
ARTICLE IN PRESS

Microelectronics Journal ] (]]]]) ]]]–]]]
Contents lists available at ScienceDirect
Microelectronics Journal
0026-26

doi:10.1

� Corr

E-m

ciprian.

(L. Laga

(T. Wan

(A. Mor

Pleas
Micr
journal homepage: www.elsevier.com/locate/mejo
Towards a framework for designing applications onto hybrid
nano/CMOS fabrics
Catherine Dezan a,�, Ciprian Teodorov a, Loı̈c Lagadec a, Michael Leuchtenburg b ,
Teng Wang b , Pritish Narayanan b , Andras Moritz b

a LAB-STICC UMR 3192, Université de Bretagne Occidentale, France
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The design of CAD tools for nanofabrics involves new challenges not encountered with conventional

design flow used for CMOS technology. In this paper, we propose to define a new framework able to help

the designer to map an application on a wide range of emerging nanofabrics. Our proposal is based on a

variety of models that capture as well as isolate the differences between these fabrics. This tool supports

the design flow starting from behavioral description up to final layout. It integrates fault-tolerant

techniques and fabric-related density transformations with more conventional design automation

techniques. After an overview of common requirements, physical models, and associated techniques, a

case study in the context of NASIC fabrics is used to illustrate some of the concepts.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

As an alternative to CMOS based designs, novel nanofabrics are
being proposed based on a combination of lithographic processes
and bottom-up self-assembly based manufacturing. These fabrics
include NanoPLA [1,2], CMOL [3], FPNI [4], and NASIC [5]—to
name a few. They are based on a variety of devices such as FETs,
spin-based devices, diodes, and molecular switches. Furthermore,
all these architectures include some support in CMOS: some like
FPNI would move the entire logic into CMOS, others, like NASIC,
would only provide the control circuitry in CMOS. The rationale
for this varies but includes targeted application areas as well as
manufacturability issues.

Other differences include fault handling: e.g., some proposals
would use reconfigurable approaches, while others like NASICs
would rely on built-in techniques based on redundancy, voting,
error correction, and/or unique fabric structures. The architectures
proposed range from general purpose processors to program-
mable logic arrays similar to FPGAs, and to more specialized
devices such as cellular arrays and cellular neural networks.

In order to implement an application on a nanofabric, specific
tools are already proposed by the respective research groups
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[1,5,6] as CAD tools are necessary to be able to design and evaluate
the capabilities of larger-scale systems. As the underlying
technologies are still evolving according to advances in devices,
manufacturing, and fabric structures, CAD tools for nanofabrics
should be made, ideally generic enough to integrate added
features or to enable new paradigms as well as comparison
between various approaches.

This paper proposes a prototyping CAD tool that considers an
explicit specification of the underlying nanofabric. It extends the
classical design flow—shown in the Fig. 1—for designing an
application from behavioral specifications (e.g., in VHDL, Verilog,
or SystemC) onto physical designs. It is based on a range of trans-
formations applied at different levels of description/abstraction of
the application/problem that is mapped.

The new design flow proposed incorporates a variety of models
associated with the nanofabric to allow optimizations to occur on
generic data structures. Through a computational model, an
architectural model, a technological model, and a fault model
key aspects of a particular fabric can be captured and abstracted.
The proposed models interact with the behavioral and the
physical tools to produce an abstract layout for the design—

starting from a high-level description. Parts that are mapped to
nanoscale are separated from parts that use conventional CMOS
technology.

Nanoscale fabrics under consideration have the following
features:
�

k f
The use of self-assembly based manufacturing techniques, e.g.,
nanopatterning, fluidic alignment, DNA-based self-assembly,
or designing applications onto hybrid nano/CMOS fabrics,
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Fig. 1. Classical design flow of a conventional CAD tool.

C. Dezan et al. / Microelectronics Journal ] (]]]]) ]]]–]]]2
and di-block co-polymers, in conjunction with conventional
lithography: this is driving their structure to be quasi-regular
such as based on 2-D crossbars.

�
 Nanoscale fabrics could be hybrid nano/CMOS structures as

opposed to just nanoscale.

�
 Nanoscale fabrics are expected to have high defect rates, e.g., in

the range of 10+%; thus, defect tolerance techniques need to be
incorporated and taken into account in the design of any new
CAD tool. In comparison, conventional CMOS designs in 90 nm
technology have only 0.4 defects per cm2.
The need to build a new framework able to support large
applications based on emerging fabrics is apparent. While not all
of the physical constraints are finalized, investigations have began
and significant progress is made on all areas. We can expect that
the development of a nano CAD framework can reduce the design
gap between nanoscale designs and CMOS counterparts. As
known, the classical tools are able to map millions of transistors
large designs into CMOS technology.

In summary, this paper makes the following key contributions:
(1) we propose to develop a new framework able to manage
hybrid CMOS/nano architectures based on model specifications;
and (2) the classic design-flow is extended to interact with these
new models based on new and adapted tools/algorithms. Our
broader objective is to develop a framework that could be used by
research groups in this field and that could help them in their
investigation of new materials, devices, and architectures evalu-
ating implications at the system level.

The paper is organized as follows. Section 2 presents the
proposed models used by this CAD framework to capture the
Please cite this article as: C. Dezan, et al., Towards a framewo
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characteristics of the nanofabrics. Section 3 gives an overview of
the general organization of the proposed CAD framework. The
subsequent sections discuss the main components of the new
design flow. The last section shows the feasibility of the approach
by taking an example application dedicated to NASIC nanofabric.
2. Models for fabric specification

The prototyping tool presented here is henceforth referred to
as NanoMadeo. It is based on four meta-models. These meta-
models provide abstractions of the nanofabrics concerning their
computation paradigm (computational meta-model), their struc-
tural organization (structural meta-model), technological con-
straints (technological meta-model), and their fault-tolerance
ability (fault meta-model).

Through these, the designer is able to capture different aspects
of the target fabric. These models interact with behavioral
transformations, structural transformations, and physical tools,
needed to design and to implement an application onto the
nanofabric support. These interactions are mediated by the meta-
models. The aspects that need to be captured by the meta-models
are detailed in the following subsections. The general flow of this
tool is presented in Section 3.

2.1. Computational meta-model

CAD tools for emerging nanofabrics must be able to handle
both traditional CMOS and nanoscale technologies. The distribu-
tion of functionality between the two depends on the nanoscale
capabilities, manufacturability constraints, the trade-offs between
area, performance, and the reliability of the underlying nanoscale
technology.

For instance, the nanoscale parts of the system can be used
solely for computation in order to gain orders of magnitude
improvements in density and performance compared to CMOS
technology [7]. Nanoscale technology could also be utilized for
interconnect-only to speed-up communication in the fabric by
reducing load capacitances and allowing a denser interconnect
structure. A prototyping tool must handle both of these cases and
in-between in order to be useful.

The computational meta-model also needs to be able to model
different roles for the nano and/or CMOS segments related to both
computation and interconnect. This partitioning is a new
requirement of hybrid, i.e., nano/CMOS, fabrics that is not present
in conventional tools.

2.2. Architectural meta-model

The architectural meta-model provides support for describing
the building blocks of a target nanofabric. These building blocks
correspond to nanoscale or CMOS components necessary to build
the architecture on the fabric. These can be classified into basic
devices, pre-composed blocks and wires as shown in Fig. 2. The
architectural meta-model allows the specification of the types of
tiles specific to each fabric: nanoBlocks for NanoPLA [1], tiles of
basic cells for CMOL [3], hypercells for FPNI [4], and tiles for NASIC
[5]. The topological organization of the nano and microcompo-
nents, including their hierarchical structure in tiles, can also be
captured by a model based on this meta-model.

2.3. Technological meta-model

The technological meta-model permits to model the physical
constraints of the fabric based on the underlying technology. This
rk for designing applications onto hybrid nano/CMOS fabrics,

dx.doi.org/10.1016/j.mejo.2008.07.072


ARTICLE IN PRESS

Building Components

Blocks Devices

Nano Nano NanoMicro Micro Micro

Wires

decoder Inverter
Latch

FET spin,
charge

SET
Diode, Molecular switch

CMOS FET

Fig. 2. Building blocks used in architectural model.

C. Dezan et al. / Microelectronics Journal ] (]]]]) ]]]–]]] 3
information is useful for place and route routines. Nanoscale
systems often do not allow arbitrary routing and placement,
complicating their design as compared to CMOS designs. For
example, a placement constraint related to the fabric might be the
doping constraints in the NASIC fabric that limits each type of
transistor to one dimension: horizontal or vertical, for easing
manufacturing.

Constraints on routing are particularly important in the case of
reconfigurable fabrics where connections are limited to certain
routes. The costs for these routes also give guidance to the routing
procedures for choosing the best possible routes.

Another constraint may be the defects present in a particular
chip in the case of a reconfigurable fabric. These present
additional routing and placement constraints in configuring
around the defects [7].

2.4. Fault meta-model

As nanoscale computational fabrics are commonly based on
bottom-up manufacturing processes, accounting for the reliability
implications is crucial. The fault meta-model proposed allows
modeling of different type of faults, as well as their distribution
and their probability on the target fabric.

Fault types include: permanent defects such as stuck-on or off
transistors or broken nanowires/microwires; transient faults due
to internal noise, particle impact, or electromagnetic interference;
and process variation, including doping, channel length, wire
thickness, and others. A detailed treatment of various fault models
is discussed in [5]. For each possible fault in a given technology,
the rate and distribution (uniform/clustered) is included in the
fault model.
3. Design flow

The general flow of the framework for nanofabrics enlarges the
classical flow introduced in Fig. 1 by adding an explicit specifica-
tion of the fabric. The fabric specification is expressed through
four models based on the meta-models presented in the previous
section. These models interact with the transformations applied at
one specific level of description (behavioral, structural, or
physical) and interact with processes that are applied between
different levels of description. The modified flow is illustrated in
Figs. 3 and 4, respectively.

The computational model interacts with behavioral transfor-
mations and the synthesis process, by giving information about
the nano and micro role and about the computational organization
Please cite this article as: C. Dezan, et al., Towards a framewor
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of the nanostructure (regular, two-level logic based, and hybrid
logic [23,24]).

The architectural model interacts with the structural transfor-
mations and the place-and-route process by using some informa-
tion about the building components and their topological
organization.

The technological model introduces constraints in the place-
and-route process like doping constraints, routing priorities on
reconfigurable fabrics, defect map constraints in order to route
around the defects. This technological model is taken into account
for physical transformations (like physical replications at a floor-
planning level).

The fault model of the fabric is essentially used for estimating
the yield of the circuit based on its architectural description. The
yield projection gives an overview of the circuit’s fault tolerance
and capability to be still correct in terms of its outputs even if
some faults are introduced in the architectural description of the
application (like transistor turned to stuck-off, stuck-on, or broken
nanowire, etc.) related to a certain distribution of defects.

The yield of the circuit can give some insight about the
efficiency of the fault-tolerance techniques that are defined as
transformations (behavioral and/or structural transformations).
The choice of fault-tolerance transformations has different impact
on the yield. If the predicted yield is not satisfactory, it is possible
to reiterate, applying different kinds of fault-tolerant transforma-
tions to different portions of the application. These iterations may
continue until an acceptable level of yield is projected. More
details on fault-tolerance related transformations are given in
Sections 4.2 and 5.3.
4. Application specification and behavioral transformations

The behavioral description of an application is written in an
object-oriented language (ST80) that is similar to the traditional
description used in Madeo [8]. The compilation procedure
produces directed acyclic graphs (DAGs), which are the inter-
mediate representation (IR) used by NanoMadeo.

Some classical behavioral transformations can be applied on
this (IR) in order to perform optimizations, e.g., dead code
removal, constant propagation, and node fusion.

Some specific transformations related to fabric are also
introduced at behavioral level and can be classified in two
categories: (a) transformations for the fabric itself and (b)
transformations required for supporting fault tolerance.
4.1. Transformations for hybrid nano/CMOS fabrics

These transformations include:
�

k f
nano/CMOS pre-partitioning,

�
 synchronization mechanism.
The nano/CMOS pre-partitioning transformations assume a first
role-distribution between the nano part and the CMOS part. These
transformations take into account the computational model that
defines the computation and interconnect related tasks for CMOS
or nanoscale parts. This assignment information is essentially
captured through flags that will be considered all through the
design process.

Transformations for introducing synchronization mechanisms
depend on the way the sequential logic and the control signals are
expressed at the fabric level, related to the computational model.
These can be translated in subsequent steps by explicit registers or
or designing applications onto hybrid nano/CMOS fabrics,

dx.doi.org/10.1016/j.mejo.2008.07.072
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by a dynamic logic activated by specific control signals. Dynamic
style designs are for example applied in NASICs.

4.2. Transformations for fault tolerance

Fault-tolerance techniques may be applied at this level. They
correspond to three kinds of transformations:
�

P
M

transformation introducing voters, like TMR, in order to
duplicate portion of codes and to vote between copies,

�
 transformation introducing different data encoding based on

redundant codes: RNS codes and ECCs. These codes are
expressed at this level like data types,

�
 transformation changing the physical support: the computa-

tion can be realized by the CMOS part to be more reliable.

Fault-tolerance transformations at behavioral level interact
with the computational model and the fault model. The
computational model guides the synthesis of the additional parts
(like voters for TMR techniques), to be mapped on a nanostructure
or a CMOS part. The fault model guides the designer on the
relevance of the fault-tolerance transformations after being
evaluated using yield projection. For instance, it would not be
worth using an ECC with a large Hamming distance, that would
yield too many redundant bits without the yield increasing
proportionally.
5. Synthesis, structural transformations and yield projection

5.1. Synthesis

The resulting logic is then synthesized in the appropriate type
of logic (PLA, LUT, and multi-level logic) as defined by the
architectural model. Standard external tools such as SIS [9] can be
used for this process. This is done on block-wise basis; each high-
level code operation is compiled hierarchically into a single block.

Different levels of operator decomposition can be applied,
allowing the complexity of each block to be traded off against the
number of blocks. The synthesis process may interact with the
fault model of the fabric if probabilistic synthesis [10] is used.

Once the initial structural representation of the application has
been generated through synthesis, transformations at the struc-
tural level are applied.

In the following subsections we focus on structural transfor-
mations applied for both fabric and for fault tolerance.

5.2. Structural transformations

The synthesis is based only on the type of logic and may not take
into account all structural requirements (for instance, the signal
restoration required by the NanoPLA fabric). At this point, logic is
synthesized for the combinatorial parts such as decoders. Sequential
parts such as registers or dynamic logic controls are defined around
the synthesized segments as required in the architecture.

Specific architectural components may be introduced ex-
tracted from a library, corresponding to some architectural
investigations and whose necessity could be demonstrated
through a validation tool (simulation tool).

These structural transformations for a fabric may introduce:
�
 restoration circuitry,

�
 stochastic decoder, needed for the interface between the micro

and the nano parts,

�
 CMOS/nano repartitioning.
lease cite this article as: C. Dezan, et al., Towards a framewor
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in the architectural model. The CMOS/nano repartitioning enables

These components are needed for the interface and are defined

possible migration from nano to CMOS parts according to
performance and/or reliability requirements.

5.3. Structural fault-tolerance related transformations

Fault-tolerance transformations can be also applied at the
structural level. Examples include:
�

k f
Structural redundancy techniques at fine grain level, like N-
way redundancy to provide additional copies of input/output
signals and of some intermediate signals (the copies of
minterms in a case of PLA structures) [5].

�
 Modular redundancy techniques at coarse grain level, based on

TMR and similar techniques—specific structures are selected
and voter circuits are provided to implement TMR or similar
schemes, but at this level, a more detailed architecture of this
kind of circuitry is provided.

These transformations corresponding to the fault-tolerance
techniques applied at the structural description of the application
are, essentially, redundancy based on fine grained or coarse
grained (like TMR) copies. Voters here could be using the CMOS/
nano repartitioning transformation for improving yield—also
depending on manufacturing requirements.

5.4. Yield projection

The structural representation of the circuit plus the fault
distribution given by the fault model can be used to make yield
projections. This is performed by an external yield simulator. A
yield simulator for PLA-based structures proposed in [11] could be
used for different kinds of 2D nanofabrics. Yield estimation can
also be done using Monte Carlo simulation [7] or the FTSim
developed by the NASIC group [5].

The yield simulator depends on the fault model of the fabric in
terms of the types of faults considered and the distribution of
these faults. It gives feedback on the efficiency of the fault-
tolerance techniques applied at different levels of the design flow.
6. Physical design

Nanofabrics are generally organized into tiles, hypertiles or
nanoblocks that correspond to clusters of PLAs, basic cells, or
hypercells. The partitioning techniques used to define such blocks
are based on clustering heuristics for PLA packing, as in PLAmap
[12], T-VPACK [13], or the Singh algorithm [14] (Table 1).

The parameters for clustering are the number of elementary
cells or P-terms of the PLA and the number of inputs and outputs
associated with the cluster. The placement problem consists of
placing each basic cell inside a cluster, once the clusters are
defined. This is achieved using generic optimization heuristics like
simulated annealing, using, e.g., congestion costs in the case of
reconfigurable fabrics.

Routing procedures for nanofabrics can use adaptive maze
router algorithms like Pathfinder [15] from VPR [13], or they can
be more specific to the fabric using, for example, custom
adaptation of shortest Steiner tree problems [16] or other VLSI
algorithms [17].

For reconfigurable fabrics, a defect map provides extra
constraints for placement and routing to configure around the
defects previously detected.
or designing applications onto hybrid nano/CMOS fabrics,
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Table 1
Main features of some hybrid nanofabrics related to models

Fabric models NanoPLA CMOL FPNI NASIC

Computational Nano Computation, interconnect Computation, interconnect Interconnect only Computation, interconnect

CMOS Limited to I/O Specific computation (inv) Computation Control

Architectural Devices FET, diode Molecular switch, SET CMOS NW-FET

Structure 2D-grid 3D-grid 3D-grid 2D-grid

Technological (placement, routing) Connection restricted Connection restricted Connection restricted Doping constraints

Fault Permanent Permanent Permanent Transient, permanent

Table 2
CAD tools used for different fabrics

NanoPLA [1] CMOL [6] FPNI [4]

Partitioning PLAMAP [12] T-VPACK [13] Singh’s greedy algorithm (specific cost) [14]

Placement Simulated annealing (VPR-like) Simulated annealing (VPR-like) modified

congestion function

Simulated annealing (VPR-like)

Routing NPR—custom tool (based on Pathfinder [15]) Custom tool (based on RSA heuristic) [16] Maze router (Pathfinder-like) with several

iterations
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Table 2 gives an overview of the different algorithms applied in
physical layout tools for the NanoPLA, CMOL, and FPNI fabrics.
Physical tools for nanofabrics use two kinds of algorithms or
heuristics: adaptive generic algorithms or custom procedures.
Adaptive generic algorithms include general purpose optimization
heuristics like simulated annealing or genetic algorithms and
algorithms for FPGAs like Pathfinder and PLA clustering as the
ones implemented in Madeo [18] or the VPR tool.

On NanoMadeo, the place and route step is done using generic
algorithms capable to take into account the nanofabric constraints
extracted from the architectural and technological models.
Constraints like the tile dimension, the position of each specific
component, and the available hierarchical levels can be extracted
from the architectural model in order to be used by the placement
algorithm. The technological model provides fine-grained con-
straints such as the doping constraints for the NASIC fabric.

The placement is done using the simulated annealing heuristic
on a generic representation of the placement problem (similar to
TCG-S [19]).

After the extraction of routing constraints from the architec-
tural and technological models, the circuit can be routed using a
generic maze router like the PathFinder.

The optimization goal for the place and route tool can be
inferred from the architectural and technological models. For
example, in a fabric using the nanowires for signal routing the
goal will be wire-length minimization knowing that the length of
the nanowires is limited due to fabrication constraints.
7. Illustration of the framework: NASIC case study

Table 1 presents some particularities of four emerging
nanoscale fabrics and which model can capture them best. For
additional clarification of the NanoMadeo framework, the rest of
this section is structured as a case study on NASIC fabric
architecture.

7.1. NASIC fabric description

NASIC [5,20–24] is a hybrid system based around tiles of
nanowires and FETs with CMOS providing support and some
Please cite this article as: C. Dezan, et al., Towards a framewo
Microelectron. J (2008), doi:10.1016/j.mejo.2008.07.072
control circuitry. Recent versions of NASICs also explore CNTs and
Spin FETs. For the purpose of this paper we assume NASICs with
NW FETs, such core-shell based ones or crossed-NW ones.

The tiles are made up of crossed nanowires with FETs at the
intersections, forming cascaded PLA-like structures. In each tile
(or supertile), there are possible several planes of transistors—one
with the channels running horizontally and one with the channels
running vertically typically. Thus, each tile implements any logic
function using two-level logic such as AND–OR, NAND–NAND, or
NOR–NOR. Recent versions of NASICs also use the so-called hybrid
logics [23] that would extend this functionality allowing mixing
logic gates in the same logic stage.

In the NASIC fabric, each nanotile is surrounded by microwires
which provide power and control signals. The control signals
implement typically various styles of a dynamic control schemes.
The use of dynamic logic puts a synchronization constraint on the
synthesis of applications onto NASICs, which NanoMadeo must
manage. CMOS also provides support for modular redundancy
schemes, encoding/decoding of inputs and outputs for the entire
system (not between tiles), and control signal generation.
7.2. Modeling the NASIC fabric

To model the NASIC fabric, in the context of NanoMadeo, the
particularities of the fabric have been identified and four NASIC
fabric models produced according to the meta-models described
in Section 2.

The distribution of the role between CMOS and nano layer is
driven by the computational model of the NASIC fabric and
explicit two main points: one is the computation organization of
the nanogrid in two level logic in order to be mapped later into
PLA structures (information related to synthesis), the other is
related to the control aimed to be mapped to CMOS level.

The architectural model of the NASIC fabric points the building
components used (e.g. FET, nanowire, and microwire) and explicit
structural organization into tiles based on topological rules on
building components. Building components may be assembled in
a predefined way (for instance, for the nano and microwires, if the
number of nanotiles are supposed to be fixed) or in an adaptable
way related to the application (placement of FETs on the PLA
rk for designing applications onto hybrid nano/CMOS fabrics,

dx.doi.org/10.1016/j.mejo.2008.07.072
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Fig. 5. WISP-0 block diagram.

Fig. 6. DAG from NanoMadeo representing ALU and RF.
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structure). In the latter case, these topological rules are active
during the place-and-route phase.

The technological model provides the physical constraint of the
NASIC fabric essentially due to the doping constraints of the two
types of transistors that can be used (N-FET, P-FET). These
constraints introduce some additional complexity in the place-
ment routines inside one tile. The mapping onto different tiles
adds I/O constraints between tiles.

The fault model takes into account two types of faults:
permanent and transient faults. Distribution and rate of these
types of faults have an impact on the reliability of the
implementation. The fault-tolerant transformations have different
capabilities in masking errors that can be evaluated using a yield
simulator [5].
7.3. WISP-0 application design for NASIC

WISP-0 [21] is a stream processor, built on NASIC, that
implements a streaming processor architecture with 5-stage
pipeline: fetch, decode, register file (RF), execute, and write back.
It is a multi-tile design with five nanotiles (Fig. 5). A key feature is
that intermediate values during execution are often stored on the
nanowires directly without explicit latches using a three-phase
dynamic control. Other key aspects relate to its fault-masking
strategy, density optimizations, and control schemes.

The specification of WISP-0 with NanoMadeo is functional,
including the followings:
Fig. 7. LUT of instruction memory before and after BCH encoding.
�
P
M

a synchronization primitive,

�
 a reflexive operator to define feed-back,

�
 specific types to introduce redundancy.
In Fig. 6, we give an example of a DAG produced by the compiler
from source code defining the ALU and RF stages of WISP-0. In this
DAG, nodes correspond to function calls or operators that will be
synthesized into logic PLA blocks equivalent with NASIC logic.

This description implicitly describes some data synchroniza-
tion, but this information could be made more explicit and could
be managed through specific behavioral transformations. No
explicit partitioning between nano/CMOS is done at this point
because every logic functionality is aimed to be implemented at
nanoscale in the case of NASICs. Nevertheless, if some fault-
tolerant techniques are added in CMOS, this information needs to
be explicit (for instance, the generation of CMOS TMR voters by
transformation for fault tolerance). Other transformations for
fault tolerance can be applied by injecting specific data types for
the inputs. These types represent future data encodings for the
input data; for instance, in the case of WISP-0, BCH codes (as ECC)
are used to introduce built-in redundancy.

We show, in Fig. 7, the effect of ECC fault-tolerance transfor-
mations on the LUT1 specification of the instruction memory of
Wisp-0 processor. The ECC transformations correspond to BCH
codes applied to the memory addresses and instruction codes.
1 LUT—look up table.
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7.4. Structural transformations and yield projection for WISP-0

In the case of a NASIC fabric (without hybrid logic),
NanoMadeo utilizes the external synthesis tool SIS to perform
the two-level logic synthesis of PLAs associated with each node of
the DAG. Assembly of synthesized portions is addressed by
NanoMadeo to define the complete logical structure of the
WISP-0 application. WISP-0 may use some structural fault-
tolerance techniques such as TMR and N-way redundancy of
signals. The result of synthesis is then transformed here to
implement these techniques, when they are in use.

We have developed a yield simulator to evaluate fault-
tolerance techniques in NASICs. The simulator generates random
defect maps for designs based on a defect model and runs logic
simulations on them, testing with many different possible sets of
input. By measuring what proportion of the generated defect
maps result in correct output when simulated, the yield can be
estimated. NanoMadeo can automatically call the yield simulator
to evaluate defect and fault-tolerance techniques. One example of
output after several runs of the yield simulator, using different
fault rates and different fault-tolerance techniques (TMR, ECC, and
N-way) is shown in Fig. 8. This graph provides information on the
efficiency of the fault-tolerant techniques related to the fault rate
and the types of permanent defects (for instance, if the fault rate
is above 6%, the yield is better with ECC techniques considering
10% stuck-off and 90% stuck-on).
k for designing applications onto hybrid nano/CMOS fabrics,
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Fig. 9. WISP-0 layout from NanoMadeo.
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7.5. Wisp0 layout

Based on the architectural and technological model of NASIC
fabric, an abstract layout can be produced taking into account the
layout constraints inside one tile. In Fig. 9, we present the abstract
layout of WISP-0 onto a nanogrid of three tiles, partially
integrating some fault-tolerant techniques. A more efficient
place-and-route algorithm without constraints on the size of the
tile is under study.
8. Conclusion

In order to handle next generation hybrid nano architectures,
CAD tools will have to evolve. Highly heterogeneous multi-part
fabrics introduce new challenges which must be met efficiently. In
this paper, we have shown that the proposed tool, NanoMadeo,
can handle many of these challenges and can be used productively
for work on NASIC designs. Its design will make it easy to adapt it
for other hybrid nanoscale architectures.
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