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Abstract 
The costs of finding and correcting software defects have been the most expensive activity 

in software development. The accurate prediction of defect‐prone software modules can help 
the software testing effort, reduce costs, and improve the software testing process by focusing 
on fault-prone module. Recently, static code attributes are used as defect predictors in 
software defect prediction research, since they are useful, generalizable, easy to use, and 
widely used. However, two common aspects of data quality that can affect performance of 
software defect prediction are class imbalance and noisy attributes. In this research, we 
propose the combination of particle swarm optimization and bagging technique for improving 
the accuracy of the software defect prediction. Particle swarm optimization is applied to deal 
with the feature selection, and bagging technique is employed to deal with the class 
imbalance problem. The proposed method is evaluated using the data sets from NASA metric 
data repository. Results have indicated that the proposed method makes an impressive 
improvement in prediction performance for most classifiers. 

 
Keywords: software defect prediction, machine learning, particle swarm optimization, 

feature selection, bagging 
 
1. Introduction 

A software defect is an error, failure, or fault in a computer program or system that 
produces an incorrect or unexpected result, and decreased the quality of the software. The 
costs of finding and correcting software defects have been the most expensive activity during 
both software development and software maintenance. Software defect increases in cost over 
the software development phase. During the coding phase, finding and correcting defects 
costs $977 per defect. In the system-testing phase, the cost increases to $7,136 per defect. If a 
defect survives to the maintenance phase, then the cost to find and remove increases to 
$14,102 [1]. 

A panel at IEEE Metrics 2002 [2] concluded that manual software reviews can find only 
60 percent of defects. Recent studies show that the probability of detection of fault prediction 
models may be higher than probability of detection of software reviews. Menzies et al. found 
defect predictors with a probability of detection of 71 percent [3]. This is higher than other 
currently used industrial methods such as manual code reviews. The accurate prediction of 
defect‐prone software modules can help direct test effort, reduce costs, improve the software 
testing process by focusing on fault-prone modules and identifying refactoring candidates that 
are predicted as fault-prone [4], and finally improve the quality of software [5]. Therefore, 
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software fault prediction approaches are much more cost-effective to detect software faults 
compared to software reviews.  

Machine learning classification algorithm is a popular approach for software defect 
prediction [6]. It categorizes the software code attributes into defective or not defective, 
which is completed by means of a classification model derived from software metrics data of 
previous development projects [7]. If an error is reported during system tests or from field 
tests, that module’s fault data is marked as 1, otherwise 0. For prediction modeling, software 
metrics are used as independent variables and fault data is used as the dependent variable [4]. 
Variable predictors of the prediction model are computed by using previous software metrics 
and fault data.  

Various types of classification algorithms have been applied for software defect prediction, 
including logistic regression [8], decision trees [9], neural networks [10], naïve-bayes [11]. 
Unfortunately, software defect prediction remains a largely unsolved problem. The 
comparisons and benchmarking result of the defect prediction using machine learning 
classifiers indicate that, no significant performance differences could be detected [6] and no 
particular classifiers that performs the best for all the data sets [12]. There is a need of 
accurate defect prediction model for large-scale software system. 

Two common aspects of data quality that can affect classification performance are class 
imbalance and noisy attributes [13] of data sets. Software defect datasets have an imbalanced 
nature with very few defective modules compared to defect-free ones [14]. Imbalance can 
lead to a model that is not practical in software defect prediction, because most instances will 
be predicted as non-defect prone [15]. Learning from imbalanced datasets is difficult. The 
insufficient information that is associated with the minority class impedes making a clear 
understanding of the inherent structure of the dataset [16]. The software defect prediction 
performance also decreases significantly because the dataset contains noisy attributes [17] 
[18]. However, the  noisy data points in the datasets that cannot be confidently assumed to be 
erroneous using such simple method [19]. 

Feature selection is generally used in machine learning when the learning task involves 
high-dimensional and noisy attribute datasets. Most of the feature selection algorithms, Most 
of the feature selection algorithms, attempt to find solutions in feature selection that range 
between sub-optimal and near optimal regions, since they use local search throughout the 
entire process, instead of global search. On the other hand, these search algorithms utilize a 
partial search over the feature space, and suffer from computational complexity. 
Consequently, near-optimal to optimal solutions are quiet difficult to achieve using these 
algorithms [20]. 

Metaheuristic optimization can find a solution in the full search space and use a global 
search ability, significantly increasing the ability of finding high-quality solutions within a 
reasonable period of time [21]. Mostly used metaheuristic optimization for feature selection 
include genetic algorithm (GA), particle swarm optimization (PSO) and ant colony 
optimization (ACO). 

In the current work, we propose the combination of particle swarm optimization (PSO) and 
bagging technique for improving the accuracy of software defect prediction. Particle swarm 
optimization is applied to deal with the feature selection, and bagging technique is employed 
to deal with the class imbalance problem. Bagging technique is chosen due to the 
effectiveness  in handling class imbalance [13]. The proposed method is evaluated using the 
state-of-the-art and public datasets from NASA metric data repository. 
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2. Related Work 
Feature selection is an important data preprocessing activity and has been extensively 

studied in the data mining and machine learning community. The main goal of feature 
selection is to select a subset of features that minimizes the prediction errors of classifiers. 
Feature selection techniques are divided into two categories: wrapper-based approach and 
filter-based approach. The wrapper-based approach involves training a learner during the 
feature selection process, while the filter-based approach uses the intrinsic characteristics of 
the data, based on a given metric, for feature selection and does not depend on training a 
learner. The primary advantage of the filter-based approach over the wrapper-based approach 
is that it is computationally faster. However, if computational complexity was not a factor, 
then a wrapper-based approach was the best overall feature selection scheme in terms of 
accuracy. 

Once the objective in this work is to improve the modeling quality and accuracy of 
software defect prediction, it has been decided to use wrapper methods. Nevertheless, 
wrapper methods have the associated problem of having to train a classifier for each tested 
feature subset. This means testing all the possible combinations of features will be virtually 
impossible. Most of the feature selection strategies attempt to find solutions that range 
between sub-optimal and near optimal regions, since they use local search throughout the 
entire process, instead of global search. On the other hand, these search algorithms utilize a 
partial search over the feature space, and suffer from computational complexity. 
Consequently, near-optimal to optimal solutions are quiet difficult to achieve using these 
algorithms. As a result, many research studies now focus on metaheuristic optimization 
techniques [20]. The significance of metaheuristic optimization techniques is that they can 
find a solution in the full search space on the basis of activities of multi-agent systems that 
use a global search ability utilizing local search appropriately, thus significantly increasing 
the ability of finding very high-quality solutions within a reasonable period of time. 
Metaheuristic optimization techniques have been developed in several domains and include 
algorithms like simulated annealing, tabu-search, as well as bio-inspired methods like genetic 
algorithms, evolution strategies, ant colony optimization and particle swarm optimization. 
These methods are able to find fairly good solutions without searching the entire workspace. 

Although feature selection has been widely applied in numerous application domains for 
many years, its application in the software quality prediction domain is limited. Song et al., 
[12] applied two wrapper approaches, forward selection and backward elimination, as a 
feature selection for their proposed model. Song et al., concluded that a feature selection 
techniques, especially forward selection and backward elimination can play different roles 
with different learning algorithms for different data sets and that no learning scheme 
dominates, i.e., always outperforms the others for all data sets. This means we should choose 
different learning schemes for different data sets, and consequently, the evaluation and 
decision process is important. Wang et al., [22] applied ensemble feature selection techniques 
to 16 software defect  data sets, and they concluded that ensembles of very few rankers are 
very effective and even better than ensembles of many or all rankers.  

The class imbalance problem is observed in various domain, including software 
defect prediction. Several methods have been proposed in literature to deal with class 
imbalance: data sampling, boosting and bagging. Data sampling is the primary approach 
for handling class imbalance, and it involves balancing the relative class distributions 
of the given data set. There are two types of data sampling approaches: undersampling 
and oversampling [23]. Boosting is another technique which is very effective when 
learning from imbalanced data. Compared to data sampling, boosting has received 
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relatively little attention in data-mining research with respect to class imbalance. 
However, Seiffert et al., [23] show that boosting performs very well. Bagging, may 
outperform boosting when data contain noise [24], because boosting may attempt to 
build models to correctly classify noisy examples. In this study we apply bagging 
technique, because Khoshgoftaar et al., [13] showed that the bagging techniques 
generally outperform boosting, and hence in noisy data environments. Therefore 
bagging is the preferred method for handling class imbalance. 

While considerable work has been done for feature selection and class imbalance 
problem separately, limited research can be found on investigating them both together, 
particularly in the software engineering field [13]. In this study, we combine particle 
swarm optimization for selecting features and bagging technique for solving the class 
imbalance problem, in the context of software defect prediction.  
 
3. Proposed Defect Prediction Method 
 
3.1. Particle Swarm Optimization 

Particle swarm optimization (PSO) is an emerging population-based meta-heuristic that 
simulates social behavior such as birds flocking to a promising position to achieve precise 
objectives in a multi-dimensional space. PSO performs searches using a population (swarm) 
of individuals (particles) that are updated from iteration to iteration. The size of population is 
denoted as psize. To discover the optimal solution, each particle changes its searching direction 
according to two factors, its own best previous experience (pbest) and the best experience of 
all other members (gbest). Shi and Eberhart [25] called pbest the cognition part, and gbest the 
social part. 

Each particle represents a candidate position (solution). A particle is considered as a point 
in a D-dimension space, and its status is characterized according to its position and velocity. 
The D-dimensional position for the particle i at iteration t can be represented as 
𝑥𝑖𝑡 =  {𝑥𝑖1𝑡 , 𝑥𝑖2𝑡 , … , 𝑥𝑖𝐷𝑡  }. Likewise, the velocity (distance charge) for particle i at iteration t, 
which is also a D-dimension vector, can be described as 𝑣𝑖𝑡 =  {𝑣𝑖1𝑡 , 𝑣𝑖2𝑡 , … , 𝑣𝑖𝐷𝑡  }. 

In the later version of PSO, a new parameter, called inertia weight introduced by [25] due 
to control over the previous velocity of the particles. Let 𝑝𝑖𝑡 =  {𝑝𝑖1𝑡 , 𝑝𝑖2𝑡 , … ,𝑝𝑖𝐷𝑡  } represent the 
best solution that particle i has obtained until iteration t, and 𝑝𝑔𝑡 =  �𝑝𝑔1𝑡 , 𝑝𝑔2𝑡 , … , 𝑝𝑔𝐷𝑡  � denote 
the best solution obtained from 𝑝𝑖𝑡 in the population at iteration t. To search for the optimal 
solution, each particle changes its velocity according to the cognitive and social part using 
equation (1).  
 

𝑉𝑖𝑑𝑡 = 𝑤 ∗  𝑉𝑖𝑑𝑡−1 +  𝑐1𝑟1�𝑃𝑖𝑑𝑡 − 𝑥𝑖𝑑𝑡 � +  𝑐2𝑟2�𝑃𝑔𝑑𝑡 − 𝑥𝑖𝑑𝑡 �,    𝑑 = 1, 2, …𝐷                (1) 
 

Note that, 𝑐1 indicates the cognitive learning factor, 𝑐2 indicates the social learning factor, 
inertia weight (w) is used to slowly reduce the velocity of the particles to keep the swarm 
under control, and 𝑟1 and 𝑟2 are random numbers uniformly distributed in U(0,1). 

Each particle then moves to a new potential solution based on the equation (2). 
 

𝑋𝑖𝑑𝑡+1 = 𝑋𝑖𝑑𝑡 + 𝑉𝑖𝑑𝑡  ,    𝑑 = 1, 2, …𝐷                                             (2) 
 

The basic process of the PSO algorithm is given as follows: 

1. Initialization: Randomly generate initial particles 
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2. Fitness: Measure the fitness of each particle in the population 
3. Update: Compute the velocity of each particle with equation (1) 
4. Construction: For each particle, move to the next position according to equation (2) 
5. Termination: Stop the algorithm if termination criterion is satisfied, and return to step 2 

(Fitness) otherwise 
 
The iteration is terminated if the number of iteration reaches the pre-determined maximum 

number of iteration. 
 
3.2. Bagging Technique 

Bagging (Bootstrap Aggregating) was proposed by Leo Breiman in 1994 [26] to improve 
the classification by combining classifications of randomly generated training sets. The 
Bagging classifier separates a training set into several new training sets by random sampling, 
and builds models based on the new training sets. The final classification result is obtained by 
the voting of each model. It also reduces variance and helps to avoid overfitting. 

Description of the bagging technique is as follows. Given a standard training set D of size 
n, bagging generates m new training sets Di, each of size n’<n, by sampling from D uniformly 
and with replacement. By sampling with replacement, some observations may be repeated in 
each Di. If n’=n, then for large n the set Di is expected to have the fraction (1 - 1/e) of the 
unique examples of D, the rest being duplicates. This kind of sample is known as a bootstrap 
sample. The m models are fitted using the above m bootstrap samples and combined by 
averaging the output (for regression) or voting (for classification). 

Bagging leads to improvements for unstable procedures [26], which include neural 
network, classification and regression trees, and subset selection in linear regression. On the 
other hand, it can mildly degrade the performance of stable methods such as K-nearest 
neighbors. 
 
3.3. Proposed Method 

Figure 1 shows an activity diagram of the integration of bagging technique and particle 
swarm optimization based feature selection. A group of particles are random generated, 
dimensional discrete binary variable. The particle length is the total characteristics number, 
and if and each particle is one the first i-bit is 1, then the first feature i was selected, otherwise 
it will be shielded. Each particle represents a feature subset, which is a candidate solution. 
Implement bagging technique and train the classifier on the larger training set based on the 
selected feature subset and the type of kernel. If all classifiers are finished, combine votes of 
all classifiers. Finally, measure validation accuracy on testing data set via the generated 
model. 

We use the accuracy of classifier to evaluate fitness size, the higher accuracy rate, the 
greater the fitness. the goal of select the feature characteristic subset that is to the achieve the 
use a small number of same or better classification results, so the fitness function evaluation 
should also take into consideration the number of characteristics, given same accuracy to two 
characteristics of a subset, the one which have fewer characteristic number will be higher 
fitness. 

Update the global and personal best according to the fitness evaluation results. Record the 
average validation accuracy for the global and personal best. If the fitness is better than the 
particle’s best fitness, then the position vector is saved for the particle. If the particle’s fitness 
is better than the global best fitness, then the position vector is saved for the global best. 
Finally the particle’s velocity and position are updated until the termination condition is 
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satisfied. To avoid overtraining, we observe the validation accuracy curve, and stop training 
when the iteration has the best validation accuracy during the training process. With the 
stopping training iteration determined in the previous step, recall the recorded feature subset 
and the type of kernel in the stopping iteration. 

 

Figure 1. Activity Diagram of the Integration of Bagging Technique and Particle 
Swarm Optimization based Feature Selection 

4. Experiments 
The framework of our experiment is shown in Figure 2. The framework is comprised 1) a 

data sets 2) a feature selection, 3) a meta-learning, 4) a learning algorithm, 5) a model 
validation, 6) a model evaluation and 7) a model comparison. The used platform is Intel Core 
i7 2.2 GHz CPU, 16 GB RAM, and Microsoft Windows 7 Professional 64-bit with SP1 
operating system. The development environment is Netbeans 7 with Java programming 
language. The application software is RapidMiner 5.2. 
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Figure 2. The Framework of Experiment 

4.1. Data Sets 

One of the most important problems for software fault prediction studies is the usage of 
nonpublic (private) data sets. Several companies developed fault prediction models using 
proprietary data and presented these models in conferences. However, it is not possible to 
compare results of such studies with results of our own models because their datasets cannot 
be reached. The use of public datasets makes our research repeatable, refutable, and verifiable 
[27]. Recently, state-of-the-art public data sets used for software defect prediction research is 
available in NASA Metrics Data (MDP) repository [19]. 

The data used in this research are collected from the NASA MDP repository. NASA MDP 
repository is a database that stores problem, product, and metrics data [19]. The primary goal 
of this data repository is to provide project data to the software community. In doing so, the 
Metrics Data Program collects artifacts from a large NASA dataset, generates metrics on the 
artifacts, and then generates reports that are made available to the public at no cost. The data 
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that are made available to general users have been sanitized and authorized for publication 
through the Metrics Data Program Web site by officials representing the projects from which 
the data originated. 

Each NASA data set is comprised of several software modules, together with their number 
of faults and characteristic code attributes. After preprocessing, modules that contain one or 
more errors were labeled as fault-prone, whereas error-free modules were categorized as not-
fault-prone. Besides line of codes (LOC) counts, the NASA MDP data sets include several 
Halstead attributes as well as McCabe complexity measures. The former estimates reading 
complexity by counting operators and operands in a module, whereas the latter is derived 
from a module’s flow graph. 

Some researchers endorse the static code attributes defined by McCabe and Halstead as 
defect predictors in the software defect prediction. McCabe and Halstead are module-based 
metrics, where a module is the smallest unit of functionality. Static code attributes are used as 
defect predictors, since they are useful, generalizable, easy to use, and widely used [14]. 

In this research, we use nine software defect prediction data sets from NASA MDP. 
Individual attributes per data set, together with some general statistics and descriptions, are 
given in Table 2. These data sets have various scales of LOC, various software modules 
coded by several different programming languages including C, C++ and Java, and various 
types of code metrics including code size, Halstead’s complexity and McCabe’s cyclomatic 
complexity. 
 
4.2. Model Validation 

We use the state-of-the-art stratified 10-fold cross-validation for learning and testing data. 
This means that we divided the training data into 10 equal parts and then performed the 
learning process 10 times (Table 1). Each time, we chose another part of dataset for testing 
and used the remaining nine parts for learning. After, we calculated the average values and 
the deviation values from the ten different testing results. We employ the stratified 10-fold 
cross validation, because this method has become the standard method in practical terms. 
Some tests have also shown that the use of stratification improves results slightly [28]. 

Table 1. Stratified 10 Fold Cross Validation 
n-validation Dataset’s Partition 

1           
2           
3           
4           
5           
6           
7           
8           
9           
10           
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Table 2. MDP Data Sets and the Code Attributes 

 
4.3. Model Evaluation 

We applied area under curve (AUC) as an accuracy indicator in our experiments to 
evaluate the performance of classifiers. AUC is area under ROC curve. Lessmann et al., [6] 
advocated the use of the AUC to improve cross-study comparability. The AUC has the 
potential to significantly improve convergence across empirical experiments in software 
defect prediction, because it separates predictive performance from operating conditions, and 
represents a general measure of predictiveness. Furthermore, the AUC has a clear statistical 
interpretation. It measures the probability that a classifier ranks a randomly chosen fault-
prone module higher than a randomly chosen non-fault-prone module. Consequently, any 
classifier achieving AUC well above 0.5 is demonstrably effective for identifying fault-prone 
modules and gives valuable advice as to which modules should receive particular attention in 
software testing. 

A roughs guide for classifying the accuracy of a diagnostic test using AUC is the 
traditional system, presented below [29]: 

• 0.90 - 1.00 = excellent classification 

• 0.80 - 0.90 = good classification 

Code Attributes 
NASA MDP dataset 

CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4 
LOC counts LOC total √ √ √ √ √ √ √ √ √ 

LOC blank √ √ √ √ √ √ √ √ √ 
LOC code and comment √ √ √ √ √ √ √ √ √ 
LOC comments √ √ √ √ √ √ √ √ √ 
LOC executable √ √ √ √ √ √ √ √ √ 
number of lines √  √ √ √ √ √ √ √ 

Halstead content √ √ √ √ √ √ √ √ √ 
difficulty √ √ √ √ √ √ √ √ √ 
effort √ √ √ √ √ √ √ √ √ 
error est √ √ √ √ √ √ √ √ √ 
length √ √ √ √ √ √ √ √ √ 
level √ √ √ √ √ √ √ √ √ 
prog time √ √ √ √ √ √ √ √ √ 
volume √ √ √ √ √ √ √ √ √ 
num operands √ √ √ √ √ √ √ √ √ 
num operators √ √ √ √ √ √ √ √ √ 
num unique operands √ √ √ √ √ √ √ √ √ 
num unique operators √ √ √ √ √ √ √ √ √ 

McCabe cyclomatic complexity √ √ √ √ √ √ √ √ √ 
cyclomatic density √  √ √ √ √ √ √ √ 
design complexity √ √ √ √ √ √ √ √ √ 
essential complexity √ √ √ √ √ √ √ √ √ 

Misc. branch count √ √ √ √ √ √ √ √ √ 
call pairs √  √ √ √ √ √ √ √ 
condition count √  √ √ √ √ √ √ √ 
decision count √  √ √ √ √ √ √ √ 
decision density √  √ √ √ √ √ √ √ 
edge count √  √ √ √ √ √ √ √ 
essential density √  √ √ √ √ √ √ √ 
parameter count √  √ √ √ √ √ √ √ 
maintenance severity √  √ √ √ √ √ √ √ 
modified condition count √  √ √ √ √ √ √ √ 
multiple condition count √  √ √ √ √ √ √ √ 
global data complexity   √ √      
global data density   √ √      
normalized cyclomatic complexity √  √ √ √ √ √ √ √ 
percent comments √  √ √ √ √ √ √ √ 
node count √  √ √ √ √ √ √ √ 

Programming Language C C++ Java C C C C C C 
Number of Code Attributes 37 21 39 39 37 37 77 37 37 
Number of Modules 505 1571 458 127 403 1059 4505 1511 1347 
Number of fp Modules 48 319 43 44 31 76 23 160 178 
Percentage of fp Modules 9.5 20.31 9.39 34.65 7.69 7.18 0.51 10.59 13.21 
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• 0.70 - 0.80 = fair classification 

• 0.60 - 0.70 = poor classification 

• 0.50 - 0.60 = failure 
 
4.4. Model Comparison using Paired Two-tailed t-Test 

A paired t-test compares two samples in cases where each value in one sample has a 
natural partner in the other. A paired t-test looks at the difference between paired values in 
two samples, takes into account the variation of values within each sample, and produces a 
single number known as a t-value. In this research, we have applied pair wise t-tests over 
mean values of each datasets in order to determine statistical significance of results with ∝ =
0.05. 
 
5. Result and Analysis 

First, we conducted experiments on 9 NASA MDP data sets by using 11 classification 
algorithms. The experimental results are reported in Table 3. This result confirmed Hall et al. 
[5] result that Naive Bayes and Logistic Regression, in particular, seem to be the techniques 
used in models that are performing relatively well in software defect prediction. Models based 
on Decision Tree seem to underperform due to the class imbalance. Support Vector Machine 
(SVM) techniques also perform less well, though SVM has excellent generalization ability in 
the situation of small sample data like NASA MDP data set. 

Table 3. AUC of 11 Classifiers on 9 Data Sets (without PSO and Bagging) 

Classifiers CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4 

Statistical 
Classifier 

Logistic Regression 0.763 0.801 0.713 0.766 0.726 0.852 0.849 0.81 0.894 

LDA 0.471 0.536 0.447 0.503 0.58 0.454 0.577 0.524 0.61 

Naive Bayes 0.734 0.786 0.67 0.739 0.732 0.781 0.811 0.756 0.838 

Nearest 
Neighbor 

k-NN 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

K* 0.6 0.678 0.562 0.585 0.63 0.652 0.754 0.697 0.76 
Neural 
Network Back Propagation 0.713 0.791 0.647 0.71 0.625 0.784 0.918 0.79 0.883 

Support 
Vector 
Machine 

SVM 0.753 0.752 0.642 0.761 0.714 0.79 0.534 0.75 0.899 

LibSVM 0.692 0.751 0.596 0.54 0.628 0.674 0.907 0.742 0.699 

Decision 
Tree 

C4.5 0.565 0.515 0.497 0.455 0.543 0.601 0.493 0.715 0.723 

CART 0.604 0.648 0.637 0.482 0.656 0.574 0.491 0.68 0.623 

Random Forest 0.573 0.485 0.477 0.525 0.74 0.618 0.649 0.678 0.2 

In the next experiment, we implemented PSO and bagging technique for 11 classification 
algorithms on 9 NASA MDP data sets. The experimental result is shown in Table 4. The 
improved model for each classifier is highlighted width boldfaced print. As shown in Table 4, 
almost all classifiers that implemented PSO and bagging outperform the original method. It 
indicate that the integration of PSO based feature selection and bagging technique is effective 
to improve classification performance. Support Vector Machine (SVM) techniques still 
perform less well and no significant improvement. It indicates that feature selection and 
bagging are not the answer of the SVM performance problem. This result also confirmed that 
SVM may be underperforming as they require parameter optimization for best performance 
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[5]. The integration between PSO and bagging technique affected significantly on the 
performance of the class imbalance suffered classifiers, such as C4.5 and CART. 

Table 4. AUC of 11 Classifiers on 9 Data Sets (with PSO and Bagging) 
Classifiers CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4 

Statistical 
Classifier 

Logistic Regression 0.738 0.798 0.695 0.78 0.751 0.848 0.827 0.816 0.897 
LDA 0.469 0.627 0.653 0.686 0.632 0.665 0.571 0.604 0.715 
Naive Bayes 0.756 0.847 0.71 0.732 0.748 0.79 0.818 0.78 0.85 

Nearest 
Neighbor 

k-NN 0.632 0.675 0.578 0.606 0.648 0.547 0.594 0.679 0.738 
K* 0.681 0.792 0.66 0.725 0.572 0.822 0.814 0.809 0.878 

Neural 
Network Back Propagation 0.7 0.799 0.726 0.734 0.722 0.809 0.89 0.823 0.915 
Support 
Vector 
Machine 

SVM 0.721 0.723 0.67 0.756 0.667 0.792 0.294 0.735 0.903 
LibSVM 0.701 0.721 0.657 0.507 0.665 0.732 0.839 0.744 0.87 

Decision 
Tree 

C4.5 0.682 0.606 0.592 0.648 0.615 0.732 0.732 0.78 0.769 
CART 0.611 0.679 0.787 0.679 0.682 0.831 0.794 0.845 0.912 
Random Forest 0.62 0.604 0.557 0.533 0.714 0.686 0.899 0.759 0.558 

 
Finally, in order to verify whether a significant difference between the proposed method 

(with PSO and bagging) and a method without PSO and bagging, the results of both methods 
are compared. We performed t-Test (Paired Two Sample for Means) for every classifier 
(algorithm) pair of without/with PSO and bagging on each data set. We set significance level 
(α) to be 0.05. The result is shown in Table 5. Although there are three classifiers that have no 
significant difference (P > 0.05), the results have indicated that those of remaining eight 
classifiers have significant difference (P < 0.05). Therefore, we can conclude that the 
proposed method (the integration between PSO and bagging technique) makes an impressive 
improvement in prediction performance for most classifiers. 

Table 5. Paired Two-tailed t-Test of without/with PSO and Bagging 
Classifiers P value of t-Test Result 

Statistical 
Classifier 

Logistic Regression 0.323 Not Sig. (P > 0.05) 

LDA 0.003 Sig. (P < 0.05) 

Naive Bayes 0.007 Sig. (P < 0.05) 

Nearest 
Neighbor 

k-NN 0.00007 Sig. (P < 0.05) 

K* 0.001 Sig. (P < 0.05) 
Neural 
Network Back Propagation 0.03 Sig. (P < 0.05) 

Support 
Vector 
Machine 

SVM 0.09 Not Sig. (P > 0.05) 

LibSVM 0.178 Not Sig. (P > 0.05) 

Decision 
Tree 

C4.5 0.0002 Sig. (P < 0.05) 

CART 0.002 Sig. (P < 0.05) 
Random Forest 0.01 Sig. (P < 0.05) 
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6. Conclusion 
A novel method that integrate particle swarm optimization and bagging technique is 

proposed in this paper, to improve the accuracy of software defect prediction. Particle swarm 
optimization is applied to deal with the noise attributes problem, and bagging technique is 
employed to alleviate the class imbalance problem. We conducted a comparative study of 
eleven classifiers which is applied to nine NASA MDP data sets with context of software 
defect prediction. Experimental results show us that the proposed method makes an 
impressive improvement in prediction performance for most classifiers. 

Future research will be concerned with benchmarking the proposed method with other 
metaheuristic optimization techniques, such as genetic algorithm or ant colony optimization, 
and other metalearning techniques, such as boosting and sampling. The investigation of more 
sophisticated metaheuristic optimization techniques for optimizing parameter of SVM for 
software defect prediction will be studied in our future work.  
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