiments will be performed. 

Regarding rheologies, we wish to compare results from 
plane-strain computations of SM using elasto-viscoplasticity 
with corresponding results using pseudo-viscous flows. We 
will also test non-linear solver modules based on the 
constant strain-rate algorithm (Woodward 1980) in com- 
bination with plastic predictors, by contrast with the elastic 
predictor approach usually employed. Tests already 
performed with elastic predictors in a hyperelastic 
formulation of Cam-Clay have shown convergence prob- 
lems for SM models. This motivates a search for new 
algorithms. The covergence of the direct iteration module 
will also be studies for plastic rheologies that include 
softening and hardening. 

(2) The method should be optimized for higher resolution 
computations. A vectorized implementation of the ALE-R 
structure is necessary for high resolution and 3-D 
computations using vector or parallel processors. All the 
elements of the methods presented here can be restructured 
in 3-D and this has been confirmed by a few preliminary 
tests. Efficient 3-D computations need, however, a 

significant optimization of each module, and this has not 
been addressed in this work. The promising numerical 
techniques developed by Braun (1993, 1994) are a very 
significant step in this direction. 
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APPENDIX ADVECTION AND 
REGRIDDING 

The velocity of a Lagrangian particle (represented by a 
square at location X " ) ,  is determined (Fig. Al ,  left) by 
mapping the Eulerian element I (containing the particle) 
onto a reference element (Fig. Ala,  right). The reference 
coordinates of the Lagrangian particle are used to 
interpolate its velocity from the velocity at the Eulerian 
nodes (circles at locations X:, XF, X:,  X,") defining the 
element I. 

Fig. A l b  shows the process of simultaneous advection 
over a time step of the Lagrangian particle (square) and of 
the Eulerian nodes (circles). Arrows represent here the 
incremental displacements between the old (white) and 
updated (black) locations. Eulerian nodes are moving with 
Eulerian velocities, here vertical, which allow the grid to 
conform to the deformed domain (Fig. Alb, right) at the 
end of the time step; the corresponding Eulerian 
displacements are u:, E:, u:, u,". The Lagrangian particle 

moves with the velocity determined in (a) and is advected by 
a displacement uL = uLAt. Because the Eulerian motion is 
not material, the Eulerian cell containing the Lagrangian 
particle may be different before and after advection. The 
Eulerian cell I containing the particle is therefore updated 
through a local search process. At the same time, the 
number of the Lagrangian particle closest to each Eulerian 
node of the element is updated, if needed. 

When these steps have been completed for all Lagrangian 
particles (Fig. Alc), each Eulerian node E (black circle) is 
associated to its closest Lagrangian particle CP(E) (black 
square) and all fields carried by the particle CP(E) are 
transferred to the Eulerian value of the field at E. The 
reverse operation, from Eulerian nodes to Lagrangian 
nodes, is given by consistent interpolation. 

Last, when the Lagrangian cloud is too sparse, e.g. when 
the distance d(E, CP(E)) between a Eulerian node E and its 
closest Lagrangian node CP(E) exceeds some limit R, a new 
Lagrangian particle, NEW, is introduced ('injected') by 
bisecting the positions and the field values at E and CP(E). 
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Figure Al. Advection and regridding method. (a) Computation of the Lagrangian velocities. (b) Eulerian and Lagrangian advection. (c) 
Closest point regridding. (d) Injection of new Lagrangian particles. Explanations and details are given in Appendix and in Sections 4.2 and 4.3, 
respectively. 




