
Scalable Hardware Support for Conditional Parallelization

Zheng Li
INRIA Saclay
Orsay, France

zheng.x.li@inria.fr

Olivier Certner
ST Microelectronics & INRIA Saclay

Orsay, France
olivier.certner@inria.fr

Jose Duato
Polytechnic University of Valencia

Valencia, Spain
jduato@disca.upv.es

Olivier Temam
INRIA Saclay
Orsay, France

olivier.temam@inria.fr

ABSTRACT

Parallel programming approaches based on task division/-
spawning are getting increasingly popular because they pro-
vide for a simple and elegant abstraction of parallelization,
while achieving good performance on workloads which are
traditionally complex to parallelize due to the complex con-
trol flow and data structures involved. The ability to quickly
distribute fine-granularity tasks among many cores is key to
the efficiency and scalability of such division-based paral-
lel programming approaches. For this reason, several hard-
ware supports for work stealing environments have already
been proposed. However, they all rely on a central hardware
structure for distributing tasks among cores, which hampers
the scalability and efficiency of these schemes.

In this paper, we focus on conditional division, a division-
based parallel approach which provides the additional bene-
fit, over work-stealing approaches, of releasing the user from
dealing with task granularity and which does not clog hard-
ware resources with an exceedingly large number of small
tasks. For this type of division-based approaches, we show
that it is possible to design hardware support for speeding
up task division that entirely relies on local information, and
which thus exhibits good scalability properties.

Categories and Subject Descriptors

C.1.4 [Processor Architectures]: Parallel Architectures;
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming

General Terms

Design, Performance

Keywords

Multicore, conditional parallelization, hardware support

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

1. INTRODUCTION
Because the advent of multi-cores may ultimately force

a large fraction of programmers to use and write parallel
codes, architecture research has been increasingly focused on
facilitating parallel programming. To date, a lot of attention
has been devoted to the issue of memory coherence, e.g.,
transactional memory [16]. In this paper, we focus on the
issues of task granularity, load balancing and task mapping,
which are largely orthogonal to memory coherence issues.

Programming models attempt to present an idealized and
simplified view of the architecture to the programmer. A-
mong the many different approaches, programming mod-
els based on tasks divisions are gaining traction. Cilk [8]
introduced the notion of spawning where parallelization is
described as dividing a task into two parts, a simple and el-
egant abstraction of parallelization. The different cores are
then load balanced by allowing each core to steal tasks from
another core through the Cilk run-time system. Intel TBBs
(Thread Building Blocks) [21] are largely based upon the
same principles, except they also propose a higher program-
ming abstraction which can hide the underlying spawning
and work stealing strategies. However both models require
the user to control task granularity: depending on where
the spawning statements are inserted, either too fine tasks
may be created where the overhead of parallelism will can-
cel the benefit of parallelization, or too coarse tasks may be
created which cannot take advantage of a large number of
cores. Worse, the trade-off is largely architecture-dependent
(number of cores, core performance, communication costs,
. . .), making the programs less portable. CAPSULE [20]
proposed to solve this issue by conditionally dividing tasks:
a task is split in two only if there is a core available to
host it and the division is deemed profitable; tasks are no
longer greedily spawned and queued, waiting for execution
or to be stolen by other cores. Provided that checking for
free cores is very fast (a few cycles), such probes can be in-
serted almost anywhere in the code, including within inner-
most loops. As a result, programmers need no longer worry
about task granularity and can insert division statements
anywhere they see a parallelization opportunity, including
very fine granularity; the run-time system later decides if it
is possible and profitable to take advantage of this potential
parallelism. Moreover, the more frequent the probes, the
faster the load is balanced among cores.

The performance of conditional division relies on the abil-
ity to quickly check if cores are available. This check can be

157

Figure 1: Central vs. Local throttling of tasks distribution;

black arrows represent probing operations; grey shades rep-

resent pressure (darker means more pressure). In (a), all

the probing requests from P1, P2 and P4 are sent to the

central shared memory. In (c), P1 propagates the probing

requests to its neighbors P2 and P4; P2 propagates the prob-

ing requests to P1, P3 and P5; P4 propagates the probing

requests to P1, P3 and P5.

either implemented through a shared variable indicating the
number of available cores [10] or a hardware register [20].
However, in both cases, the information is centralized in a
given memory location, as shown in Figure 1(a,b). And
as the number of cores increases, the time required to ac-
cess this centralized resource through the network increases,
making checks exceedingly time-consuming, thereby voiding
the benefits of conditional division. Reverting to work steal-
ing is not a solution either: besides losing the granularity
and load balancing benefits of conditional division, the best
work stealing strategies so far require a global knowledge of
the queues occupancy [12] in order to select the best queue
to steal from at any time. Proposed hardware support for
work stealing similarly relies on a central hardware table for
an efficient implementation of stealing [17].

In this paper, we show that it is possible to design a hard-
ware support for conditional division that entirely relies on
local control and information, i.e., no central resource or
access to memory is required for probing or division. In
a shared-memory multi-core using a network-on-chip as an
interconnect (e.g., a 2D mesh topology), resource probing
and task division can be efficiently implemented with sim-
ple modifications to the network interface and the router.
The key difficulty is to decide when task divisions should be

allowed without having a global knowledge of the multi-core
occupancy. For that purpose, we propagate the amount of
task division requests across the network in the same way
pressure propagates through a gas. Numerous division re-
quests occurring within a certain area of the network trans-
late into a local task pressure increase. If neighbor nodes are
free, these nodes will absorb the pressure by accepting the
tasks and the local pressure will decrease, as can be seen in
Figure 1(c,d). If they are not free, the pressure will grad-
ually propagate through busy nodes to free neighbor nodes
which can absorb it further away and the pressure will simi-
larly decrease, after a longer delay. Only when some node is
ready to accept a new task can the pressure decrease. A core
cannot divide tasks (increase the pressure) as long as its lo-
cal pressure is too high. In order to implement this strategy
and considering that each core is connected to a single rou-
ter, each router is augmented with a task queue whose occu-
pancy concretely serves as the task pressure value. Tasks are
passed from a task queue to a neighbor router along decreas-
ing task occupancy (task pressure) gradients until a core can
seize the task. In order to probe resources, a core checks
the task occupancy of its local router, a low-latency request
which statistically correlates to resource (cores) availability.
We empirically show that this resource probing and division
strategy provides an efficient and scalable implementation
of conditional division, compatible with future many-cores.

In Section 2, we present the principles of our approach,
the experimental methodology in Section 3, and the perfor-
mance evaluation in Section 4.

2. DISTRIBUTED CONTROL FOR PROB-

ING AND DIVISION
In this section, we present our overall probing and divi-

sion scheme. Figure 2 provides an overview of its operation.
The distributed control for probing and division is based on
a division-aware network in which the routers are each aug-
mented with a task queue. The latter contains divided tasks
resulting from successful probings/divisions, and which are
in the process of migrating to a host core to start execution.
Fast probing is achieved by having the core only consult its
local router’s task queue, without any need for communica-
tions among cores. The task queue occupancy is used as an
indication of the local multi-core workload and determines
whether probing is successful (division granted) or not. At
division time, a new task is not assigned to a host core but
rather starts traveling the network, dynamically finding a
router (and thus a core) which has a locally minimal pres-
sure. Traveling tasks thus propagate and balance task queue
occupancy (pressure) across cores over time.

2.1 Probing
In order to support fast probing, a one-bit link connects

the router to its local core through the network interface
and provides a binary div_en (division enabled) signal to
the core, indicating that the task queue has free slots. The
left part of Figure 2 sums up the interactions.

In the core, probing starts with the software capsule_-

probe() call. This call translates into a combination of a
load and a branch instructions. The load reads an I/O reg-
ister containing the div_en signal. A value of 1 indicates a
task queue occupancy lower than a preset threshold (50%
in our experiments), where division is allowed because the

158

Figure 2: Overview of the probing and division hardware support.

local task activity is considered low enough. The branch in-
struction jumps to the division routine if the condition is 1.
Since the load requires no memory access, it is always per-
formed in a single cycle. Moreover, most probes fail (many
more probes than divisions, usually) and the branch can be
predicted as not taken with a high probability of success.
Overall, both instructions require 2 cycles most of the time,
which make them compatible with frequent probing, includ-
ing within innermost loops.

2.2 Division
Task division is not synonymous with thread creation.

Since thread creation can take 100K cycles or more (e.g.,
Posix thread creation on INTEL 2.4 GHz Xeon, 2 cpus/-
node) [7], it would be inefficient to create a thread upon
each division. A division consists in passing all information
required to set an execution context and restart a thread
from a pool of statically allocated threads. Four data must
be passed: a task id, a function pointer, a pointer to the
function arguments, and a group pointer (used for synchro-
nization, later explained in Section 2.5). Figure 3 shows
the division code for QuickSort. When the probe succeeds,
the division primitive capsule_division is called with the
function pointer and the arguments pointer. The division
primitive also collects the task id and the group pointer,
and writes all the four data to the task queue. All these
writing requests to the network interface are performed us-
ing standard store requests to memory-mapped I/Os. In
order to ensure that the task is sent to the network without
delay and consequently is executed by an available core as
soon as possible, these store requests are not cached. The
observed mean division overhead is 24 cycles.

In order to speed up the task transmission in the network,
all task information is packaged into a single network packet
in the network interface. Figure 4 (a) shows the task packet
structure; it contains four flits, each flit is composed of 3
elements: a 1-bit packet type (task/data), a 2-bit flit type
(head/body/tail), and a fixed size payload.

The task packet differs from the data packet, see 4 (b), in
several ways. The task packet does not need the header flit
to store the destination node because the tasks dynamically
migrate across routers and the target node is not known a

Figure 3: Task division example code (QuickSort).

priori. Moreover, since the task packets are only transferred
between neighbor routers, they are only handled at the link
level, and therefore, each flit must be tagged with its type
(head/body/tail). On the other hand, data packets, which
include both request and response data packets, do not need
two bits per flit to distinguish between head/body/tail, be-
cause they are processed at the network level and all body
flits follow the same path as the header, even if some other
flits are interleaved. Finally, task packets and data packets
use different flit sizes. Although this is not usually feasible,
it is viable in this case because task packets are stored in the
task queues, whose slots are appropriately sized. Addition-
ally, network links are wide enough to transfer a flit from a
data packet in a single clock cycle. This implies that some
wires remain unused when transmitting task packet flits, but

159

this bandwidth waste is irrelevant because task packet traffic
is scarce.

Figure 4: Two NoC packet structures.

The task queue can simultaneously receive tasks from
both the local core and the neighbor cores, but one task
slot is always reserved for the local core. So, provided this
slot is free at the time of probing, the task queue guarantees
that it can receive the locally dividing task after signaling
div_en without requiring a queue reservation mechanism.

2.3 Migration
The router task queue is a double-ended queue. The head

tasks are the oldest tasks and the tail tasks are the most
recent tasks. The local core retrieves the tail tasks from
the queue, i.e., the most recent instead of the oldest tasks.
This may seem counter-intuitive but we empirically found
this strategy to be the best because tail tasks are often child
tasks of recently run tasks and will often use data from their
parents that most likely are still sitting in the local cache.
Therefore, it turns out that it is a better trade-off to privilege
cache locality over fast execution upon migration. Still, the
head tasks migrate first, i.e., the older the task, the faster it
migrates. A task that migrates will in turn be placed at the
tail of the receiving task queue and potentially be executed
more quickly by the connected free core.

Strategy. The task migration strategy aims at propa-
gating tasks from regions of the network with high activity
(numerous task divisions) to less active regions.

Ping-pongs. The naive migration strategy, illustrated on
a 2D mesh, is the following: if a router R21 (Rxy with x

indicating the mesh row and y the mesh column) contains
N21 tasks and a router R22 contains N22 tasks with N21 >

N22, then a task from R21 can migrate to R22. However,
since the task queue size is small (we varied it from 1 to 5
slots in our experiments), it often happens that N21 = N22+
1. After migration, N22 = N21 + 1, and within the next few
cycles, the task can migrate back from R22 to R21, inducing
ping-pongs between the two routers. In order to avoid such
ping-pongs, we introduce a safeguard where migrations are

allowed only if the task queue occupancy difference is greater
or equal to 2, i.e., N21 − N22 ≥ 2.

Definition of pressure. While the task queue occupancy is
a good measure of the local core activity, it has two weak-
nesses. First, it does not take into account whether the local
core itself is idle or not. Typically, if the core of a router
(e.g. R22) is idle, it should take a new task immediately. If
there are tasks waiting in its local task queue, it just exe-
cutes one; if there is no task, the neighbor containing ready
tasks (e.g. R21) shall move a task to the idle core, whatever
the task occupancy difference between them. As a result,
we define the pressure as follows:

f(p) = 2 × core_busy

+ N_slots
(1)

In the equation, core_busy is 1 when the core is busy and 0
when the core is idle, N_slots equals to the number of busy
slots in the queue, and the factor 2 before core_busy aims
at overriding the “difference of two” constraint if the local
core is idle.

Second, a slightly more complex notion is to migrate the
tasks along the most promising directions within the net-
work, so that they “find” regions of lesser activity. In or-
der to convey this pressure gradient, we want each router
to account not only for its own local activity, but also for
the activity of its neighbors. If that measure is included
in the local pressure, when R22 sends its pressure to R21,
it would implicitly account for the pressure of its neighbors
R12, R23, R32 (and R21 naturally). Finally, we define the
pressure using the following equation 2:

f(p) = 2 × local_core_busy

+ N_slots

+
P

neighbors
(core_busy)

(2)

where the term
P

neighbors
conveys the activity of the neigh-

bor routers.
In order to propagate the pressure information across rou-

ters, each router is connected to all its neighbor routers with
full-duplex status links, e.g., 2× 4-bit links for a 2D mesh if
the queue contains 2 ∼ 9 slots.

If multiple neighbor routers are eligible and have the same
pressure, they are randomly chosen, using a fast low-power
pseudo random generator [28, 4]. Conversely, a router only
accepts a single task from other routers every cycle.

Tasks propagate through the network until they reach a
region where few tasks are generated. Consider the exam-
ple in Figure 5: in (a), router 22 contains 3 tasks and has
the largest pressure; it chooses neighbor router 21, which
has the lowest pressure, as the migration target; after task
migration, a local load-balance is achieved in (b). There-
fore, if there is a division hot spot occurring in one region of
the mesh, all other regions will eventually see it through a
rising pressure level. While the pressure level of any router
is not necessarily instantaneously correlated with the global
multi-core load, it will eventually be correlated after tasks
have propagated. As a result, this local activity metric tends
towards a global activity metric over time.

Possible limitation and solution. In the special case where
only a single task is responsible for directly creating all tasks
in the network, the presented migration strategy remains
limited because it does not propagate tasks beyond a radius
of f(p) cores in each direction. However, there are two rea-
sons why this limitation has little consequence in practice.

160

First, in a 2D network, with as little as 2 slots/queue,
the propagation radius limit f(p) is equal to 6, which covers

(1 + 4 ×
Pf(p)

i=1 i) cores, i.e., 85 cores, which is well beyond
current and upcoming multi-cores. Second, in practice, it
is unlikely that only a single task/core will create all tasks;
in most cases, the child tasks create more tasks themselves,
which spreads out task divisions. We did not empirically
observe this situation/limitation for our target benchmarks
and multi-core configurations.

Still, for future work, we plan to investigate alternative
migration strategies with no such limitation. The source of
the limitation is the “difference of two” constraint, which is
itself motivated by ping-pongs. We plan to investigate alter-
native migration strategies with no such “difference of two”
constraint, which would only attempt to reduce, but not
eliminate, ping-pongs. To carry on with the physics anal-
ogy, the principle is to emulate “Brownian particles motion”
where tasks randomly seek their way through the network,
but are nonetheless statistically guided by lesser pressure
gradients. For that purpose, we would randomly select the
target router using a non-uniform random distribution based
on the pressure of immediate neighbors. We could further
reduce ping-pongs by monitoring the number of migrations
of each task, and slowing down highly migrating tasks. How-
ever, as mentioned before, we saw no empirical justification
for evaluating such more complex migration strategies for
now.

Figure 5: Task migration and load balance.

Transfers. There is a cost/performance trade-off associ-
ated with tasks transfers. Tasks must be propagated quickly
so that the overhead of parallelism remains minimal and the
overall scheme is beneficial even to small tasks. At the same
time, a dedicated routing network for tasks transfers would
be overkill as the number of tasks transfers remains small
compared to the amount of data movements.

We chose to use a special virtual channel [19] to transfer
tasks to neighbor routers. Virtual channels are commonly
used for Quality-of-Service purposes in NoC design [26].
They enable sharing a physical resource between logically
independent channels. In our case, the shared resources

are the inter-router wires/connections and the intra-router
switches. In a conventional virtual channel implementation,
multiple buffers are added for each input port in order to
implement connection multiplexing among different types
of transactions. In our case, there are two types of transac-
tions: data and tasks. For the data transaction, two virtual
channels are implemented (described below) in a conven-
tional way, i.e., each input port has two data buffers. How-
ever, for the task transaction, only a single buffer is added
(the task queue), shared by all input ports. This approach
both simplifies the task arbiter logic and keeps the imple-
mentation cost low.

Figure 6 illustrates our division-aware router architecture.
Each input port has a dedicated parser to detect whether the
current packet contains a task and to distribute the input
flit to the corresponding virtual buffers. The parser is just a
simple 1:3 demultiplexer, the select bits are the 1-bit packet
type and the 1-bit data type described in Figure 4. If the flit
is found to have a task payload, it is sent to the task queue,
otherwise it is further distinguished by the D-type bit and
sent to either the request data buffer or the response data
buffer. A 5:1 multiplexer is implemented before the task
queue. The switch routing arbiter gives priority to the task
queue over normal data buffers, ensuring fast propagation of
tasks packets; the arbiter even interrupts data packet trans-
mission when a task can be propagated.

Figure 6: Division-Aware router architecture.

The destination of a migrated task is determined dynam-
ically, as the task progresses through the network, at each
router/core and based on local task pressure. For that rea-
son, we use a store and forward switching strategy [23] to
transmit tasks packets, i.e., all the task packets must be in
the task queue before initiating the next hop. The store-
and-forward strategy can also avoid partial, and thus use-
less, task packets which would waste task queue slots. With
store-and-forward, a packet can reside in at most 2 routers
at any time. Each task slot in the queue can have any of
the 5 states indicated in Table 1. The task migrates be-
tween the routers through the following protocol. When a
router has ready tasks in the task queue and finds a target
router for its head task, it sends the first flit of the task
packet together with a request to the target router. If the
request is accepted, the target router switches its task queue
slot from empty to receiving and increases its task occu-

161

Task
states

Description

empty No task in the queue slot, router can receive a
new task.

ready
The task in the queue slot can be executed or
migrated.

receiving The queue slot is receiving a new task.

executing The task is being fetched by the local processor.

migrating The task is migrating to the neighbor.

Table 1: Possible task slot states in task queue.

pancy. The source router switches its task queue slot from
ready to migrating. At the next cycle, the source router
removes the first flit from the queue and sends one flit per
cycle from then on. After the last flit has been transmitted,
the source router switches its slot to empty and the target
router switches the slot to ready. The task transmission
latency from one router to a neighbor router is 4 cycles. If
the request is denied, the source router will check again the
neighbors occupancies and select another potential target
router.

In the absence of tasks packets, the data packets naturally
take advantage of the whole bandwidth. For data packets
transmission on a 2D mesh, we use the conventional static
x-y routing protocol and wormhole switching [1].

Deadlocks. In a multi-core system, even if the inter-
connection network implements deadlock-free routing, the
cache coherence protocol can introduce a dependence be-
tween request packets (e.g., an invalidation request or a
memory read) and response packets (e.g., an invalidation
acknowledgment or a read response). Those dependencies
can close the cycles and produce deadlocks. The simplest
way to avoid this issue is by using a different physical or
virtual network for request and response packets [18]. Thus,
we implement two virtual channels per link, in addition to
the special virtual channel mentioned above.

Because the task packets can follow any path (their path is
not determined by the routing algorithm), they could poten-
tially introduce deadlocks within task queues, which could
become full with task packets cycling among them. In order
to ascertain that this situation never occurs, we introduce
the following restrictions:

1. A local task injection (upon task division) is limited
by the div_en signal. A task injection is allowed only
when the task queue has a free slot.

2. Task packet transmission is only allowed if there are
2 more empty slots at the receiving node than at the
sending node, thus preventing queues from becoming
full during the transmission.

3. Task packet transmission requests can never form a
cycle because it would imply that every task queue in
the cycle contains two more empty slots than the queue
requesting transmission to it, which is impossible.

2.4 Execution
Upon receiving a migrated task, the local router of an

idle core wakes it up. For that purpose, each local router
receives a 1-bit idle signal from its core which indicates the
core status. If the router local task queue is not empty

and if the core is idle, the router picks the task at the tail
of the queue, and sends the corresponding payload to the
network interface. It then wakes up the core via an interrupt,
which calls a system routine in charge of retrieving the task
payload and initializing one of the statically allocated core
threads, see Figure 2. The initialization routine sets the
stack register to a pre-allocated stack to avoid dynamic stack
allocation, then it retrieves the function arguments from the
payload and initializes the corresponding registers, and sets
the PC, see Figure 7. Traditionally, the compiler optimizes
argument passing by using several registers instead of the
stack when there are few arguments; additional arguments
are passed by the stack. The thread will then start the
function encapsulated in the payload. If this function is
not in the local core instruction cache, the corresponding
instructions will be fetched from shared-memory.

Figure 7: PowerPC assembly code to retrieve the task pay-

load and execute the user thread routine.

2.5 Synchronization & termination
The recursive task division principle used in conditional

parallelization creates an opportunity for more flexible syn-
chronization. If the spawning and execution phases are fol-
lowed by a synchronization phase, as in Cilk, just completed
tasks will have to wait until their longest running child task
finishes execution. In order to avoid cores sitting idle in
this phase, those tasks’ contexts have to be saved so that
child tasks may spawn other sub-tasks to speed up their own
execution and global progress along the critical path. We
thus implement recursive synchronization as a “distributed”
scheme across the task hierarchy: tasks can wait for their
direct children, which in turn can spawn new tasks and wait
for them. Waiting tasks have their context saved to make
their core available again for computation.

However, if done improperly, this mechanism can lead to
an excessive amount of context switches. This would typi-
cally be the case if we used a POSIX-like construct where
threads can only wait for a single thread at once with the
join primitive, thus serializing the wait and having the par-
ent task wake and sleep again on the next children.

In order to circumvent that issue, the run-time system im-
plements the notion of a group of tasks: a parent task and
its child tasks belong to the same group. Figure 8 illustrates
this hierarchical task group synchronization scheme using
parallel QuickSort; 22 tasks are created across 7 groups,
separated by gray dotted lines. A counter is associated to
each group which indicates the number of living tasks within
the group. Upon a task division, the group counter is incre-

162

Figure 8: Synchronization groups and hierarchical syn-

chronization: tasks are represented as black circles and di-

visions as edges.

mented and a pointer to the group meta-data is passed to
the child task. Conversely, when one of the child tasks com-
pletes its execution, it accesses the group counter through
the group pointer to decrement it. When the seed task of the
group finally reaches the join statement, the group counter is
checked. If the seed task is the last living task in the group,
then synchronization is complete. If there are still several
living child tasks in the group, the run-time system saves
the task context and recycles the core. Later on, as the last
living task in the group finishes and decrements the group
counter to 0, it wakes up the group seed task. There is thus
at most one task context stored and 2 context switches per
group (one to suspend the task and another to finally make
it run again).

3. EXPERIMENTAL METHODOLOGY
Simulation and architecture. We use a cycle-level

multi-core simulator based on the UNISIM [3] simulation
framework. All benchmarks are fully simulated (no sam-
pling/trace is used). Our architecture is a shared-memory
multi-core, relying on directory coherence and the embed-
ded 32-bit PowerPC405 core; the processor configuration is
detailed in Table 2; we use 32-bit addresses in our simulator
implementation. For experiments up to 32 cores, we imple-
ment a standard 4x8 mesh on-chip network. The network
router architecture is described in Figure 6. Each router
has 5 physical channels (ports) including the local process-
ing unit channel. Each port of the router has two private
virtual input data buffers both holding eight 67-bit flits. All
5 channels share one common virtual buffer for task trans-
mission which can store two tasks, each of them holding four
35-bits flits. So each router has a total of 5 × 2 × 8 = 80
data buffer entries and 2 × 4 = 8 task buffer entries. Each
tile is an independent processing unit composed of a pro-
cessor, an instruction L1 cache, a data L1 cache and a local
interconnection (bus) and one bank of the shared L2 cache.
The detailed parameters of the tile components are shown
in Table 2.

The CAPSULE run-time system runs on top of the archi-
tecture, in each core, and all benchmarks rely on the run-
time system primitives for probing, division and synchro-
nization operations. The overhead of the run-time system
activity is factored in all performance measurements. More

Parameter Configuration

Core
PowerPC 405 32-bit RISC CPU with a scalar 5-
stage pipeline

I-Cache L1 Private, 32KB, 4 ways, random replacement

D-Cache L1
Private, 32KB, 4 ways, random replacement,
write-back

Cache L2

Shared and distributed across all tiles, aggre-
gately 16MB,10-cycle latency for local core, ∼ 40
cycles for remote cores with 32 cores, on average

Memory 100 cycles

Cache
Coherence

Full map directory protocol with write-invalidate
inter-cache policy

Bus
Latency

1 cycle

Task Queue 2 slots.

Table 2: Tile architecture configuration.

precisely, we do not separate the run-time system and bench-
mark activities and consider the benchmark + run-time sys-
tem as one workload and evaluate its overall performance.

Benchmarks suite. Adapting large existing parallel
benchmarks suites, such as Princeton Parsec benchmarks [5],
to a novel environment like CAPSULE or Cilk would re-
quire an excessive engineering effort. Moreover, the recent
Berkeley roadmap [2] advocates dwarfs (implementations of
algorithms) rather than full benchmarks as a more prac-
tical method for investigating novel parallel programming
approaches. Since our parallelization approach especially
targets applications with non-regular control flow and data
structures, we follow the dwarfs approach and develop a
set of relevant and well-known algorithms parallelized us-
ing CAPSULE. The algorithms are listed in Table 3. Their
implementation ranges from 306 lines for QuickSort to 1665
lines for Watershed. For each program, we select several
data sets (from 50 for QuickSort to 2 for Watershed).

In order to further analyze our strategy as a function of
task granularity, we have developed a task generator where
we can control the task granularity. We generate a constant
number of tasks (10000) but we randomly vary their granu-
larity. The task is a simple while loop (while(i<n) i++;),
where n is randomly set. We distinguish between small-
granularity tasks where n is varied between 1 and 10, and
between 100 and 200 for large-granularity tasks. The divi-
sion recursively splits the initial set of tasks. We control the
random generation so that the total workload is constant.

4. PERFORMANCE EVALUATION
In Figures 9 and 10, we compare the performance of our

hardware local division scheme against two software schemes:
a central and a local software division scheme.

The central software scheme corresponds to the software
shared-memory implementation of CAPSULE where all
probing and division requests require access to a few shared
variables stored in shared-memory. More precisely, probing
is realized by reading a shared variable/counter correspond-
ing to the number of available cores; if this counter is equal
to 0, then the probing fails. In order to speed up probing, it
is implemented as a two-step process: the shared counter is
first accessed speculatively, i.e., without locks; if the counter
is not null, then a second locked, and thus reliable, access is

163

Figure 10: Central vs. local division schemes using benchmarks.

Benchmark Description Lines Datasets

QuickSort
The QuickSort sorting
algorithm

306
50 arrays of
1,000∼500,000
elements

SpMxV

Sparse matrix-vector
multiply kernel, the
matrix is stored using
the standard Harwell-
Boeing format

342

40 sparse matri-
ces from univer-
sity of Florida
collection

Connected-
Compo-
nents

An algorithm for
uniquely labeling con-
nected components
of a graph by using
depth-first search.

634
5 graphs with
10,000∼100,000
nodes

Barnes-
Hut

A divide-and-conquer al-
gorithm to find clusters
of particles in the N-
body problem.

815
2 datasets of 128
and 1,000 bodies

Watershed

An image segmentation
algorithm that splits an
image into areas and la-
bels them, based on the
topology of the image.

1665

2 images of
32*32 and
512*512 pixels

Table 3: Benchmark suite description.

performed to validate the speculative information; the divi-
sion then requires access to a number of shared variables for
bookkeeping purposes. As the number of cores increases, the
copy of the shared counter they contain is less likely to be
accurate and it gets invalidated more often. Moreover, due
to cache coherence, the copies of the shared counter need to
be canceled or updated more frequently as the average di-
vision rate increases with the number of cores. Finally, the
average latency to access the proper information through the
network (shared variables required for probing and division)
increases as well with the number of cores. As a conse-
quence, while the central division scheme performs well for
4 and 8 cores [10], it does not scale as well as the local di-
vision scheme, as shown in Figures 9 and 10. Compared to
the two local schemes, the difference is negligible for 2 and 8
cores, becomes noticeable for 16 cores and is significant for
32 cores.

The software local probe scheme is intermediate between
the software central probe scheme and the hardware local
probe scheme. A core only probes its neighbors, and the
probing is done in software. For that purpose, each core
maintains two variables. One variable corresponds to the
core status (free/busy), while the other mirrors the status
of the neighbor cores. The latter is updated by neighbor

Figure 9: Central vs. local division schemes using the task

generator.

cores when it changes state, but since this update is not
instantaneous, the variable cannot be considered to hold re-
liable information. When a core wants to probe its neigh-
bors, it checks the status of the neighbor cores through its
local variable in order to achieve a fast probe. If this first
step is successful for one of the neighbor cores, it has to be
confirmed by locking the neighbor core local status variable,
confirming its availability and finally making the reservation.
Only then can the division be initiated.

This scheme breaks the scalability limitations of the cen-
tral software scheme, but it is significantly less efficient than
hardware probing. Using the task generator, we find that the
local hardware scheme is 299% faster than the central soft-
ware scheme for 32 cores, and 32% faster than the local soft-
ware scheme for small-granularity tasks (frequent probing),
see Figure 9. The difference remains large for large-granu-
larity tasks with respectively 38% and 20%. The results are
further confirmed with the benchmarks, with a 35% average
improvement over the central software scheme and a 20%
performance improvement over the local software scheme.

We further highlight the scalability of the local probing/-
division approach from 1 to 32 cores in Figure 11. A more

164

Bench Parallelism
divisions # divisions # divisions # divisions # divisions # divisions
% divisions % divisions % divisions % divisions % divisions % divisions
(on 1 core) (on 2 cores) (on 4 cores) (on 8 cores) (16 cores) (on 32 cores)

QuickSort 18619
27 98 1031 2594 11976 18217

0.15 0.53 5.54 13.93 64.32 97.84

SpMxV 8204
55 134 520 560 1107 2122

0.67 1.63 6.34 6.83 13.49 25.87

Connected-
Components

99751
3 8 48 65 126 235

0.00 0.01 0.05 0.07 0.13 0.24

Barnes-Hut 93
7 38 67 76 84 85

7.53 40.86 72.04 81.72 90.32 91.4

Watershed 243
5 11 43 62 89 195

2.06 2.23 17.7 25.51 36.63 80.25

Table 4: Divisions (# of divisions and % of probings resulting in divisions).

in-depth look at probings and divisions, see Table 4, helps
better understand the remaining scalability limitations. For
some programs, like Connected-Components, performance is
limited by intrinsic parallelism (e.g., the actual number of
connected components in a graph), hence the low division
rate (0.24% for 32 cores). Note, however, that a low division
rate is not necessarily synonymous with poor performance.
Consider SpMxV, for instance: it performs well with only 25%
divisions granted for 32 cores; unlike for Connected-Compo-
nents, its division rate increases steadily with the number
of cores, so that the low division rate only indicates signifi-
cant unexploited potential parallelism rather than a lack of
parallelism. At the same time, a high division rate is nei-
ther synonymous with high performance. QuickSort, with
97.84% division rate for 32 cores, scales well but in a lim-
ited manner. Since all sub-lists can be sorted independently,
the QuickSort algorithm is intrinsically parallel; however, at
each pivot step, the sub-list is again split into two parts, and
this partition operation is sequential (scanning the whole list
and comparing each element against the pivot). When the
list is very unbalanced, this partition operation delays the
creation of new sub-lists; artificially removing this delay im-
proves performance by 156%, resulting in 23.5 speedup for
32 cores; so the performance limitations of QuickSort are
tied to the algorithm.

Figure 11: Scalability of local division scheme.

We now investigate in more details the behavior of the
local division scheme and its parametrization. In Figure 12,
we indicate a distribution of the number of hops across the
network of divided tasks for 32 cores. A significant fraction
of divided tasks actually remain on the same core (0 hop,
see SpMxV for instance): a task is divided, but because the
parent task turns out to have very little remaining work, it
quickly terminates after division, and the core fetches the
tail task (of the task queue), which is often the recently
divided child task, hence the 0 hop. As mentioned in Sec-
tion 2.3, fetching the tail task is more efficient in such cases

because the data for the child task already reside in the local
cache; and, overall, we found that fetching the tail task is
the better trade-off. As can be expected, tasks tend to mi-
grate to neighbor nodes (high fraction of 1-hop migrations),
but almost all programs do take advantage of long-distance
migrations (2 to 5 hops); some programs like Watershed of-
ten send tasks farther away because they start with multiple
active tasks, almost instantaneously creating high task pres-
sure.

Figure 12: Task migration hops in the network (32 cores).

In Figure 13, we investigate the impact of the number of
slots of the task queue on performance. Note that for a high
number of slots, the conditional division approach tends to-
wards a work-stealing approach because a large number of
divisions/Spawnings are allowed before resources are known
to be available. Interestingly, we note that queues with a
small number of slots tend to behave better for 3 out of 5
benchmarks, while the remaining 2 benchmarks are largely
insensitive to the task queue size. When the queue size is
large, tasks reside longer in queues and thus tend to migrate
more easily and more often, inducing more long-latency data
communications through the network. Small queue sizes
have the advantage of imposing more stringent constraints
on task divisions and thus task migration. At the same
time, the overall scheme does take advantage of parallelism
by dividing when necessary, and of the number of cores by
allowing long-distance migrations when necessary, as men-
tioned before and in Figure 12. QuickSort and Barnes-Hut

are rather insensitive to the queue size because of the low
parallelization, see Table 4, and the division rate is high for
these two benchmarks.

Finally, we investigate the impact of the migration stra-
tegy, particularly the decision to forbid migration to a neigh-
bor core as long as the task queue occupancy difference with
the target core is lower than 2. In Figure 14, we show that
when an occupancy difference of 1 slot only is required, the
performance is lower because of ping-pong effects, as men-
tioned in Section 2.3. After migration, the respective occu-

165

Figure 13: Impact of task queue size.

pancy of the source and target queues is reversed and the
task could migrate back, instead of following the gradient of
lowest occupancy across cores.

5. RELATED WORK
There has been substantial research on work dispatch stra-

tegies for regular multi-processors and cluster-like architec-
tures, which led to the rise of the work sharing and work
stealing paradigms [27].

Work stealing received much attention early on [15] [9] and
became really popular with Cilk [8]. Cilk proposed a simple
work stealing strategy that chooses the victim processor ran-
domly across a whole machine and was proved efficient for a
restricted class of parallel applications. In order to improve
locality for SMP clusters, Distributed Cilk [22] biased steals
so that they occur more frequently on neighbor processors.
Later, a study of load-balancing on wide-area networks with
the Satin environment [25] showed how to extend simple
random stealing by performing local steals while a remote
steal is pending, preventing the scheme performance from
dropping as communication latencies increase. However,
such mechanisms still eventually cause accesses to the task
queues of remote processors, which increases network traffic
and average communication latencies, especially with higher
numbers of processors. Moreover, they may randomly put
immoderate pressure on close nodes, leading to local traffic
congestion.

DASH [24] also proposed hardware support for scheduling
large amounts of tasks. It includes local task queues that
pass tasks to a global queue when they overflow; scheduling
is performed in a centralized manner, at regular intervals.
More recently, NDP [11] introduced hardware support to
reduce the communications and context switches overheads.
Task and data queues reside in the routers to speed up data
transfers. The scheduling policy, however, is still random
stealing and has the same scalability limitations as men-
tioned in Section 1. Carbon [17] further improved upon the
idea of managing tasks in hardware by grouping all the task
queues into one hardware component, called the Global Task
Unit (GTU), which enables fast work stealing. Moreover, it
allows cores to prefetch tasks in order to reduce the GTU ac-
cess latency. But it remains a central hardware component,
with similar scalability limitations.

Our approach differs from these works in two ways. First,
it relies on conditional division which removes the need for
work stealing queues with unbounded length. The latter
indeed requires a mechanism to store/fetch tasks into/from
main memory when hardware queues are full. However, our

scheme still provides good load balancing properties by tak-
ing advantage of resources as soon as they are available,
while not clogging currently busy resources. Second, our
approach waives any central hardware structure by strictly
relying on local hardware support for managing task divi-
sion and migration. The fast gradual propagation of tasks
across the network is a form of global prefetching achieved
through local control rules. Moreover, this scheme actually
causes less task meta-data communications than a GTU,
since tasks are routed to their destination directly instead
of having to pass by the GTU first.

With respect to the NoC implementation, our hardware
support shares several features with QoS hardware supports,
used to guarantee low-delay jitter for real-time applications.
AEthereal [13] defines a router-based NoC architecture that
supports both guaranteed service (GS) and best-effort ser-
vice (BES) by implementing two different routers. Each
router has its own data buffer, with the GS router having a
higher priority. The MANGO network [6] implements vir-
tual channels (VCs) as separate physical buffers; GS con-
nections are established by allocating a sequence of VCs
through the network. Vellanki et al. [26] supports guar-
anteed throughput traffic by dividing the virtual channels
between GS and BES levels. However all these works fo-
cus on communications, they do not consider core compu-
tations, task movements or load-balancing issues. RCA [14]
uses a special low-bandwidth monitoring network to propa-
gate congestion information among adjacent routers, in or-
der to improve global network balance; still, it focuses on
the communication aspects. In our architecture, the task
queue behaves as a virtual channel from a communication
standpoint, but it also assists the core and router for task
division and migration decisions.

6. CONCLUSIONS AND FUTURE WORK
We present a hardware support for conditional division-

based approaches to parallel programming. The hardware
support essentially consists of low-cost add-ons in the routers
of the on-chip network. This hardware support is shown to
improve the performance scalability of the parallel division
approach by entirely localizing the division decisions, and
access to centrally stored information is no longer necessary.
At the same time, the division approach combined with this
hardware support is shown to outperform a central division
scheme, even though the central scheme has a more accurate
view of the availability of resources/cores within the multi-
core architecture.

Future work will include coupling this division approach
with a prefetching scheme for faster transfer of the data of
migrating tasks. Moreover, the purely local decision scheme
makes it compatible with distributed-memory architectures.
We are also investigating high-level software representation
of data structures which, coupled with our division approach,
may let the run-time system and hardware support entirely
drive the migration of data, providing the scalability ben-
efits of distributed-memory architectures with almost the
same ease of programming as shared-memory architectures.

7. REFERENCES
[1] K.M. Al-Tawil, M. Abd-El-Barr, and F. Ashraf. A

survey and comparison of wormhole routing
techniques in a mesh networks. Network, IEEE,
11(2):38–45, Mar/Apr 1997.

166

Figure 14: Impact of task migration strategy.

[2] Krste Asanovic, Ras Bodik, Bryan Christopher
Catanzaro, Joseph James Gebis, Parry Husbands,
Kurt Keutzer, David A. Patterson, William Lester
Plishker, John Shalf, Samuel Webb Williams, and
Katherine A. Yelick. The landscape of parallel
computing research: A view from berkeley. Technical
Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, Dec 2006.

[3] David August, Jonathan Chang, Sylvain Girbal,
Daniel Gracia-Perez, Gilles Mouchard, David A.
Penry, Olivier Temam, and Neil Vachharajani.
Unisim: An open simulation environment and library
for complex architecture design and collaborative
development. IEEE Comput. Archit. Lett., 6(2):45–48,
2007.

[4] M.J. Bellido, A.J. Acosta, M. Valencia, A. Barriga,
and J.L. Huertas. A simple binary random number
generator: new approaches for cmos vlsi. In Circuits
and Systems, 1992., Proceedings of the 35th Midwest
Symposium on, pages 127–129 vol.1, Aug 1992.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal
Singh, and Kai Li. The parsec benchmark suite:
Characterization and architectural implications. In
Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques,
October 2008.

[6] Tobias Bjerregaard and Jens Sparso. A router
architecture for connection-oriented service guarantees
in the mango clockless network-on-chip. In DATE ’05:
Proceedings of the conference on Design, Automation
and Test in Europe, pages 1226–1231, Washington,
DC, USA, 2005. IEEE Computer Society.

[7] Barney Blaise. Posix threads programming.
https://computing.llnl.gov/tutorials/pthreads.

[8] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson,
K. Randall, and Y. Zhou. Cilk: An efficient
multithreaded runtime system. In Proceedings of the
5th Symposium on Principles and Practice of Parallel
Programming, 1995.

[9] F. Warren Burton and M. Ronan Sleep. Executing
functional programs on a virtual tree of processors. In
FPCA ’81: Proceedings of the 1981 conference on
Functional programming languages and computer
architecture, pages 187–194, New York, NY, USA,
1981. ACM.

[10] Olivier Certner, Zheng Li, Pierre Palatin, Olivier
Temam, Frederic Arzel, and Nathalie Drach. A

practical approach for reconciling high and predictable
performance in non-regular parallel programs. In
DATE ’08: Proceedings of the conference on Design,
automation and test in Europe, pages 740–745, New
York, NY, USA, 2008. ACM.

[11] Julia Chen, Philo Juang, Kevin Ko, Gilberto
Contreras, David Penry, Ram Rangan, Adam Stoler,
Li-Shiuan Peh, and Margaret Martonosi.
Hardware-modulated parallelism in chip
multiprocessors. SIGARCH Comput. Archit. News,
33(4):54–63, 2005.

[12] G. Contreras and M. Martonosi. Characterizing and
improving the performance of intel threading building
blocks. In Workload Characterization, 2008. IISWC
2008. IEEE International Symposium on, pages 57–66,
Sept. 2008.

[13] Kees Goossens, John Dielissen, and Andrei Radulescu.
Aethereal network on chip: Concepts, architectures,
and implementations. IEEE Des. Test, 22(5):414–421,
2005.

[14] Paul Gratz, Boris Grot, and Stephen W. Keckler.
Regional congestion awareness for load balance in
networks-on-chip. In HPCA, pages 203–214, 2008.

[15] Robert H. Halstead. Multilisp: a language for
concurrent symbolic computation. ACM Transactions
on Programming Languages and Systems, 7:501–538,
1985.

[16] Lance Hammond, Vicky Wong, Mike Chen, Brian D.
Carlstrom, John D. Davis, Ben Hertzberg,
Manohar K. Prabhu, Honggo Wijaya, Christos
Kozyrakis, and Kunle Olukotun. Transactional
memory coherence and consistency. ISCA ’04:
Proceedings of the 31st annual international
symposium on Computer architecture, 0:102, 2004.

[17] Sanjeev Kumar, Christopher J. Hughes, and Anthony
Nguyen. Carbon: architectural support for
fine-grained parallelism on chip multiprocessors. In
ISCA ’07: Proceedings of the 34th annual
international symposium on Computer architecture,
pages 162–173, New York, NY, USA, 2007. ACM.

[18] Daniel Lenoski, James Laudon, Kourosh
Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta,
John Hennessy, Mark Horowitz, and Monica S. Lam.
The stanford dash multiprocessor. Computer,
25(3):63–79, 1992.

[19] Robert Mullins, Andrew West, and Simon Moore.
Low-latency virtual-channel routers for on-chip

167

networks. In ISCA ’04: Proceedings of the 31st annual
international symposium on Computer architecture,
page 188, Washington, DC, USA, 2004. IEEE
Computer Society.

[20] Pierre Palatin, Yves Lhuillier, and Olivier Temam.
Capsule: Hardware-assisted parallel execution of
component-based programs. In Microarchitecture,
2006. MICRO-39. 39th Annual IEEE/ACM
International Symposium on, pages 247–258, Dec.
2006.

[21] Chuck Pheatt. Intel R©threading building blocks. J.
Comput. Small Coll., 23(4):298–298, 2008.

[22] Keith H. Randall. Cilk: Efficient Multithreaded
Computing. PhD thesis, Department of Electrical
Engineering and Computer Science, Massachusetts
Institute of Technology, May 1998.

[23] Kumar Shashi, Jantsch Axel, Soininen Juha-Pekka,

Forsell Martti, Millberg Mikael, ÃŰberg Johny,
TiensyrjÃd’ Kari, and Hemani Ahmed. A network on
chip architecture and design methodology. In ISVLSI
’02: Proceedings of the IEEE Computer Society
Annual Symposium on VLSI, page 117, Washington,
DC, USA, 2002. IEEE Computer Society.

[24] Chulho Shin, Seong-Won Lee, and Jean-Luc Gaudiot.
The need for adaptive dynamic thread scheduling. In
High performance scientific and engineering
computing: hardware/software support, pages 45–59,
Norwell, MA, USA, 2004. Kluwer Academic
Publishers.

[25] Rob V. van Nieuwpoort, Thilo Kielmann, and
Henri E. Bal. Efficient load balancing for wide-area
divide-and-conquer applications. In PPoPP ’01:
Proceedings of the eighth ACM SIGPLAN symposium
on Principles and practices of parallel programming,
pages 34–43, New York, NY, USA, 2001. ACM.

[26] Praveen Vellanki, Nilanjan Banerjee, and Karam S.
Chatha. Quality-of-service and error control
techniques for mesh-based network-on-chip
architectures. Integr. VLSI J., 38(3):353–382, 2005.

[27] M. H. Willebeek-LeMair and A. P. Reeves. Strategies
for dynamic load balancing on highly parallel
computers. IEEE Trans. Parallel Distrib. Syst.,
4(9):979–993, 1993.

[28] S. Zhou, W. Zhang, and N. Wu. An ultra-low power
CMOS random number generator. Solid State
Electronics, 52:233–238, February 2008.

168

