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Abstract

Vision based fire detection is potentially a useful technique.
With the increase in the number of surveillance cameras
being installed, a vision based fire detection capability can
be incorporated in existing surveillance systems at rela-
tively low additional cost. Vision based fire detection of-
fers advantages over the traditional methods. It will thus
complement the existing devices. In this paper, we present
spectral, spatial and temporal models of fire regions in vi-
sual image sequences. The spectral model is represented
in terms of the color probability density of fire pixels. The
spatial model captures the spatial structure within a fire
region. The shape of a fire region is represented in terms
of the spatial frequency content of the region contour us-
ing its Fourier coefficients. The temporal changes in these
coefficients are used as the temporal signatures of the fire
region. Specifically, an autoregressive model of the Fourier
coefficient series is used. Experiments with a large number
of scenes show that our method is capable of detecting fire
reliably.

1. Introduction
The objective of this work is in the general context of mod-
eling and recognizing shape evolution in stochastic visual
phenomena. In particular, this paper focuses on detection
of fire in image sequences. Fire has diverse, multispectral
signatures, several of which have been utilized to devise
different methods for its detection. Most of the methods
can be categorized into smoke, heat, or radiation detection.
A detailed survey can be found in [2]. Each fire detection
method is better suited to a distinct environment. Vision
based fire detection has the following advantages over the
other methods. First, it has fast response to fires. Like the
radiation based method, it detects fires as soon as they ap-
pear in sight. Second, it directly senses the location of fire
(in �-D), not just radiation which comes from its general
vicinity. Last, but not least, it is capable of analyzing ex-

isting images or image sequences so that it can be used for
multimedia database retrieval. Line of sight visual meth-
ods like this complement other methods that use associated
cues of smoke and heat.

1.1. Related Work
There are only a few papers about fire detection in com-
puter vision literature. Healey et al. [3] use a purely color
based model. Phillips et al. [10] use pixel colors and their
temporal variations. These methods have the following two
drawbacks. First, a region composed of fire-colored pix-
els is too simple a model of fire since fire also has spatial
structure, namely the core is brighter than the periphery.
Second, temporal variation in image pixel color does not
capture the temporal property of fire which is more com-
plex and benefits from a region level representation. For
example, pixels of the core of the fire exhibit less temporal
variation than the other pixels.

The fire detection method described in this paper in-
cludes recognition of evolving region shapes. There has
been an enormous amount of literature related to static
shape analysis. A survey can be found in [4]. Our method
is more relevant to works on modeling and recognition of
deformable shapes/objects [1, 7]. These methods implic-
itly assume all shapes have to be observed before learning
the subspace or the manifold. Thus, they are very likely to
fail to recognize objects with stochastic appearances, such
as fire. The shapes of fires with different burning materials
could be of a large degree of variability. These methods do
not have good representation in shapes and their evolution.

2. Fire Models
Fire has unique visual signatures. Color, geometry, and
motion of fire region are all essential for recognition. A
region that corresponds to fire can be captured in terms of
(1) spectral characteristics of the pixels in the region, and
(2) the spatial structure defined by their spectral variation
within the region. The shape of a fire region usually keeps
changing and exhibits a stochastic motion, which depends
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Figure 1: Examples of the nested ring structure of fire re-
gions. (a) A fire region with a single core. (b) A fire region
with two cores.

on surrounding environmental factors such as the type of
burning materials and air flow.

The pixels in a fire region have characteristic color spec-
tra and the pixels with different spectra have characteristic
relative locations. In color images, we might see bright
white color in the core, and yellow, orange and red away
from the core. In grayscale images, we see that core is
brighter than the periphery. Note that a fire region may in-
clude multiple bright cores which correspond to multiple
hot spots. This can be viewed as a large fire composed of
multiple sources of fires as illustrated in Figure 1. Thus, the
fire region in a single image can be modeled as follows: (i)
It stands in high contrast to its surroundings; (ii) It exhibits
a structure of nested rings of colors, changing from white
at the core to yellow, orange and red in the periphery.

A fire in motion has a relatively static general shape (de-
termined by the shape of burning materials) and rapidly
changing local shape in the unobstructed part of the border.
The lower frequency components of fire region boundary
are relatively steady over time, and the higher frequency
components change in a stochastic fashion. Accordingly,
we use a stochastic model to capture the characteristic ran-
dom motion of fire boundaries over time.

3. Fire Detection Algorithms

Our algorithms for video based fire detection make use of
spectral, spatial, and temporal properties of fire regions.
First, we extract potential fire regions from an image us-
ing fire spectral and spatial models. Second, we repre-
sent boundaries of these regions using Fourier coefficients.
Third, we estimate parameters of an AR model of each re-
gion with its correspondence in previous images in the im-
age sequence. Last, Fourier coefficients and AR model pa-
rameters are used as features of each region for a classifier
that recognizes fire regions.

3.1. Potential Fire Region Detection
We first detect potential fire regions based only on the fire
spectral and spatial models described in Section 2. We first
extract high intensity regions (in grayscale) possibly corre-
sponding to fire cores, which we called seed regions. We
grow each seed region by following spectral gradients of
the image and adding neighbor pixels if they have colors
given by the fire color model with sufficiently high likeli-
hood. The interior color probability density functions of
fire are modeled as a mixture of Gaussian distributions in
HSV space [13].

For each extracted region, we traverse its boundary to
check if half of boundary points is of interior fire color.
This check eliminate regions with most pixels having ex-
tremely high intensity such as a purely bright white regions.

3.2. Shape Representation
We represent the shape of fire regions in Fourier domain.
Fourier Descriptors (FD), the Fourier Transform coeffi-
cients of the shape boundary, represents a �-D shape us-
ing an �-D function. There are several variations of Fourier
based �-D boundary representation in literature [6]. In this
paper, we use Persoon and Fu’s method [9].

Given an extracted region, we first retrieve its boundary
using eight-connected chain code. Assume that we have
� points from the chain code representation of the bound-
ary. We express these points in complex form: �� ���� �
�� � ����

�
��� where ���� ��� are the image coordinates of

boundary points as the boundary is traversed clockwise.
The coefficients of the Discrete Fourier Transform (DFT)
of �������� are
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Fourier Descriptors used to characterize the shape. Note
that �� � �

�
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��� �� represents the center of gravity of the
�-D boundary, which does not carry shape information. We
neglect it to achieve translation invariance.

Related works in Fourier based shape description usu-
ally discuss about similarity measures that make FD in-
variant to relevant transformations, e.g., rotation, transla-
tion and scale. The requirement for each invariance de-
pends on the applications. In this paper, we do not consider
rotation invariance because fire shapes are not rotation in-
variant. Since rotation invariance is not relevant, we can
always choose the starting point as the topmost boundary
pixel along the vertical axis through the center of gravity
of the entire shape. Our representation approximates scale



invariance (by dropping �� term) since we retrieve bound-
ary points in the chain code fashion. Chain code expres-
sion discretizes the arc and Equation (1) normalizes the arc
length �.

For detection purpose, we represent only the fire bound-
ary as Fourier coefficients. Generally, to model a fire re-
gion, each ring in the fire region (Fig. 1) can be represented
as a set of Fourier coefficients.

3.3. Stochastic Temporal Variation of Shape

The stochastic characteristics of fire boundary motion are
estimated by an autoregressive model of changes in Fourier
coefficients of the region boundary. The autoregressive
(AR) model is used based on the assumption that each
term in the time series depends linearly on several previ-
ous terms along with a noise term [5]. Since the lower fre-
quency coefficients are likely to remain static and higher
frequency coefficients have higher temporal variation, this
model will capture different levels of temporal variation of
FDs.

Suppose �� are the 
-dimensional random vectors ob-
served at equal time intervals. The 
-variate AR model of
order � (denoted as AR(�) model) is defined as
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The matrices �� � ���� are the coefficient matrices of
the AR(�) model, and the 
-dimensional vectors �� are
uncorrelated random vectors with zero mean.

Since we use Fourier Descriptors to represent fire re-
gion shape, we represent the stochastic characteristics of
the temporal changes in the magnitude of each FD using
the AR model. If � harmonics of FDs are used, then a
�� -dimensional random vectors �� represents the region
shape at time 	. We further assume that different FDs at
any given time 	 are independent of each other, so we have
diagonal coefficient matrices ��, where ���
��� � 	 if

 �� �. Thus the problem can be seen as modeling of ��
independent time series.

To select the optimum order of the AR model, we adopt
Schwarz’s Bayesian Criterion [11] which chooses the order
of the model so as to minimize the forecast mean-squared
error. We have found that the AR(1) model yields the min-
imal error. Thus, we have �� � ����� � ��. We estimate
the parameters of our AR(1) model using Neumaier and
Schneider’s algorithms [8].

�Note: scale invariance is achieved if the distances between a pixel and
its eight neighbors are considered as equal.

Figure 2: Selected fire images used in experiments.

4. Experimental Results

The video clips used in our experiments are real-world im-
age sequences taken from a random selection of commer-
cial/training video tapes. They include different types of
fires such as residential fire, warehouse fire, and wildland
fire. We use images captured at day time, dusk or night
time to evaluate system performance under different light-
ing conditions. We also use other image sequences con-
taining objects with fire-like appearances such as sun and
light bulbs as negative examples. Most image sequences
involve camera motion. The video clips that we tested our
algorithm on contain a total of 
��
 image frames in 

 se-
quences. Figure 2 shows some selected fire images used in
our experiments. The (red) contours depicted in the images
are the detected fire region contours. As seen in some im-
ages, fire sometimes complements with smoke nearby. Our
spectral and spatial models of fire regions define bound-
aries between fire and smoke.

Our potential region extraction algorithm extracts al-
most all the true fire regions. It also extracts other fire-
like objects. What it does not extract are mainly spark-
like, small fire regions emanating from the main fire re-
gions which are detected. In our test data, the algorithm
extracted a total of �
�� fire-like region contours, �	�� of
which were true fire region contours. These contours are
used for test of our fire region classification.

For shape representation in terms of Fourier Descrip-



Table 1: Average recognition rates of fire and non-fire con-
tour recognition.

Experiments Fire Non-Fire
A: Use FD 0.996 0.904
B: Use FD and AR 0.999 1.0

tors, we find that using 40 coefficients (i.e. � � �	) is
sufficient to approximate the relevant properties of the fire
region contours. Accordingly, we use �	 AR coefficients
(diagonal of matrix A) to represent the stochastic character-
istics of the temporal changes in FDs. We use a two-class
Support Vector Machine (SVM) classifier with radial basis
function (RBF) kernel [12] for fire region recognition.

We tested our algorithms in two ways: The first set of
experiments was performed with only spatial properties of
region contours (only FD as feature vectors), and the sec-
ond set of experiments was performed with both spatial and
temporal properties of region contours and their changes
(FD and AR parameters as feature vectors). In the sec-
ond set of experiments, we required that the fire contour be
seen in at least previous four frames. Note that three frames
are the minimum requirement to estimate parameters of our
AR(1) model. For each set of experiments, we repeated the
test ten times using one-tenth of fire and one-tenth of non-
fire region contours to train the SVM classifier, and using
the other region contours for test only. In this way, we used
many more fire examples than counter examples on train-
ing. This was intended to tilt the detector in favor of false
positives vs. false negatives as can be seen from the average
recognition rates shown in Table 1.

The results of experiments in Table 1 row A show that
our method is capable of recognizing fire contours us-
ing single images, for which we credit our spatial model
that searches for fire-like regions instead of fire-like pix-
els [3, 10]. False positive examples are images of sun and
mask lamps. However, it is clear from row B that temporal
information of shape dynamics indeed improve the detec-
tion performance significantly. In particular, we also tested
our algorithms with image data sets provided on the web
site of 2003 Workshop on Visual Surveillance and Perfor-
mance Evaluation of Tracking and Surveillance (VS-PETS
2003). These images had no positive fire examples and our
algorithms gave no false alarms in any of the image se-
quences.

4.1. Limitation
In Section 3.2, we approximate scale invariance for FD by
dense sampling of region boundary. However, spatial quan-
tization errors for small regions are likely to introduce con-

siderable noise in the FD. To avoid this problem, we place a
threshold to eliminate regions of small size (number of pix-
els). We also exclude large but thin regions. Consequently,
our algorithm does not detect very small or far away fire.

5. Conclusion
In this paper, we have proposed a vision based fire detec-
tion algorithm based on spectral, spatial and temporal prop-
erties of fires. Experiments show that our algorithm de-
tects fire with high accuracy, both in single images as well
as in image sequences. Our approach extends beyond fire
detection. The stochastic model that we use to represent
the dynamics of fire region can be applied to many other
stochastic visual phenomena, which is the underlying gen-
eral motivation for this paper.
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