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Abstract— In this paper, we propose a method for 3D model
indexing based on 2D views, named AVC (Adaptive Views
Clustering). The goal of this method is to provide an ”optimal”
selection of 2D views from a 3D model, and a probabilistic
Bayesian method for 3D model retrieval from these views. The
characteristic views selection algorithm is based on an adaptive
clustering algorithm and use statistical model distribution
scores to select the optimal number of views. Starting from
the fact that all views do not have equal importance, we also
introduce a novel Bayesian approach to improve the retrieval.
We finally present our results and compare our method to some
state of the art 3D retrieval descriptors on the Princeton 3D
Shape Benchmark database and a 3D CAD models database
supplied by the car manufacturer Renault.

I. INTRODUCTION

In recent years, many systems have been proposed for
efficient information retrieval from digital collections of
images and videos. However, the solutions proposed so far
to support retrieval of such data are not always effective in
application contexts where the information is intrinsically
three-dimensional.

Antini et al [1] present an approach based on curvature
correlograms. The main advantage of correlograms relates
to their ability to encode not only the distribution of features
but also their arrangement on the object surface.

In 3D retrieval using 2D views, the main idea is that two
3D models are similar, if they look similar from all viewing
angles. Funkhouser et al. [2] apply view based similarity to
implement a 2D sketch query interface. In the preprocessing
stage, a descriptor of 3D model is obtained by 13 thumbnail
images of boundary contour as seen from 13 view directions.

Filali et al. [3] propose an adaptive nearest neighbor like
framework to choose the characteristic views of a 3D model.
The framework gives good results but was experimented on
a small database.

Chen et al. [4] defend the intuitive idea that two 3D
models are similar if they also look similar from different
angles. Therefore they use 100 orthogonal projections of an
object and encode them by Zernike moments and Fourier
descriptors. They also point out that they obtain better results
than other well-known descriptors.

At last, for a further read on 3D retrieval state of the art,
Tangelder and Veltkamp [5] present a complete survey on
3D shape retrieval.

In this paper, we propose a method for 3D model indexing
based on 2D views, named AVC (Adaptive Views Cluster-

ing). This method aims at providing an optimal selection
of 2D views from a 3D model, and a probabilistic Bayesian
method for 3D models indexing from these views. This paper
is organized in the following way. In section 2, we present
the main principles of our method for characteristic views
selection. In section 3, our probabilistic 3D models indexing
is presented. Finally, the results obtained from two databases
of 3D models are presented showing the performances of our
method. We compare our method to some state of the art 3D
retrieval descriptors on the Princeton 3D Shape Benchmark
database and the SEMANTIC-3D database.

II. SELECTION OF CHARACTERISTIC VIEWS

Let Db = {M1,M2, . . . , MN} be a collection of N three-
dimensional models. We wish to represent each 3D model
Mi by a set of 2D views that best represent it. To achieve
this goal, we first generate an initial set of views from the
3D model, then we reduce it to the only views that best
characterize the 3D model. This idea comes from the fact
that all the views of 3D model do not have equal importance:
there are views that contain more information than others.

A. Generating the initial set of views

To generate the initial set of views for a model Mi

of the collection, we create 2D views (projections) from
multiple viewpoints. These viewpoints are equally spaced
on the unit sphere. In our current implementation, we use
320 initial views. To represent each of these 2D views, we
use 49 coefficients of Zernike moment descriptor [6] [7].
Consequently to the use of Zernike moments, the approach
is robust against translation, rotation and scaling.

B. Characteristic views selection

As every 2D view is represented by 49 Zernike moment
coefficients, choosing a set of characteristic views that best
caraterise the 3D models (320 views), is equivalent to choose
a subset of points that represent a set of 320 points in 49
dimensions space. The problem of choosing X points that
represent best a set of N = 320 point,is well known as
clustering problem.

Data clustering is a well known problem for the mathe-
matical and computer science communities, the literature in
this domain is huge. One of the widely used method is K-
means[8]. Its attractiveness lies in its simplicity and in its
local-minimum convergence properties. It has, however, one



main shortcomming. The number of clusters K has to be
supplied by the user.

As we want from our method to adapt the number of
characteristic views to the geometrical complexity of the 3D
model, using K-means is not suited. To avoid this problem,
we use a derivative from X-means[9]. Instead of a fixed
number of clusters, we propose to use a range in which
we will choose the best number of clusters. In our case the
range will be [1, . . . , 40]. During all this paper we assume
that the maximum number of characteristic views is 40. It
is a good compromise between speed, descriptor size and
representation.

Algorithm 1 gives an overview of the characteristic views
selection algorithm. Ror more details prefere to [?]

Algorithm 1 characteristic views selection algorithm.
Number of characteristic views = 1
while Number of characteristic views < Maximum num-
ber characteristic views do

Make global K-means on all the views (The start centers
are the characteristic views).
Save the characteristic views set and it’s BIC Score[10].
for all cluster of views do

Make K-means (with K=2) on the cluster.
Choose the representation with the higher BIC score.
The original characteristic view or the two new
characteristic views
Update the number of characteristic views.

end for
end while
Select the K and the characteristic view set with the higher
BIC score.

III. PROBABILISTIC APPROACH FOR 3D INDEXING

Each model of the collection Db is represented by a set
of characteristic views V = {V1, V2, . . . , VC}, with C the
number of characteristic views. To each characteristic view
corresponds a set of represented views called Vr. Considering
a 3D request model Q, we wish to find the model Mi ∈ Db

which is the closest to the request model Q. This model is
the one that has the highest probability P (Mi/Q). Knowing
that each model is represented by its characteristic views,
P (Mi/Q) can be written:

P (Mi|Q) =
∑K

k=1
P (Mi|V k

Q)P (V k
Q |Q)

With K the number of characteristic views of the model
Q. Let H be the set of all the possible hypotheses of
correspondence between the request view V k

Q and a model
Mi, H = {hk

1 ∨hk
2 ∨ . . .∨hk

N}. A hypothesis hk
p means that

the view p of the model is the view request V ck
Q. The sign ∨

represents logic or operator. Let us note that if an hypothesis
hk

p is true, all the other hypotheses are false. P (Mi|V ck
Q) can

be expressed by P (Mi|Hk). We have:

P (Mi|Hk) =
∑N

j=1P (Mi, V
j
Mi
|hk

j )

The sum
∑N

j=1P (Mi, V
j
Mi
|hk

j ) can be reduced to the only
true hypothesis P (Mi, V cj

Mi
|Hk

j ). In fact, a characteris-
tic view from the request model Q can match only one
characteristic view from the model Mi . We choose the
characteristic view with the maximum probability.

P (Mi|Q) =
∑K

k=1
Maxj(P (Mi, V

j
Mi
|hk

j ))P (V k
Q |Q)

Using the Bayes theorem we obtain :

P ( Mi|Q) =
∑K

k=1

Maxj (
P ( hk

j |V j
Mi

, Mi ) P ( V j
Mi
|Mi ) P ( Mi )∑N

i=1

∑K

k=1
P ( hk

j |V j
Mi

, Mi ) P ( V j
Mi
|Mi ) P ( Mi )

) P ( V k
Q |Q )

With P (M) the probability to observe the model M .

P (Mi) = αe(−α.|Mi|)/
∑i=1

i=N
|Mi|). Where |Mi| is the num-

ber of characteristic views of the model Mi. α is a parameter
to hold the effect of the probability P (Mi). The algorithm
conception makes that, the complex is the geometry of the
3D model, the greater is the number of its characteristic
views. Indeed, simple object (e.g. a cube) are more frequent
and got more probability of appearance then complex ones.
They can be at the root of more complex objects.

On the other hand P (V j
Mi
|Mi) = 1−βe

(−β.N(V rj
Mi

)/320)

Where N(V rj
Mi

) is the number of views represented by
the characteristic view j of the model M . The greater
is the number of represented views N(V rj

Mi
), the more

the characteristic view V cj
Mi

is important and the best it
represents the three-dimensional model. The β coefficient is
introduced to reduce the effect of the view probability. We
use the values α = β = 1/100 which give the best results
during our experiments.

The value P (hk
j |V j

Mi
, Mi) is the probability that, knowing

that we observe the characteristic view j of the model
Mi, this view is the k view of the 3D query model Q:
P (hk

j |V j
Mi

,Mi) = 1 − D(Qk,h
V

j
Mi

). With Dhq,h
V

j
Mi

the

Euclidean distance between the 2D Zernike descriptors of Q
and of the V cj

Mi
characteristic view of the three-dimensional

model Mi.
IV. EXPERIMENTS AND RESULTS

A. Princeton Shape Benchmark

In our experiment, we computed the distances between
all pairs of models in the Princeton 3D Shape Benchmark
and analyze them with the Princeton 3D Shape Benchmark
evaluation tools to quantify the matching performance with
respect to the base classification.

As mentioned before, we use several different performance
measures to objectively evaluate our method: the First Tier
(FT), Second Tier (ST), Nearest Neighbor (NN), E-Measure,
Discounted Cumulative Gain (DCG) and Normalized Dis-
counted Cumulative Gain (N-DCG) match percentages, as
well as the recall-precision plot [11].

Table I shows micro averages storage requirement (for
our method, we used 23 views that is the average number
of characteristic views for all the database models) and



Methods Discrimination
Storage size NN FT ST E-Measure DCG N-DCG

LFD 4,700 65.7% 38.0% 48.7% 28.0% 64.3% 21.3%
AVC(probability) 1,113 60.6% 33.2% 44.3% 25.5% 60.2% 13.48%

REXT 17,416 60.2% 32.7% 43.2% 25.4% 60.1% 13.3%
GEDT 32,776 60.3% 31.3% 40.7% 23.7% 58.4% 10.2%

AVC(simple distance) 1,113 58.2% 31.1% 42.7% 25.1% 59.9% 11,8%
2-GR 512 55.5% 28.7% 39.1% 23.0% 56.3% —%
EXT 552 54.9% 28.6% 37.9% 21.9% 56.2% 6.0%

SECSHEL 32,776 54.6% 26.7% 35.0% 20.9% 54.5% 2.8%
VOXEL 32,776 54.0% 26.7% 35.3% 20.7% 54.3% 2.4%

SECTORS 552 50.4% 24.9% 33.4% 19.8% 52.9% -0.3%
CEGI 2,056 42.0% 21.1% 28.7% 17.0% 47.9% -9.6%
EGI 1,032 37.7% 19.7% 27.7% 16.5% 47.2% -10.9%
D2 136 31.1% 15.8% 23.5% 13.9% 43.4% -18.2%

SHELLS 136 22.7% 11.1% 17.3% 10.2% 38.6% -27.3%

TABLE I

RETRIEVAL PERFORMANCES FOR PRINCETON SHAPE BENCHMARK

retrieval statistics for each algorithm. Storage size is given in
bytes. We found that micro and macro-average results gave
consistent results, and we decided to present micro-averaged
statistics.
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Fig. 1. Recall Precision on Princeton 3D Shape Benchmark database.

Figure 1 shows the recall precision plots for our method
AVC and some other shape descriptors. We presented the
curves of the most relevant algorithm only, to keep the figure
clear.

We find that the shape descriptors based on 2D views
(LFD and AVC) provides the best retrieval precision in this
experiment. We might expect shape descriptors that capture
3D geometric relationships would be more discriminating
than the ones based solely on 2D projections, the opposite
is true.

We can notice that our method provides more accurate
results with the use of Bayesian probabilistic indexing. The
experiment shows that AVC gives better performances then
3D harmonics, Radialized Spherical Extent Function and
Gaussian Euclidean Distance Transform on the Princeton
3D Shape Benchmark database. Light Field Descriptor gives
better results than our method but uses 100 views, does not
adapt the number of views to the geometrical complexity and
uses two descriptors for each view (Zernike moments and
Fourier descriptor), which make it slower and more memory
consuming descriptor compared to the method we presented.

Overall, we can conclude that AVC gives a good com-

promise between quality (relevance) / cost (memory and
on-line comparison time) between the shape descriptors we
compared to using the Princeton 3D Shape Benchmark.

B. SEMANTIC-3D Database

The experiments are made on a database that contains
5000 3D models. To objectively evaluate the performance
of our method on this database, a classification was made
(ground truth). 758 models are classified on 75 classes. A
”special” class called others contain all the 3D models that
was not classified. Figure 2 shows the recall precision plots

Methods Discrimination
NN FT ST E-Measure DCG

probability 99.2% 88.3% 96.7% 52% 96.3%
simple distance 98.1% 86.8% 95.1% 51.3% 93.9%

TABLE II

RETRIEVAL PERFORMANCES FOR SEMANTIC-3D DATABASE

for our method AVC on the SEMANTIC-3D database. We
can explain the good results of our method by the fact that the
variance intra-class are very small. As the database contains
real professional 3D CAD Models, the 3D models from the
same class represent real mechanical parts used in a car. The
3D models from the same class represent different versions
of the same models with small changes.
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Fig. 2. Recall Precision for Semantic-3D database.

In the other hand, 3D CAD models in the database
contains holes so that they can be fixed to other mechanical



parts. The positions and the dimension of the holes can
differentiate between two different models from the same
class. As we represent each view of the 3D model by Zernike
moments, the holes and the global shape are well taken into
account. We can also notice the result enhancement when
we use the probabilistic approach for retrieval.

C. On-line Search Engine

The SEMANTIC-3D project focuses on the development
of tools and methods required to implement new operational
services for retrieving 3D content through the Web and com-
municating objects. Information and communication system
must be available for remote access and assistance, inter-
connecting originators (mechanical part designers), nomadic
users (automotive industry technicians) and a central 3D data
server.

To experiment our algorithms and to asset the results
presented in the previous sections, we developed an on-
line 3D search engine. Our search engine can be reached
from any device having compatible web browser (PC, PDA,
SmartPhone, etc.) [12].

Figure 3(a) shows the interface of our system using a PC
web browser. Figure 3(b) shows the interface of our system
on PDA (Pocket PC under Windows Pocket 2003).

Depending on the web access device he/she is using, the
user faces two different kind of web interfaces : a rich web
interface for full-featured web browsers (figure 15(a)), and
a simpler interface for PDA web browsers (figure 15(b)).
In both cases, the results returned by the 3D search engine
are the same. The only difference lies in the design of the
results presentation. At last, the users should notice that, due
to some copyright protection, the 3D CAD models from the
SEMANTIC-3D project are not available for public on-line
use. The 3D database available for tests of our 3D search
engine is the Princeton Shape Benchmark Database [13].

(a) PC browser interface (b) PDA browser
interface

Fig. 3. The PC and PDA browser interface of our on-line search engine.

V. DISCUSSION AND CONCLUSION

In this paper, we propose a 3D model retrieval sys-
tem based on characteristic views similarity called AVC
(Adaptive Views Clustering). Starting from the fact that the
more the 3D model is geometrically complex, the more its
2D views are different, we propose a characteristic views

selection algorithm that corresponds the number of views to
its geometrical complexity. Starting from 320 initial views,
our algorithm select the ”optimal” characteristic views set
that best represent the 3D model. The number of charac-
teristic views varies from 1 to 40. We also propose a new
probabilistic retrieval approach that takes into account that
not all the views of 3D models have the same importance,
and also the fact that geometrically simple models have more
probability to be relevant than more complex ones. Based on
some standard measures, we compared our method to twelve
state of the art methods on Princeton 3D Shape Benchmark
database. Our method gives the second best results. The AVC
method we proposed gives a good quality/cost compromise
compared to other well-known methods. The good results
of our method on a large 3D CAD models database (5000
models) supplied by Renault, show that our method can also
be suitable for 3D CAD models retrieval. Our method is
robust against noise and model degeneracy. It can be suitable
against topologically ill-defined 3D models. A practical 3D
models retrieval system based on our approach is available
on the web for on-line tests [12].
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