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ABSTRACT 
The Max-Cut problem consists of finding a partition of the graph 
nodes into two subsets, such that the sum of the edge weights 
having endpoints in different subsets is maximized. This NP-hard 
problem for non planar graphs has different applications in areas 
such as VLSI and ASIC design. This paper proposes an 
evolutionary hybrid algorithm based on low-level hybridization 
between Memetic Algorithms and Variable Neighborhood Search. 
This algorithm is tested and compared with the results, found in 
the bibliography, obtained by other hybrid metaheuristics for the 
same problem. Achieved experimental results show the suitability 
of the approach, and that the proposed hybrid evolutionary 
algorithm finds near-optimal solutions. Moreover, on a set of 
standard test problems, new best known solutions were produced 
for several instances. 

Categories & Subject Descriptors: G.2.1 [Discrete 
Mathematics]: Combinatorics – combinatorial algorithms; I.2.8 
[Artificial Intelligence]: Problem Solving, Control Methods, and 
Search – heuristic methods, graph and tree search algorithms 

General Terms: Algorithms, Experimentation. 

Keywords: Max-Cut, Metaheuristic, Evolutionary 
Algorithms, Memetic Algorithms, VNS. 

1. INTRODUCTION 
An important graph bipartition problem is the Max-Cut problem 
defined for a undirected weighted graph S = (V, E, W), where V is 
the set of vertices or nodes (|V| = n), E is the set of undirected 
arcs or edges (|E| = m), and W is the set of edge weights. 

The Max-Cut optimization problem consists in finding a partition 
of the set V into two disjoint subsets (C, C’) such that the sum of 
the weights of edges with endpoints in different subsets is 
maximized. Every partition of vertices V into C and C´ is usually 
called a cut or cutset and the sum of the involved edges weights is 
called weight of the cut or cut value.  

The considered Max-Cut optimization problem is given by the 
maximization of the cut value: 

∑
∈∈

=
´,

)',(
CuCv

vuwCCw  

where wuv, is the weight of edge (u,v) ∈ V. 

Reference [13] proves that the decision version of Max-Cut 
problem is NP-Complete. Therefore, it is convenient to devise 
algorithms for finding an approximate solution to this problem in 
a reasonable time. Notice that for planar graphs exact algorithms 
can solve the Max-Cut problem in polynomial time [15]. 

Figure 1 shows a cut example for an undirected graph. The cut 
edges are represented with thick lines. Assuming that all edges 
have the same weight, that is equal to one, the cut value shown in 
Figure 1 is 6. 

Some practical applications of the Max-Cut problem can be found 
in diverse fields like VLSI design [3], statistical physics [1] and 
other related to combinatorial optimization [25] 

Several continuous, linear programming and semidefinite 
relaxations for the Max-Cut have been proposed to achieve high 
quality solutions in a reasonable running time. Among these 
alternatives, the most suitable is the semidefinite relaxation (SDP) 
because it is solvable in polynomial time. Moreover, this SDP 
value establishes an upper bound of optimal cut values [5]. It can 
be used to test the performance of approximate algorithms for the 
referred problem. 

 

 

 
 
 
 
 
 

Figure 1. Cutset example on an example graph. 

Reference [23] describes a semidefinite relaxation of the Max-Cut 
problem. Goemans et al. [9] proposed a randomized algorithm 
that guarantees a 0.878-approximation to the optimum and, in 
addition, an upper bound on the optimum. A very interesting 
rank-2 relaxation algorithm is proposed in [2] that gives, in mean, 
better solutions than other theoretical relaxations [5]. 

Cut 
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In this paper we propose a new evolutionary algorithm based on 
low-level hybridization [24] between a memetic algorithm 
[10][19][20] and Variable Neighborhood Search (VNS) [16][18] 
metaheuristic for finding an approximate solution to the Max-Cut 
problem. In order to evaluate the performance of our approach, 
we compare results produce by own algorithm with other reported 
by different hybrid metaheuristics for the same problem and with 
the same benchmarks. The proposed metaheuristic is based on a 
genetic algorithm with an additional Variable Neighborhood 
Search (VNS) based on the problem domain knowledge. This 
hybrid algorithm achieves a remarkable improvement of the 
obtained solution. 

The rest of the paper is organized as follows. Section 2 revises 
other algorithms and metaheuristics applied to the Max-Cut 
problem. An overview of evolutionary algorithms is shown in 
Section 3. In Section 4 the general optimization strategy is 
described. Section 5 introduces the main characteristics of 
Variable Neighborhood Search. A detailed description of the 
proposed algorithm is presented in Section 6. Experimental results 
are shown in Section 7. Finally, Section 8 concludes the paper. 

2. MAX-CUT ALGORITHMS REVIEW 
Several approaches have been proposed to the Max-Cut problem. 
Probably the most famous algorithm (in graph partition context) is 
the Lin-Kernigham algorithm [14], based on the improvement of a 
solution by exchanging nodes between different subsets defined 
by the cut. This algorithm ensures that both subsets have the same 
size. In Fiduccia and Mattheyses [7] work this restriction is 
relaxed. Note that almost all local search strategies are based on 
these two algorithms [17]. 

Taking into account SDP relaxation, the work of Shani and 
Gonzalez [22] can be considered the first algorithm which 
achieves an acceptable result (0.5-approximation to the optimum). 
Based on this work, Goemans et al. [9] proposed an SDP 
relaxation which obtains a 0.878-approximation to the optimum. 
This algorithm achieves good results for small graphs but usually 
its performance is affected for medium or large size graphs 
[4][11][17]. 

Gosti et al. [11] incorporates a local search strategy in Goemans 
algorithm, getting higher quality solutions. Based on this idea U. 
Feige et al. have developed an algorithm that ensures a 0.921-
approximation to the optimum for graph whose nodes have 
limited its degree. 

An experimental study of six Max-Cut algorithms is presented in 
[4]. These are respectively based on an integer relaxation, a 
random algorithm, two heuristic algorithms, a genetic algorithm 
and a Divide-and-Conquer algorithm. From this experimental 
study is concluded that to achieve high quality solutions, the use 
of local search strategies is required. 

Kim el al. [17] proposes a hybrid genetic algorithm (memetic 
algorithm) for the Max-Cut problem. This work is based on a 
standard genetic algorithm with several local search strategies 
(inspired in Fiduccia-Matheysses algorithm [7]). 

Festa et al. [5] present an experimental study of three 
metaheuristics (GRASP, VNS and PR) for the considered 
problem. These authors propose several hybridizations among 
these metaheuristics, which usually achieves very good results. 

Duarte et al. [6] describe a hierarchical social which is compared 
with other GRASP and memetic implementations. 

Among all revised algorithms, the rank-2 relaxation algorithm [2] 
is in mean the method which obtains the best solution and, 
surprisingly, spending lower time than other SDP relaxations 
[2][5]. 

3. EVOLUTIONARY ALGORITHMS 
Genetic Algorithms (GA) [10][19] are random search algorithms 
inspired by the Darwinian model of natural evolution. Potential 
solutions are coded by a chromosome structure, called individual. 
The set of individuals is called population. In order to solve an 
optimization problem, GA successively transform the population 
by means of random operators (selection, crossover and mutation) 
that generally increases the quality of the corresponding solutions 
(coded by individuals). 

Unlike traditional GAs, Memetic Algorithms (MA) [20] are 
intrinsically concerned with exploiting available knowledge about 
the problem under study. This approach is not an optimal 
mechanism but, in general, yields to an algorithm enhancement.  
Optimization is accomplished in MA framework by incorporating 
problem dependent heuristics: approximation algorithms, local 
search techniques, specialized recombination operators, truncated 
exact methods, etc. Moreover, MAs can be additionally improved 
by means of a low-level or high-level hybridization [20] with 
other metaheuristics.  

Evolutionary algorithms (EA) are a broad class of metaheuristics 
characterized algorithmically by: 

• Population: of individuals which represent partial or 
complete solutions. 

• Selection method: that selects individuals in a slant fashion. 
The best individuals have the higher selection probability. 

• Modification method: that generates new individuals by 
means of a stochastic operator application. It can be: 

o Unary: that create a new individual slightly modified 
from an old individual (mutation) 

o m-ary: that create new individuals by means of the 
combination of m-individuals 

In this sense, EA includes as particular cases MA and GA and 
other metaheuristics such that Cultural Algorithms or Swarm 
Intelligence. 

4. OPTIMIZATION STRATEGY 
EA are metaheuristics where almost all implementation effort 
comes from the search diversification. On the other hand, 
strategies such that VNS and their variants [16][18] focus almost 
entirely on the search intensification. With respect to this fact, 
metaheuristic such that EA and VNS can be considered as 
complementary algorithms. Moreover, the hybridization of these 
techniques can yield to very effective and robust methods. 

This paper proposes a new evolutionary algorithm based on a 
low-level hybridization [24] between a specific MA, developed 
for the Max-Cut Problem and Variable Neighborhood Search 
(VNS) metaheuristic. The developed algorithm is a good trade-off 
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between intensification and diversification. The intensification 
phase is mainly carried out by the VNS procedure. This 
metaheuristic intensively looks for quality solutions in a 
predefined set of neighborhood structures. If the search procedure 
is stuck, VNS changes the neighborhood structure in order to get 
away from local optimum. Notice that although the main task of 
VNS is the search intensification, this metaheuristic also 
diversifies the search procedure by means of neighborhood 
changing. 

On the other hand, EA objective is mainly related with the 
diversification stage. This task is accomplished with traditional 
operators (selection, mutation and crossover) enriched with some 
knowledge about the problem. Notice that although the main task 
of MA is the search diversification, this metaheuristic also 
intensifies the search procedure by means of population evolution 
and the inclusion of problem-dependent operators. 

In the following two sections, we respectively describe the VNS 
and the hybrid MA implementations, developed for the Max-Cut 
problem. 

5. VARIABLE NEIGHBORHOOD SEARCH 
This section resumes the main features of Variable Neighborhood 
Search (VNS) metaheuristic. This metaheuristic, which was 
originally proposed by Hansen and Mladenovíc [16][18], is based 
on the exploration of a dynamic neighborhood model. Each step 
has three major phases: neighbor generation, local search and 
jump. 

Unlike to other metaheuristics based on local search methods, 
VNS allows changes of the neighborhood structure during the 
search. VNS explores increasingly neighborhoods of the current 
best found solution x. The basic idea of VNS is to change the 
neighbourhood structure when the local search is trapped on a 
local minimum. 

Let Nk, k = 1,…, kmax be a set of predefined neighborhood 
structures and let Nk(x) be the set of solutions in the kth-order 
neighborhood of a solution x. In the first phase, a neighbor 
x’∈Nk(x) of the current solution is applied. Next, a solution x’’ is 
obtained by applying local search to x’. Finally, the current 
solution jumps from x to x’’ if it improves the former one. 
Otherwise, the order k of the neighborhood is increased by one 
and the above steps are repeated until some stopping condition is 
met. The pseudo-code of a typical VNS procedure is illustrated in 
Figure 2.  

In the case of the Max-Cut problem, the kth-order neighborhood is 
defined by all solutions that can be derived from the current one 
by selecting k vertices and transferring each vertex from one 
subset of the vertex bipartition to the other subset. 

The local search phase is based on the following neighborhood 
structure. Let (Ca, Ca’) be the current cutset solution. For each 
vertex v ∈ V we associate a new neighbor cutset (Cb, Cb’): 


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We define for each node v ∈ V the functions σ and σ´ as: 
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These two functions are characterized by the change in the 
objective function value associated with moving vertex v from one 
subset of the cut to the other. This way, a vertex makes a 
movement in order to improve the cut value in the two following 
situations: 

CCthenvvCvif

CCthenvvCvif
v
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where 'CC
v

→  (equivalently CC
v

→' ) represents the movement of 
vertex v from subset C to C’ (C∪C’ = V) 
All possible moves are examined. The current solution is replaced 
by its best improving neighbor solution. The search stops after all 
possible moves have been evaluated and no improving neighbor is 
found. The used local search strategy is summarized by the 
pseudo-code of Figure 2. 

This local search procedure tests all possible movements for each 
node between C and C’ and vice versa. Therefore, the current 
solution is replaced by the best solution found in the 
neighborhood structure defined above. The procedure ends when 
none possible neighbor movement improves the current solution. 

6. HYBRID METAHEURISTIC 
This section describes a new evolutionary low-level hybridization 
for the Max-Cut problem. In order to use a memetic algorithm for 
solving the Max-Cut problem, we need to code each feasible 
solution. Let V= {1,…,n} the nodes set of a given graph. The 
possible cuts on this graph can be coded by a Boolean n-vector I 
= (i1,…,in) such that the value of each component iu ∈ {0,1} is 
given by the characteristic function:  


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procedure VNS(x) 
  var  
    x: Initial solution 
    x’,x’’: Intermediate solutions 
    k: Neighbourhood order 
  begin 
  /*First Neighbourhood Structure*/ 
  k = 1; 
  while k < kmax do 
    /*Select an random solution in k- 
    neighbourhood structure*/ 
    x’  = Random(x,Nk(x)) 
    /*Use the local search procedure shown  
    in Figure 3*/ 
    x’’ = LocalSearch(x’); 
    /*Replace the actual solution by the new
    one when an improvement is obtained */ 
    if w(x’’) > w(x) then  
      x = x’’; 
      k = 1; 
    else 
      k = k + 1; 
    end if 
  end while 
  end 
end VNS 

Figure 2. VNS high level pseudo-code  
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Figures 4.a and 4.b show two examples of cuts and their 
respective encoding. 

7. HYBRID METAHEURISTIC 
This section describes a new evolutionary low-level hybridization 
for the Max-Cut problem. In order to use a memetic algorithm for 
solving the Max-Cut problem, we need to code each feasible 
solution. Let V= {1,…,n} the nodes set of a given graph. The 
possible cuts on this graph can be coded by a Boolean n-vector I 
= (i1,…,in) such that the value of each component iu ∈ {0,1} is 
given by the characteristic function:  
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Figures 4.a and 4.b show two examples of cuts and their 
respective encoding. 
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Figure 4. Cutsets representation 

In the evaluation step, we used as selection method the fitness 
roulette-wheel selection [10][19], which favors individuals with 
high fitness value without suppressing the chance of selection of 
individuals with low fitness, thus avoiding premature convergence 
of the population. 
The proposed algorithm starts with a random initial population of 
cuts, generated by Initial_Population procedure. Then, these cuts 
are improved (with probability pi) by means of a local search 
procedure described in Figure 3. 

The selection of a subset of individuals in the implemented 
genetic algorithm is carried by means of a standard roulette wheel 
procedure. Some selected individuals are crossovered, with a 
probability pr. In the proposed implementation, we have not use 
standard crossover because this method can destroy the high 
quality structures obtained by means of evolution. We have 
considered fixed crossover [4][19], which takes into account the 
structural information of each individual and provides more 
quality descendants [19]. Graphically, the crossover strategy is 
presented in the Figure 5. 

The considered fixed crossover f:{1,0}×{1,0}→{1,0} is specified 
by the random Boolean function: 


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where rand01() is a random Boolean value. In this way, if both 
parents are in the same subset, the offspring node lies in this 
subset. Otherwise, the node is randomly assigned to one of the 
subsets. 
 
With this crossover function, each bit iu of new offspring is given 
by: 

Vuimotherifatherfi uuu ∈∀= ))(),((  
To end up the evolution cycle, new individuals are subject to 
mutation (a random change of a node from C to C’ or vice versa) 
with probability pm=1/|V|. By this way, the allele mutation 
probability (pm) is problem independent.  
Figure 6 shows the high level pseudo-code of the corresponding 
hybrid evolutionary algorithm. 
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Figure 5. Fixed crossover procedure  

8. EXPERIMENTAL RESULTS 
This section describes the obtained experimental results using the 
proposed hybrid metaheuristic. We also show a quantitative 
comparison with other metaheuristics applied to the same 
problem.  
The computational experiments were performed in an Intel 
Pentium 4 processor at 1.7 GHz, with 256 MB of RAM. All 
algorithms were coded in C++, without optimization, and by the 
same programmer in order to have more comparable results.  
 

procedure Local_Search(g) 
  var  
    g=(C,C´): Cutset structure  
  begin 
  for v = 1 to Nodes_in_considered_graph do 
    if v∈C and σ(v)>σ’(v) then  
      /* v: C→C´ */ 
       C = C \ {v}; 
       C´= C’ ∪ {v}; 
    end if 
    if v∈C´and σ(v)<σ’(v) then  
      /* v: C’→C */ 
      C’= C’\{v};  
      C = C ∪ {v};     
    end if 
  end for 
  end 
end Local_Search 

Figure 3. Local search high level pseudo-code 
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The main parameters and corresponding using values of the 
designed hybrid evolutionary metaheuristic are: 

• Memetic algorithm: 

o Initial random population of 50 individuals, called 
PopSize. 

o PopSize initially is improved by means of the referred local 
search strategy (in Figure 3) with a probability pi = 0.25. 

o The probability of crossover pc is 0.6 and it is performed 
by FixedCrossover method. 

o The maximum number of generations MaxGen is 50. 

o After the crossover, the new individuals are also improved 
by the described VNS strategy with a probability pi.= 0.25. 

o In each generation, a mutation process is applied with a 
probability pm = 1/|V|. 

o The procedure ends when none individual improves its 
fitness or it is reached the MaxGen value 

• Variable Neighborhood Search 

o Each child obtained after a fixed crossover application is 
the Initial Solution for VNS procedure. 

o The maximum neighborhood order kmax is set to 1% of the 
number of nodes in the graph. 

The metaheuristic was tested on the benchmark graphs Gx shown 
in Table 1. These test problems were generated by Helmberg and 
Rendl using the graph generator described in [12]. These graphs 
are planar, toroidal and randomly generated with varying sparsity 
and size. The last two graphs types are non-planar. There are 
graphs with unitary, integer and real weights. Moreover, these 
weights can be positive or negative. In the experiments, the graph 
sizes vary from 800 nodes to 3000 and their density from 0.17% 
to 6.12%. 
The first three columns of Table 1 respectively show the graph 
name, and their number of nodes (n) and arcs (m). The following 
five columns present respectively, for 50 independent iterations of 
the proposed algorithm, the following statistical values: mean 
(mn), standard deviation (sd), max value (max), min value (min) 
and frequency (fq). This last value gives the (maximum) number 
of times that the search procedure has found the same value. 
The last two right columns show respectively the SDP value and a 
ratio between the maximum cutset value (obtained for each graph) 
and its SPD bound (for the same graph), given by the formula: 

)(
)()(1

GxSDPValue
GxMaxValueGxSDPValuer −−=  

This parameter r establishes a measurement of how close is the 
value obtained by our hybrid metaheuristic and the corresponding 
upper bound given by SDP value. As shows Table 1, the 
maximum obtained value achieves, at least, 88 % of the SDP 
bound. 

Therefore, the solutions found with our approach have a high-
quality. Moreover, the proposed algorithm is highly robust 
because the mean value is relatively high. This robustness is also 
confirmed with the following factors: the closeness between max 
and min value and the low value of standard deviation. It is 
important to remark that the obtained results are quite general 
because the graphs used in the experiments have a high variety. 
The proposed algorithm converges to the same solution in very 
few occasions (see fq column). We can conclude that our proposal 
ensures a good search procedure diversification. This property is 
mainly relevant in problems with sharp space solutions.  

Table 2 presents a quantitative comparison between our proposal 
and seven Max-Cut state-of-the-art algorithms. The first three 
columns show the name of the graph. Obviously the number of 
nodes n and the number of arcs m are the same that the graphs in 
Table 1. 
The next column shows the achieved results with 0.612 version of 
circut rank-2 relaxation with default parameters except 
(N,M)=(50, 10), for intensifying the search [1]. 

procedure Hybrid_Evolutionary_Algorithm() 
  var 
     
g=(C,C´): individual cutset structure 
    gg: population of cutsets 
    MaxGen: Number of Generations 
    PopSize: Number of individuals 
    pc,pm: Cross. and mut. probabilities 
    pi: Improvement probability 
    i: Generation Counter 
    j: Individual Counter 
  begin 
    /*Generate random cuts individuals*/ 
    gg=Initial_Population();  
    /*Optimize initial population*/ 
    Apply(Local_Search((),pi);  
    Evaluate_Population(); 
    Best_Solution = Best_Individual();  
    for i = 1 to MaxGen 
      j = 0; 
      while(i < PopulationSize)  
        /*Criteria: Random Wheel*/ 
        Father = Selection(); 
        r = rand01();/*Random function*/ 
        if (r < pc) 
          /*Criteria: Random Wheel*/ 
          Mother = Selection(); 
          Child=FixCross(Father,Mother); 
          Apply(VNS(Child),pi); 
          InsertInPopulation(Child); 
          j = j + 1; 
        else 
         InsertInPopulation(Father); 
      end if 
    end while 
    Apply(Mutation(),pm); 
    Evaluate_Population(); 
    Best_Solution = Best_Individual(); 
  end for 
end 
end  Hybrid_Evolutionary_Algorithm() 

Figure 6. Hybrid algorithm high level pseudo-code. 
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The following seven columns display the results for the 
considered metaheuristics: GRASP, GRASP + Path Relinking 
(PR), GRASP + Variable Neighborhood Search (VNS), GRASP + 
VNS + PR, VNS and VNS + PR. A detailed description of these 
metaheuristics can be found in [5]. Note that all these approach 
are trajectorial metaheuristics, and they only consider one solution 
in each iteration. The results shown by these columns are the best 
found cut value in 1000 independent iterations of each 
metaheuristic. These results have been extracted from the work of 
Festa et al. [5].The 8th column shows the results obtained by our 
hybrid evolutionary algorithm. Finally, the right column shows 
the SDP value [5,9] that can be considered as an upper bound. 
The best cutset value for each graph is highlighted in bold in 
Table 2. As shown by this table, the proposed low-level 

hybridization between memetic algorithm and VNS, obtains 
similar computational results compared with the rest of 
metaheuristics. The main different is that our algorithm is 
executed only once with a population of 50 individuals and 50 
iterations. Remind that the other metaheuristics have been run 
1000 times. 
Our proposal obtain the best cut value known up to now for 6 
graphs only with 50 individuals and 50 generations. And find the 
best cut value for 12 graphs. Moreover, in our VNS 
implementation kmax is 1% of number of nodes, so this value is 
bounded by 8 ≤ kmax ≤ 30). In VNS implementations presented in 
Table 2, so kmax is 100. Notice that this value has a terrible impact 
in execution time because it increases hugely the procedure 
execution time. 

Problem Statistic values in 50 iterations  

Name Nodes  

(n) 

Edges 

(m) 

Mean (mn) Standard 

Deviation

Max        

Value 

Min      

Value () 

Frequency 

(fq) 

r SDP 

G1 

G2 

G3 

800 19176 11608.28

11528.78

11606.30

14.31

7.87

10.15

11624

11620

11622

11576

11581

11585

11 

1 

6 

0,9624 

0,9616 

0,9623 

12078

12084

12077

G11 

G12 

G13 

800 1600 555.92

547.68

527.52

2.86

3.15

2.70

562

554

580

550

542

566

1 

1 

1 

0,8963 

0,8921 

0,8992 

627

621

645

G14 

G15 

G16 

800 4694 3052.00

3036.26

3039.02

4.19

4.65

3.97

3061

3046

3047

3043

3028

3031

5 

3 

4 

0,9605 

0,9612 

0,9606 

3187

3169

3172

G22 

G23 

G24 

2000 19990 13295.36

13299.30

13309.15

13.13

15.38

12.81

13318

13322

13319

13278

13274

13305

6 

5 

8 

0,9430 

0,9429 

0,9425 

14123

14129

14131

G32 

G33 

G34 

2000 4000 1381.00

1352.29

1359.14

7.17

5.82

6.20

1392

1362

1368

1368

1344

1350

15 

18 

21 

0,8923 

0,8861 

0,8877 

1560

1537

1541

G35 

G36 

G37 

2000 11778 7647.67

7634.67

7646.81

9.85

7.38

5.81

7665

7643

7657

7631

7624

7638

4 

5 

5 

0,9581 

0,9559 

0,9560 

8000

7996

8009

G43 

G44 

G45 

1000 9990 6646.56

6638.28

6637.12

8.89

7.20

6.91

6655

6649

6634

6657

6650

6650

6 

6 

5 

0,9471 

0,9469 

0,9450 

7027

7022

7020

G48 

G49 

G50 

3000 6000 6000

6000

5880

6000

6000

2862

6000

6000

5880

6000

6000

5880

41 

39 

32 

1,0000 

1,0000 

0,9820 

6000

6000

5988

Table 1. Relative results for Helmberg´s instances [11] in 50 independent iteratons 
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Table 2. Comparison between our evolutionary hybrid metaheuristics and seven metaheuristic for the Helmberg’s instances. 
 

In order to get more comparable results, an average among all 
graphs is taken. These results are shown in Table 3. First column 
shows the metaheuristic name. In the second column appears the 
sum of the cutsets obtained for the 24 graphs. Finally, the third 
presents the relative cut value with respect to SDP upper bound. 
Again, the average value obtained by our proposal is good. Our 
proposal beats clearly to the rest of metaheuristicse except circut 
rank-2 relaxation. In this case, although this method obtains 
slightly better results, it needs a very long execution time. Notice 
that individuals, generations and kmax, values are very low. 
Increasing or tuning adequately these values, probably our hybrid 
algorithm even could be reached at circuit. 

 
 
 
 

 

Table 3. Relative results for all metaheuristics 

Name Circut GRASP GRASP

+ PR 

GRASP

+ VNS 

GRASP+

VNS+PR

VNS VNS+ 

PR 

MA+ 

VNS 

SDP 

G1 

G2 

G3 

11624 

11617 

11622 

11540 

11567 

11551 

11563

11567

11585

11589

11598

11596

11589

11598

11596

11621

11615

11622

11621

11615

11622

11624 

11620 

11622 

12078 

12084 

12077 

G11 

G12 

G13 

560 

552 

574 

552 

546 

572 

564

552

580

560

550

576

564

556

578

560

554

580

560

556

580

562 

554 

580 

627 

621 

645 

G14 

G15 

G16 

3058 

3049 

3045 

3027 

3013 

3013 

3041

3034

3028

3044

3031

3031

3044

3031

3031

3055

3043

3043

3055

3043

3043

3061 

3046 

3047 

3187 

3169 

3172 

G22 

G23 

G24 

13346 

13317 

13314 

13185 

13203 

13165 

13203

13222

13242

13246

13258

13255

13246

13260

13255

13295

13290

13276

13295

13290

13276

13318 

13322 

13319 

14123 

14129 

14131 

G32 

G33 

G34 

1390 

1360 

1368 

1370 

1348 

1348 

1392

1362

1364

1382

1356

1360

1394

1368

1368

1386

1362

1368

1396

1376

1372

1392 

1362 

1368 

1560 

1537 

1541 

G35 

G36 

G37 

7670 

7660 

7666 

7567 

7555 

7676 

7588

7581

7602

7605

7604

7601

7605

7604

7608

7635

7632

7643

7635

7632

7643

7665 

7643 

7657 

8000 

7996 

8009 

G43 

G44 

G45 

6656 

6643 

6652 

6592 

6587 

6598 

6621

6618

6620

6622

6634

6629

6622

6634

6629

6659

6642

6646

6659

6642

6646

6655 

6649 

6634 

7027 

7022 

7020 

G48 

G49 

G50 

6000 

6000 

5880 

6000 

6000 

5862 

6000

6000

5880

6000

6000

5880

6000

6000

5880

6000

6000

5868

6000

6000

5880

6000 

6000 

5880 

6000 

6000 

5988 

Metaheuristic Sum % of SDP 
SDP 157743 100 

Circut 150623 95.49 

GRASP 149337 94.67 

GRASP + PR 149809 94.97 

GRASP + VNS 149981 95.08 

GRASP + NNS + PR 150060 95.13 

VNS 150395 95.34 

VNS + PR 150441 95.37 

MA + VNS 150580 95.46 
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9. CONCLUSIONS 
This paper has introduced a hybrid evolutionary algorithm to 
efficiently solve the Max-Cut problem. This hybridization is 
based on a low-level hybridization between a Variable 
Neighborhood Search and a Memetic Algorithm. This hybrid 
schema exploits the power of memetic algorithms to explore the 
solution space. On one hand, we have used a Variable 
Neighborhood Search as an additional intensification procedure to 
improve the corresponding optimization process. On the other 
hand, a memetic algorithm is mainly used to diversify the 
corresponding search process. Notice that this memetic algorithm 
includes several problem-dependent data and methods. 
Taking into account the experimental results shown in thr above 
section, we can conclude that the hybrid schema proposed 
exploits the power of hybrid evolutionary algorithms to explore 
the solution space, enhanced with VNS as an additional 
intensification procedure. In other words, without adding much 
additional computational burden, Variable Neighborhood Search 
is able to improve the basic MA intensification strategy. On the 
other hand, the proposed memetic algorithm improves also the 
basic diversification strategy of VNS. The low-level hybridization 
proposed in this paper get a synergy between both metaheuristics 
The experimental results also show that this algorithm has a 
robust behaviour and gives high quality solutions, independently 
of the graph characteristics. The hybrid memetic-VNS algorithm 
is quite efficient, taking into account that the other metaheuristics 
have been executed 1000 times and the proposed algorithm only 
once. 

10. RERERENCES 
[1] Barahona, F., Grötschel, M., Jürgen, M., and Reinelt, G., An 

application of combinatorial optimization to statistical 
optimization and circuit layout design. Operations Research, 
36:493–513, 1988. 

[2] Burer, S., Monteiro, R.D.C., Zhang X.: Rank-two Relaxation 
heuristic for the Max-Cut and other Binary Quadratic 
Programs. SIAM Journal of Optimization, 12:503-521, 2001. 

[3] Chang, K.C, and. Du, D.-Z., Efficient Algorithms for Layer 
Assignament Problems. IEEE Transaction on Computer-
Aided Desgin, CAD-6:67-78, 1987. 

[4] Dolezal O., Hofmeister, T., Lefmann, H: A comparison of 
approximation algorithms for the MAXCUT-problem. Reihe 
CI 57/99, SFB 531, Universität Dortmund, 1999. 

[5] Festa P., P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro: 
Randomized heuristics for the MAX-CUT problem, 
Optimization Methods and Software, vol. 7, pp. 1033-1058, 
2002. 

[6] Duarte, A., Fernández, F., Sánchez, A., Sanz, A.: A 
Hierarchical Social Metaheuristic for the Max-Cut Problem, 
4th European Conference on Evolutionary Computation in 
Combinatorial Optimization (EvoCOP 2004), LNCS v. 
3004, Springer 2004 

[7] Fiduccia, C. and R. Matheysses: A Linear-Time Heuristic for 
Improving Network Partitions. In Proceedings of 19th 
Design Automation Conference, pp. 175-181, 1982. 

 

[8] Glover, F. and G. Kochenberger, editors: Handbook of 
Metaheuristic. Kluwer, Massachusetts, USA, 2003. 

[9] Goemans, M. X., Williams, D.P.: Improved Approximation 
Algorithms for Max-Cut and Satisfiability Problems Using 
Semidefinite Programming. Journal of the ACM.42:1115-
1142, 1995.Goldberg. D.: Genetic Algorithms in Search, 
Optimization and Machine Learning. Addison-Wesley, 
1989. 

[10] Gosti, W. et al.: Approximation Algorithms for the Max-Cut 
Problem. Technical Report, Dept. Electrical Engineering and 
Computer Science, University of California, 1995. 

[11] Helmberg, C., Rendl, F.: A Spectral Bundle Method for 
Semidefinite Programming. SIAM Journal of Computing, 
10:673:696, 2000. 

[12] Karp, R.M.: Reducibility among Combinatorial Problems. In 
R. Miller J. Thatcher, editors, Complexity of Computers 
Computation, Prenum Press, New York, USA (1972). 

[13] Kernigham, B.W. and S. Lin: An Efficient Heuristic 
Procedure for Partitioning Graphs. The Bell System 
Technical Journal, pp. 291-307, 1970 

[14] Hadlock F. O: Finding a Maximum Cut of a Planar Graph in 
Polynomial Time. SIAM Journal on Computing 4 (1975) 
221-225. 

[15] Hansen, P. and Mladenovíc, N., Developments of variable 
neighborhood search. In C.C. Ribeiro and P. Hansen, editors, 
Essays and Surveys in Metaheuristics, pages 415–439. 
Kluwer Academic Publishers, 2001. 

[16] Kim, S.-H., Y.-H. Kim and B.-R. Moon: A Hybrid Genetic 
Algorithm for the MAX CUT Problem. In Genetic and 
Evolutionary Computation Conference, pp. 416-426, 2001 

[17] Mladenovíc, N. and Hansen, P.. Variable neighborhood 
search. Computers and Operations Research, 24:1097–1100, 
1997. 

[18] Michalewicz, Z.: Genetic Algorithms + Data Structures = 
Evolution Programs. 3rd edn. Springer-Verlag, Berlin 
Heidelberg New York, 1996. 

[19] Moscato P., Cotta C.: A Gentle Introduction to Memetic 
Algorithms. In Handbook of Metaheuristic. F. Glover and G. 
A. Kochenberger, editors, Kluwer, Norwell, Massachusetts, 
USA, 2003. 

[20] Resende M.G.: GRASP With Path Re-linking and VNS for 
MAXCUT, In Proc. of 4th MIC, Porto, July 2001. 

[21] Shani, S. and T. Gonzales: P-Complete Approximations 
Problems. Journal of ACM, 1976. 

[22] Shor, N. Z.: Quadratic Optimization Problems, Soviet 
Journal of Computing and System Science, 25:1-11, 1987. 

[23] Talbi, E.–G., A Taxonomy of Hybrid Metaheuristics, Journal 
of Heuristics, 8 (5): 541-564, 2002. 

[24] Wheeler, J.W, An investigation of the Max-Cut Problem, 
Internal Report, University of Iowa, 2004. 

1006


