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Abstract A mathematical model which incorporates the spatial dispersal and inter-
action dynamics of mistletoes and birds is derived and studied to gain insights of the
spatial heterogeneity in abundance of mistletoes. Fickian diffusion and chemotaxis are
used to model the random movement of birds and the aggregation of birds due to the
attraction of mistletoes, respectively. The spread of mistletoes by birds is expressed by
a dispersal operator, which is typically a convolution integral with a dispersal kernel.
Two different types of kernel functions are used to study the model, one is a Dirac
delta function which reflects the special case that the spread behavior is local, and the
other one is a general non-negative symmetric function which describes the nonlocal
spread of mistletoes. When the kernel function is taken as the Dirac delta function, the
threshold condition for the existence of mistletoes is given and explored in terms of
parameters. For the general non-negative symmetric kernel case, we prove the exis-
tence and stability of spatially nonhomogeneous equilibria. Numerical simulations
are conducted by taking specific forms of kernel functions. Our study shows that the
spatial heterogeneous patterns of mistletoes are related to the specific dispersal pattern
of birds which carry mistletoe seeds.
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1 Introduction

Animal–plant interactions often have a spatial component. Seed dispersers can change
the spatial structure of plant communities and this influences the distribution of the
ecological functions of the plants that they disperse (Aukema 2003; Aukema and
Martinez del Rio 2002; Aukema 2004). In this paper, the interaction between mistletoes
and their avian seed dispersers is qualitatively studied to explore the phenomenon of
the spatial heterogeneity in abundance of mistletoes.

Mistletoes are common aerial stem-parasites that infect vascular plants ranging
from pines to cacti (Kuijt 1969). Mistletoe seeds are dispersed by fruit-eating birds,
many of which are highly specialized to consume their berries. Once deposited on
a tree, the sticky viscin surrounding the seed adheres it to the branch, making it
difficult to dislodge. After being deposited onto an appropriate host plant, a mistletoe
seed germinates and forms a haustorium, tapping into the xylem of the host plant
to absorb water and minerals (Calder and Bernhardt 1983). Although all mistletoes
contain chlorophyll, they assimilate different amounts of organic carbon groom their
hosts and range from wholly autotrophic to completely heterotrophic (Bannister and
Strong 2001; Hull and Leonard 1964; Kraus et al. 1995; Marshall and Ehleringer
1990). Mistletoes are both mutualist of their animal dispersers and parasites of their
host plants (del Rio et al. 1996). At the scale of individual hosts and of stands, birds
respond to the presence of parasites: already parasitized hosts and stands with higher
mistletoe prevalence have higher seed rain and hence have increased probability of
subsequent infection (Aukema 2003; Aukema and Martinez del Rio 2002; Martinez
del Rio et al. 1995; del Rio et al. 1996). Mistletoe was often considered a pest that
kills trees and devalues natural habitats, but was recently recognized as an ecological
keystone species, an organism that has a disproportionately pervasive influence over
its community (Watson 2001). Mistletoe can have a positive effect on biodiversity by
providing high quality food and habitat for a broad range of animals in forests and
woodlands worldwide.
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Spatiotemporal mutualistic model of mistletoes and birds 1481

The mutualistic nature between mistletoes (the vector-borne parasites) and birds
(the vectors) presents a unique opportunity to consider the interaction between para-
sitic and mutualistic interactions in space and time (Aukema 2003). Liu et al. (2011)
proposed a deterministic model to describe the dynamics of mistletoes in an isolated
patch containing an arbitrary number of plants. These plants were different in terms
of mistletoe seeds deposition rate, as well as in supporting nutrition for the parasites.
A Holling type II functional response was used to model the process that fruits were
removed by birds. It was assumed in the model that either birds removed fruits from
plants without any bias or with preference for certain types of plants. After a bird
removed seeds from mistletoes, it was assumed that the bird distributed the seeds ran-
domly among plants. Concrete criterions, expressed in terms of the model parameters,
for mistletoes establishing in the area were derived analytically. Since the models in
Liu et al. (2011) were built in an isolated area, birds were assumed to be constant in this
area. In reality, the number of birds might change according to the food availability,
and the dynamics of birds and mistletoes are interdependent with each other. In order
to better understand the interaction between mistletoes and their avian seed dispersers,
we incorporate the dynamics of the bird population into the mistletoe model. In this
paper, we describe the interaction of mistletoes and avian seed dispersers using a
dynamic model which incorporates the spatial dispersal of birds, birds’ reaction to the
presence of parasites, the maturation duration of mistletoes, the fruit removal process,
and the fruit distributed by birds.

We assume that, without mistletoes, the bird population satisfies a logistic growth
model since birds have other food items available besides of mistletoes (Murphy
and Kelly 2003; Walsberg 1975). The spatial dispersal of birds is described in two
ways. First the random movement of birds in the habitat is modeled with a Fickian
diffusion of the bird population. Secondly we assume that birds make directed dispersal
based on the density of mistletoes (their food resource), which is described through
chemotactic advection. The additional growth of bird population due to consuming
mistletoes is assumed to be proportional to the predation rate of birds on mistletoes.
This additional growth depends on the dispersal pattern of birds, and the growth at a
location x depends on seed dropping from birds from all possible locations y. Such
spatial dependent growth is characterized by a linear continuous mapping K , which
describes the seed spatial redistribution by the birds. The mapping K is typically a
convolution integral of the local mistletoe consumption rate of birds and a dispersal
kernel function k(x, y), and the local-only redistribution is also included as it can be
thought as a Dirac delta kernel function or an identity map K [u] = u. Vice versa, the
same dispersal mapping is used for the growth of the mistletoe as birds drop seeds
while flying a similar dispersal pattern. Similar to Liu et al. (2011), the maturation time
is included in the mistletoe growth equation as a time-delay and also a decay factor.
The matured mistletoes grow on trees, and they do not move spatially. Our model
derivation is described in detail in Sect. 2, where detailed biological explanations of
all the terms involved are provided and also the corresponding dimensionless model
is given.

In Sect. 3, the global existence, boundedness and uniqueness of solutions of the
proposed model without chemotactic effect is proved, hence the model is well-posed
in this case. In Sect. 4, the model is analyzed under the assumption that the dispersal
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of mistletoes by birds is local only. In this special case, the dispersal mapping is a
simple identity map. If the spreading of mistletoes by birds is nonlocal, a more general
dispersal mapping which is compact and strongly positive is used to study the model.
In Sect. 5, the existence and stability of nonconstant equilibrium solutions of the model
with general dispersal mapping is shown, which could explain the spatial heterogeneity
of mistletoes distribution. In Sect. 6, numerical simulations are conducted by taking
some specific forms of dispersal mappings which illustrate and reinforce the analytical
results. Concluding remarks are given in the final section.

2 Derivation of the model

Let M(t, x) denote the density of adult mistletoes and let B(t, x) denote the density
of birds under consideration at time t and location x ∈ �. Here �, the habitat for
mistletoes and birds, is a bounded connected open subset of R

n (n ≥ 1) with smooth
boundary ∂�. The domain� consists of uniformly grown trees where mistletoes attach
to.

First, we derive the equation for the density of adult mistletoes M(t, x). After a
mistletoe seed attaches to a branch, it takes several years for this seed to germinate,
grow and mature. The maturation duration of mistletoes can be considered by an age-
structured equation as follows. Let m(t, a, x) denote the density of mistletoes with age
a. Then a standard argument of population with age structure (Metz and Diekmann
1983) gives

∂m(t, a, x)

∂t
+ ∂m(t, a, x)

∂a
= −d(a, x)m(t, a, x), (1)

where d(a, x) is the age related death rate of mistletoes. Let τ denote the maturation
time of mistletoes, then the density of adult mistletoes at time t and location x is given
by

M(t, x) =
∞∫

τ

m(t, a, x)da.

Therefore,

∂M(t, x)

∂t
=

∞∫

τ

∂m(t, a, x)

∂t
da

=
∞∫

τ

(
−∂m(t, a, x)

∂a
− d(a, x)m(t, a, x)

)
da

= m(t, τ, x)− dm(x)M(t, x),
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Spatiotemporal mutualistic model of mistletoes and birds 1483

where we make the biological realistic assumption that m(t,∞, x) = 0 and the age
specific death rate is

d(a, x) =
{

di (x), a < τ,

dm(x), a > τ.

Only adult mistletoes can produce fruits and fruits are dispersed by birds to be attached
to a tree.

The relationship between mistletoes’ berries and birds belongs to a resource–
consumer interaction. Then the resource-dependent consumption rate of mistletoes
by birds at location x and time t is f (M(t, x))B(t, x), where f (M) is the predator
functional response. We assume that f satisfies a Holling type growth rate:

( f ) f ∈ C1(R+), f (0) = 0, f ′(M) > 0 for M ≥ 0, and limM→∞ f (M) = f∞.

Since the birds move in the habitat�, then the consumption of berries at a location
x may not directly result in growth of birds at the same spatial location, and for the
same reason, birds may drop berry seeds eaten at location x to a different location y.
Hence following Liu et al. (2011), the birth rate of mistletoes at x ∈ � is given by

m(t, 0, x) = α(x)K [ f (M(t, ·))B(t, ·)], (2)

where α(x) is the successful attachment rate of a mistletoe seed to a tree, and K is a
linear continuous mapping which maps a continuous function defined in� to another
continuous function defined in�. The mapping u(x) �→ K [u](x) can be interpreted as
a redistribution of a continuous density function u(x), which depicts the redistribution
of the berry seeds due to the bird dispersal. More often people have used an integral
representation

K [u](x) =
∫

�

k(x, y)u(y)dy,

and the kernel function k(x, y) describes the dispersal of mistletoes fruit by birds from
location y to location x . The following two cases are often considered:

(H1) k(x, y) = δx (y), where δx (y) is the Dirac delta function which satisfies

∞∫

−∞
δx (y)g(y)dy = g(x),

for any smooth function g with compact support; or
(H2) k(x, y) ∈ C(� × �,R+), k(y, x) = k(x, y) and k(x, y) ≥ 0 for (x, y) ∈

�×�.

Note that (H1) is K [u] = u, the identity mapping, and the dispersal is “local”, while
(H2) gives a nonlocal dispersal pattern. To accommodate both and more general
dispersal patterns, we use the formulation in (2). We assume that K : C(�) → C(�)
is a linear mapping satisfying
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(K 1) ||K [u]||C(�) ≤ A1||u||C(�) for some A1 > 0;

(K 2) If u(x) ≥ 0 for all x ∈ �, then for 0 ≤ C1 < C2, K [C1u](x) ≤ K [C2u](x)
for x ∈ �, and

K [u](x) ≤ A2 max

⎧⎨
⎩u(x),

∫

�

u(x)dx

⎫⎬
⎭ , (3)

for some A2 > 0.

Note that the boundedness assumption in (K 1) implies that K is continuous. The
assumption (K 2) implies that K is order-preserving and K is also bounded pointwisely.

Now to obtain an equation for the density of adult mistletoes, we can calculate
m(t, τ, x) by integrating (1) along the characteristic, and we have

m(t, τ, x) = α(x)e−di (x)τ K [ f (M(t − τ, ·))B(t − τ, ·)](x). (4)

Hence, the density of adult mistletoes population satisfies

∂M(t, x)

dt
= α(x)e−di (x)τ K [ f (M(t − τ, ·))B(t − τ, ·)](x)− dm(x)M(t, x). (5)

For the bird population, since birds have other food resource besides mistletoe
fruits, we assume that without mistletoes, the bird population has a logistic growth
rate g(B) which satisfies

(g) g ∈C1(R+), g(0)=g(K B)=0, g(B)>0 in (0, K B), and g(B)<0 for B>K B .

With the additional food source of the mistletoes, the bird population gets a further
increase, and the rate of the increase is proportional to mistletoe fruits eaten by birds.
Again this increase is described by K [ f (M(t, ·))B(t, ·)].

For the spatial movement of the birds, we first assume that birds disperse along
the habitat randomly, and the dispersal is modeled with Fickian diffusion. And in
addition to the random movement, we also assume that birds are attracted by trees
with more mistletoes, hence a chemotactic type advection is included in the equation.
In summary, we have the following equation to describe the bird population:

∂B(t, x)

∂t
= D�B(t, x)− ∇ (βB(t, x)∇M(t, x))+ g(B(t, x))

+ cK [ f (M(t, ·))B(t, ·)](x), (6)

where D is the diffusion coefficient of birds, β is the chemotactic coefficient, and c is
the conversion rate from mistletoes fruits birds eaten into birds population. Note that
here we assume that c ≥ 0 as the bird population may not increase by eating mistletoe
berries and in that case the birds serve as a pure carrier.
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We now equip the model (5) and (6) with the following initial data:

M(θ, x) = M0(θ, x) ≥ 0, for θ ∈ [−τ, 0], x ∈ �,
B(θ, x) = B0(θ, x) ≥ 0, for θ ∈ [−τ, 0], x ∈ �, (7)

where M0(θ, x) and B0(θ, x) are prescribed continuous functions with respect to
variables θ ∈ [−τ, 0] and x ∈ �. We also impose a no-flux boundary condition for
the bird equation:

[D∇B(t, x)− βB(t, x)∇M(t, x)] · n(x) = 0, for t > 0, x ∈ ∂�, (8)

where n(x) is the outer normal vector at x ∈ ∂�. This boundary condition shows that
the movement of birds is restricted in the habitat�, which is then a closed environment.
No boundary condition is imposed for the mistletoe population as the value of M(t, x)
is determined by the equation pointwisely. From numerical simulations in Sect. 6, the
boundary value of M(t, x) may depend on the dispersal mapping.

The resulting mathematical model is a reaction-diffusion-advection equation with
nonlocal growth for the bird population, coupled with a nonlocal delay differential
equation for mistletoes with no spatial movement. The contrasting mathematical prop-
erties of the two equations make the whole system a distinctive one which contains dif-
fusion, advection, time-delay and nonlocal effect. Mathematical modeling and analysis
of ecological systems involving both time delay and diffusion have been considered
by many investigators, see surveys by Gourley et al. (Gourley et al. 2004; Gourley
and Wu 2006). In particular, the nonlocality of the delay effect has been recognized
and appropriately incorporated into the spatiotemporal models. Our model here pro-
vides another example of ecological models with complex interaction and dispersal
behavior. Our mathematical result supports the heterogenous spatial distribution of
mistletoes found in the field studies (Aukema and Martinez del Rio 2002; Aukema
2004), and it also shows the effect of chemotaxis-induced directed dispersal to the
dynamics and spatial patterns.

3 Existence, bounds and uniqueness of solutions

In this section, we consider the existence of solutions to the proposed model equipped
with the initial condition (7) and the no-flux boundary condition for the bird Eq. (8).
Hence the whole system is given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂M

∂t
=αe−di τ K [ f (M(t−τ, ·))B(t−τ, ·)]−dm M x ∈�, t>0,

∂B

∂t
= D�B−∇ (βB∇M)+g(B)+cK [ f (M(t, ·))B(t, ·)], x ∈�, t>0,

M(t, x)= M0(t, x), B(t, x)= B0(t, x), x ∈�,−τ ≤ t ≤0,
[D∇B(t, x)−βB(t, x)∇M(t, x)] · n(x)=0, x ∈∂�,

(9)

where M = M(t, x) and B = B(t, x). Here, � is a bounded domain in R
n (n ≥ 1)

with smooth boundary ∂�; the mapping/functions K , f, g satisfy (K 1) − (K 2),
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( f ) and (g) respectively; the parameters satisfy D > 0, c ≥ 0, τ ≥ 0 and β ≥ 0; and

α(x) ≥ α0 > 0, di (x) ≥ d0
i > 0, dm(x) ≥ d0

m > 0, x ∈ �. (10)

We aim to prove the existence, boundedness, and uniqueness of globally defined
solutions to (9) under the assumption of β = 0 (without the chemotactic effect). For
β = 0, we rewrite (9) in the following form

⎛
⎜⎝
∂M

∂t
∂B

∂t

⎞
⎟⎠ = A

(
M
B

)
+ V

(
Mt

Bt

)
, (11)

where

A =
(

0 0
0 D�

)
,

and

V

(
Mt

Bt

)
=

(
αe−di τ K [ f (M(t − τ, ·))B(t − τ, ·)] − dm M
g(B)+ cK [ f (M(t, ·))B(t, ·)]

)
.

Here Mt and Bt , due to the time delay, are functions of θ and x and are defined by

Mt (θ, x) = M(t + θ, x), Bt (θ, x) = B(t + θ, x), t ∈ [−τ, 0], x ∈ �.

The proper phase space of (11) can be chosen as

X × Y := C([−τ, 0],C(�))× C([−τ, 0],C2,γ
n (�)),

where C2,γ
n (�) := {v ∈ C2,γ (�) : ∂v

∂n = 0} with γ ∈ (0, 1). Note here since β = 0,
then the boundary condition for the bird population becomes a Neumann one: ∇B = 0.
Let Qt : X × Y → X × Y be

Qt (φ)(x) = (Mt (θ, x, φ), Bt (θ, x, φ)), θ ∈ [−τ, 0], x ∈ �, φ ∈ X × Y, (12)

where (M(t, x, φ), B(t, x, φ)) is the solution of the system (11). Then Qt is locally
well defined and can be globally extended to t ∈ (0,∞) in view of the next theorem.

Theorem 3.1 Assume that β = 0, the mapping/functions K , f, g satisfy (K 1) −
(K 2), ( f ) and (g) respectively, the parameters satisfy D > 0, c ≥ 0, τ ≥ 0 and
β ≥ 0, and α(x), di (x), dm(x) satisfy (10). Then for any φ = (φ10(θ, x), φ20(θ, x)) ∈
X × Y , the system (9) has a unique mild solution (M(t, x), B(t, x)) with initial value
φ, where M(t, x) and B(t, x) are defined on [−τ,∞)×�. Moreover, if φ10(θ, x) ≥ 0
and φ20(θ, x) ≥ 0 on [−τ, 0] × �, then M(t, x) ≥ 0 and B(t, x) ≥ 0 for any
t > 0, x ∈ �.
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Proof The existence of a unique local mild solution of (11) is the consequence of
Theorem 1 in Martin and Smith (1990). The positivity of solutions with nonnegative
initial values follows from the quasi-monotonicity of V . We notice that from condition
(g), there exists g1 > 0 and K B > 0 such that

g(B) ≤ g1 B(K B − B), B ∈ R
+. (13)

Define B(t) = ∫
�

B(t, x)dx . From (11), (13), (K 2), Cauchy-Schwarz inequality
and the Neumann boundary condition, we obtain that

dB(t)
dt

≤
∫

�

⎡
⎣D�B + g1 B(K B − B)+

∫

�

c f∞K [B(t, ·)](x)dx

⎤
⎦ dx

≤ g1K B

∫

�

B(t, x)dx − g1

|�|

⎛
⎝

∫

�

B(t, x)dx

⎞
⎠

2

+cA2 f∞
∫

�

max

⎧⎨
⎩B(t, x),

∫

�

B(t, y)dy

⎫⎬
⎭ dx

≤ g1K BB − g1

|�|B
2 + cA2 f∞(1 + |�|)B

= B
(

cA2 f∞(1 + |�|)+ g1 K B − g1

|�|B
)
. (14)

From the inequality satisfied by B, we conclude that

lim sup
t→∞

B(t) = lim sup
t→∞

∫

�

B(t, x)dx ≤ (cA2 f∞(1 + |�|)+ g1 K B)|�|
g1

:= A3. (15)

This indicates that B(t, x) has an L1 a priori estimate A3. Next we follow a similar
approach as in Alikakos (1979a,b) to prove that B(t, x) is bounded in L∞(�) for all
t > 0.

Multiplying the second equation of (9) by Bs , (s > 0) and integrating over �, we
get that for t > 0,

1

s + 1

d

dt

∫

�

Bs+1dx ≤ D
∫

�

Bs�Bdx + g1K B

∫

�

Bs+1dx − g1

∫

�

Bs+2dx

+ c
∫

�

Bs K [ f (M(t, ·))B(t, ·)](x)dx

≤ −Ds
∫

�

Bs−1|∇B|2dx + g1 K B

∫

�

Bs+1dx − g1

∫

�

Bs+2dx
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+cA2 f∞
∫

�

Bs max

⎧⎨
⎩B(t, x),

∫

�

B(t, y)dy

⎫⎬
⎭ dx

≤ −Ds
∫

�

Bs−1|∇B|2dx + g1 K B

∫

�

Bs+1dx − g1

∫

�

Bs+2dx

+cA2 f∞

⎛
⎝
∫

�

Bs+1dx + B
∫

�

Bsdx

⎞
⎠ . (16)

We notice that
∫

�

Bs−1|∇B|2dx = 4

(s + 1)2

∫

�

|∇(B s+1
2 )|2dx . (17)

Denote the average of u over � by u. It follows by Poincaré’s inequality that there
exists a constant C1, depending only on �, such that

C1

∫

�

|∇(B s+1
2 )|2dx ≥

∫

�

(B
s+1

2 − B
s+1

2 )2dx

=
∫

�

Bs+1dx +
(

1

|�|2 − 2

|�|
)⎛
⎝
∫

�

B
s+1

2 dx

⎞
⎠

2

. (18)

Combining (15), (16), (17), and (18) and using Hölder inequality, we have, for a
small δ > 0, there exists T1 > 0 such that when t > T1,

1

s + 1

d

dt

∫

�

Bs+1dx

≤ − 4Ds

(s + 1)2

∫

�

|∇(B s+1
2 )|2dx + (g1 K B + cA2 f∞)

∫

�

Bs+1dx

−g1

∫

�

Bs+2dx + cA2(A3 + δ) f∞
∫

�

Bsdx

≤ − 4Ds

C1(s + 1)2

⎛
⎜⎝
∫

�

Bs+1dx +
(

1

|�|2 − 2

|�|
)⎛
⎝
∫

�

B
s+1

2 dx

⎞
⎠

2
⎞
⎟⎠

+(g1K B + cA2 f∞)
∫

�

Bs+1dx − g1

∫

�

Bs+2dx + cA2(A3 + δ) f∞
∫

�

Bs+1dx

≤ 4Ds

C1(s + 1)2

∫

�

Bs+1dx + (g1K B + cA2 f∞)
∫

�

Bs+1dx
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−g1

⎛
⎝ 1

|�| 1
s+2

∫

�

Bs+1dx

⎞
⎠

s+2
s+1

+ cA2(A3 + δ) f∞
∫

�

Bs+1dx

=
⎛
⎜⎝C2(s)− C3(s)

⎛
⎝
∫

�

Bs+1dx

⎞
⎠

1
s+1

⎞
⎟⎠

∫

�

Bs+1dx, (19)

where

C2(s) = 4Ds

C1(s + 1)2
+ (g1K B + cA2 f∞)+ cA2(A3 + δ) f∞,

C3(s) = g1|�|− 1
s+1 .

Therefore,

lim sup
t→∞

⎛
⎝ 1

|�|
∫

�

Bs+1dx

⎞
⎠

1
s+1

≤ C2(s)

g1
,

which implies that

lim sup
t→∞

‖B(t, ·)‖L∞(�) = lim sup
t→∞

lim
s→∞

⎛
⎝ 1

|�|
∫

�

Bs+1dx

⎞
⎠

1
s+1

≤ lim
s→∞

C2(s)

g1
= (g1 K B + cA2 f∞)+ cA2(A3 + δ) f∞

g1
. (20)

Finally, as the constant δ > 0 can be chosen arbitrarily, then the upper bound in (20)
can be chosen as

A4 := g1K B + cA2 f∞ + cA2 A3 f∞
g1

.

On the other hand, for t > T1, we have

∂M

∂t
= −dm M + αe−di τ K [ f (M(t − τ, ·))B(t − τ, ·)](x)
≤ −dm M + αe−di τ f∞ max {A3, A4} . (21)

Hence, there exists T2 > T1 such that M(t, x) <
αe−di τ f∞ max {A3, A4}

dm
for t >

T2, x ∈ �. By using Sobolev embedding theorem, we also obtain the bounededness
of B(t, x) in Y . The boundedness of M(t, x) and B(t, x) imply the global existence
of the solution, which completes the proof. ��
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Remark 3.2 1. The estimates in the proof of Theorem 3.1 provide explicit bounds
for the solution (M(t, x), B(t, x)):

lim sup
t→∞

M(t, x) ≤ αe−di τ f∞ max {A3, A4}
dm

,

lim sup
t→∞

B(t, x) ≤ g1 K B + cA2 f∞ + cA2 A3 f∞
g1

:= A4,

A3 := (cA2 f∞(1 + |�|)+ g1 K B)|�|
g1

.

(22)

Clearly the bounds in (22) are also satisfied by any equilibria of the system (9).
When the conversion rate c = 0, then A3 = K B |�| and A4 = K B , so in that case,
the bounds are basically provided by the carrying capacity.

2. The global-in-time existence of the solution to (9) with chemotactic effect (β > 0)
is not known, even for most simpler chemotaxis systems (Hillen and Painter 2009;
Horstmann and Winkler 2005).

Theorem 3.1 ensures the well-posedness and global existence of solutions of our
model (9) under general conditions ( f ), (g) and (K 1)–(K 2). For an in-depth analysis
of the model, we choose more specific f and g with more biological parameters,
which are derived from the concrete biological processes, see Liu et al. (2011) for
more details. From now on, we assume that

f (M) = aσ s M

1 + haσ s M
, g(B) = r B

(
1 − B

K B

)
. (23)

The functional form of f (M) is the classical Holling type II functional response
(Holling 1959a,b). Here s M denotes the total number of fruits produced by the adult
mistletoes; a is the encounter rate per fruit for a bird, σ is the consumption choice
coefficient of a bird, meaning whether the bird eats or not when it meets a fruit, and h
denotes the handling time the bird spends on one fruit. The bird population satisfies a
logistic growth model with the intrinsic growth rate r and the carrying capacity K B .

We also assume that α(x) = α, di (x) = di , and dm(x) = dm , and define dimen-
sionless variables:

M̄ = aσ s M, B̄ = B

N
, and t̄ = r t,

and new parameters

ᾱ = aσ sK Bα

rh
, w = 1

h
, d̄m = dm

r
, D̄ = D

r
, β̄ = βaσ s

r
, c̄ = c

rh
. (24)
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Then by dropping the bars for the variables and parameters in equations, the model
(9) can be rewritten as a new dimensionless model

⎧⎪⎪⎨
⎪⎪⎩

∂M

∂t
= αe−di τ K

[
M(t − τ, ·)

M(t − τ, ·)+ w
B(t − τ, ·)

]
− dm M(t, x),

∂B

∂t
= D�B − β∇(B∇M)+ B(1 − B)+ cK

[
M(t, ·)

M(t, ·)+ w
B(t, ·)

]
.

(25)

4 Analysis of the model with a Dirac delta kernel function

In this section, we will analyze the system (25), under the assumption (H1), that is, the
dispersal mapping K [u] = u is an identity map, or equivalently, the kernel function
k(x, y) is a Dirac delta function. Hence the dispersal of mistletoe fruits by birds is
local only, not over a longer range. Under this assumption, the system (25) takes the
form:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂M

∂t
= αe−di τ

M(t − τ, x)B(t − τ, x)

M(t − τ, x)+ w
− dm M, x ∈ �, t > 0,

∂B

∂t
= D�B − β∇(B∇M)+ B(1 − B)+ cM B

M + w
, x ∈ �, t > 0,

M(t, x) = M0(t, x), B(t, x) = B0(t, x), x ∈ �,−τ ≤ t ≤ 0,

[D∇B(t, x)− βB(t, x)∇M(t, x)] · n(x) = 0, x ∈ ∂�,

(26)

where M = M(t, x) and B = B(t, x). In Sect. 4.1, we classify all constant equilibria
of (26), and the stability of these equilibria without spatial structure and delay effect
is analyzed in Sect. 4.2. The effect of time delay (but still without spatial structure)
is considered in Sect. 4.3, and finally in Sect. 4.4, the stability of constant equilibria
with respect to the dynamics of (26) is analyzed.

4.1 Constant equilibria

The constant equilibria of the model (26) are determined by the following system:

⎧⎪⎨
⎪⎩
αe−di τ

M

M + w
B − dm M = 0,

B(1 − B)+ cM B

M + w
= 0.

(27)

Solving the above equations, we have the trivial equilibria E0 = (0, 0), E1 = (0, 1),
or the positive constant equilibria satisfying

B = 1 + cM

M + w
, (28)
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and

ξτ (M + w) = 1 + cM

M + w
, (29)

where ξτ = dmα
−1edi τ . Let P = M + w, then the Eq. (29) can be rewritten as

ξτ P2 − (1 + c)P + cw = 0. (30)

We can see that if the determinant of the above quadratic equation is nonnegative, i.e.,

� := (1 + c)2 − 4cwξτ ≥ 0, (31)

or

dm ≤ (1 + c)2α

4cwedi τ
, (32)

(30) has two real roots. Denote the solutions of (30) as

Pτ± = 1 + c ± √
�

2ξτ
.

So, if dm satisfies (32), the model has two constant equilibria Eτ± = (Mτ±, Bτ±)with

Mτ± = Pτ± − w and Bτ± = 1 + cMτ±
Mτ± + w

. These two equilibria are not necessarily

positive.
Notice that (29) can be rewritten as

dm = α(M + w + cM)

(M + w)2edi τ
:= h1(M).

Hence if we use dm as a bifurcation parameter, and we can define two bifurcation
values:

d∗
m,τ = (1 + c)2α

4cwedi τ
, and d̃m,τ = α

edi τw
. (33)

Here d∗
m,τ is a saddle-node bifurcation point, and d̃m,τ = h1(0) is a transcritical

bifurcation point where a curve of nontrivial solutions intersects with the line of trivial

solutions (dm,M, B) = (dm, 0, 1). It is easy to calculate that h′
1(0) = α(c − 1)

w2edi τ
, and

that h1(M) has at most one critical point at M̃ = w(c − 1)

1 + c
if c > 1. Define

Mτ± = 1 + c ± √
(1 + c)2 − 4cwξτ

2ξτ
− w, and Bτ± = 1 + c

Mτ±
Mτ± + w

. (34)
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Fig. 1 Bifurcation diagram of (27) for τ = 0 (dashed blue) and τ = 1 (solid red). Here w = 1, α =
1, c = 0.5. The horizontal axis is the parameter dm , and the vertical axis is M (left) and B (right)
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Fig. 2 Bifurcation diagram of (27) for τ = 0 (dashed blue) and τ = 1 (solid red). Here w = 1, α =
1, c = 2. The horizontal axis is the parameter dm , and the vertical axis is M (left) and B (right)

Hence we have the following two cases for the global bifurcation of the positive
constant equilibria:

1. If 0 ≤ c ≤ 1, then the transcritical bifurcation at (d̃m,τ , 0, 1) is subcritical for
the positive branch. For dm > d̃m,τ , there is no positive constant equilibria; for
dm ∈ (0, d̃m,τ ], (26) has a unique positive constant equilibrium given by Eτ+ =
(Mτ+, Bτ+). (see Fig. 1)

2. If c > 1, then the transcritical bifurcation at (d̃m,τ , 0, 1) is supercritical for the
positive branch, and a saddle-node bifurcation occurs at dm = d∗

m,τ > d̃m,τ . For
dm > d∗

m,τ , there is no positive constant equilibrium; for dm ∈ (d̃m,τ , d∗
m,τ ], there

are exactly two positive constant equilibria of the model (26), Eτ± = (Mτ±, Bτ±); for
dm ∈ (0, d̃m,τ ], there is only one positive constant equilibrium Eτ+ = (Mτ+, Bτ+).
(see Fig. 2)
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4.2 Linearized stability analysis I: without delay effect and without spatial structure

We first examine the stability of the constant equilibria in the dynamics without the
delay effect and without the spatial structure. That is, we aim to see the dynamics of
the model (26) with the delay τ = 0 and the spatial domain � = { one point }. Then
the system (26) effectively becomes a system of nonlinear ODEs:

⎧⎪⎪⎨
⎪⎪⎩

M ′ = αM B

M + w
− dm M,

B ′ = B(1 − B)+ cM B

M + w
.

(35)

The equilibria of (35) have been analyzed in the last subsection.
The Jacobian matrix of the system (35) at an equilibrium E∗ =(M∗, B∗) is given by

J (E∗) =

⎛
⎜⎜⎝

αwB∗

(M∗ + w)2
− dm

αM∗

M∗ + w

cwB∗

(M∗ + w)2
1 − 2B∗ + cM∗

M∗ + w

⎞
⎟⎟⎠ .

At (0, 0), we have

J ((0, 0)) =
(−dm 0

0 1

)
.

Therefore, the origin is always a saddle.
At (0, 1), we have

J ((0, 1)) =
⎛
⎝−dm + α

w
0

c

w
−1

⎞
⎠ .

We can see that if dm >
α

w
, then (0, 1) is stable; if dm <

α

w
, then (0, 1) is a saddle.

For the interior equilibrium (M0±, B0±), combining (28) and (29) for τ = 0, we have

J ((M0±, B0±)) =

⎛
⎜⎜⎜⎝

−dm M0±
M0± + w

αM0±
M0± + w

cwB0±
(M0± + w)2

−B0±

⎞
⎟⎟⎟⎠ .

The trace of the above Jacobian matrix is given by

Trace = −dm M0±
M0± + w

− B0± < 0,

if M0± > 0. This means that there is no Hopf bifurcation at the interior equilibrium.
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On the other hand, the determinant of the Jacobian matrix J ((M0±, B0±)) can be
calculated as

Det = B0±M0±
M0± + w

(
dm − cwα

(M0± + w)2

)

= B0±M0±
M0± + w

(
α

M0± + w
+ cM0±α
(M0± + w)2

− cwα

(M0± + w)2

)

= B0±M0±α
(M0± + w)3

(M0±(c + 1)+ w(1 − c)). (36)

In order to determine the sign of the determinant of the Jacobian at the interior
equilibrium (M0±, B0±), we consider the following two cases based on the existence of
the interior equilibria E0+ and E0−:

Case 1: If 0 ≤ c ≤ 1, the model (35) has a unique positive equilibrium E0+ for
dm ∈ (0, d̃m,0) and there is no positive equilibrium if dm > d̃m,0.
In this case, for the interior equilibrium E0+, the determinant is given by

Det = B0+M0+α
(M0+ + w)3

(M0+(c + 1)+ w(1 − c)) > 0.

Therefore, in this case the interior equilibrium E0+ is locally asymptotically
stable.

Case 2: If c > 1, for dm > d∗
m,0, there is no positive equilibrium; for dm ∈

(d̃m,0, d∗
m,0), there are exactly two positive equilibria of the model (35),

E0± = (M0±, B0±); for dm ∈ (0, d̃m,0], there is only one positive equilibrium
E0+ = (M0+, B0+).
In this case,

Det = B0+M0+α
(M0+ + w)3

(M0+(c + 1)+ w(1 − c)) > 0,

and

Det = B0−M0−α
(M0− + w)3

(M0−(c + 1)+ w(1 − c)) < 0.

since M0+ > M̃ = w(c − 1)

1 + c
and M0− < M̃ = w(c − 1)

1 + c
.

Based on the above analysis, we have the following theorem which summarizes the
local stability of the equilibria of the system (35).

Theorem 4.1 Recall the bifurcation points d̃m,τ and d∗
m,τ defined as in (33) (with

τ = 0). For the ODE system (35), the trivial equilibrium E0 = (0, 0) is a saddle point
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for all parameters α,w, dm > 0 and c ≥ 0; and the boundary equilibrium E1 = (0, 1)
is a saddle point if dm < d̃m,0, and E1 is locally asymptotically stable if dm > d̃m,0.
For the interior equilibria E0± = (M0±, B0±) defined in (34), there are two cases:

1. If c > 1, for dm > d∗
m,0, there is no positive equilibrium; for dm ∈ (d̃m,0, d∗

m,0),

there are two positive equilibria E0± of the model (35), E0+ is locally asymptotically
stable and E0− is a saddle point; for dm ∈ (0, d̃m,0], there is only one positive
equilibrium E0+ which is locally asymptotically stable.

2. If 0 ≤ c ≤ 1, then for dm > d̃m,0, there is no positive equilibrium; for dm ∈
(0, d̃m,0] the model (35) has only one positive equilibrium E0+, which is locally
asymptotically stable.

We remark that (35) is a cooperative system, and all solutions of (35) are bounded,
hence when there is only one locally stable equilibrium point, it is indeed globally
asymptotically stable from Poincáre–Bendixon Theorem as there is no periodic orbits
from the phase portrait; on the other hand, when there are two locally stable equilibria
E0+ and E1 when dm ∈ (d̃m,0, d∗

m,0), then there is a curve (the stable manifold of E0−)
in R

2+ separating the basins of attraction of E0+ and E1. The latter result is a special
case of a result of Jiang et al. (2004), see also the survey article of Jiang and Shi (2010).
Therefore the global dynamics of the system (35) is completely determined from the
bifurcation and local stability result in Theorem 4.1.

For the dynamics of ODE system (35), one can define a basic reproduction number

R0
0 = α

wdm
.

Even without eating mistletoe fruits, the bird population grows at a logistic rate.
Hence when R0

0 ≤ 1, the no-mistletoe equilibrium E1 is locally asymptotically stable,
and when R0

0 > 1, a coexistence equilibrium E0+ is locally (indeed globally) asymp-
totically stable. For small mistletoe-to-bird conversion rate c (0 ≤ c ≤ 1), the basic
reproduction number R0

0 completely determines the asymptotical dynamics, as the
global attractor changes from E1 to E0+ as R0

0 crosses the threshold value 1. For larger
values of c (c > 1), there is a bistable regime for R0

0 < 1 for which E1 and E0+ both
exist and are locally asymptotically stable.

Hence for the ODE system (35), the parameters R0
0 and c completely determines the

long time dynamics of the mistletoe and bird interaction. Note that R0
0 is determined

by the mistletoe fruit hanging rate α, the bird handling time h, and the mistletoe death
rate dm .

4.3 Linearized stability analysis II: effect of delay in non-spatial model

Secondly we examine the stability of constant equilibria in the equation with delay
but without the spatial structure (again assuming that the spatial domain � is the set
of a single point). Then the system (26) is now
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Fig. 3 Phase portraits of model (35) for dm in different ranges. In a, dm < d̃m,0, there is one stable interior
equilibrium E+, and E0 and E1 are unstable; b, d̃m,0 < dm < d∗

m,0, we have bistable dynamics, E1

and E+ are locally asymptotically stable and E0 and E− are unstable; c, dm > d∗
m,0, there is no interior

equilibrium, E0 is unstable and E1 is globally asymptotically stable. Parameter used:w = 1, α = 1, c = 2,
and a dm = 0.8, b dm = 1.1 and c dm = 1.4

⎧⎪⎪⎨
⎪⎪⎩

M
′ = αe−di τ M(t − τ)B(t − τ)

M(t − τ)+ w
− dm M,

B
′ = B(1 − B)+ cM B

M + w
,

(37)

where τ > 0 is the time delay. It is easy to see that the equilibria E0 = (0, 0) and
Eτ− = (Mτ−, Bτ−) are all unstable with respect to the dynamics of (37) as they are
unstable with respect to (35). The characteristic equation of the linearization of (37)
at E1 = (0, 1) is (Fig. 3)

det

⎛
⎜⎝
αe−di τ

w
e−λτ − dm − λ 0

c

w
−1 − λ

⎞
⎟⎠ = 0.

So the stability of E1 is determined by the roots of

H(λ) := λ+ dm − αe−di τ

w
e−λτ = 0. (38)
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It is straightforward that (38) always has a positive root if dm < d̃m,τ since H(0) < 0
and H(∞) > 0, and exact one zero root with all the other roots having negative real
parts if dm = d̃m,τ . Suppose ±iν, (ν > 0), are a pair of pure imaginary roots of (38),
we have

dm − d̃m,τ cos ντ = 0, and ν + d̃m,τ sin ντ = 0.

Then d2
m + ν2 = d̃2

m,τ , which implies no roots cross the imaginary axis when dm >

d̃m,τ . Therefore, for (37), E1 is unstable if dm < d̃m,τ and is locally asymptotically
stable if dm > d̃m,τ for any τ > 0.

It remains to consider the stability of Eτ+ = (Mτ+, Bτ+). Here we assume that τ > 0
is fixed. The linearization of system (37) at the equilibrium Eτ+ has solutions with
form exp(λt) whenever λ satisfies

det

⎛
⎜⎜⎝

wdm

Mτ+ + w
e−λτ − dm − λ

αe−di τ Mτ+
Mτ+ + w

e−λτ

cwBτ+
(Mτ+ + w)2

−Bτ+ − λ

⎞
⎟⎟⎠ = 0.

So λ is the root of G(·, τ ) = 0 where

G(λ, τ ) :=
(

wdm

Mτ++w e−λτ−dm −λ
) (−Bτ+−λ)

−
(
αe−di τ Mτ+

Mτ++w

)(
cwBτ+

(Mτ++w)2
)

e−λτ .

Since the system is cooperative, then the stability of Eτ+ is determined by its stability
module λs(τ ) defined as

λs(τ ) = max{Re(λ) : G(λ, τ ) = 0}.

Eτ+ is stable if λs(τ ) < 0 and unstable otherwise. From Theorem 5.1 of Smith (1995),
p. 92 or Theorem 3.2 of Wu (1992), λs(τ ) is a root of G(·, τ ) = 0 of algebraic
multiplicity 1, and for any other root λ of G(·, τ ) = 0 then Re(λ) < λs(τ ).

Notice that for any fixed τ0 > 0,

G(0, τ0) = e−di τ0
Bτ0+ Mτ0+ α
(Mτ0+ + w)3

(Mτ0+ (c + 1)+ w(1 − c)),

which is the determinant of the Jacobian matrix evaluated at Eτ+ when the delay is zero.
By the results in Sect. 4.2, we have G(0, τ0) > 0. Since λs(τ ) is real-valued, hence we

can restrict the definition of F to R × R
+. If we can prove that

∂G(λ, τ0)

∂λ
> 0

for all positive λ, we gain that all the real roots of G(λ, τ0) = 0 are negative.

123



Spatiotemporal mutualistic model of mistletoes and birds 1499

By straightforward calculation, we have

∂G(λ, τ0)

∂λ
= (λ+ Bτ0+ )(1 + wτ0dme−λτ0

Mτ0+ + w
)+ λ+ dm − wdme−λτ0

Mτ0+ + w

+
(
αe−di τ0 Mτ0+

Mτ0+ + w

)(
cwBτ0+

(Mτ0+ + w)2

)
e−λτ0 > 0,

for all positive λ. Therefore we have
∂G(λ, τ0)

∂λ
> 0 for all positive λ, which implies

that λs(τ0)must be negative. Hence we prove that the equilibrium Eτ+ is locally stable
for any delay τ > 0.

We summarize the dynamical behavior of the system (37) as follows, which is
similar to the case of τ = 0 as in Theorem 4.1:

Theorem 4.2 Recall the bifurcation points d̃m,τ and d∗
m,τ defined as in (33). For the

system (37), the trivial equilibrium E0 = (0, 0) is a saddle point for all parameters
α, c, w, dm > 0; and the boundary equilibrium E1 = (0, 1) is a saddle point if
dm < d̃m,τ , and E1 is locally asymptotically stable if dm > d̃m,τ . For the interior
equilibria Eτ± = (Mτ±, Bτ±) defined in (34), there are two cases:

1. If c > 1, for dm > d∗
m,τ , there is no positive equilibrium; for dm ∈ (d̃m,τ , d∗

m,τ ),
there are two positive equilibria E0± of the model (37), Eτ+ is locally asymptotically
stable and Eτ− is a saddle point; for dm ∈ (0, d̃m,τ ], there is only one positive
equilibrium Eτ+ which is locally asymptotically stable.

2. If 0 ≤ c ≤ 1, then for dm > d̃m,τ , there is no positive equilibrium; for dm ∈
(0, d̃m,τ ] the model (37) has only one positive equilibrium Eτ+, which is locally
asymptotically stable.

Comparing the dynamics of delayed system (37) with the one of ODE system (35),
we notice that the time-delay does not cause any qualitative change to the bifurcation
diagram (see Figs. 1, 2). The shape of the equilibrium bifurcation diagrams for τ > 0
and τ = 0 are same, but there is a shift of the bifurcation points as

d∗
m,τ = e−di τd∗

m,0, and d̃m,τ = e−di τ d̃m,0.

We can also observe that the basic reproduction number in the time-delayed case
can be defined as

Rτ0 = α

wdmedi τ
= e−di τ R0

0 .

Hence the time-delay decreases the basic reproduction number of the system, and
the growth of the mistletoe is more difficult with the delay.

The impact of the time-delay to the dynamics can be clearly observed from time
plots with τ = 0 and τ = 1 in Figs. 4, 5, 6, 7, 8: (all plots have same initial conditions
for τ = 0 and τ = 1)
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Fig. 4 Time plots of system (35) (dashed blue) and (37) (solid red) with w = 1, α = 1, c = 2, dm =
0.1, di = 0.1 and τ = 1. Both system have a unique positive equilibrium E+. Time delay could reduce the
final population of mistletoes and birds without affecting the stability of E+
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Fig. 5 Time plots of system (35) (dashed blue) and (37) (solid red) with w = 1, α = 1, c = 2, dm =
1.01, di = 0.1 and τ = 1. Both systems have two positive equilibria E+ and E−. Initial values close to E1
produce solutions that tends to E1 for both systems, but the solution of the time-delay system converges to
E1 much faster
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Fig. 6 Time plots of system (35) (dashed blue) and (37) (solid red) with w = 1, α = 1, c = 2, dm =
1.01, di = 0.1 and τ = 1. Both systems have two positive equilibria E+ and E−. Initial values close to
E+ produce solutions that tends to E+ for both systems, but the time-delay slows down the convergence
rate
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Fig. 7 Time plots of system (35) (dashed blue) and (37) (solid red) with w = 1, α = 1, c = 2, dm =
0.92, di = 0.1 and τ = 1. Here E0+ is the globally stable positive equilibrium for (35), while the dynamics
of (37) is bistable
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Fig. 8 Time plots of system (35) (dashed blue) and (37) (solid red) with w = 1, α = 1, c = 2, dm =
1.05, di = 0.1 and τ = 1. Here the dynamics of (35) is bistable stable, while for (37) E1 is globally
asymptotically stable

1. The stable positive equilibrium Eτ+ for the time-delayed system is smaller than the
one E0+ without delay, and it takes longer time to converge to Eτ+ with the same
initial values (see Figs. 4, 6);

2. When solutions converge to the mistletoe-extinction equilibrium E1, the conver-
gence for the time-delayed system is faster than the one without delay (see Fig. 5);

3. It is possible that for some dm value, the time-delayed system and no-delay sys-
tem are both bistable (see Figs. 5, 6) as the bistability intervals (d̃m,τ , d∗

m,τ ) and
(d̃m,0, d∗

m,0) have overlap part for small τ > 0. However for dm value not in this
overlap part, the dynamical behavior for certain initial values can be drastically
different. For example, when the dynamics of delayed system is bistable and the
one of no-delay system is monostable with E0+, then a small initial value can lead
to extinction in delayed system while the same initial value can eventually stabilize
at positive equilibrium (see Fig. 7). On the other hand, the dynamics of no-delay
system can be bistable and the one for delayed system is monostable with E1, then
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a large initial value can lead to persistence for the no-delay system but the same
initial value still leads to extinction for the delayed system (see Fig. 8).

4.4 Linearized stability analysis III: spatial model

Lastly we study the spatial model (26) and examine the stability of the constant equi-
libria in the dynamics with both diffusion and delay effect but not the nonlocal effect.
We consider boundary value problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂M

∂t
=αe−di τ

M(t−τ, x)

M(t−τ, x)+w B(t − τ, x)−dm M, x ∈�, t>0,

∂B

∂t
= D�B−β∇(B∇M)+B(1−B)+ cM B

M+w, x ∈�, t>0,

M(t, x)= M0(t, x), B(0, x)= B0(x), x ∈�,−τ ≤ t ≤0,

[D∇B(t, x)−βB(t, x)∇M(t, x)] · n(x)=0, x ∈∂�.

(39)

It is obvious that the existence result on the equilibria in Theorem 4.2 is also
applicable to (39). Let (M∗, B∗) be any constant equilibrium of (39). The linearization
of (39) at (M∗, B∗) is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂�

∂t
= αe−di τwB∗
(M∗ + w)2

�τ−dm�+ αe−di τ M∗
M∗+w �τ , x ∈�, t>0,

∂�

∂t
= D��−βB∗��+ cwB∗

(M∗ + w)2
�+(1 − 2B∗+ cM∗

M∗+w)�, x ∈�, t>0,

[D∇�−βB∗∇�] · n =0, x ∈∂�, t>0,

(40)

where�τ = �(t − τ, x) and �τ = �(t − τ, x). Substituting �(t, x) = eλtφ(x) and
�(t, x) = eλtψ(x) into (40) gives

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λφ= αe−di τwB∗

(M∗+w)2 e−λτ φ−dmφ+ αe−di τ M∗

M∗+w e−λτψ, x ∈�,
λψ= D�ψ − βB∗�φ+ cwB∗

(M∗+w)2 φ+(1−2B∗+ cM∗

M∗ + w
)ψ, x ∈ �,

[D∇ψ−βB∗∇φ] · n =0, x ∈∂�.

(41)

From the first equation of (41), φ and ψ are linearly dependent. Hence both of φ
and ψ satisfy the homogeneous Neumann boundary condition, and from the second
equation of (41), (φ,ψ) = (α, β)y for some eigenfunction y of −� on � with
Neumann boundary condition. Let {μn} be the sequence of eigenvalues of −� on �
with Neumann boundary condition, such that 0 = μ0 < μ1 ≤ μ2 ≤ · · · , and let yn(x)
be the corresponding eigenfunctions, n = 0, 1, . . .. Then by using Fourier expansion,
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there exist n ∈ N ∪ {0}, and αn, βn ∈ R such that (φ,ψ) = (αn, βn)yn , which leads
to the following transcendental characteristic equation

det

⎛
⎜⎜⎝
αe−di τwB∗

(M∗ + w)2
e−λτ − dm − λ

αe−di τ M∗

M∗ + w
e−λτ

cwB∗

(M∗ + w)2
+ βB∗μn 1 − 2B∗ + cM∗

M∗ + w
− Dμn − λ

⎞
⎟⎟⎠ = 0. (42)

When (M∗, B∗) = (0, 0), (42) becomes

(λ+ dm)(λ+ Dμn − 1) = 0,

which implies (0, 0) is always unstable. When (M∗, B∗) = (0, 1), (42) turns into

(
λ+ dm − αe−di τ

w
e−λτ

)
(λ+ Dμn + 1) = 0,

of which all the roots have negative real parts if dm > d̃m,τ , and it has one positive
root if dm < d̃m,τ . At (Mτ+, Bτ+), (42) is equivalent to

Gn(λ, τ ) := λ2 + Tn(τ )λ+ Un(τ )− (Vn(τ )λ+ Wn(τ ))e
−λτ = 0, (43)

where

Tn(τ ) = dm + Bτ+ + Dμn, Un(τ ) = dm(B
τ+ + Dμn), Vn(τ ) = dmw

Mτ+ + w
,

Wn(τ ) = (Bτ+ + Dμn)
dmw

Mτ+ + w
+ dm Mτ+

(
cw

(Mτ+ + w)2
+ μnβ

)
.

For any fixed τ0 > 0, if β <
D

M0+ + w
, we have

Gn(0, τ0)

=Un(τ0)− Wn(τ0)

=dm Bτ0+ − cwdm Mτ0+
(Mτ0+ +w)2 − dmwBτ0+

Mτ0+ + w
+dmμn

(
D − βMτ0+ − Dw

Mτ0+ +w
)

= dm Mτ0+
(Mτ0+ +w)2 [(c + 1)Mτ0+ +(1 − c)w]+dmμn Mτ0+

(
D

Mτ0+ +w−β
)
>0, (44)

for n = 0, 1, . . ., since M0+ > Mτ0+ and Mτ0+ > M̃ = (c − 1)w

1 + c
if c > 1. Also

∂Gn(λ, τ0)

∂λ
=2λ+Tn(τ0)−Vn(τ0)e

−λτ0 +τ0(Vn(τ0)λ+Wn(τ0))e
−λτ0 >0, (45)
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for all positive λ. Combining (44) and (45), we conclude that the stability module
λn

s (τ ) = max{Re(λ) : Gn(λ, τ ) = 0}, which is a root of Gn(λ, τ ) = 0 of algebraic
multiplicity one from Theorem 5.1 in Smith (1995), ia negative for n = 0, 1, . . ..
Similar arguments as the above ones indicate that the constant equilibrium (Mτ−, Bτ−),
whenever exists, is unstable since the corresponding characteristic equation has a
positive root for all τ ≥ 0 when n = 0. Summarizing the above analysis, we have the
following conclusion.

Theorem 4.3 Recall the bifurcation points d̃m,τ and d∗
m,τ defined as in (33). For the

system (39), the trivial equilibrium E0 = (0, 0) is unstable for all parameters; and
the boundary equilibrium E1 = (0, 1) is unstable if dm < d̃m,τ , and is locally asymp-
totically stable if dm > d̃m,τ . The existence of interior equilibria Eτ± = (Mτ±, Bτ±)
defined in (34) follows from Theorem 4.2. Furthermore, Eτ− is unstable and Eτ+ is

locally asymptotically stable if β <
D

M0+ + w
.

Comparing the results in Theorem 4.3 with the ones in Theorem 4.2, the stability
of constant equilibrium Eτ+ still holds for system (39) with the additional effect of
diffusion but not chemotaxis (β = 0). However with a large chemotactic coefficient
β > 0, Eτ+ may lose the stability.

5 Bifurcation analysis of the model with chemotactic and nonlocal effect

If the dispersal mapping is not an identity map as in Sect. 4, then in general the
system (25) does not possess constant equilibria besides E0 = (0, 0) and E1 = (1, 0).
In this section we consider the existence of non-constant equilibria of (25) under
more general assumptions on the dispersal operator K [u]. For this general case, the
existence of solutions to the dynamical Eq. (9) when β = 0 has been shown in
Sect. 3, and indeed numerical simulations for any β ≥ 0 (see Sect. 6) suggest that
most dynamical solutions converge to equilibrium solutions. Hence the existence and
profile of non-constant equilibria is critical for the understanding of the dynamics.

For the results in this section, besides (K 1) and (K 2), we also assume that the
dispersal operator K : C(�) → C(�) satisfies

(K 3) K : C(�) → C(�) is compact, and K is strongly positive, that is, for any
u ∈ C(�) and u ≥ 0, K [u](x) > 0 for x ∈ �.

We notice that the identity mapping K [u] = u considered in Sect. 4 does not satisfy
(K 3), but the integral operator defined in (H2) satisfies (K 3) if the kernel function
k(x, y) > 0 for (x, y) ∈ �×�. The main consequence of the assumption (K 3) is the
renown Krein–Rutman Theorem which asserts the existence of a principal eigenvalue
with a positive eigenvector.

In this section, we conduct a bifurcation analysis of the non-constant equilibria of
the model (25) with β ≥ 0. That is
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αe−di τ K

[
M B

M + w

]
(x)− dm M(x) = 0, x ∈ �,

D�B(x)− β∇(B(x)∇M(x))+ B(x)(1 − B(x))+ cK

[
M B

M + w

]
(x) = 0, x ∈ �,

[D∇ B(x)− βB(x)∇M(x)] · n(x) = 0, x ∈ ∂�.

(46)

Using dm as a bifurcation parameter, the equilibrium problem (46) can be written in
the following abstract form:

F(dm,M, B) = 0, (47)

where F : R × W 2,p(�)× W 2,p(�) → W 2,p(�)× L p(�)× W 1,p(∂�) is defined
by

F(dm,M, B) =

⎛
⎜⎜⎜⎜⎝

αe−di τ K

[
M B

M + w

]
− dm M

D�B − β∇(B∇M)+ B(1 − B)+ cK

[
M B

M + w

]

(D∇B − βB∇M) · n

⎞
⎟⎟⎟⎟⎠ . (48)

Here p > n (where n is the spatial dimension) and W k,p(�),W k,p(∂�) are the
Sobolev spaces. Recall that under the assumption p > n,W 2,p(�) is compactly
embedded in C(�). Solutions of (47) are weak solutions of the equilibrium equation
of (9). From the smoothness of nonlinearities in the system (9), these weak solutions in
the Sobolev spaces are indeed classical solutions in C(�)×C2,γ (�) from the elliptic
estimates.

Suppose that (M̂, B̂) is an equilibrium of (46). Then the stability of this equilibrium
is determined by the following P-eigenvalue problem (see Crandall and Rabinowitz
1973):

F(M,B)(dm, M̂, B̂)[(φ,ψ)] = λP[(φ,ψ)],

where the linear mapping P : W 2,p(�)×W 2,p(�) → W 2,p(�)×L p(�)×W 1,p(∂�)

is defined by P[(φ,ψ)] = (φ,ψ, 0). Again the model (46) has two trivial solutions
E0 = (0, 0) and E1 = (0, 1) for any dm > 0. We consider the bifurcation of non-
trivial solutions to (47) from the line of trivial solutions {(dm, 0, 1) : dm > 0}. The
linearization of F at the boundary equilibrium E1 = (0, 1) is

F(M,B)(dm, 0, 1)[φ,ψ] =

⎛
⎜⎜⎜⎝
αe−di τ

w
K [φ] − dmφ

D�ψ − ψ + c

w
K [φ] − β�φ

(D∇ψ − β∇φ) · n

⎞
⎟⎟⎟⎠ .
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Therefore, 0 is a simple eigenvalue of F(M,B)(dm, 0, 1) if and only if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K [φ] = dmw

αe−di τ
φ, x ∈ �,

−D�ψ + ψ = c

w
K [φ] − β�φ, x ∈ �,

∂ψ

∂n
= β

D

∂φ

∂n
, x ∈ ∂�.

(49)

has a unique nonzero solution up to a constant multiple. From the compactness
assumption in (K 3), it follows from well-known results for compact operators,
K : C(�) → C(�) possesses a sequence of eigenvalues {λi } such that λi ∈ R,

0 ≤ · · · ≤ |λ3| ≤ |λ2| ≤ |λ1|, (50)

and the only possible limit point of {λi } is zero. Moreover, since K is strongly pos-
itive, then from Krein–Rutman theorem (see Chang 2005), we have ftλ1 > 0 with
its corresponding function φ1(x) > 0. In the following we normalize φ1 so that
maxx∈� φ1(x) = 1, and we also assume that

(K 4) φ1 ∈ W 2,p(�) for any p > n.

Again we remark that for the integral operators satisfying (H2), the assumption (K 4)
can be easily verified.

Now we define a new bifurcation point

d̃k
m,τ := d̃m,τ λ1 = α

w
e−di τ λ1, (51)

and let ψ1 be the unique solution of

⎧⎪⎨
⎪⎩

−D�ψ + ψ = cd̃k
m,τ

αe−di τ
φ1 − β�φ1, x ∈ �,

∂ψ

∂n
= β

D

∂φ1

∂n
, x ∈ ∂�.

(52)

Then when dm = d̃k
m,τ , (49) is solvable thus a bifurcation occurs at dm = d̃k

m,τ . Indeed
by using the celebrated bifurcation from simple eigenvalue theorem in Crandall and
Rabinowitz (1971) and also the global bifurcation theory in Rabinowitz (1971), we
arrive at the following bifurcation picture:

Theorem 5.1 Assume that β ≥ 0, and the dispersal mapping K satisfies (K1)–(K4).
Then there is a smooth curve �k

τ of positive equilibrium solutions of (9) bifurcating
from the line of trivial solutions {(dm, 0, 1) : dm > 0} at dm = d̃k

m,τ , and �k
τ is

contained in a global branch Ck
τ of positive equilibrium solutions of (9). Moreover

1. Near (dm,M, B) = (d̃k
m,τ , 0, 1), �k

τ = {(dm(s),M(s, x), B(s, x)) : s ∈ (0, ε)},
where M(s, x) = sφ1(x) + s�1(s, x), B(s, x) = 1 + sψ1(x) + s�2(s, x), φ1
is the principal eigenfunction of K , and ψ1 is defined as in (52); dm(s),�1(s, ·)
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and �2(s, ·) are smooth functions defined for s ∈ (0, ε) such that �1(0, ·) =
�2(0, ·) = 0, dm(0) = d̃k

m,τ , and

d ′
m(0) = αe−di τ

∫
�

K [−φ2
1(·)+ wφ1(·)ψ1(·)](x)φ1(x)dx

w2
∫
�
φ2

1(x)dx
. (53)

2. For s ∈ (0, ε), the bifurcating solution (dm(s),M(s, ·), B(s, ·)) is locally asymp-
totically stable if d ′

m(0) < 0, and it is unstable if d ′
m(0) > 0.

3. Additioanlly assume that β = 0. Let projdm
Ck
τ be the projection of the global

branch Ck
τ onto dm-axis. Then projdm

Ck
τ = (0, d∗,k

m,τ ], where d∗,k
m,τ satisfies

α

w
e−di τ λ1 ≡ d̃k

m,τ ≤ d∗,k
m,τ ≤ αe−di τ

w
A2 A4 max{1, |�|}, (54)

where A2 and A4 are defined in (K 2) and (20).

Proof Here for a linear operator L , we use N (L) as the null space of L and R(L)
as the range space of L . It has been shown that (φ1, ψ1) is the unique (normalized)
solution to (49) when dm = d̃k

m,τ . Then we have (φ1, ψ1) ∈ N (F(M,B)(d̃k
m,τ , 0, 1))

and dim N (F(M,B)(d̃k
m,τ , 0, 1)) = 1. Suppose that (h, g, q) ∈ R(F(M,B)(d̃k

m,τ , 0, 1)),
i.e. there exists (ϕ, θ) ∈ W 2,p(�)× W 2,p(�) such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K [ϕ] − d̃k
m,τw

αe−di τ
ϕ = h, x ∈ �,

D�θ − θ + c

w
K [ϕ] − β�ϕ = g, x ∈ �,

D
∂θ

∂n
− β

∂ϕ

∂n
= q, x ∈ ∂�.

(55)

The first equation of (55) is solvable if and only if 〈h, φ1〉 = 0, and given any ϕ, g
and q, the second and third equations in (55) are always uniquely solvable. Hence
R(F(M,B)(d̃k

m,τ , 0, 1)) = span{(φ1, 0, 0)}⊥. Finally since Fdm (M,B)(d̃
k
m,τ , 0, 1)[φ1,

ψ1] = (−φ1, 0, 0), and 〈−φ1, φ1〉 �= 0, we know that

Fdm(M,B)(d̃
k
m,τ , 0, 1)[φ1, ψ1] �∈ R(F(M,B)(d̃

k
m,τ , 0, 1)).

Now by using the local bifurcation theorem in Crandall and Rabinowitz (1971), there
exists an open interval I = (−ε, ε) and C1 functions

dm(s) : I → R, and �(s) = (�1(s, ·),�2(s, ·)) : I → Z ,

where Z is any complement of span{(φ1, ψ1)}, such that dm(0) = d̃k
m,τ , �(0) =

(0, 0), and if (M(s), B(s)) = (0, 1) + s(φ1, ψ1) + s�(s) for s ∈ I , then
F(dm(s),M(s), B(s)) = 0. Hence a curve of nontrivial solutions {(dm(s),M(s),
B(s)) : |s| < ε} of (47) emerges from the bifurcation point (d̃k

m,τ , 0, 1). Moreover, let
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l be the linear functional satisfying N (l) = R(F(M,B)(d̃k
m,τ , 0, 1)), then from Crandall

and Rabinowitz (1971), we have

d ′
m(0) = −〈l, F(M,B)(M,B)(d̃k

m,τ , 0, 1)[(φ1, ψ1)(φ1, ψ1)]〉
2〈l, Fdm (M,B)(d̃

k
m,τ , 0, 1)[(φ1, ψ1)]〉

=
αe−di τ

∫
�

K
[
− 2
w2 φ

2
1(·)+ 2

w
φ1(·)ψ1(·)

]
(x)φ1(x)dx

2
∫
�
φ2

1(x)dx

= αe−di τ
∫
�

K [−φ2
1(·)+ wφ1(·)ψ1(·)](x)φ1(x)dx

w2
∫
�
φ2

1(x)dx
(56)

By using Corollary 1.13 in Crandall and Rabinowitz (1973), we know that there
exist continuously differentiable functions γ : (d̃k

m,τ − ε, d̃k
m,τ + ε) → R, μ : I →

R, u : (d̃k
m,τ − ε, d̃k

m,τ + ε) → L p(�)× L p(�) and v : I → L p(�)× L p(�) such
that

F(M,B)(dm, 0, 1)[u(dm)] = γ (dm)P[u(dm)],
F(M,B)(dm(s),M(s), B(s))[v(s)] = μ(s)P[v(s)], (57)

and

γ (d̃k
m,τ ) = μ(0) = 0, u(d̃k

m,τ ) = v(0) = (φ1, ψ1).

The stability of bifurcating equilibrium solutions is determined by the sign of μ(s).
It is straightforward that the P-eigenvalues of F(M,B) at E1 = (0, 1), denoted by
γ j , j = 1, 2, · · · , are given by

γ j = αe−di τ

w
λ j − dm <

αe−di τ

w
λ1 − dm ≤ 0,

which implies that E1 = (0, 1) is locally asymptotically stable if dm > d̃k
m,τ . On the

other hand

γ1 = αe−di τ

w
λ1 − dm > 0,

when 0 < dm < d̃k
m,τ , then we know that E1 = (0, 1) is unstable if 0 < dm < d̃k

m,τ .
Since u(d̃k

m,τ ) = v(0) is positive, then (M(s), B(s)) is locally asymptotically stable
if μ(s) < 0 and it is unstable if μ(s) > 0. From the first equation of (57), we
have

αe−di τ

w
K [u1(dm)] − dmu1(dm) = γ (dm)u1(dm),
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where u(dm) = (u1(dm), u2(dm)), which implies

λ1αe−di τ = w(dm + γ (dm)). (58)

By differentiating (58) in dm , we obtain that γ ′(d̃k
m,τ ) < 0. Then by using Theorem

1.16 in Crandall and Rabinowitz (1973), we know that the functions μ(s) and sd ′
m(s)

have the same sign near s = 0 whenever μ(s) �= 0. If d ′
m(0) > 0, then d ′

m(s) > 0 for
small s due to the continuity of d ′

m(s). Thereforeμ(s) < 0 if d ′
m(0) < 0 andμ(s) > 0

if d ′
m(0) > 0, which implies the stated stability result.
To apply the global bifurcation theorem in Shi and Wang (2009), we first show

that the linearized operator F(M,B) is a Fredholm operator for any (dm,M, B) ∈
R

+×W 2,p(�)×W 2,p(�). For that purpose we write F(dm,M, B) = F1(dm,M, B)+
F2(M, B), where

F1(dm,M, B) =
⎛
⎝−dm M

D�B − β∇(B∇M)+ B(1 − B)
(D∇B − βB∇M) · n

⎞
⎠ ,

and

F2(M, B) =

⎛
⎜⎜⎜⎜⎝

αe−di τ K

[
M B

M + w

]

cK

[
M B

M + w

]

0

⎞
⎟⎟⎟⎟⎠ .

It is standard to verify that the linearization (F1)(M,B) of F1 at any (dm,M, B) is
Fredholm as N ((F1)(M,B)) is finite dimensional, and R((F1)(M,B)) has a finite codi-
mension. And the linearization (F2)(M,B) of F2 at any (dm,M, B) is compact from
(K 3). Therefore F(M,B) is Fredholm as it is a compact perturbation of a Fredholm
operator (see Kato 1995 page 238 Theorem 5.26). Consequently the existence of a
global branch Ck

τ containing �k
τ follows from Theorem 4.3 of Shi and Wang (2009).

Finally we assume that β = 0. One can also verify that the conditions in Theorem
4.4 of Shi and Wang (2009) are also satisfied. Hence from Theorem 4.4 in Shi and
Wang (2009), for the global branch Ck

τ , either (i) Ck
τ is not compact; (ii) Ck

τ contains
another bifurcation point (d̂m, 0, 1) for some d̂m �= d̃k

m,τ ; or (iii) Ck
τ contains a point

(dm, z1, 1 + z2), where z = (z1, z2) �= 0 and z ∈ Z , which is any complement space
of span{(φ1, ψ1)}. The case (ii) cannot happen as λ1 is the only eigenvalue of K with
positive eigenfunction, while all solutions on Ck

τ are positive. Suppose case (iii) occurs.
If z1 = 0, then z2 = 0 or z2 = −1. But z2 = 0 returns to case (ii), and z2 = −1 is not
possible as there is no bifurcation from the equilibrium E0 for any dm > 0.

Hence we must have that Ck
τ is not compact, and indeed unbounded in R

+ ×
W 2,p(�) × W 2,p(�). From Remark 3.2, we know that the upper bound of B is
(1 + cA2 f∞) + cA2(A3 + δ) f∞ := A4. Suppose that (M(x), B(x)) is a nontrivial
solution of (46). It follows from (K 2) and (K 3) that
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dm

∫

�

M(x)dx = αe−di τ

∫

�

K

[
M B

M + w

]
dx ≤ αe−di τ

w

∫

�

K [A4 M] dx

≤ αe−di τ

w
A2 max{A4

∫

�

M(x)dx,
∫

�

∫

�

A4 M(x)dxdx}

= αe−di τ

w
A2 A4 max{1, |�|}

∫

�

M(x)dx .

which implies that projdm
Ck
τ has an upper bound αe−di τw−1 A2 A4 max{1, |�|}. On

the other hand, from Theorem 3.1, all solutions of (48) are uniformly bounded for
dm ∈ [δ,∞) for any δ > 0, and the boundedness in C(�) implies the boundedness in
L p(�) thus the boundedness in W 2,p(�) from L p estimates. Therefore projdm

Ck
τ =

(0, d∗,k
m,τ ], where d∗,k

m,τ satisfies (54). ��

Similar to the bifurcation structure of constant equilibria for non-spatial model
stated in Sect. 4, if d ′

m(0) �= 0, then a transcritical bifurcation occurs at d̃k
m,τ , and the

bifurcation is supercritical (or subcritical) when d ′
m(0) > 0 (or d ′

m(0) < 0). And the
bifurcating equilibria are stable if the bifurcation is subcritical. Indeed the bifurcation
analysis given here partially complements the discussion in Sect. 4 as shown in the
examples given in the next section.

6 Examples and simulations

In this section, we apply the general bifurcation result in Sect. 5 to several different
dispersal mappings to investigate the impact of dispersal mappings on the distributions
of mistletoes and birds. In all examples we assume that the dispersal mapping K is in
a form of integral operator defined in (H2), and the kernel function k(x, y) > 0 for
(x, y) ∈ �×�. First, we consider the dispersal pattern which is uniform in space.

Example 6.1 In addition to (H2), we assume that the dispersal kernel k(x, y) also
satisfies

∫

�

k(x, y)dy = 1, for every x ∈ �, (59)

following Gourley and So (2002), Zhao (2009). Biologically, this means that the total
dispersal of mistletoes fruit by birds from all possible locations y in the habitat� to a
fixed location x is same for x ∈ �, and the total rate is normalized to be 1. Under this
assumption, one can see that all constant equilibria with delayed model (37) remain
as the spatially homogeneous equilibria of (9). From (49), we get λ1 = 1 with its
corresponding constant eigenfunction φ1 ≡ 1. Hence, ψ1 = c/w. Substituting these
φ1 and ψ1 into (56) gives
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d ′
m(0) = αe−di τ (c − 1)

w2 .

It follows that (9) undergoes supercritical (or subcritical) transcritical bifurcation
at (0, 1) when dm = d̃m,τ for c > 1 (or 0 ≤ c < 1). In fact, the global branch Ck

τ

contains all constant positive equilibria described in Subsect. 4.2, hence the solution
curve near the bifurcation point only contains positive constant ones. But we comment
that Ck

τ may contain nonconstant equilibria which are generated through secondary
bifurcations, and we also notice that here the chemotactic coefficient β does not affect
the local bifurcation from the line of trivial solutions {(dm, 0, 1)}. However, we will
show how β influences the stability of positive homogeneous equilibrium (Mτ+, Bτ+)
in examples below. Finally we point out that, as shown in Chen and Shi (2011), the
condition (59) is equivalent to that the constant function φ(x) = 1 is the eigenfunction
corresponding to the principal eigenvalue 1, and under (H2), it is known that k(x, y)
must have the form

k(x, y) = 1 +
∞∑

i=2

λiφi (x)φi (y), (60)

where (λi , φi (x)) is the eigen-pair of the Fredholm integral operator K satisfying (50),
and such Fredholm integral operator K is known as Hilbert-Schmidt operator.

In the following example, we show that for the other dispersal kernels k(x, y), the
bifurcating equilibria shown in Theorem 5.1 are indeed spatially nonhomogeneous,
and the chemotaxis can affect these equilibria.

Example 6.2 Let � = (0, π) and let k(x, y) be Green’s function associated with the
Laplacian operator in C2[0, π ] with Dirichlet boundary condition, i.e.

k(x, y) =
⎧⎨
⎩

x
(

1 − y

π

)
, 0 ≤ x ≤ y ≤ π,

y
(

1 − x

π

)
, 0 ≤ y ≤ x ≤ π.

(61)

Then, we have λ1 = 1, φ1(x) = sin x and d̃k
m,τ = d̃m,τ = α

w
e−di τ . Solving

⎧⎨
⎩

Dψ ′′ − ψ + c

w
φ1 − βφ′′

1 = 0, x ∈ (0, π),
ψ ′(0) = β

D
, ψ ′(π) = − β

D
,

gives

ψ1(x) = A sin x + (A − β
D )

√
D

eπ/
√

D − 1

(
ex/

√
D + e(π−x)/

√
D
)
,
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Table 1 Parameter values used
for simulations

Parameter w α c di τ D

Value 1 1 0.9 0.1 1 1

where A = c + βw

(D + 1)w
. From the expression (56), we obtain

d ′
m(0) = αe−di τ

[− ∫ π
0 sin3 xdx + w

∫ π
0 sin2 xψ1(x)dx

]
w2

∫ π
0 sin2 xdx

= 8αe−di τ (3D + 1)

3w2π(4D + 1)

[
c + βw − 4D + 1

3D + 1
− 3βDw

4D + 1

]
.

Thus the chemotactic effect does not change the bifurcation point d̃k
m,τ , but it

does affect the direction of the bifurcation of positive equilibria. Indeed, the direc-

tion of bifurcation is now determined by the quantity c + βw − 4D + 1

3D + 1
− 3βDw

4D + 1
,

which is a combined effort of the interaction dynamics (c), diffusion (D), and chemo-

taxis (β). When c + βw − 4D + 1

3D + 1
− 3βDw

4D + 1
> 0, then d ′

m(0) > 0 and the

bifurcation is supercritical, and the bifurcating equilibria are unstable from Theo-
rem 5.1. Hence larger chemotactic effect and smaller diffusion can induce bistability
for some dm > d̃k

m,τ . Note that when β = D = 0, the direction of bifurcation is
determined by c − 1, again, as the non-spatial model, or the uniform kernel as in
Example 6.1.

We demonstrate the effect of diffusion, bird dispersal and chemotaxis with numer-
ical simulations. We use parameter values given in Table 1.

With these parameter values, we have d̃k
m,τ = α

w
e−di τ = e−0.1 ≈ 0.9048, and

the direction of the bifurcation is determined by the quantity c + βw − 4D + 1

3D + 1
−

3βDw

(4D + 1)
= 0.4β − 0.35. In Figs. 9 and 10, we use β = 0.1, then d ′

m(0) < 0, and a

subcritical transcritical bifurcation occurs. In this case, the mistletoes become extinct
when dm = 0.91 > d̃k

m,τ (Fig. 9), and a spatially non-homogenous equilibrium is
reached when dm = 0.8 < d̃k

m,τ (Fig. 10). On the other hand, if β is increased to 2, then
d ′

m(0) > 0, and the solution also tends to a spatially non-homogenous equilibrium for
dm = 0.91 > d̃k

m,τ (Fig. 11). This shows that chemotactic effect can be one of driving
force of the spatial pattern formation. The initial values of simulations in Figs. 9, 10
and 11 are all same, and are the constant function (M(x, t), B(x)) = (0.5, 1) for
t ∈ [−τ, 0], x ∈ [0, π ].

The dispersal kernel (61) shows that birds prefer to transport the fruits to the “center”
part of the domain �, and they also prefer the shorter range dispersal rather than the
longer range one. A dispersal kernel with opposite preference of birds is shown in the
next example: birds are in favor of the boundary rather than the center of the domain,
and they prefer the longer range dispersal than the shorter one.
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Fig. 9 Numerical simulation of (9) with � = (0, π), k is defined in (61), and parameter values are taken
as in Table 1. Here β = 0.1, dm = 0.91 > d̃k

m,τ ≈ 0.9048 and d ′
m (0) < 0. The solution of (9) tends to

E1 = (0, 1) as t → ∞

Fig. 10 Numerical simulation of (9) with � = (0, π), k is defined in (61), and parameter values are as in
Table 1. Here β = 0.1, dm = 0.8 < d̃k

m,τ ≈ 0.9048 and d ′
m (0) < 0. The solution of (9) tends to a positive

spatially nonhomogeneous equilibrium as t → ∞

Fig. 11 Numerical simulation of (9) with � = (0, π), k is defined in (61), and parameter values are as in
Table 1. Here β = 2, dm = 0.91 > d̃k

m,τ ≈ 0.9048 and d ′
m (0) > 0. The solution of (9) tends to a positive

spatially nonhomogeneous equilibrium as t → ∞
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Example 6.3 Again let � = (0, π), and define

k(x, y) =

⎧⎪⎨
⎪⎩

A − x
(

1 − y

π

)
, 0 ≤ x ≤ y ≤ π,

A − y
(

1 − x

π

)
, 0 ≤ y ≤ x ≤ π,

(62)

where A ≥ π/4 so that k(x, y) ≥ 0 for (x, y) ∈ [0, π ]2. It is straightforward to show
that (λ, φ(x)) is an eigen-pair of the associated Fredholm integral operator K if and
only if

{
λφ′′(x) = φ(x), x ∈ (0, π),
φ(0) = φ(π), Aφ′(π)− Aφ′(0) = φ(0).

(63)

Solving (63) for λ > 0, we know that λ satisfies

eπ/
√
λ − 1

eπ/
√
λ + 1

=
√
λ

2A
,

which has a unique real positive root, denoted by λ1, and its corresponding eigenfunc-
tion is

φ1(x) = C1ex/
√
λ1 + e−x/

√
λ1 ,

Here C1, determined by the boundary condition in (63), is given by

C1 = e−π/√λ1 − 1

1 − eπ/
√
λ1

> 0.

Moreover from (52), we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dψ ′′ − ψ + cλ1

w
φ1 − βφ′′

1 = 0, x ∈ (0, π),
ψ ′(0) = β

D
φ′

1(0) = β

D
√
λ1
(C1 − 1),

ψ ′(π) = β

D
φ′

1(π) = β

D
√
λ1
(C1eπ/

√
λ1 − e−π/√λ1),

(64)

Hence

ψ1(x) = C2(C1ex/
√
λ1 + e−x/

√
λ1)+ C3ex/

√
D + C4e−x/

√
D,
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Fig. 12 Numerical simulation of (9) with � = (0, π), k is defined in (62), and parameter values are as
in Table 1. Here β = 0.1, dm = 2 < d̃k

m,τ ≈ 2.1454. The solution of (9) tends to a positive spatially
nonhomogeneous equilibrium as t → ∞

where

C2 = βw − cλ2
1

(D − λ1)w
,

C3 =
√

D(C2 − β/D)
[
C1(e−π/√D − eπ/

√
λ1)+ (e−π/√λ1 − e−π/√D)

]
√
λ1(eπ/

√
D − e−π/√D)

,

C4 =
√

D(C2 − β/D)
[
C1(eπ/

√
D − eπ/

√
λ1)+ (e−π/√λ1 − eπ/

√
D)

]
√
λ1(eπ/

√
D − e−π/√D)

.

A numerical simulation with the kernel defined in (62) is shown in Fig.12. Since
the eigenfunctions φ1 and ψ1 both reaches their minimum in the interior, then the
limiting spatially nonhomogeneous equilibrium also attain the minimum between 0
and π . The higher concentration of the limiting distribution of mistletoes and birds
near the boundary reflects the mathematical property of the kernel function defined in
(62).

For the final example, we consider a case that the dispersal kernel is in form
k(x, y) = f (|x − y|), that is, the dispersal between x and y only depends on the
relative distance |x − y| but not the location.

Example 6.4 Let � = (0, π), and define

k(x, y) = 1 − |x − y|
π

, 0 ≤ x, y ≤ π, (65)

then the eigenvalue problem of its associated Fredholm integral operator K is equiv-
alent to the following boundary value equation:

⎧⎨
⎩
λπφ′′(x)+ φ(x) = 0, x ∈ (0, π),
φ′(0)+ φ′(π) = 0,
φ(0)+ φ(π)− πφ′(0) = 0.

(66)
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Fig. 13 Numerical simulation of (9) with � = (0, π), k is defined in (65), and parameter values are as
in Table 1. Here β = 0.1, dm = 2 > d̃k

m,τ ≈ 1.9202. The solution of (9) tends to a positive spatially
nonhomogeneous equilibrium as t → ∞

Direct calculation shows that (66) is solvable if and only if λ = λi , i = 1, 2, . . .,

where λi = 2π

θ2
i

, and {θi }∞i=1 is the increasing sequence of positive zeros of

f (θ) = 2 + 2 cos θ − θ sin θ = 0.

In particular the principal eigenvalue of K is λ1 = 2π

θ2
1

≈ 2.1222 (θ1 ≈ 1.7207)

with its corresponding eigenfunction

φ1(x) = (1 + cos θ1) sin
θ1x

π
+ (θ1 − sin θ1) cos

θ1x

π
,

and ψ1(x) satisfies (64) with the above φ1 (we omit the algebraic form of ψ1 here
since it is too long.) A numerical simulation with the kernel defined in (62) is shown
in Fig.13.

From the above examples, we can see that the dispersal kernels k(x, y) have a strong
impact on the limiting equilibrium distribution of mistletoes and birds. The graph
of the spatially nonhomogeneous equilibrium is similar to the one of the principal
eigenfunction of the corresponding Fredholm integral operator, hence determined by
the kernel function K (x, y). The shape of the principal eigenfunction (consequently
the equilibrium) reflects the shape of kernel function to a certain extent. More precisely,
the eigenfunction reaches its maximum (or minimum) in the middle if the symmetric
kernel k attains its minimum (or minimum) at y = x for each x ∈ [0, π ] (see Fig.14).

We note that for one-dimensional domain, the positive eigenfunctions are always
symmetric from the uniqueness of positive eigenfunction. The limiting equilibrium
distribution of mistletoes and birds are also symmetric. Indeed one can show that all
stable equilibria must be symmetric, but there may exist unstable non-symmetric posi-
tive equilibria. Finally we mention that for higher dimensional spatial domain, similar
spatial patterns can be observed through numerical simulations. For example, let
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Fig. 14 The limiting equilibrium distribution of mistletoes and birds from (9) for different kernels k(x, y):
solid line (61); dashed line (62); dash-dot line (65). Here � = (0, π). Left mistletoes M(x); right birds
B(x)
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Fig. 15 Numerical simulation of (9) with k defined by (67), and parameters are as in Table 1. Here
β = 0.1, dm = 0.7, and the level curves of the equilibrium is plotted. The solution of (9) tends to a positive
spatially nonhomogeneous equilibrium as t → ∞

k(x, y) = √
2 − |x − y| = √

2 −
√
(x1 − y1)2 + (x2 − y2)2, (67)

where x = (x1, x2), y = (y1, y2), and x, y ∈ [0, 1] × [0, 1]. Then the limiting
equilibrium of (9) with domain (0, 1)× (0, 1) and kernel (67) is a surface is plotted in
Fig.15. Note that the distribution of mistletoes basically follows circular pattern, and
the distribution of birds is similar but the shape of level curves are different due to the
no-flux boundary condition.

7 Discussions and conclusions

We construct a spatially explicit model of the mutualistic interaction and dispersal
of mistletoe and bird populations, or more generally, plants and their avian seed
dispersers. The model characterizes their ecological behavior with a coupled system

123



1518 C. Wang et al.

of a reaction-diffusion-advection operator equation and a delayed operator equation.
Here the operator equations often take the form of an integral form. Mathematically
it is a complicated system with all these structures, but the equation is well-posed at
least when the chemotactic effect is not included as proved in Theorem 3.1, and the
more general case also appears to be well-posed as numerical simulations (Sect. 6)
suggest that solutions always converge to an equilibrium solution. Our mathematical
analysis here shows that the model possesses rich spatiotemporal dynamics with the
effect of (i) maturation induced time-delay; (ii) Fickian diffusion induced by random
dispersal; (iii) directed chemotactic dispersal ; and (iv) nonlocal dispersal. Moreover
for certain parameter ranges, the system has a bistable structure with multiple stable
equilibria, and the asymptotic dynamics could shift with the delay effect (Sect. 4.3)
or chemotactic effect (Example 6.2).

An important implication of the model is the generation of an asymptotical spatial
pattern of the distribution of the mistletoes and birds. Dynamically it is shown as
the convergence toward an equilibrium solution. When the bird dispersal pattern is
simplified to a local one (satisfying assumption (H1)), then the asymptotical stable
equilibrium is a spatially constant one (see Sect. 4). The success/failure of the mistle-

toe spreading is determined by a basic reproduction number Rτ0 = α

wdmedi τ
, which

quantifies the impact of the system parameters α (mistletoe attaching rate), w (func-
tional response), dm and di (mistletoe mortality rate), and τ (mistletoe mature time).
Roughly speaking, when Rτ0 > 1, then the mistletoe population can be established in
the habitat; otherwise the mistletoe population becomes extinct while the birds live
on with other food source. On the other hand, the conversion rate c from mistletoes
fruits birds eaten into birds population can determine the existence of multiple positive
constant equilibria. The dependence of dynamics on these parameters as well as initial
conditions leads to the intricate dynamics shown in Sect. 4.

On the other hand, when the bird dispersal pattern is a nonlocal one (which is more
realistic), the asymptotic positive equilibrium can no longer be a spatially homogenous
one. The existence of spatially nonhomogeneous equilibrium patterns are rigorously
proved with bifurcation theory (Theorem 4.3), and they are also numerically simulated
for different types of dispersal kernels (Sect. 6). The bird dispersal appears in the model
in the random diffusion of birds, as well as the nonlocal seed dispersal. The dispersal
kernel function describes random diffusion and also other directed dispersals, but it
does not describe the density dependent dispersal due to chemotactic effect, which
could be done in future consideration.

While mistletoes in the model are immobile due to their ecological nature, our
result shows that mistletoe population spreads via its parasitic vectors (birds). More
detailed spreading dynamics of mistletoes and birds will be reported in a separate
paper. On the other hand, although our model incorporates the bird population into the
dispersal dynamics of mistletoes, we treat the host plant population as a constant and
homogenous one. Indeed mistletoes play a dual role in ecological systems: they are
mutualists of their dispersers and parasites of their host (Aukema 2003). And it has
been found that seed fall more frequently on already parasitized than non-parasitized
hosts. Hence an even more realistic model would be a mistletoe-host-vector system,
and our work here is a step toward this ultimate goal.
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