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Abstract Directional distance function (DDF) is a recognized technique for measuring 
efficiency while incorporating undesirable outputs. This approach allows for desirable outputs to 
be expanded while undesirable outputs are contracted simultaneously. A drawback of the DDF 
approach is that the direction vector to the production boundary is fixed arbitrarily, which may not 
provide the best efficiency measure. Therefore, this study extends the previous framework of 
efficiency analysis to introduce a new slacks-based measure of efficiency called the scale 
directional distance function (SDDF) approach. This new approach determines the optimal 
direction to the frontier for each unit of analysis and provides dissimilar expansion and contraction 
factors to achieve a more reasonable eco-efficiency score. This new approach is employed to 
measure the eco-efficiency of the Malaysian manufacturing sector. In addition, the paper 
demonstrates the use of the new approach to establish target values for the reduction/expansion of 
outputs in order for the inefficient DMUs to achieve full eco-efficiency. The results indicate that 
Melaka, Pulau Pinang, Negeri Sembilan, Sabah, Sarawak and Labuan have attained full eco-
efficiency while Terengganu is the least eco-efficient. The overall eco-efficiency of the 
manufacturing sector in Malaysia is 80.5% with wide variations across the states. 
 
Keywords Data envelopment analysis (DEA), Directional distance function (DDF), Scale 
directional distance function (SDDF), undesirable output, eco-efficiency 
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1 Introduction 
 
Malaysia’s manufacturing industry has grown very rapidly since the early 1980s when the country 
witnessed a structural transformation from a predominantly agricultural economy to a more 
industrialized economy. This sector is especially crucial for the continuous growth and 
development of the Malaysian economy as it provides a significant contribution to the GDP with a 
27.5 percent share of GDP in 2011. The manufacturing sector recorded the highest productivity 
growth of 7.56% followed by the services sector with 4.89% (Malaysia Productivity Corporation 
2011). To enable the Malaysian economy to increase its competitiveness, the manufacturing sector 
has developed more than ten Free Industrial Zone (FIZ) areas (formerly known as Free Trade Zone 
areas) throughout the country as a catalyst to accelerate the value-added of the manufacturing 
sector. A Free Industrial Zone comprises a free zone for commercial activities, which include 
trading (except retail trading), breaking bulk, grading, repacking, relabeling as well as transit for 
manufacturing activities, specifically established for manufacturing companies that produce or 
assemble products mainly for export purposes. Todate, FIZ areas have been developed in Malaysia 
in the states of Johor, Melaka, Pulau Pinang, Perak and Selangor.   

Trade-off exists between economic development and preservation of the environment 
(Nahorski and Ravn 2000). In Malaysia, the rapid economic development is closely connected 
with the degradation of environmental quality. As revealed by the Department of Statistics, 
Malaysia (2008), the manufacturing sector is one of the main contributors to environmental 
pollution. Carbon dioxide, which is released by the industrial sector, is among the biggest elements 
contributing to pollution and poor environmental performance. In fact, the Malaysian economy is 
amongst the largest carbon emitters in the world. Of the developing countries in Southeast Asia, 
Malaysia had one of the largest carbon footprints at 7.32 metric tonnes of carbon dioxide per 
capita in 2007, and a total carbon dioxide emission of 148 million metric tonnes in 2009 from the 
burning of fossil fuels (International Energy Agency 2009).  

The Department of Environment (DOE), under the Ministry of Science, Technology and 
Environment, undertakes environmental protection through clean air legislation, i.e. 
Environmental Quality Act (EQA) 1974, limiting industrial and automobile emissions. However, 
air pollution from industrial and automobile sources is still a problem. In 2009, a survey by the 
Department of Statistics, Malaysia disclosed that the manufacturing sector spent about RM3057.7 
million on environmental protection. The Malaysian Government is targeting to reduce the carbon 
dioxide emissions by up to 40% by 2020 compared to the 2005 level of 7.03 metric tonnes per 
capita. Thus, environmental performance is a practical tool to incentivize reduction in fuel 
consumption, costs and carbon emissions simultaneously. 
 Since the last decade, environmental performance has received more attention and there has 
been a growth in the number of empirical and methodological studies from the application of the 
Data Envelopment Analysis (DEA) framework. The DEA technique, which originated from the 
seminal work of Charnes et al. (1978) is an estimation to measure the relative efficiency score of 
units of assessment based on the use of multiple inputs to produce multiple outputs.  
 Despite the existence of many DEA-related approaches for modelling environmental 
performance (for instance Coli et al. 2011; Choia et al. 2012; Jaraitėa and Maria 2012; Wu et al. 
2012), little attention has been given to measuring the eco-efficiency of the Malaysian 
manufacturing sector. To date, research has not sought to integrate carbon dioxide emissions in 
efficiency analysis, which is one of the main contributors to climate change and is easily 
calculable from material input quantities. Therefore, this study evaluates the eco-efficiency of the 
Malaysian manufacturing sector by using a joint production framework involving desirable (sales) 
and undesirable outputs (CO2 emissions) simultaneously. 
 An approach that has gained popularity, called the directional distance function (DDF) 
proposed by Chung et al. (1997), uses the hyperbolic DEA method based on the notion of weakly 
disposable bad outputs. This approach allows for desirable outputs to be expanded while 
undesirable outputs are contracted simultaneously. A limitation of the DDF approach is that the 
direction vector to the production boundary is fixed arbitrarily, which may not provide the best 
efficiency measure. This is because a different direction vector may provide a different efficiency 
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score. Indeed, there is still no consensus concerning what is the best direction vector to be 
employed in this model.  
 Therefore, this study provides an alternative solution to decision makers through the extension 
of the previous DDF framework by introducing a new efficiency model called the scale directional 
distance function (SDDF) which provides an appropriate direction for each inefficient DMU to 
attain full eco-efficiency. The SDDF model is calculated using the slacks-based measure (SBM) 
proposed by Färe and Grosskopf (2010a; 2010b). While Färe and Grosskopf (2010a; 2010b) 
demonstrate a slacks based measure of efficiency incorporating only input and desirable outputs, 
in addition, the SDDF approach, incorporates undesirable outputs to enable the measurement of 
eco-efficiency. This new approach is employed to measure the eco-efficiency of the Malaysian 
manufacturing sector. Furthermore, the paper demonstrates the use of the new approach to 
establish target values for the reduction/expansion of outputs in order for the inefficient DMUs to 
achieve full eco-efficiency. 
 The remainder of the paper is organized as follows. In Section 2, the measurement of technical 
efficiency and eco-efficiency is discussed and the relevant methodological and empirical literature 
on productivity growth and environmental performance is reviewed. In Section 3, we discuss the 
DDF approach to measure eco-efficiency and introduce the new SDDF technique. Section 4 offers 
an explanation of the data, and is followed by empirical results on both eco-efficiency and target 
setting. Section 5 provides some discussion on the new model and the final section presents the 
conclusion and implications.  
 
2 Literature Review 
 
The underpinning of the efficiency measurement began with the work of Debreu (1951) and 
Koopmans (1957). Debreu provided the first measure of efficiency, which is the ‘coefficient of 
resource utilization’, while Koopmans is the first who defined the concept of technical efficiency. 
Technical efficiency focuses on the ability to increase the output while keeping the input constant 
or the ability to reduce the input while keeping the output constant. Technical efficiency involves 
either a single or multiple input and output in the analysis. When incorporating undesirable 
outputs, such as pollutants, the measurement is essentially on environmental efficiency or 
ecological efficiency. The concept of ecological efficiency, in short, eco-efficiency, can be 
classified as a measurement of efficiency with the integration of environmental pollution that is 
regarded as undesirable outputs together with desirable outputs (Dyckhoff and Allen 2001).  

Since the last decade, environmental performance measurement has received more attention 
and there has been a growth in the number of empirical and methodological studies. Research 
carried out by Tyteca (1996) reviewed previous studies on environmental performance indicators 
and employed the index number approach to assess performance. Based on the literature, he 
measured the resources used, desirable outputs produced and pollutants using the index number 
approach. He also recommended employing the DEA approach when estimating environmental 
performance. Another paper, published by Sarkis (2006), employed a multitude of DEA models to 
gauge diverse aspects of environmental performance related to small manufacturing enterprises 
based on the development of hypotheses. Zhou et al. (2008) conducted a survey of previous 
studies whereby about 100 publications were reviewed on the measurement of environmental 
efficiency as well as the application of DEA. Most of the studies that were reviewed tried to 
employ an appropriate technique to measure the environmental performance of industries in their 
application area. From their review, they found that if both desirable and undesirable outputs are 
considered simultaneously, the DDF is one of the most frequently used to provide more reasonable 
results.  
 To assess eco-efficiency, several approaches that address the separation of desirable and 
undesirable outputs in the analysis have been proposed. Pittman (1983) made the earliest effort to 
include the undesirable output in efficiency measurement. By using the translog multilateral 
productivity index, he calculated the shadow prices on the pollution abatement cost. However, the 
limitation of this model is that it can only be measured if the cost of the pollution shadow price can 
be estimated. 

In DEA efficiency measurement, several approaches have been proposed to account for 
undesirable outputs. An evaluation pertaining to this topic has been discussed previously by 
several researchers, for example, Hua and Bian (2007), Bian (2008), Liu et al. (2010) and Song et 
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al. (2012). One of the popular approaches to incorporate undesirable outputs in the literature is 
treating the undesirable output as a classical input. In this approach the variable is moved from the 
output side to the input side of the model. However, treating the undesirable outputs as input 
opposes the physical laws and standard production theory. It also leads to conceptual confusion 
and will not reflect the true production process in the DEA result (Seiford and Zhu 2002). 
Therefore, Seiford and Zhu (2002) developed the linear monotone decreasing transformation 
approach. This translation transforms negative data to non-negative data. Kuosmanen (2005) 
presents a simple formulation of weak disposability that allows for non-uniform abatement factors 
and preserves the linear structure of the model by introducing inactive firms in the data set. 
Another approach is the hyperbolic output efficiency measure whereby the undesirable outputs are 
treated as a nonlinear constraint in the DEA model. This model, which was introduced by Färe et 
al. (1989), extended the work of Pittman (1983). Using the hyperbolic approach, the efficiency 
measure allows the desirable outputs to be increased while the undesirable outputs are decreased 
asymmetrically.  

An alternative approach is to treat the undesirable outputs by adjusting the distance 
measurement in order to restrict the expansion of the undesirable outputs. The concept of this 
approach, as suggested by Chung et al. (1997), is to expand desirable outputs and reduce 
undesirable outputs simultaneously based on a given direction vector which is known as the 
directional distance function (DDF) approach (Chung et al. 1997). Since this approach is employed 
in our study, the discussion on the DDF approach to gauge eco-efficiency will be broached in the 
next section.  

Zhou et al. (2006) proposed the non-radial slacks-based measure (SBM) model extended with 
the incorporation of undesirable outputs. This model, an extension of Tone’s (2001) original SBM 
model,  attempts to minimize the ratio of the average undesirable outputs reduction to the average 
desirable output increase. This model combines environmental and economic inefficiencies and 
provides a composite index for modelling economic environmental performance. According to the 
authors, this model provides a higher discriminating power in modelling environmental 
performance (Zhou et al. 2006). More recently, another paper by Bi et al. (2012) also adjusts the 
original SBM with the slacks-based aggregated efficiency (SAE) to include both desirable and 
undesirable outputs in their analysis. 

On the other hand, Bian (2008) extended the additive DEA model by taking into account slack 
variables. In recent times, Sueyoshi et al. (2010) modified the basic model of range adjusted 
measure (RAM) to integrate undesirable outputs. In their study, they employed two separated DEA 
models to estimate the operational as well as environmental performance and then combined both 
performances to produce a unified efficiency score. However, due to efficiency scores that are 
close to unity, this model may not provide a valid ranking of performance, especially for the large 
DMUs. 

Another solution is the hybrid measure proposed by Tone and Tsutsui (2011). This measure 
resolves the efficiency in the presence of radial and non-radial inputs or outputs with no separation 
of desirable and undesirable outputs. According to Tone and Tsutsui (2011), the drawback of the 
radial approach is the neglect of the non-radial input or output slacks while the non-radial 
approach, which addresses slacks directly, neglects the radial characteristics of inputs and/or 
outputs. Therefore, from the weaknesses above, the authors propose a hybrid measure, which 
follows the original model of the slack based measure. In the hybrid measure, both the desirable 
and undesirable outputs have been addressed in a unified framework under condition in which 
certain non-separable associations between some inputs and outputs exist.      

Another recent development is an approach proposed by Wu et al. (2013) to measure the 
congestion between desirable and undesirable outputs. In their suggestion, the method of Seiford 
and Zhu (2002) is combined with the method of Wei and Yan (2004) to develop the new 
framework for measuring congestion with undesirable outputs. In their new framework, the input 
constraint of the Seiford and Zhu (2002) model has been revised according to the Wei and Yan 
(2004) model so that the constraints of the new model are further relaxed than that of model 
Seiford and Zhu (2002).        

One of the most preferred approaches in eco-efficiency measurement has been DDF because it 
allows one to consider non-proportional changes in outputs and makes it possible to expand 
desirable outputs while contracting the undesirable outputs. However, there is also a major 
drawback using this model whereby there are no standard techniques concerning how to determine 
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the direction vector to the production boundary. This is because a different direction vector may 
provide a different efficiency score (Bian 2008). The choice of the direction vector may have an 
impact on the efficiency score, and therefore, the robustness of the analysis. For that reason, this 
paper attempts to introduce a new slacks-based measure of efficiency so that an optimal direction 
to the frontier can be determined for each DMU in order to achieve a more reasonable eco-
efficiency score. 

Turning to the empirical literature, from all the studies that have been found, one of the most 
popular approaches in measuring environment efficiency is the DDF approach. For example, 
Watanabe and Tanaka (2007) measured the eco-efficiency of the industrial sector in China using 
DDF technique. As another sample, Mandal and Madheswaran (2010) also studied the 
environmental efficiency of the Indian cement industry. Employing DDF, Riccardi et al. (2012) 
evaluated the impact of CO2 emissions on the efficiency score of the world cement industry. The 
analysis compares the results with and without the incorporation of CO2 emissions. The evaluation 
concludes that CO2 emissions influence the efficiency score and that the emissions need to be 
included when measuring the efficiency score in the cement sector. More recently, Wang et al. 
(2013) estimated a total factor of CO2 emissions performance index using the DDF approach. The 
study evaluated CO2 emission performance, emission reduction potential and influences of 
regulatory policies in Chinese provinces. In addition, Wu et al. (2013) measured congestion with 
undesirable outputs of the industry in 31 administrative regions of China. The study reveals that 
five regions have congestion in their industry and the regions located in the east of the country 
perform the best in ecological efficiency. (Several samples of DDF approach on eco-efficiency 
measurement, see Picazo-Tadeo et al. 2005; Picazo-Tadeo and Prior 2009; Piot-Lepetit 2010; 
Wanga et al. 2012; Beltrán-Esteve et al. 2013)  

In Malaysia, Mahadevan (2002) carried out a study on the manufacturing sector from 1981 to 
1996 to investigate the technical efficiency. The results indicate that the technical efficiency score 
in the 80s increased gradually while the score decreased reversibly in the 90s. A similar study by 
Jajri and Ismail in 2007 using data from 1985 to 2000 shows that the food, wood, chemical and 
iron industries provide a higher efficiency score compared to other industries. Both studies show 
consistent results in terms of the trend in technical efficiency, i.e., increase in the 80s and decrease 
in the 90s.  

With regard to the measurement of environmental efficiency, the research done by Ahmed 
(2006; 2007) leads the way in the Malaysian manufacturing context. Employing the non-frontier 
Divisia Translog Index approach, Ahmed (2006) found that industrial activities contributed to the 
growth rate of carbon dioxide emissions and observed a slowdown in the productivity growth of 
the manufacturing sector when carbon dioxide is included as a productivity indicator. Ahmed 
(2007) demonstrated the negative impact of organic water pollutant biochemical oxygen demand 
(BOD) emissions on the productivity growth of the Malaysian manufacturing sector.  

In contrast to the above Malaysian studies, this paper aims to evaluate the eco-efficiency of the 
Malaysian manufacturing sector by applying another approach of the frontier technique called the 
scale directional distance function (SDDF), in a joint production framework involving both 
desirable and undesirable outputs. 
 
3 Model 
 
3.1 Directional Distance Function (DDF) 
 
In conventional production theory, efficiency is measured by maximizing the production 
(desirable) of outputs with a restricted amount of inputs. However, when there is joint production 
of the desirable and undesirable outputs, the efficiency measurement is best defined by increasing 
desirable outputs and simultaneously decreasing undesirable outputs (Färe et al. 1989). To handle 
this situation, the DDF approach was introduced by Chung et al. (1997) to measure eco-efficiency.  

The original concept of the DDF approach is to expand the desirable output and reduce the 
undesirable output simultaneously based on a given direction vector (Chung et al. 1997). Eco-
efficiency using the DDF on the technology T can be defined as below: 

 
𝐷! 𝑥, 𝑦, 𝑢;𝑔! ,−𝑔! = max 𝛽: (𝑦 + 𝛽𝑔! , 𝑢 − 𝛽𝑔! ∈ 𝑇)  (1) 
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The distance function on the technology T (𝐷!) above, tries to look for the extension of 
desirable output in the 𝑔! direction and reduction of undesirable output in the 𝑔! direction. In 
other words, a proportion 𝛽 seeks to increase the desirable output and reduce the undesirable 
output. For example, if 𝛽 is equivalent to 10%, all desirable outputs will be expanded by 10% 
while concurrently all undesirable outputs will also be contracted by 10%. This measurement 
expands desirable output and reduces undesirable output by the direction vector of 𝑔.  

To begin this model, some notations have been made. Let 𝑥 ∈ 𝑅!!  represent an input vector, 
𝑦 ∈ 𝑅!

!  represent a desirable output vector while 𝑢 ∈ 𝑅!! represent an undesirable output vector. 
Following Chung et al. (1997), the linear program to calculate the directional output distance 
function in order to gauge the eco-efficiency of the mth DMU can be formulated as below: 
  

Max𝛽! 
Subject to 

𝑧!𝑥!"

!

!!!

≤ 𝑥!"  ;     𝑖 = 1,2,… , 𝐼	
  

𝑧!𝑦!"

!

!!!

≥ 𝑦!" + 𝛽!𝑦!"  ;     𝑗 = 1,2,… , 𝐽	
  

𝑧!𝑢!"

!

!!!

= 𝑢!" − 𝛽!𝑢!"  ;     𝑘 = 1,2,… ,𝐾	
  

𝑧! ≥ 0  ;     𝑛 = 1,2,… ,𝑁 

(2) 

 
Where 0 ≤ 𝛽! ≤ 1 is the inefficiency score of the mth DMU, zn is the intensity variable for the 
nth observation, xin is the ith input of the nth DMU, yjn is the jth desirable output of the nth DMU, 
ukn is the kth undesirable output of the nth DMU, xim is the ith input of the mth DMU, yjm is the jth 
output of the mth DMU and ukm is the kth undesirable output of the mth DMU. The direction vector 
of 𝑔 is taken as (y,-u) along which the desirable outputs to be extended and the undesirable outputs 
contracted. A score of zero indicates an efficient DMU while any positive values denote 
inefficiency. 

Since 𝛽! is the inefficiency scores, to obtain the eco-efficiency score, 𝜃!!!", is formulated as 
follows: 

 
𝜃!!!" = 1 − 𝛽! (3) 

 
Note that 𝛽!

1  is between 0 and 1, thus, 𝜃!also falls into 0 and 1 closed interval. 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig.  1 Efficient frontier for DDF (original source: Färe and Grosskopf 2005) 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

1Färe and Primont (1995) have shown that under the weak disposability, condition β ≤ 1 
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Figure 1 illustrates the environmental output set (T) for the DDF approach, which is bounded 
by 0ABCD0. Assuming that all DMUs use a similar quantity of a single input 𝑥  to produce a 
dissimilar quantity of a single desirable 𝑦  and a single undesirable 𝑢  output, the efficient 
frontier is represented by the line 0, A, B, C and D. From the illustration, DMU E is below the 
efficient frontier, thus it can be categorized as an inefficient DMU. Through the DDF model, a 
better direction is from E to E’ whereby it has an effect on the levels of both outputs – desirable 
and undesirable. It is determined by the direction vector of 𝑔 = (y,-u). The value of the distance 
function is determined by the ratio of EE’/EE”.  

Therefore, in Fig. 1, the directional output distance function will expand 𝑦, 𝑢  at E, along the 
𝑔 direction until it hits the production boundary of (𝑦 + 𝛽𝑔! , 𝑢 − 𝛽𝑔!) at E’. (See for example, 
Färe et al. 2005; Hua and Bian 2007; Bian 2008; Mandal and Madheswaran 2010) that have used 
(1, -1) as their direction vector). 

 
 3.2 Scale Directional Distance Function (SDDF)  

 
With the conventional DDF approach, as explained in section 3.1, the direction to expand desirable 
outputs and reduce undesirable outputs is made subjectively, in other words, user specified. This 
arbitrary direction (g = (y,-u)) may be inappropriate for each output bundle. In order to measure an 
appropriate direction for each inefficient DMU to attain full eco-efficiency, we develop a scale 
directional distance function (SDDF) approach based on the works of Färe and Grosskopf (2010a; 
2010b). There are three aspects that are worth emphasizing in this new approach.  

First, the original DDF model (formulation (2)) is modified so that each output bundle can 
have a different direction to the production boundary. The objective function of the DDF model 2, 
which is the single contraction/expansion factor, 𝛽! has been replaced with the summation of 𝛾!", 
the expansion factor for desirable outputs, and 𝛾!", the contraction factor for undesirable outputs 
in the SDDF approach in formulation (4) below. This linear program is based on the slacks-based 
measure of efficiency. The SDDF model formulation for mth DMU, which has been adopted from 
Färe and Grosskopf (2010a; 2010b), is as follows: 
 

Max  ℎ! =   𝛾!"  

!

!!!

+ 𝛾!"  

!

!!!

 

Subject to  

𝑧!𝑥!"

!

!!!

≤ 𝑥!"  ;     𝑖 = 1,2,… , 𝐼  

𝑧!𝑦!"

!

!!!

≥ 𝑦!" + 𝛾!"  . 1    ;     𝑗 = 1,2,… , 𝐽	
  

𝑧!𝑢!"

!

!!!

= 𝑢!" − 𝛾!"  . 1  ;     𝑘 = 1,2,… ,𝐾	
  

𝑧!, 𝛾!"  , 𝛾!"   ≥ 0  ;     𝑛 = 1,2,… ,𝑁  

(4) 

 
Since ℎ! is the inefficiency score, to obtain the eco-efficiency score, 𝜃!!""#, is formulated as 
follows: 

 
𝜃!!""# = 1 − ℎ! (5) 

 
Second, the optimal solution to (4) is used to derive the direction vector to the production 
boundary. When 𝛾!"  

!
!!! + 𝛾!"  !

!!! > 0, the scale direction for the jth desirable output and kth 
undesirable output for the DMU assessed can be obtained by the following equation:       
 

𝑆𝐷! 	
  =	
  
!!"
∗

!!"  
!
!!! ! !!"  !

!!!
	
  

and 
(6) 
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𝑆𝐷!	
  =	
  
!!"
∗

!!"  
!
!!! ! !!"  !

!!!
	
  

 
Otherwise, if 𝛾!"∗   

and 𝛾!"∗  are equal to 0, it denotes that the particular DMU is located on the 
efficient frontier, then the direction vectors SDj and SDk can be chosen arbitrarily. 

Equation (6) explains that each entry of the direction vector from model (4) is divided by the 
summation of the expansion rate of the desirable and contraction rate of the undesirable output. 
The minimum and maximum direction for SDj and SDk is between 0 and 1 (0   ≤ 𝑆𝐷! , 𝑆𝐷! ≤ 1). 
In addition, the total of scale direction 𝑆𝐷! and 𝑆𝐷! must also be equal to 1 (𝑆𝐷! +   𝑆𝐷! = 1) to get 
an appropriate scale direction for each desirable and undesirable output variable.  

Third, from the scale directions obtained, the target value for each DMU can be measured. The 
SDDF approach can also be utilized for target setting to determine the target value for inefficient 
DMUs in order to obtain full eco-efficiency. The target value is measured by the summation of 
multiplication of the intensity variable (zn) from formulation (4) with the actual value of desirable 
(yjn) and undesirable (ukn) outputs for each DMU as below: 

 

𝑧!𝑦!"

!

!!!

 

  and  

𝑧!𝑢!"

!

!!!

 

(7) 

 
 The target value will be similar to the actual value if the mth DMU obtains a zero value for the 
objective function in model (4). In other words, the mth DMU is 100% fully efficient.   
 To demonstrate the SDDF model, assume that all DMUs use a similar quantity of a single input 
𝑥  to produce a dissimilar quantity of a single desirable 𝑦  and a single undesirable 𝑢  output. 

The set of five DMUs (y, u) are A = (2, 1), B = (3, 2), C = (4, 5), D = (1, 1.5) and E = (2.5, 4.6) 
(see Fig. 2). Under the VRS model, it is clear that DMUs A, B and C are efficient while the other 
two DMUs (D and E) are clearly inefficient. 
 Employing the DDF model (equation 2) with the direction vector (gy, -gu) = (y,-u), DMU D is 
projected onto the efficient frontier at D’ = (2, 1) and DMU E is projected onto the efficient 
frontier at E’ = (3.3, 3.1). For DMUs D and E, the efficiency score associated with the direction 
vector of (y,-u) are 0.67 and 0.64, respectively.  
 Employing the SDDF model (equation 4), DMU D and E are projected onto D” = (2.5, 1.5) and 
E” = (3, 2), respectively. An appropriate direction vector for DMU D and E computed from 
equation (6) is (1, 0) and (0.19, -0.81), respectively. The efficiency scores with the respective 
direction vector for D and E are 0.63 and 0.36, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  2 DDF and SDDF direction vector 
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 Figure 2 above demonstrates how the SDDF approach measures the direction for inefficient 
DMUs to achieve the efficiency frontier. The SDDF model expands and contracts the desirable 
and undesirable outputs by a different proportion and this model also determines the optimal 
direction to the frontier for each of the inefficient DMU. The direction in this approach is 
determined by the additive slack of the desirable and undesirable output.  
 
4 Data and Results 
 
4.1 Data  
 
This study considers the manufacturing sector in 15 states throughout Malaysia. The state level 
data for the observed period of 2009 was obtained from the Department of Statistics, Malaysia.  

In this analysis, two inputs and two outputs are employed. The inputs are operating expenditure 
(opex) and capital. Operating expenditure covers all the costs that are involved in the production 
process in the manufacturing sector including material, salaries and wages and electricity for the 
year of 2009. The value of assets has been used as a proxy to the capital. Assets cover all goods, 
new or used, tangible or intangible, which have a normal economic life span of more than one 
year. All the above items are the main factors in productivity process. Based on the previous 
studies on productivity and efficiency, it is typical to use operating expenditure and capital as 
inputs (Ball et al. 2004; Färe et al. 2006; Watanabe and Tanaka 2007). 

In terms of the production outputs, they consist of one desirable and one undesirable output. 
The desirable output is sales in the manufacturing industry while the carbon dioxide (CO2) 
emission factor has been included as an undesirable output. It has been determined that among the 
industrial sources of air pollution, CO2 is the main by-product of industrial activities as the 
combustion of fossil fuels in the manufacturing process that have to be controlled. Therefore, CO2 
emission has been included as an undesirable output in this analysis. In addition, CO2 also is the 
element that has been frequently used by previous studies as an undesirable output (Arocena and 
Waddams Price 2002; Aiken and Pasurka 2003; Sarkis and Talluri 2004; Lu and Lo 2007). 
Combustion fuels such as diesel oil, petrol (gasoline), fuel oil, and natural gas of the 
manufacturing sector was used to calculate CO2 emissions. The calculation which is guided by the 
2006 Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas 
Inventories (Eggleston et al. 2006) is based on the total amount of fuels combusted and the 
averaged carbon content of the fuels.   

Table 1 above provides the summary descriptive statistics of the data set employed in this 
study. 

 
Table 1 Descriptive statistics of the data set for 15 states in 2009   

Variables 
Opex (x1) 
RM ‘000 

Capital (x2) 
RM ‘000 

Sales (y1) 
RM ‘000 

CO2 (u1) 
‘000 tonne 

Maximum 176128357 51688873 187570618 2194 
Minimum 1002389 425813 1050261 30 
Average 43102384 13057985 47003084 653 
St Deviation 48475297 13274629 51469812 616 
 
4.2 Eco–Efficiency  
 

Table 2 presents the results of the eco-efficiency analysis of the manufacturing sector 
(including the Federal Territories of Kuala Lumpur and Labuan) throughout the 15 states of 
Malaysia. The analysis was conducted using the software GAMS 23.4 solver. The scores for eco-
efficiency are obtained from equation (3) and (5) for DDF and SDDF, respectively. The results are 
presented by the industrial grouping of the state, i.e., free industrial zone (FIZ) states consist of 
Johor, Melaka Pulau Pinang, Perak as well as Selangor, while the non-free industrial zone (N-FIZ) 
states consist of Kedah, Kelantan, Negeri Sembilan, Pahang, Perlis, Terengganu, Sabah, Sarawak, 
the Federal Territory of Kuala Lumpur, as well as the Federal Territory of Labuan. The eco-
efficiency score using the DDF approach is calculated in columns two and four while columns 
three and five represent the rank of each state for the respective efficiency measure. The direction 
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vector of (1,-1) and (1,-2) were employed in order to gauge the eco-efficiency from equation (3). 
The sixth and seventh columns present the eco-efficiency scores using the SDDF approach and the 
rank.  

We focus on the results of DDF (g = (y,-u) = (1,-1)) that are presented in column 2 of Table 2. 
The eco-efficiency scores via the DDF approach indicate the extent of desirable output expansion 
and undesirable output reduction. For instance, Johor was 90.0% efficient. This result suggests that 
Johor could expand its desirable output by as much as 10% while concurrently contracting its 
undesirable output by 10% to become fully eco-efficient. It can be observed that Terengganu has 
the greatest potential to expand its desirable output by up to 40.6% while concurrently contracting 
the undesirable output by about 40.6% since this state is significantly below the efficient frontier.  

The DDF results (Column 2) disclose that six states appear as fully eco-efficient – Melaka, 
Pulau Pinang, Negeri Sembilan, Sabah, Sarawak and Labuan – while the least eco-efficient is 
Terengganu (Rank 15) with a score of 59.4%. Melaka, with limited heavy industries and 
approximately 1,071 manufacturing establishments that release air pollution, obtained full eco-
efficiency. To explain the result of Melaka, the amount of undesirable output (CO2) released by 
manufacturing activities in this state is not too high, while the desirable output (sales) contributed 
is also moderate with a limited amount of operating cost. Hence, Melaka is categorized as 100% 
eco-efficient. A similar situation also occurs for Pulau Pinang with 100% eco-efficiency. Besides 
Melaka and Pulau Pinang, Sarawak, which is the largest state in Malaysia, also obtained full eco-
efficiency. This result is unsurprising, as Sarawak is the largest state in Malaysia with 80% of its 
total land area covered by forest. Therefore, Sarawak is largely free of air pollution. Another state 
with a score of 100% is the federal territory of Labuan. This small state focuses more on the 
tourism sector rather than the manufacturing sector. Therefore, the impact on air pollution in 
Labuan is marginal. As for Kuala Lumpur, it is the capital of Malaysia and is the administrative 
and commercial centre with no heavy industry. Therefore, the impact on air pollution released by 
the manufacturing sector is also marginal. Thus, with a score of 99.3%, Kuala Lumpur (Rank 7) is 
close to the efficient frontier.    

 
 Table 2  Results of eco-efficiency score and rank for each state using DDF and SDDF models 
States EE score (%) Rank EE score (%) Rank EE score (%)  Rank  FIZ DDF g = (1,-1) DDF g = (1,-2) SDDF 
1.    Johor 
2.    Melaka 
3.    Pulau Pinang 
4.    Perak 
5.    Selangor 

90.0 % 
100 % 
100 % 
79.3 % 
89.7 % 

8 
1 
1 

13 
9 

88.0 % 
100 % 
99.7% 
66.1 % 
85.1 % 

7 
1 
4 

12 
8 

49.4 % 
100 % 
100 % 
77.1 % 
26.9 % 

14 
1 
1 

12 
15 

Geometric Mean 91.4 %  86.8 %  63.4 %  
 N-FIZ       
6.   Kedah 
7.   Kelantan 
8.   Negeri Sembilan 
9.   Pahang 
10. Perlis 
11. Terengganu 
12. Sabah 
13. Sarawak 
14. Kuala Lumpur 
15. Labuan 

87.5 % 
85.8 % 
100 % 
81.5 % 
74.8 % 
59.4 % 
100 % 
100 % 
99.3 % 
100 % 

10 
11 
1 

12 
14 
15 
1 
1 
7 
1 

70.2 % 
84.1 % 
98.1 % 
69.0 % 
64.8 % 
60.7 % 
100 % 
100 % 
88.2 % 

50.0 % 

10 
9 
5 

11 
13 
14 
1 
1 
6 

15 

89.4 % 
97.8 % 
100 % 
81.1 % 
98.8 % 
53.9 % 
100 % 
100 % 
99.5 % 
100 % 

10 
9 
1 

11 
8 

13 
1 
1 
7 
1 

Geometric Mean 87.7 %  76.5 %  90.7 %  
Total Geometric Mean 88.9 %  79.8 %  80.5 %  
 Note : EE = Eco-efficiency  
 

This finding also explains that the average eco-efficiency score using the DDF approach for 
FIZ states (91.4%) is slightly higher than the N-FIZ states (87.7%). This result discloses that the 
Malaysian manufacturing activity in the FIZ states, which is categorized under industrial area, 
performs better than the N-FIZ area. The results may appear to be counter intuitive as these states 
have a lot of manufacturing activities likely to release air pollution. However, note that eco-
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efficiency takes into account undesirable outputs as well as desirable outputs in which, eco-
efficiency measures ecological efficiency as well as both economic and ecological efficiencies. In 
addition, these results are also consistent with the results reported by Watanabe and Tanaka 
(2007). They found that five coastal provinces/municipalities that have attracted a large amount of 
foreign direct investment manage to obtain a high score in efficiency when both desirable and 
undesirable outputs are incorporated. These results exhibit that these five coastal 
provinces/municipalities are comparable with the states under FIZ category in this study. Both the 
five coastal provinces/municipalities and the states under FIZ category focus more on foreign 
direct investment activities and both manage to achieve high efficiency not only on their industrial 
production but also on their environmental management. 

Among the states under the FIZ area, Perak (Rank 13) is one of the most eco-inefficient states. 
This is in keeping with the report that was published by the Department of Environment in 2008 
identifying Perak as one of the states with numerous sources of industrial air pollution 
(Department of Statistics Malaysia 2008). The results for Perak also disclose that this state is not 
using the input resources appropriately while producing the output. Looking at the overall picture, 
Malaysia, as a whole obtained an eco-efficiency score of 88.9%, which ranges between 59.4% and 
100% across the states. 

Column 4 of Table 2 presents the DDF results determined by the direction vector of g = (y,-u) 
= (1,-2), which helps illustrate the impact of the different direction vector to the production 
boundary on the eco-efficiency score. It is observed that the number of fully efficient observations 
drops by half (from six to three). Labuan, which is efficient under the direction vector of (1,-1), is 
inefficient under a direction vector of (1,-2). The eco-efficiency scores are inconsistent under 
different direction vectors. These results exhibit that utilizing a different direction vector may 
provide a different eco-efficiency score and perturb the ranking. Thus, the DDF approach lacks 
robustness since the directions are arbitrarily fixed. 

Turning to the results using the SDDF approach in Table 2, it can be seen that, generally, the 
results are rather consistent between DDF and SDDF with the same six observations obtaining full 
eco-efficiency. The only exceptions are Johor and Selangor, whereby the eco-efficiency score 
declined dramatically from 90% to 49.4% and 89.7% to 26.9%, respectively. However, these 
results are more convincing since Johor and Selangor, which are in the FIZ category, have many 
heavy industries that release higher levels of air pollution, therefore, these states should intuitively 
attain lower eco-efficiency score.  

Previous studies in the Malaysian manufacturing sector by Mohamad and Said (2010) and 
Ismail (2009) provide conflicting results. Unlike our study, these previous studies do not 
incorporate undesirable outputs in the DEA efficiency measurement. Nevertheless, the results of 
Ahmed (2006) corroborate our findings where employing the non-frontier DivisiaTranslog Index, 
he found  that the total factor productivity growth regressed about 0.12% during the study period 
between 1987 and 2001 when pollutant emissions variables was added to the model. According to 
Ahmed (2006), the period of 1987 to 2001 was indeed the golden era of the Malaysian industrial 
development, and consequently, it generated high levels of pollutions. Borhan and Ahmed (2012) 
also found that Malaysian economic growth has an impact on air and water pollutions. The 
continued rapid industrial development in Malaysia in the last decade has spawned increasing 
levels of pollution, particularly in the free industrial zones of Johor and Selangor, as observed in 
this study.  

Figure 3 depicts in graphical form the difference in eco-efficiency scores between the DDF and 
SDDF approach. In terms of the geometric means for the two categories of states, interestingly, the 
SDDF approach demonstrates that the geometric mean for the N-FIZ area (80.5%) is higher than 
for the FIZ area (63.4%) reversing the results of the DDF approach. This is largely due to the huge 
drop on the eco-efficiency scores for two states in the FIZ category, i.e., Johor and Selangor.   
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Fig.  3 The difference in eco-efficiency scores between the DDF (g = (1,-1)) and SDDF approach 
 
4.3 Target Setting 
 
Based on the eco-efficiency scores presented in Table 2 above, we further calculate the expansion 
rate of the desirable and contraction rate of the undesirable output and demonstrate the target value 
for each state in order to obtain full eco-efficiency using the SDDF approach. The scale directions 
of the desirable and undesirable outputs are obtained from equation (6) while the target value for 
each state is measured from equation (7). The results are presented in Table 3. The scale direction 
vector for sales and CO2 are calculated in columns two and three. Columns four and five represent 
the target value for sales and CO2 while change percentages are listed in columns six and seven. 
Using the scale directional distance function (SDDF) approach, the ‘scale direction’ column 
indicates the extent of desirable output (sales) expansion and undesirable output (CO2) reduction. 
The ‘target value’ column suggests the levels of sales and CO2 that each state should produce in 
order to achieve full eco-efficiency, while the ‘change (%)’ column shows in percentage terms 
how much the target value of sales and CO2 need to be increased and decreased from the actual 
value, respectively.      

By referring to previous research, the original DDF approach could suggest that the states 
should expand and contract both desirable and undesirable outputs by a single scalar without 
increasing the input. Nevertheless, in this analysis, through the SDDF approach, the states can 
expand and contract the desirable and undesirable outputs by different proportions. For instance, 
Johor could expand its desirable output (sales) by 2.65% while concurrently contracting its 
undesirable output (CO2) by 73.11% to attain full eco-efficiency. 

From Table 3, the scale direction with a value of zero exhibits that no change to the actual 
value of outputs is required as the expansion of desirable and contraction of undesirable output 
become zero. This is because this observation is already located on the frontier. For instance, 
Melaka, Pulau Pinang, Negeri Sembilan, Sabah, Sarawak and Labuan are not required to increase 
or decrease their value of sales and CO2 since these states have been assigned an eco-efficiency 
score of 100 percent. On the other hand, Perak, Kedah, Kelantan, Pahang and Kuala Lumpur need 
not increase their sales but should decrease their CO2 output. The rest of the observations need to 
simultaneously increase their sales as well as decrease their CO2 emissions in order to achieve full 
eco-efficiency scores. Since all observations, except for the fully efficient ones have to reduce 
their CO2 emissions, this finding shows that the Malaysian states need to prioritize the reduction of 
CO2 and later increase their sales. This is also supported by the fact that the scale direction for 
undesirable output is very much larger than the desirable output.  
 
 Table 3  Results of scale direction, target value and change for the inefficient state 
States Scale direction Target value Change (%) 
 Sales CO2 Sales (RM ‘000) CO2(‘000 tonne) Sales CO2 
FIZ     
1.    Johor 
2.    Melaka 
3.    Pulau Pinang 
4.    Perak 
5.    Selangor 

0.034 
0 
0 
0 
0.004 

-0.966 
0 
0 
-1 
-0.996 

123911857 
53968579 
96473350 
26237194 
188026529 

  393 
  171 
  1013 
  102 
  596 

2.65 
0 
0 
0 
0.24 

73.11 
0 
0 
83.12 
72.85 

N-FIZ     
6.   Kedah 
7.   Kelantan 
8.   Negeri Sembilan 
9.   Pahang 

0.001 
0 
0 
0 

-0.999 
-1 
0 
-1 

22138867 
3022240 
36986788 
24538379 

90 
10 
232 
122 

0.22 
0 
0 
0 

71.94 
82.90 
0 
77.25 
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10. Perlis 
11. Terengganu 
12. Sabah 
13. Sarawak 
14. Kuala Lumpur 
15. Labuan 

0.002 
0.013 
0 
0 
0 
0 

-0.998 
-0.987 
0 
0 
-1 
0 

1133340 
24069986 
28808284 
57254510 
21342086 
1904044 

4 
76 
492 
1191 
175 
233 

7.91 
5.14 
0 
0 
0 
0 

88.03 
92.91 
0 
0 
6.1 
0 

 
The results presented for scale direction are almost consistent with the change percentage for 

sales and CO2. Terengganu possesses the highest change percentage (92.91%) for CO2 whereby 
this state needs to reduce the amount of CO2 from the actual value of 1075 metric tonnes to the 
target value of 76 metric tonnes. The achievement of this goal in the short-term appears daunting. 
Some policy implications will be discussed in the conclusion section so that the amount of CO2 
can be reduced gradually in order to achieve the targeted CO2 reduction by the Malaysian 
Government. 
 
5 Discussion 
 
To compare between the DDF and SDDF approaches, some methodological reasons can be taken 
into consideration for the differences between these two approaches. The original concept of the 
direction vector in the DDF approach is determined by the method of ratio. The ratio of EE’/EE” 
can be found in Fig. 1. Giving the expansion of desirable outputs and reduction of undesirable 
outputs simultaneously with an arbitrary direction (g = (y,-u)) may provide an inappropriate 
direction for each output variable. This is the drawback of using this approach in as much as there 
are no standard techniques concerning how to determine the direction vector. This is because a 
different direction vector may provide a different efficiency score (Bian 2008). The results that 
have been presented in the previous section in Table 3 exhibit some differences in the DDF 
approach when utilizing the different direction vector. Labuan, for instance, has become one of the 
top performers (Rank 1) by utilizing the direction vector of (1,-1). On the other hand, Labuan 
appears to be the least eco-efficient (Rank 15) by utilizing the direction vector of (1,-2). In 
addition, the geometric mean by utilizing the direction vector of (1,-1) is generally higher than 
utilizing the direction vector of (1,-2) (except for Terengganu). 

The new model with SDDF can determine an appropriate direction while obtaining a more 
reasonable eco-efficiency score employing the slacks-based measure. The direction vector in this 
approach is different from the original concept of the DDF approach whereby it is determined by 
the additive slack of the desirable and undesirable output. This direction is more appropriate 
because the DMUs can expand and contract the desirable and undesirable outputs by different 
proportions given by the assumption. The proposed method is particularly useful when the DMUs 
want to identify the amount of undesirable output that needs to be reduced to attain full eco-
efficiency and provides a reasonable direction for the decision makers to achieve a higher target in 
their productivity. 
 
6 Conclusion and Recommendations  
 
This study provides a methodological contribution through the enhancement of the DDF method 
for measuring eco-efficiency. This study extends the previous framework of efficiency analysis to 
introduce a new slacks-based measure of efficiency called the SDDF approach. This new approach 
determines the optimal direction to the frontier for each unit of analysis and provides dissimilar 
expansion and contraction scales to achieve a more reasonable eco-efficiency score. The SDDF 
approach also allows for the establishment of target values for the reduction/expansion of outputs 
in order for the inefficient states to achieve full eco-efficiency. 

From the results obtained, we found that the manufacturing sector in Melaka, Pulau Pinang, 
Negeri Sembilan, Sabah, Sarawak and Labuan are the top performers with full eco-efficiency in 
this study. The results also show that if each state desires to achieve full eco-efficiency, they have 
to prioritize the reduction of CO2 pollution over increasing sales.  

This study is especially useful in the Malaysian context, as the integration between industrial 
production and environmental performance is quite new. The incorporation of both desirable and 
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undesirable outputs in the efficiency analysis is very important since the emission of 
environmental pollutants is of great concern to the nation.  

This empirical study may also provide some implications to the Government when formulating 
policy, laws and regulations pertaining to any environmental performance issues, particularly 
concerning serious environmental damage caused by industrial pollutants in Malaysia. The study 
highlights that by using the SDDF approach, the FIZ states are less eco-efficient due to the high 
levels of pollutants in these areas. The environmental regulation that is implemented currently 
needs to be improved so that the productivity growth is in balance with the environmental 
performance. For instance, India implemented the concept of win-win opportunities in the sugar 
industry whereby environmental regulation has encouraged the firms to reduce pollution. By 
offering incentives for introducing innovative resource conservation measures for environmental 
management, this policy may ensure that pollution is reduced while increasing the productivity 
(Murty and Kumar 2003). 

For individual firms, it is important to incorporate the undesirable output in efficiency 
measurement because economic, social as well as environmental efficiency is a necessary step 
towards sustainable development. The application may also assist individual firms to be more 
concerned with environmental protection while obtaining the profits for the firms. The balancing 
between environmental aspects as well as profits may become a good trend to be followed among 
the firms.     

In addition, this analysis may be beneficial for productivity comparison across the firms or 
particular industries with regard to environmental protection.  For instance, if this analysis is 
implemented at the firm level, it may provide appropriate information in terms of environmental 
efficiency for the Environmental Management System (EMS) for the awarding of the ISO 14000 
certification to any qualified firm. ISO 14000 has a positive impact on a firm’s performance, 
especially on its perceived economic and environmental impact. 
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