
Int J Parallel Prog
DOI 10.1007/s10766-009-0119-4

A Self Distributing Virtual Machine
for Adaptive Multicore Environments

Jan Haase · Andreas Hofmann ·
Klaus Waldschmidt

Received: 25 February 2008 / Accepted: 23 September 2009
© Springer Science+Business Media, LLC 2009

Abstract The use of parallel systems is no longer limited to dedicated clusters as
multicore chips are more and more appearing in embedded applications. To meet
power, performance and cost targets these systems need to be adaptive. The recon-
figuration features of recent FPGAs make new approaches for this type of parallel
computing possible: Dynamic reconfiguration at runtime offers an important step to
adaptive behavior of systems-on-chip (SoCs). This article analyzes the challenges
of such an adaptive SoC. It is shown that many of the requirements for an adaptive
FPGA-realization are met by the SDVM, the scalable dataflow-driven virtual machine
which has been successfully implemented and tested on a cluster of workstations.
The SDVM has evolved to a virtualization layer for multicore-FPGAs, now called
SDVMR . This virtualization layer allows a transparent runtime-reconfiguration of the
underlying hardware to adapt to the changing system environment. Results for a basic
application for both systems are presented.

Keywords Adaptive systems · Multicore systems · FPGA · Virtualization

J. Haase (B)
Institute of Computer Technology, Technical University Vienna, Gußhausstr. 27-29/384,
1040 Vienna, Austria
e-mail: haase@ict.tuwien.ac.at

A. Hofmann · K. Waldschmidt
Technical Computer Sc. Dep., J.W. Goethe-University, Box 11 19 32, 60054 Frankfurt, Germany
e-mail: ahofmann@ti.cs.uni-frankfurt.de

K. Waldschmidt
e-mail: waldsch@ti.cs.uni-frankfurt.de

123

Int J Parallel Prog

1 Introduction

In the beginning parallel systems were implemented as dedicated clusters. The rap-
idly increasing number of transistors per chip enables the integration of multiple cores
which promises a significant speed-up if the parallelism of the application can be
fully exploited. So, these days parallel systems more and more consist of multicore
processors, multicore embedded systems, or even multicore FPGA-based devices.

As environmental parameters change frequently and sometimes fast, especially
for embedded systems, a static configuration is disadvantageous. Multicore systems
offer new degrees of freedom to adapt to the changing environment at runtime if each
core—whether it is a general-purpose or an application specific one—can be config-
ured individually and tasks can be shifted between the cores. Configuration by hand of
such a dynamically changing system is hard or even impossible. Thus the adaptivity
should be managed by the system itself autonomously. Techniques to implement the
adaptivity like self-diagnosis, self-configuration, and self-optimization are currently
under development and known from the subject of biologically inspired or organic
computing [1].

Modern platform FPGAs featuring multiple processor cores and the ability to recon-
figure themselves at runtime provide a good basis to develop such adaptive systems.
However, the long familiar problems of performance, reliability, flexibility, and power
management still exist in FPGAs. To efficiently use multicore FPGAs a parallel sys-
tem must be created which includes every core. To optimize the power management
the number of active, or even configured, cores must be adapted dynamically to the
current workload. Furthermore, the configurable logic has to be used to implement
application specific function units to accelerate performance.

To make these features of an FPGA manageable a software model is needed, which
hides the—due to runtime reconfiguration—changing hardware system from the appli-
cation software. The scalable dataflow-driven virtual machine (SDVM) is such a virtu-
alization of a parallel, adaptive and heterogeneous cluster of processing elements [2,3].
Thus, it is well suited to serve as a virtualization layer for multicore FPGAs. The FPGA
virtualization layer, called SDVMR , is currently under development.

This article shows the evolution of the virtualization layer for a cluster environment,
the SDVM, to the software model for dynamic reconfigurable Multicore FPGAs, the
SDVMR . Section 2 describes the concept and realization of the cluster virtualiza-
tion layer. Section 3 analyzes the basic requirements of multicore systems in general
and dynamic reconfigurable FPGAs in particular that shape the development of the
SDVMR . Section 4 shows some results for a simple application, namely the Romberg
numerical integration algorithm, both for the cluster and the FPGA-version of the
SDVM. The article ends with a conclusion in Sect. 5.

1.1 Related Work

The usage of adaptive features to tackle the complexity of modern systems-on-chip
incorporating multiple cores is extensively covered by Lipsa et al. [4]. Their paper pro-
poses a concept that applies autonomic or organic computing principles to hardware

123

Int J Parallel Prog

designs. The paper does not present any kind of implementation, neither as software
nor as hardware. The SDVM as a virtual machine for FPGAs is a software-realization
of these autonomous principles based on today’s FPGA technology.

Lysecky et al. [5] developed techniques for dynamic hardware/software partitioning
based on on-line profiling of software loops and just-in-time synthesis of hardware
components called WARP. They also present a dynamic FPGA routing approach which
can be used to solve the routing and placement problem of reconfigurable components
at runtime [6]. However, their approach relies on a special, to our knowledge not yet
implemented, FPGA architecture called configurable logic architecture [7]. In con-
trast, the virtualization layer implementation presented in our article targets existing
FPGA hardware namely the Xilinx Virtex-4 families.

2 The Scalable Dataflow-Driven Virtual Machine (SDVM)

The scalable dataflow driven virtual machine (SDVM) [2,3] is a dataflow driven paral-
lel computing middleware (see Fig. 2). It was designed to feature undisturbed parallel
computation flow while adding and removing processing units from computing clus-
ters (i.e. a gang of interconnected computing devices). Applications for the SDVM
must be cut to convenient code fragments (of any size). The code fragments (“mic-
rothreads”) and the microframes (a data container for parameters needed to execute
them, see Fig. 1) will be spread automatically throughout the cluster depending on the
data distribution [3].

Each processing unit which is encapsulated by the SDVM virtualization layer and
thus acts as an autonomous member of the cluster is called a site. The sites consist of
a number of modules (managers) with distinct tasks (see Fig. 3) and communicate by
message passing.

Currently the SDVM is implemented as a prototypical UNIX-daemon to be run on
each participating machine or processor, creating a site each [8].

2.1 The SDVM Daemon

The SDVM daemon consists of several managers with different fields of responsibil-
ity. Some deal with the execution of code fragments, some attend to communications
with other sites, some are concerned with the actual decision-making (see Fig. 3).

IDMF IDMT

input parameters

target addresses

microthreadmicroframe

...

...

Fig. 1 Microframes contain a pointer to a microthread and space for all parameters needed for its execution

123

Int J Parallel Prog

hardware type 1 hardware type 2 hardware type n

SDVM virtual layer

application 1 application m

SDVM site SDVM site SDVM site

...

...

processing unitprocessing unitprocessing unit

Fig. 2 The processing units are encapsulated by an SDVM site each. The sites form the SDVM virtualiza-
tion layer. The applications do not see the underlying (possibly heterogeneous) hardware

Fig. 3 The cluster consists of a number of sites connected over any kind of network. Each site in turn
is composed of a number of modules (called managers) with distinct tasks. The attraction memory, for
example, manages the microframes which hold the parameters to execute the corresponding code fragment

2.1.1 The Execution Layer

The execution layer is responsible for the handling and execution of the code and data.
Furthermore, it provides I/O virtualization.

Microframes waiting for more parameters as well as global memory objects are
kept in a so-called attraction memory. If a data object is requested, it is first sought
locally. In case of a miss the site it actually resides on is determined and then the data
object is moved or copied to the local site.

Microthreads are only requested when they are to be executed locally. The local
caching of microthreads and the compilation of microthreads, if needed, is done by
the code manager.

123

Int J Parallel Prog

The processing manager executes the microthread/microframe pair. To accom-
plish this, it provides an interface for the microthread to read the parameters of
its microframe. When the execution has finished the processing manager deletes the no
longer needed microframe. To hide network latencies when e.g. an access to a remote
part of the global memory is needed, the processing manager may execute several
microthread/microframe pairs concurrently.

The input/output manager manages user interaction and accesses local resources
like hard disks or printers.

2.1.2 The Communication Layer

The communication layer manages sending and receiving of messages between
sites. The message manager is the central communication hub for all other man-
agers. It generates serialized data packets to be sent to other sites, adds informa-
tion about the local site and determines its address before optionally passing them
to the security manager. This manager may then encrypt and sign the data packets
to avoid e.g. eavesdropping and spoofing. On the receiving site it will validate the
signature and decrypt the message, if necessary, before passing it to the message
manager.

The network manager is the part of the SDVM which is responsible for the actual
transportation of the data packets. For the currently existing cluster realization it uses
TCP/IP to send data to other sites. For an implementation of the SDVM on multipro-
cessor chips it would have to use the on-chip network to pass data to the receiving site.

2.1.3 The Decision Layer

While the responsibilities of the managers in the execution and communication layers
are more or less usual in computer systems, the decision layer implements the more
sophisticated parts and potential self-x-properties of the SDVM.

Scheduling
Manager

Attraction

Memory

Processing

Manager

Other site’s
Scheduling
Manager

Code

Manager

help request

work
requestcode

availablecode
request

complete
microframe

executable
microframe

incomplete
microframe

or

Fig. 4 The SDVM’s scheduling concept. Incomplete microthreads still wait for certain parameters. Com-
plete microframes contain all needed parameters but the corresponding microthread is still missing. When
the microthread is received, the microframe becomes executable

123

Int J Parallel Prog

The SDVM features distributed scheduling which is done by the scheduling man-
ager (see Fig. 4): Incomplete microframes are stored in the Attraction memory, until
all needed parameters were received and filled in. The completed microframes (having
all needed parameters but the corresponding microthread is still missing) are given
to the Scheduling Manager which triggers the Code Manager to fetch the missing
microthread. When the microthread is received, the microframe becomes executable.
The site’s own Processing Manager then requests work and receives an executable
microframe. If the Scheduling Manager can not provide work, it requests microframes
from other sites (help request).

Most scheduling methods assume a central calculation of the execution order, com-
bined with a centrally managed load balancing. They take advantage of the accord
that all information is collected on one site and thus good scheduling decisions can be
made. However, in big clusters this central machine may become a bottleneck or even
a single point of failure.

The SDVM works without client-server concepts as far as possible. Therefore, the
scheduling is done autonomously by each site. The sites do not have knowledge about
the current global execution status of the application, but only about the locally avail-
able executable microframes. Some information can be extracted in advance, though:
The dataflow graph of the application contains all microthreads and therefore the crit-
ical path of an application and regions of high data dependencies can be detected.
These parts will then be executed with higher priority resp. executed preferably on the
same site.

The site manager and the cluster manager collect and distribute data about the local
site and the whole cluster, respectively. The collected data provides the basis for the
algorithms that implement the self-x properties of the SDVM. One example is the
energy manager which controls the energy state of the local site. The energy manager
sets the local energy state according to a given energy management policy depending
on factors like current and past resource utilization, and local temperature. This can
be used to influence the reliability of the system [9].

2.2 Adaptation of the SDVM to Platform FPGA

The SDVM is a convenient approach as a middleware (virtualization layer) for FPGAs
due to several distinguishing features. These features include:

• undisturbed parallel computation while resizing the system
• dynamic scheduling and thereby automatic load balancing
• distributed scheduling: no specific site has to decide a global scheduling and there-

fore any site can be shut down at any time
• participating computing resources may have different processing speeds
• participating computing resources may have different instruction sets (e.g. differ-

ent ISAs for hardcores and softcores), as matching precompiled code fragments
are used automatically

• applications may be run on any SDVM-driven system, as the number and types of
the processing units do not matter

123

Int J Parallel Prog

Soft-
core

Soft-
core

Soft-
core

Soft-
core

Soft-
core

Soft-
core

Soft-
core

Soft-
core

Soft-
core

(a)

Soft-
core

Soft-
core

Soft-
core

Soft-
core

Soft-
core

Code
Fragment

Code
Fragment

Code
Fragment

Code
Fragment

Code
Fragment

(b)

Processing
Manager

Code
Manager

Scheduling
Manager

Attraction
Memory

Network
Manager

I/O
Manager

network

Cluster
Manager

ex
ec

ut
io

n
la

ye
r

m
ai

nt
en

an
ce

/
co

m
m

un
ic

at
io

n
la

te
r

Energy
Manager

Configuration
Manager

(c)

Fig. 5 Different possibilities to use the FPGA’s resources. a Create more softcores; b Realize some code
fragments in hardware; c Realize some managers in hardware (depicted in grey)

• support for any connection network topology
• no common clock needed: the clock is locally synchronous but globally asynchro-

nous.

The SDVM is currently being ported to run on an FPGA. There are three possibil-
ities currently investigated to use the reconfigurable area provided by the FPGA.

(1) The available resources on the FPGA are used up by configuring additional pro-
cessing units (softcores). Thus the SDVM cluster consists of more sites and a
higher parallelism can be achieved. (See Fig. 5a)

(2) The FPGA fabric is used to implement custom function units, each attached to
and therefore controlled by one of the cores. The function units conform to spe-
cific code fragments which are to be executed often. The execution is then done
in hardware and therefore much faster. The supported functions of the custom
function units can be changed at runtime by reconfiguration. In this case the
execution of the applications is accelerated by hardware implementation. (See
Fig. 5b)

(3) Each SDVM site consists of several modules which deal with e.g. communi-
cation, scheduling, or cluster management. Some of the calculation intensive
modules are realized in hardware by configuration. (Some of) the sites form-
ing the SDVM cluster will therefore run faster. In this case the SDVM-layer is
accelerated by hardware implementation. (See Fig. 5c)

These different approaches can be combined for optimization.

3 Adaptive Multi-Core Environments

The concept of the SDVM has been successfully implemented and tested on a clus-
ter of workstations. Based on the results gathered in this environment, the SDVM
has been proposed as a promising concept to be used for dynamically reconfigurable
systems [10]. To back up this claim this Section explores the requirements of such sys-
tems and shows how the features of the SDVM match. Based on these requirements
the SDVM has evolved to a virtualization layer for Multicore-FPGAs, now called
SDVMR [11].

123

Int J Parallel Prog

3.1 Fundamental Design Challenges

Multicore systems can be classified in three major categories. The first and most tradi-
tional category covers multicore systems which are built out of multiple instances of a
certain core architecture. Typical examples are multicore processors readily available
from Intel or AMD. These multicores feature limited adaptivity usually restricted to
voltage and frequency scaling individually for each core.

The next class consists of systems-on-chip (SoCs). The fundamental difference
to the aforementioned class is their feature to incorporate heterogeneous cores like
generic processors, digital signal processors and special functions units. Adaptivity in
these systems not only covers voltage and frequency scaling but can also include task
relocation between functional cores of different architecture. One example of such
a system is the Texas Instruments OMAP controller family [12] targeted at mobile
communication and multimedia appliances. Each member of this family contains a
general-purpose microcontroller core accompanied by one or more digital signal pro-
cessors together with application specific cores.

The third class includes field programmable gate arrays (FPGAs) which can be used
to implement SoCs or straight multicore CPUs and further augment these systems with
reconfigurability that provides additional flexibility to the system.

Besides the primary functions that a system-on-chip (SoC) should accomplish, e.g.
speech encoding in a cell phone, their design has to address a multitude of secondary
requirements. These requirements are important for most systems, merely the weight-
ing differs. The introduction of FPGAs as a target platform for SoCs adds an other
important requirement: The runtime reconfiguration ability. To make optimal use of
these reconfigurable systems an efficient management of the reconfiguration process
is necessary.

Thus, the design of multicore systems and their software must address the following
challenges:

• performance
• scalability
• incorporation of heterogeneous components
• adaptivity
• support for parallelism
• robustness and reliability
• energy efficiency
• reconfigurability

As these requirements and therefore the techniques to achieve them are common
to all classes of multicore systems it is beneficial to supply a generic module which
manages these supporting features. This lightens the burden of the designer who can
concentrate on the primary functions of the SoC. Our discussion in this article focuses
on dynamically reconfigurable FPGAs as an implementation architecture for multicore
systems.

The generic module should be implemented as a functional layer between the sys-
tem hardware and the application software thus acting as a middleware. To avoid an

123

Int J Parallel Prog

increase in complexity, provide flexibility, and improve portability and code reusability
through different hardware types the division into several layers is a possible solution.

The middleware should provide a complete virtualization of the underlying hard-
ware. The application has no longer to be tailored to the hardware, instead it is suffi-
cient to tailor it to the virtualization layer. This virtualization layer not only provides
hardware independence, it can also hide changes in the underlying hardware due to
reconfiguration. Thus such a middleware is specifically well suited to be used as a
virtualization layer for FPGAs or adaptive multicore chips.

3.2 Dynamically Reconfigurable Platform FPGAs

Modern platform FPGAs augment the logic fabric, which consists mainly of config-
urable logic blocks (CLBs) and a routing network, with a number of function blocks.
The members of a certain FPGA family differ in the size of the CLB array and the
number and types of special function blocks. These function blocks include:

• processor cores e.g. PowerPC
• embedded memory blocks
• multiplier and basic DSP (digital signal processing) blocks
• communication interfaces adhering to various standards like ethernet or PCIe

(peripheral component interconnect (PCI) express)

Any function block which is implemented on an FPGA using dedicated silicon area
and therefore using no CLBs is called a hard macro. If the function block is a pro-
cessor core it is more accurately called a hardcore. In contrast, processor cores which
are implemented solely using the CLBs are called softcores. However, hardcores may
require additional support logic that has to be implemented in CLBs to be fully usable.

The vast amount of configurable logic blocks enables the designer to add several
softcores. As seen in Table 1 even the second smallest device of the Virtex-4 FX fam-
ily can host four MicroBlaze softcores [13] and still has more than 60% free logic
resources that can be used to implement application specific functions.

3.3 Dynamic Partial Reconfiguration

Reconfiguring FPGAs at runtime offers a number of valuable benefits which facilitates
new areas of application. The main benefits include:

• The resource utilization can be increased if the FPGA area dedicated to some cur-
rently unused module is reassigned. So, ideally the FPGA’s size does not have to

Table 1 Resource requirements
of MicroBlaze based
multi-processor systems
implemented on a Xilinx
Virtex-4 FX20

System 4-Input LUTs DSP48 blocks

1 MicroBlaze 1,275 (14%) 3 (9%)

2 MicroBlaze 2,889 (16%) 6 (18%)

4 MicroBlaze 5,487 (32%) 12 (37%)

123

Int J Parallel Prog

be as large as to host all modules which are used eventually; the size can be limited
to the largest working set required.

• Hardware can be shared between various applications. Each application is sup-
ported by specialized hardware modules which are reconfigured when needed.

• Hardware can be updated remotely without the need to shutdown the system. Fur-
thermore, the number of external components can be greatly reduced as there is
no need for external logic to do the configuration update.

• Algorithms like pattern matching can map their patterns onto the logic fabric while
maintaining the ability to update the patterns at any time. Mapping such short-time
constant data onto the logic fabric can improve performance as the number of
memory accesses is reduced.

• Soft-errors in the FPGA configuration can be corrected during runtime. The device
configuration can be continuously read back and checked via embedded ECC bits.
In case of a bit flip the corrected configuration can be restored by reconfiguration
of the affected part of the FPGA.

Reconfiguration can be done in two ways: The whole logic fabric or only some
part of it is reconfigured. The former can only be done by some external hardware
whereas the latter enables the FPGA to reconfigure itself if some of the logic fabric
can continue to run during reconfiguration.

The benefits of reconfiguration can be efficiently exploited if the FPGA:

• can be reconfigured an unlimited number of times
• has a short configuration time in the order of magnitude of a memory access
• is able to reconfigure itself
• can continue to operate the uninvolved part of the logic fabric while reconfiguring

another part
• offers fine grained configuration of its logic fabric
• offers glitch free transition between the old and the new configuration

FPGAs based on SRAM cells to store the current configuration can be reconfigured an
unlimited number of times. Furthermore, in theory configuration delays can be quite
low because at heart a configuration change is just a write access to a number of SRAM
cells. So, each SRAM based FPGA—by far the most widespread type—features the
basic attributes to support runtime reconfiguration.

However, most FPGA architectures, even the SRAM based ones, are not designed
with a major focus on runtime partial reconfiguration. To improve logic density and
thus increase performance and reduce cost, the SRAM cells of an FPGA are chained
together to form a shift-register with up to 54,000,000 bits [14]. This is beneficial
for initial configuration as the FPGA can be fed with a serial bitstream but it poses a
twofold difficulty as reconfiguration can be neither fast nor fine grained. Furthermore,
the SRAM cells which hold the FPGA configuration are optimized for low leakage
instead of access speed.

To support partial reconfiguration in spite of the aforementioned properties the
actual implementation of the configuration memory is slightly different. The con-
figuration memory of the Xilinx Virtex-4 family is arranged in frames with a size
of 1,312 bits each. Every frame corresponds to a small tile of the FPGA consisting
of 16 adjacent CLBs, a couple of IOBs, or some block RAM. Each frame can be

123

Int J Parallel Prog

independently read and written, thus moderate runtime reconfiguration granularity is
possible.

The internal configuration interface of the Virtex-4 FPGAs has a maximum clock
frequency rating of 100 MHz. Thus, the readback of one frame requires about 1.6 µs.
A read-modify-write operation for one frame takes about 30 µs. All in all changing the
reconfiguration memory needs about one to two magnitudes more time than accessing
FPGA block RAM. Although, it still seems fast enough to be useful for thread-based
runtime reconfiguration as typical operating systems switch threads every couple of
milliseconds.

The new members of the Xilinx Virtex family, namely the Virtex-5 and Virtex-6,
retain the general architecture regarding dynamic reconfiguration.

3.4 The Virtualization Layer Concept

Today, even small FPGAs can host multiple processing elements (See Table 1). A good
choice for the architecture of these processing elements (PE) would be the MicroBlaze
softcore for implementation in the CLBs or the PowerPC hardcore which is present
on some FPGA families. However, even special purpose function blocks like digital
signal processors (DSP) or application specific blocks can be used.

Therefore, one of the fundamental decisions in the design process of the virtual
machine is whether each PE is to form an independent building block of the parallel
cluster or multiple PEs are merged in a higher-order cluster element. The latter may
impose less overhead but the former eases the implementation of adaptive features; in
detail:

• coping with errors in the fabric
• avoiding bottlenecks
• reducing hot spots.

If each processing element is augmented with a complete set of the virtualization
functions and therefore no PE is the sole provider of any function, the system is much
more flexible. If an error is detected in some part of the FPGA the affected PE can
be disabled or reconfigured to avoid the erroneous location without hampering the
functionality of the cluster. Furthermore, as each augmented PE provides its share
of the cluster management functionality the number of bottlenecks is reduced. The
distribution of functionality can lead to a better distribution of workload thus reducing
the number of hot spots on the FPGA.

The logic resources and therefore the computing power of the FPGA and the inter-
nal memory blocks can be distributed evenly among all processing elements, but
there are resources which cannot be efficiently split. The most important one being
the external memory. As FPGAs typically contain only up to some hundred kilo-
bytes of internal memory—the smaller ones actually provide less than one hundred
kilobytes—a lot of applications require external memory. Therefore, the middleware
should support a multi-level memory architecture that is transparent to the application
software.

123

Int J Parallel Prog

Besides external memory every interface of the FPGA system to the outside world
like ethernet or PCIe cannot be allocated to every PE concurrently. The middleware
must manage these resources on the cluster level.

The middleware should provide a complete virtualization of dynamically reconfig-
urable platform FPGAs, so that the user application does not need to care about the
underlying hardware. Therefore, it has to support the following primary features:

• Combine all processing elements (PE) on the FPGA to create a parallel system
• Provide task mobility between all processing elements even if they are heteroge-

neous. It should be possible to execute a task on general purpose processors of
different architectures and on custom function units if applicable.

• Virtualize the I/O-system to enable the execution of a task on an arbitrary process-
ing element

• Combine the distributed memory of each PE to form a virtually shared memory. To
avoid bottlenecks each PE should have its own memory both for program and data
but, as applications for shared memory are much easier to design than applications
for message passing systems, the memory should appear globally shared to the
application.

• Manage the reconfiguration of the FPGA, i.e. keep track of the current usage of
the FPGA resources and available alternative partial configurations. Furthermore,
an adequate replacement policy has to be defined.

• Monitor a number of system parameters to gather information the configuration
replacement policy depends on

• Adjust the number of active processing elements at runtime. For example, this can
be used to meet power dissipation or reliability targets.

• The previous feature requires the middleware to hide the actual number of pro-
cessing elements from the application to ease programming.

• As the user software does not know the number and architecture of the processing
elements the middleware has to provide dynamic scheduling as well as automatic
code and data distribution.

• The execution of the workload should not be disturbed by any reconfiguration
activities. The execution performance should scale with the number of active com-
ponents.

The implementation of these primary features is greatly helped by the micro-
frame/microthread concept of the SDVM (see Fig. 1). As the microthreads are ready
for execution when the associated microframe got all its data the application pro-
grammer does not need to know the number of active processing elements. Accessing
microframes whether they are local or stored on a distant site is transparently managed
by the attraction memory thereby providing a virtual shared memory. As the SDVM
distributes microframes and microthreads automatically throughout the system and
acts as a hardware abstraction layer it facilitates task mobility.

The current state of the application is stored in the set of currently allocated micro-
frames. As long as this set is preserved and running microthreads are not interrupted
the number of processing elements can be changed at any time.

In the beginning these features are provided in software by the SDVMR . The
development stage of the SDVMR—whose performance results are presented in

123

Int J Parallel Prog

Sect. 4—supports the inclusion of processing elements at runtime, a virtual shared
memory, dynamic scheduling and a virtualized I/O system based on memory-mapped
I/O. Task mobility is limited to the case that microframes could be transferred to any
processing element. Microthreads are expected to be initially present at any processing
element by statically linking them with the SDVMR code.

In the future, it is planned to investigate the feasibility of a hardware implementa-
tion.

4 Results

Both the SDVM and the SDVMR need a lot of calculations and communication to
orchestrate the distributed execution. Therefore, a question is whether the additional
overhead is small enough to maintain the concept.

For demonstration and evaluation, the Romberg numerical integration algo-
rithm [15] was implemented on both systems.

This algorithm partitions the area to be calculated into several portions of con-
stant width (Frame 1). Those can be calculated independently and the results added
eventually. The first microthread will generate a target microframe (Frame 3) where
the results are finally added and then, in our example, 100 or 150 other microframes
(Frame 2) are generated, which can be run in parallel. Fig. 6 shows this behavior in
form of a control-dataflow graph (CDAG [16]).

4.1 SDVM—UNIX-Based Cluster Implementation

A test bench was implemented by using a cluster consisting of four similar Intel PCs.
Each site in the test bench can simulate one core of a multicore FPGA or multi-pro-
cessor system (see Fig. 7).

First, it shall be demonstrated how much overhead is generated by using the SDVM.
To show this, run times on a stand-alone SDVM site are compared with the run times
of a corresponding sequential program (see Fig. 8). This overhead appears to be about
2%, even if the microthreads have to be compiled before execution.

1

2 1 2 2 2 3 2 b-1

3

allocation edge

...

data edge

Fig. 6 The CDAG of the Romberg example application

123

Int J Parallel Prog

Fig. 7 Four similar Intel PCs are used to simulate a quad-core system

Fig. 8 Romberg algorithm: comparison of the run times (in seconds) of a sequential program and the
SDVM with one site. Values are given with and without compilation time, respectively, for width 100 and
150

In the next step, it has to be shown that the speedup is in expected regions. On a
cluster of identical machines (Pentium 4, 1.7 GHz), a value for the speedup is shown
in Fig. 9. It reaches roughly the number of participating sites, which is a good result
(see Table 2).

4.2 SDVMR—FPGA-based Multicore Implementation

To evaluate the virtualization layer concept for Multicore-FPGAs a scalable system
has been created using the Xilinx EDK 10.1 software (See Fig. 10). As the hardware
basis a Virtex-4 FX20 populated evaluation board [17] was chosen due to its fine-
grained reconfiguration features and embedded PowerPC core.

The system is based on IP blocks supplied by Xilinx. Besides the PowerPC405
embedded in the Xilinx Virtex-4 MicroBlaze softcores are used as processing

123

Int J Parallel Prog

Fig. 9 Romberg algorithm: run times (in seconds) and speedup depending on the number of sites

Fig. 10 The system
implemented on a Xilinx
Virtex-4 FX20. The debug
module connected to each
MicroBlaze and the PowerPC
core is not shown for simplicity

123

Int J Parallel Prog

Table 2 Romberg algorithm:
run times (in seconds) and
speedup depending on the
number of sites

1 Site 2 Sites 4 Sites

Width 100 128 65 34

Width 150 193 97 51

Speedup width 100 1 1.97 3.76

Speedup width 150 1 1.99 3.78

Table 3 Size of ELF file of the stand-alone Romberg and SDVMR version

CPU Stand-alone (KiB) SDVMR (KiB) SDVMR overhead (KiB)

PPC 109 191 82

MBlaze 99 192 93

The file includes all code and data segments including 48 KiByte thread stack space. About 1 KiB of
dynamically allocated memory is required for the Romberg algorithm which is excluded here

elements. The MicroBlaze is supported by a timer connected to a local Processor
Local Bus (PLB) to allow for the execution of the Xilinx XMK operating system.
Each MicroBlaze core has 16 KiB of embedded memory blocks connected to its
Local Memory Bus (LMB).

As can bee seen in Table 3 even the simple Romberg application requires about
100 KiByte memory. A significant part of it is claimed by the Xilinx microkernel
configured with support for 5 user threads. Thus more memory than what is available
as block RAM on the FPGA is required. Therefore, external 128 MiB DDR-RAM and
1 MiB SRAM is connected to the MicroBlaze and PowerPC cores using multichannel
memory controllers. Each MicroBlaze has 8 KiB data and 8 KiB code cache to speed
up external memory access. The MicroBlaze is implemented with all features enabled
except FPU. Performance of the MicroBlaze is somewhat reduced due to the necessity
to use the area optimized version of the version 7.1 core.

The communication between the processing elements is done using a shared mem-
ory connected to the system PLB. To allow for mutual exclusion of the access to this
memory and to the RS232 interface a hardware mutex module is attached to the system
PLB. The multiple cores are attached to the system using PLB-to-PLB bridges.

The busses and MicroBlaze cores run at 100 MHz clock frequency; the PowerPC
core is clocked at 300 MHz. The system occupies 94% of the FPGA slices and 97%
of on-chip memory blocks.

Table 4 Romberg algorithm: sequential calculation: run times (in seconds) for one Romberg integration
of width 150 on an FPGA with one PowerPC (site 1) and three MicroBlaze cores (sites 2, 3, and 4)

Stand-alone (s) Relative to PPC SDVMR (s) Relative performance (%)

Site 1 41.43 1 42.67 97.04

Site 2 251.27 0.16488 251.65 99.85

Site 3 241.07 0.17186 239.64 100.5

Site 4 246.84 0.16784 244.53 100.9

Four instances of the application were run in parallel, one on each core

123

Int J Parallel Prog

Table 5 Romberg algorithm: parallel calculation: run times (in seconds) for one Romberg integration of
width 150 on an FPGA with one PowerPC and three MicroBlaze cores

Stand-alone (theoretical) (s) Relative to PPC SDVMR (s) Relative performance (%)

Average 27.54 1.50458 30.16 91.3

Peak 27.54 1.50458 29.38 93.7

The SDVMR was run as a cluster using all four cores. The stand-alone value is the theoretical peak perfor-
mance based on per-core run times (See Table 4)

To demonstrate the overhead run times of the stand-alone and the SDVMR ver-
sion of the Romberg integration are compared (See Table 4). These values are not
comparable to the ones measured for the SDVM cluster implementation as the iter-
ation depth of the Romberg algorithm is different to achieve reasonable run times.
Without an FPU to support the double precision Romberg integration the cores of the
FPGA-based system are about 200 times slower than the Intel Pentium-4 CPUs.

The applications were run independently on each core but at the same time. Thus
all shared resources like busses and memory controllers were roughly utilized like in
a real parallel application running distributed on all four cores. On the PowerPC core
the SDVMR overhead is about 3%. On the MicroBlaze cores the run times show no
overhead. The SDVMR is even slightly faster than the stand-alone Romberg applica-
tion. This is not to be expected as the PowerPC run times show that there is clearly
some overhead involved. The slightly better performance on the MicroBlaze cores
may be attributed to different memory access patterns of the SDVMR version that suit
the memory and cache controllers better. The run times of all sequential calculations
were consistent over all iterations.

The theoretical peak performance for the system is calculated based on the run
times measured for the stand-alone sequential Romberg integration. The measured
values for each core have been normalized by computing the relative performance
of each and relating them to the performance of the fastest core, the PowerPC. The
theoretical peak performance is the sum of these normalized values. Thus a perfectly
parallel and distributed Romberg integration would run for 27.54 s on this system.

The SDVMR running the Romberg integration distributed on all four cores yielded
an average run time of 30.16 s. Run times differed for each run due to the dynamic
scheduling of the SDVMR . A peak performance of 29.38 s has been recorded. There-
fore, the current implementation of the SDVMR achieves 91.3–93.7% of the theoretical
peak performance. This is a good result given that the performance of the cores differs
greatly without the scheduling algorithm explicitly taking this into account (Table 5).

5 Conclusion

In this article a virtualization layer for multicore environments, especially FPGAs,
was presented which separates applications to be run from the underlying hardware.
It is based on the SDVM, a middleware for computer clusters and multicore chips

123

Int J Parallel Prog

which has been successfully implemented and tested on a cluster of workstations. The
prototype and its full source code is freely downloadable [8].

The SDVM can behave self-organizing as sites may join or leave at runtime without
disturbing the execution of running applications, the cluster may grow or shrink to any
convenient size, moreover regardless of the sites’ hardware or the network topology
between them. The cluster scales automatically.

It is self-optimizing as it automatically distributes data and program code to sites
where it is needed, thereby dynamically balancing the workload of the whole system.

Based on the results gathered in this environment, the SDVM has evolved to a
virtualization layer for Multicore-FPGAs, now called SDVMR . Due to the SDVMR’s
features, the FPGA may reconfigure itself at runtime to adapt to changing conditions
and requirements. The adaptivity of the system is supported by the ability of the
SDVMR to act self-organizing and self-optimizing. Preliminary performance results
are given. These results show that the degree of parallelism present in the example
application could be exploited by the SDVMR to a great extent.

In the future, it is planned to investigate the feasibility of a hardware implementa-
tion.

References

1. VDE/ITG/GI-Arbeitsgruppe Organic Computing: Organic Computing, Computer- und Systemarchi-
tektur im Jahr 2010. Technical report, VDE/ITG/GI (2003) (in German)

2. Haase, J., Eschmann, F., Waldschmidt, K.: The SDVM—an approach for future adaptive computer
clusters. In: 10th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Sys-
tems (DPDNS 05), Denver, Colorado, USA (2005) http://www.ti.cs.uni-frankfurt.de/parallel/papers/
DPDNS05.pdf

3. Haase, J., Eschmann, F., Klauer, B., Waldschmidt, K.: The SDVM: a self distributing virtual machine.
In: Organic and Pervasive Computing—ARCS 2004: International Conference on Architecture of
Computing Systems. Volume 2981 of Lecture Notes in Computer Science, Heidelberg, Springer Ver-
lag (2004) http://www.ti.cs.uni-frankfurt.de/parallel/papers/ARCS04.pdf

4. Lipsa, G., Herkersdorf, A., Rosenstiel, W., Bringmann, O., Stechele, W. : Towards a framework and
a design methodology for autonomous soc. In: Brinkschulte, U., Becker, J., Fey, D., Hochberger,
C., Martinetz, T., Müller-Schloer, C., Schmeck, H., Ungerer, T., Würtz, R.P. (eds.) ARCS Work-
shops, pp. 101–108. VDE, Verlag (2005)

5. Lysecky, R., Vahid, F.: A study of the speedups and competitiveness of fpga soft processor cores using
dynamic hardware/software partitioning. In: DATE ’05: Proceedings of the Conference on Design,
Automation and Test in Europe, Washington, DC, USA, IEEE Computer Society, pp. 18–23 (2005)

6. Lysecky, R., Vahid, F., Tan, S.X.D.: Dynamic fpga routing for just-in-time fpga compilation. In:
DAC ’04: Proceedings of the 41st Annual Conference on Design Automation, New York, NY, USA,
ACM Press, pp. 954–959 (2004)

7. Lysecky, R., Vahid, F.: A configurable logic architecture for dynamic hardware/software partitioning.
In: DATE ’04: Proceedings of the Conference on Design, Automation and Test in Europe, Washington,
DC, USA, IEEE Computer Society, p. 10480 (2004)

8. Haase, J.: The Self Distributing Virtual Machine—Homepage (2005) http://sdvm.ti.cs.uni-frankfurt.
de.

9. Haase, J., Damm, M., Hauser, D., Waldschmidt, K.: Reliability-aware power management of multi-core
processors (2006) DIPES 2006, Braga, Portugal

10. Haase, J., Hofmann, A., Waldschmidt, K.: The self distributing virtual machine (SDVM): making
computer clusters adaptive. In: Biologically Inspired Cooperative Computing. Number 216/2006 in
IFIP International Federation for Information Processing, Springer Boston, pp. 169–178 (2006)

11. Hofmann, A., Waldschmidt, K.: SDVM-R: a scalable firmware for FPGA-based multi-core systems-
on-chip. In: ISVLSI, IEEE Computer Society, pp. 387–392 (2008)

123

http://www.ti.cs.uni-frankfurt.de/parallel/papers/DPDNS05.pdf
http://www.ti.cs.uni-frankfurt.de/parallel/papers/DPDNS05.pdf
http://www.ti.cs.uni-frankfurt.de/parallel/papers/ARCS04.pdf
http://sdvm.ti.cs.uni-frankfurt.de
http://sdvm.ti.cs.uni-frankfurt.de

Int J Parallel Prog

12. Texas Instruments: OMAPV1035 Product Bulletin (2006) http://focus.ti.com/pdfs/wtbu/TI_omapv
1035.pdf

13. Xilinx: MicroBlaze Processor Reference Guide (2008) http://www.xilinx.com/support/documentation/
sw_manuals/mb_ref_guide.pdf

14. Xilinx: Virtex-4 Configuration Guide (2006) http://www.xilinx.com/bvdocs/userguides/ug071.pdf
15. Dahlquist, G., Bjorck, A.: Numerical Methods. Prentice Hall, Englewood Cliffs (1974)
16. Klauer, B., Eschmann, F., Moore, R., Waldschmidt, K.: The CDAG: a data structure for automatic

parallelization for a multithreaded architecture. In: Proceedings of the 10th Euromicro Workshop on
Parallel, Distributed and Network-based Processing (PDP 2002), Canary Islands, Spain, IEEE (2002)

17. Xilinx: ML405 Evaluation Platform: User Guide (2008) http://www.xilinx.com/support/
documentation/boards_and_kits/ug210.pdf

123

http://focus.ti.com/pdfs/wtbu/TI_omapv1035.pdf
http://focus.ti.com/pdfs/wtbu/TI_omapv1035.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/bvdocs/userguides/ug071.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug210.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug210.pdf

	A Self Distributing Virtual Machinefor Adaptive Multicore Environments
	Abstract
	1 Introduction
	1.1 Related Work

	2 The Scalable Dataflow-Driven Virtual Machine (SDVM)
	2.1 The SDVM Daemon
	2.2 Adaptation of the SDVM to Platform FPGA

	3 Adaptive Multi-Core Environments
	3.1 Fundamental Design Challenges
	3.2 Dynamically Reconfigurable Platform FPGAs
	3.3 Dynamic Partial Reconfiguration
	3.4 The Virtualization Layer Concept

	4 Results
	4.1 SDVM---UNIX-Based Cluster Implementation
	4.2 SDVMR---FPGA-based Multicore Implementation

	5 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

