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INTRODUCTION CSA-GMM OVERVIEW
« Segmentation of brain magnetic resonance (MR) Input: tareet image and a set of
images into gray matter (GM), white matter (WM), images with ground truths
and cerebrospinal fluid (CSF) can serve as a basic
step for diagnosis of brain disorders and investigation Stage One v
of disease mechanisms. Initial parameters of GMM Probabilistic atlas
_ _ _ by probabilistic atlas : generation
« Since manual segmentation performed by medical .
professionals is time-consuming, expensive and A -
subject to observer variability, automated brain MR m=iﬁpﬂtﬂﬂtlﬂl Sf'_l““ﬂﬂﬂ of Output the best solution;
image segmentation has attracted extensive research ) g;wa o T GMM is estimated
attention. Among them, Gaussian Mixture Model ok the sommtions based
(GMM) based segmentation is one of the most y| LT oINS Yea on l
_ affinity function
commonly used techniques.

Voxel classification by

 In this study, we incorporate the prior anatomical Stage Bayes Classifier Stage
information embedded in the probabilistic brain atlas Two Converge? l Three
into the segmentation process to facilitate the
No Output:

parameter initialization. Then, we propose the CSA-
GMM algorithm for 3D brain MR image segmentation Generate next generation

by using clonal selection algorithm (CSA). Sﬂ;ll;t;ﬂ;; ;EI.T;SLTS?

Final classification results

METHODOLOGY
Probabilistic Brain Atlas Construction

EXPERIMENTS

Experiments on BrainWeb Dataset
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GMM-Based Brain MR Image Segmentation
With the optimal parameters ©*, the class label of each
voxel can be easily estimated by using Bayes classifier:

O* =arg max ln(p(XI@))

p(X10) = T2 1 (Xh=1 wieg Cxiliie, X))

CSA for GMM Estimation

1. Initialize a population of antibodies randomly; The accuracy of four segmentation algorithms in 18 T1-weighted clinical brain MR images
2. Calculate the affinity of each antibody in the population Segmentation Accuracy Segmentation of GM
with the specific antigen; 0% 1005

3. Select n best individuals from the population and
reproduce (clone) them proportionally to their affinity;

4. Mutate these cloned antibodies with a rate In
inverse proportion to their affinity; o% ——
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S. Use th.e.mutated antibodies to update the memory set T SPmM L+ GAEM —e—proposed s ke 6 3 m b 10111215 14 15 16 17 18
and remaining set;

6. Replace some low affinity antibodies with random Segmentation of WM Segmentation of CSF

antibodies;
/. Repeat Steps 2 to 6 until a stop criterion is met.
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e This paper proposes a new brain MR image En%ll 5 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 . L 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
segmentation scheme, which combines the spatial
information with the CSA and the GMM based _— SPM ——FSL 4 GAEM —@—Proposed
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