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1 INTRODUCTION 

Most of the currently available grid programming models 
rely on foreign programming models that are adopted via a 
technology porting process. Here we include MPI-like 
libraries like MPICH-G2 (Karonis, Toonen, and Foster, 

2002), file based distributed data services based on GridFTP 
(Allcock et. al., 2001) and higher level data access services 
like OGSA-DAI (Karasavvas et al., 2005). Services and 
high level abstractions for programming shared data 
structures on the grid are almost not present on the grid 
programming model landscape. Thus, our idea is to propose 
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a new distributed shared memory system and its 
corresponding programming model adapted for the grid. 
Some of the core reasons for considering such a model stem 
from the drawbacks of message passing solutions that put an 
additional burden on the programmer to decompose the 
computation handle load balancing and explicit 
communication orchestration and the lack of automatic data 
layout and optimization support. 

Although many distributed shared systems have been 
developed in the last two decades, most of them are limited 
to a certain number of nodes and work best with a fast 
interconnection network. Such systems do not qualify for 
the grid as they do not fulfill the scalability and wide range 
deployment requirements. Blindly applying such models on 
the grid will most probably fail to provide the expected 
behavior and reasonable performance. Distributed shared 
data items must be widely shared and the problem of 
managing the consistency of mutable data on wide area 
systems is raised.   

In this paper we aim to identify the challenges of grid 
shared data system design and the reasons why these kinds 
of systems did not have a significant impact on the grid 
programming community. We start by elaborating in 
Section 2 the assessment criteria for general grids as well as 
grid shared data systems. In Section 3, we highlight the 
most important grid shared data attempts and emphasize 
their weaknesses. In Section 4, we present our design 
strategy in order to achieve a widely distributed, scalable 
and efficient grid shared data system that provides a generic 
and flexible object oriented programming interface. 

2 ASSESSMENT CRITERIA 

Based on literature study of a different grid shared data 
based systems, we tried to abstract and identify some of 
their properties which are directly related to the 
programming model they introduce, their adaptation level 
towards the grid specific interfaces and their performance 
behavior in various conditions. The first five criteria are 
based on (Lee et al., 2001) and they reflect system specific 
criteria. The following five criteria are abstracted out of our 
literature based observations we made on several grid 
systems and they reflect aspects which are most of the time 
overlooked during the system design or during the system 
assessment and performance measurements.  

2.1 Usability and transparency  

Grid shared data abstractions must be suitable for various 
types of problem domains from local computing to large 
scale high performance computing. There should be no 
constraints in building codes that are targeted to a specific 
architecture so that different development paths are 
followed depending on the system’s requirements and 
architecture. Next, access to the shared data shall be done 
through a generic and transparent interface, which shall not 
require tailoring for different usage scenarios. 

2.2 Dynamic and heterogeneous configurations  

Dynamic and heterogeneous environments that change 
frequently due to machine availability, new connection 
paths, different communication latencies due to connection 
changes, new available resources are common assumptions 
for any grid system. As a consequence, predefined built-in 
logic is not suitable for large scale grid systems as it 
obstructs reconfigurations and system evolution.  

2.3 Portability and interoperability  

Portability is not a new topic and is best captured by the 
sentence “write once, run anywhere”. For grid systems, 
portability is similar to supporting programs to be run 
independently of the underlying architecture. Portability and 
architecture independence is vital to support dynamic and 
heterogeneous configurations. Interoperable grid systems 
are based on open standards and protocols. Ideally, the 
protocols, services and interfaces that realize the grid shared 
data model shall expose interoperable concepts as well. 

2.4 Reliability and fault tolerance 

Reliability and fault tolerance are general system 
desiderates for any grid system with a certain degree of 
determinism. Most of the time reliability is associated with 
performance reliability, meaning that multiple code 
executions shall not have significant performance 
deviations. Addressing these issues in the application layer 
is not applicable anymore as grids aim to expose high level 
functionality with advanced management support. Ideally, 
these characteristics shall be part of the run-time 
mechanisms of the grid system. 

2.5 Security and privacy 

As grids span between virtual organizations with different 
security policies, security issues, rights management and 
privacy have been a major concern. As grid codes are 
running across different administrative domains, it is very 
important that security be part of grid system and less 
visible on the programming interfaces.  

2.6 Flexible replication techniques 

Replication techniques have been used in case of service-
centric system to increase service availability through 
resource redundancy. Data-centric systems like shared data 
systems make use of replication for performance. 
Depending on the replication techniques and replica 
synchronization protocols, it is expected to observe 
significant performance differences. We believe that a key 
point in assuring reliable performance is to adapt replication 
decisions and algorithms to specific use cases. More, we do 
not see the replication decisions as part of the system, but 
more like information collection from the application side 
based on predefined system metrics. 
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2.7 Replica consistency and coherence 

It is generally accepted that strong consistency 
specifications like sequential consistency (Lamport, 1979) 
are not suitable to large scale systems such as a grid. 
Relaxed consistency specifications like entry consistency 
(Bershad, Zekauskas and Sawdon, 1993) have a much 
higher chance to perform better on grid systems. However, 
we believe that consistency alone does not provide 
sufficient information, as it basically bounds the system to a 
replica update scheme. Having flexible replication schemes 
would be a clear advantage in accommodating different 
shared data usage scenarios. 

2.8 Mutual exclusion 

Grid shared data systems introduce the problem of data 
sharing and mutual exclusion. Mutual exclusion algorithms 
have been developed during the last decades, but there is 
little information on their performance behavior when 
applied to the grid level. Some recent investigations 
conducted in (Sopena et al., 2007) and (Bertier, Arantes and 
Sens, 2004) provide an empirical performance evaluation of 
an extended version of the Naimi-Trehel (Naimi, Trehel, 
and Arnold, 1996) and two level compositional algorithms 
that realize mutual exclusion on the grid level. We believe 
that the performance of grid shared data solution is directly 
determined by the choice of the mutual exclusion algorithm 
on the grid level. 

2.9 Wide scale and extreme conditions 

We believe that grids consisting on several strongly 
connected clusters via fast interconnections do not provide a 
suitable environment for performance analysis. Instead we 
focus on really wide scale systems, which are dominated by 
large latency connections. The motivation for such criteria 
is simply because of the network saturation effect which 
becomes obvious if grids become public, instead being 
isolated and used as dedicated resources. We believe that 
only on a wide scale the original definition (Foster and 
Kesselman, 1998) and purpose of grid systems is truly met. 

2.10 System verification and performance analysis 

Most of the grid shared data systems we have surveyed by 
literature study, such as Dedysis (Osrael, Froihofer, and 
Goeschka, 2006) and JUXMEM (Antoniu, Bougé, and 
Mathieu, 2005), have been evaluated empirically from the 
performance point of view. A critique perspective on these 
systems is presented in Section 3. In case of the analyzed 
systems, either some consecrated parallel algorithms were 
run on several configurations, or an artificially created 
problem that used the system was deployed in order to 
collect the performance results. Most of the times, the 
conditions during the experiment were not described, 
suggesting that clusters were used as dedicated resources. 
We believe that only system verification and performance 
analysis through analytical and formal methods can reveal 

more meaningful aspects about the system behaviour. In 
addition, real situation experiments are quite time 
consuming to run in various configurations. As some 
experiments might require hours to run, running a complete 
experiment suite can easily span to days or weeks. Opposite 
to this situation, system verification and performance 
analysis via computer-aided verification tools can 
dramatically reduce the simulation time and enable 
simulation scenarios that are impossible to provide in real-
life situations. 

3 EXISTING GRID SOLUTIONS LANDSCAPE 

When it comes to programming grid applications, there are 
not so many choices of programming paradigms. Most of 
the grid based projects that we have encountered make 
extensive use of message passing techniques either as a 
grid-integrated solution like MPICH-G2 (Karonis, Toonen 
and Foster, 2002) or solutions that simply use the grid as an 
execution environment. The research landscape for shared 
data programming on the grid is at its dawn. We believe that 
some of the major obstacles in the development of this 
paradigm are coming from the complexity of the solution 
and some challenges described by some of the assessment 
criteria. More specifically, we believe that the combination 
of replication techniques, mutual exclusion and consistency 
replication is a major challenge in building scalable and 
efficient shared data grid systems. Last but not least, the 
lack of rigorous system analysis makes previous experiment 
results questionable in large scale and extreme conditions. 

3.1 File and catalogue based solutions  

Grid middleware solutions like Globus (Foster, and 
Kesselman, 1997) provide mechanisms for performing file 
replication and replica location services via hierarchical 
catalogs. Unfortunately, these mechanisms are suitable only 
for immutable data handling and not dynamic data as 
required by shared data programming paradigm. Several 
services for replica consistency handling have been 
proposed based on grid middleware, but to our knowledge, 
none of them is providing a programming interface and 
integration into the grid environment. In other words, the 
solutions remain particular to certain scenarios, without 
having the required generic level aimed by a programming 
paradigm. 

3.2 Dedisys 

Dedisys (Osrael, Froihofer, and Goeschka, 2006) is one of 
the very recent research activities towards replicated data 
systems across the grid, where the primary focus is 
increased availability by sacrificing consistency. The core 
idea is to continue the normal execution when faults occur, 
such as network partitions due to disconnected 
communication paths, and provide reconciliation points 
when connections are restored. In this way different replicas 
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could evolve independently at the reconciliation price paid 
by the programmer which has to provide the reconciliation 
logic. Based on the information we collected on Dedisys, it 
is not clear how the system performs data replication, but 
we suspect that it is bound at design time and cannot be 
adjusted based on the application requirements. Second, it is 
not clear how mutual exclusion is realized. Last bu
least, system assessment seems to be done on an 
experimental basis, but further performance evaluations 
might follow. 

3.3 JUXMEM 

JUXMEM (Antoniu, Bougé, and Mathieu, 2005)
grid sharing data solution based on a peer
middleware architecture that provides a transparent and 
generic interface to shared data programming on the grid. It 
uses the JXTA (Seigneur, Biegel, and Damsgaard, 2003)
middleware to provide a sharing service for distributed 
shared data. JUXMEM does not provide any da
but rather a flat view provided as a memory buffer where 
the user has to map its own data representation. The 
memory consistency protocol is entry consistency and 
replication decision is fixed and bound at the time the 
shared data is created. This means that a high data usage 
does not lead to dynamic replication, but it relies on its 
already existing replicas. The system takes care of failure 
conditions by promoting grid nodes to new roles in order to 
fulfill the system specification. 

JUXMEM’s validation has been performed on 
experimental basis, by integration into the Grid
(Caron and Desprez, 2006) environment and running 
different parallel applications as benchmarks. From the set 
of run experiments, it is not clear how the system behaves 
on a large scale deployment and large latency connections. 
Based on the author’s descriptions of the required 
adaptations in the JXTA middleware and the fact that all the 
constructs are based on peer-to-peer communication 
protocols, we feel that the peer-to-peer layer might lead to a 
performance limiting factor on large scale grid systems.

4 A NEW APPROACH  

Grid systems expose several constraints and special 
conditions. For better understanding, one can think of a grid 
like a multi-level hierarchical structure that can be modelled 
as a non directed graph. Each node represents a machine or 
a group of machines. Typically, a group of machines is a 
cluster or LAN where each machine can communicate with 
others within the same group with the same known and 
upper bound latency. Thus, we consider together all 
machine groups and depict them as a single group node as 
shown in Figure 1. Such hierarchical structure is constantly 
getting deeper (more levels) and wider (more groups) during 
the evolution of grid systems. A unique characteristic is the 
unpredictable layering as a result of unpredictable joining 
and leaving groups, plus changes in physical 
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communication channels. For example, a certain group is 
connected over the air using wireless LAN or via Bluetooth 
to different hosts, thus it might appear in different layers at 
different times. Besides the unpredictable layering, an
characteristic of the model is the unknown bandwidth and 
latency of each communication line between two arbitrary 
groups. To simplify the discussion, we omit the failure 
model and we consider that there is an upper and lower 
latency bound. 

Figure 1   Grid Node Layering

We follow two directions to overcome the problem of 
communication delay from different perspective
reconstruct the problem and partition
communication groups with known latencies
provide useful programming information so that the run
time system can take advantage of semantic information and 
apply dynamic optimizations. Both ideas are not new, but to 
our knowledge they have not been applied together on a grid 
system before. More, the second 
in the context of grid programming and grid scale 
distributed shared data. Network partitioning is an approach 
followed by MPI implementations and hierarchical 
distributed algorithms to optimize communication according 
to the network topology information and providing meta
information is a well known approach in many software 
engineering domains like formal verification and testing. 

 
4.1 System separation 

Some of the previous attempts in designing DSM for the 
grid have used logical mappings over one single large 
machine group. As presented in section three, in case of the 
JUXMEM approach, where peer
spawned across the grid, the authors of JUXMEM 
recognized that the wide distribution of peers in the overlay 
layer is problematic and current overlay implementations 
such as JXTA (Seigneur, Biegel, and Damsgaard, 2003)
have serious performance issues in largely distributed 
environments. Thus, we argue that another split is 
necessary, which clearly identifies the 
into the entire grid universe. We see this mapping as part of 
the system deployment, instead of relaying on a predefined 
mapping. 
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In order to address thousands of widely distributed nodes, 
we decompose the system into a federation of logi
called universes. The logical representation of a universe is 
homogeneous and communication latency in a universe is 
typically small and bound to a higher known margin. Of 
course, the physical entities that form a universe could be 
heterogeneous (e.g. machines with different resources and 
operating systems). Communication outside the universe, or 
between universes, is unbounded, but still it has an upper 
limit.  

Figure 2   Physical Universe Mapping Sample

In our view a universe is a logical collection of machine 
nodes which provides a hosting environment for distributed 
objects. Nodes are homogeneous and have a data storage 
capacity in RAM and code execution capabilities. Each 
node can hold a certain number of objects so that the sum of 
all object weights held by the node shall not exceed the 
node’s capacity. All existing universes form together the 
grid universe. Each universe is a continuously evolving 
entity together with its connections to the other universes. A 
universe groups together more physical machines which 
share the same communication paths, thus the 
intercommunication channel in a universe is homogeneous 
and has known and constant characteristics. Communication 
between universes is unpredictable, unknown and dynamic. 
As an example of a concrete universe, one can consider a 
physical cluster or a LAN and a grid universe as several 
interconnected clusters. A sample grid universe consisting 
of four universes mapped to four clusters is depicted in 
Figure 2. 

 
4.2 Replication handling 

We intend to use replication as the primary mechanism for 
performance improvement and not for fault tolerance. When 
data is created on the grid, we choose the closest node to the 
node who issued the “create shared data” request and which 
has enough capacity left to accommodate the grid shared 
object. The same node who issued the command can be 
chosen if it has enough capacity available. Upon data 
request during application execution, the grid shared data 
might be replicated to other nodes from the same or 
different universes in order to reduce large latencies. The 
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system decides at run-time to replicate the data based on its 
specification. The replication policy follows a system 
definition of a rule based specification. This means that the 
same replication rules are considered for all the applications 
running on the grid. As the rule based replication policy 
definition is provided from the outside of the system (e.g. 
deployment information), it can be fine tuned differently to 
individual systems. 

 
4.3 Consistency protocol 

The memory consistency model represents a contract that 
the grid shared service has to satisfy at any time. It states 
what the value of a certain object is, among a set of wide 
replicated distributed objects, if certain conditions are 
satisfied. Choosing a specific consistency model has several 
impacts on the overall system. First, it regulates a certain 
degree of overlapped operations so that different processes 
are not blocked if they operate on the same data. At the 
same time the synchronization 
by the consistency model. Second, different consistency 
models imply different underlying operations which 
generate at the end different communication traffic patterns 
and volumes. Last but not least, consistency models have a 
visible impact at the programming level, meaning that 
different consistency models have to be expressed 
differently at the API level. Such a restriction limits the 
adaptability at the consistency level and as a result we have 
to adopt the most suitable cons
systems.  

We have evaluated several usage scenarios to such a 
shared data model and we consider as the most promising 
consistency model the entry consistency model, which is 
also the least restrictive model (or the most relaxed). In 
model, synchronization happens between clearly defined 
operations: acquire and release. The drawback is that it 
requires additional programming effort to specify 
synchronization points. The rationale for this choice is that 
the entry consistency protocol assures data synchronization 
at entry point in the synchronization code, avoiding thus the 
penalty of update protocols that generate a higher 
communication traffic pattern in a large scale environment.

 
4.4 Type coherence 

We tackle the problem of grid 
dimensions. First, we have considered the consistency 
model as the base for object state synchronization and 
correctness. Second, we follow the object usage pattern, in 
the idea of communication and object replication 
optimizations. Here we address type specific coherence 
based on the observation that different classes of objects are 
accessed in different ways and the access pattern might be 
changing during the process lifetime. Based on the scenarios 
we have selected nine object
migratory, producer-consumer, read
mostly, generic and synchronization object.

The programming model we specified defines the above 
different types of grid shared objects and synchronization 
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mechanisms in order to give the run-time system useful 
information to allow a higher concurrency degree and to 
minimize wide area communication overhead.  

 
4.5 Mutual exclusion 

Some of the very recent activities towards better mutual 
exclusion algorithms on the grid have been elaborated in 
(Sopena et al., 2007) and (Bertier, Arantes and Sens, 2004), 
where the authors proposed a compositional approach and 
an extension to the Naimi-Trehel (Naimi, Trehel, and 
Arnold, 1996) algorithm. Both the proposed extension and 
the compositional approach could be applied to our universe 
structure, but there are various modifications could be 
necessary. It is important to note that all of the previously 
mentioned algorithms refer to the simple case of mutual 
exclusion. In our work we have to address the entry 
consistency protocol which requires a different view on 
mutual exclusion, because in some cases simultaneous 
object access is possible. This means that if for example an 
existing algorithm is considered for realizing the mutual 
exclusion protocol, it has to be adapted in order to fulfill the 
entry consistency specification. In addition, type 
consistency needs to be addressed as well within the same 
algorithm, leading to different update mechanisms 
depending on the grid object type specification. 

In (Sopena et al., 2007) the authors presented an algorithm 
composition to realize a hierarchical mutual exclusion 
protocol on an infrastructure similar to the one we have 
proposed. Different algorithms pairs are constructed for 
universe and between universe resource exclusion handling. 
They observed that it is only the “between universes” 
algorithm which brings a significant performance impact on 
the system, whereas the algorithm applied inside a universe 
has no significant performance impact, except the number 
of exchanged messages. Based on the measurements in 
(Bertier, Arantes and Sens, 2004), it seems that the Naimi-
Trehel (Naimi, Trehel, and Arnold, 1996) algorithm is the 
most suitable for exchanging tokens between universes and 
it provides a reasonable trade-off between different classes 
or applications (highly parallel vs. low parallel 
applications).  

Although the experiments were run in very particular 
environments that are neither widely distributed, nor having 
large latencies, we took these observation and proposed a 
new mutual exclusion algorithm adapted for entry 
consistency specification, where a multi-token Naimi-Trehel   
algorithm is used between universes and a type-parallel 
centralized algorithm is used inside each universe. We hope 
to explore the small latency communication within a 
universe and centralize information on a special node that 
would allow us to achieve fast decisions in terms of replica 
update and state identification. 

 
4.6 System verification and prototyping 

We have previously criticized the lack of rigorous system 
verification and performance modeling for existing grid 
shared data systems. The same is true for the mutual 

exclusion algorithms which have been evaluated through 
experiments on fast interconnected machines (Sopena et al., 
2007). In case of (Bertier, Arantes and Sens, 2004), the 
system consisted of only three clusters each made of three 
machines. We argue that such experiments are not 
significant for the purpose of our goals, namely true widely 
distributed systems where large latency connections are 
dominant between universes. Thus, we argue that better 
instruments for system verification and performance 
assessment are necessary. In our current work, we aim to 
focus on probabilistic formal verification in order to validate 
our ideas and provide meaningful performance figures in 
both relaxed and extreme system conditions. While we 
focus on system verification, we put less importance on 
prototyping. We still aim to build a prototype and integrate 
it into the ProActive middleware (Baduel, Baude, and 
Caromel, 2002), which appears quite promising due to its 
highly asynchronous behavior and concept of futures. 

5 GUN PROTOTYPE 

GUN is the acronym for Grid UNiverse and represents a 
Java based implementation of the grid universe model 
defined in (Tudor, Cretu and Schreiner, 2008). Remote 
interactions are expressed in GUN based on Java’s remote 
object model. First, the Remote Method Invocation (RMI) 
solution was chosen for its simplicity and ease of use. 
Second, because the system model does not require 
multicasting support (like Jini (Baker and Smith, 2001) or 
ProActive (Baduel, Baude, and Caromel, 2002) solutions do 
for example), the RMI model fits well to the abstract model.  

GUN reflects the architecture of the abstract model and 
the abstract system architecture described in (Tudor, Cretu 
and Schreiner, 2008). Similar to the abstract model, in GUN 
there are a set of processes deployed over several networks 
called universe nodes. The universe nodes are homogeneous 
and each of them is able to accommodate a certain number 
of data items, until the available capacity of the universe 
node is consumed. Typically universe nodes are grouped 
together in network latency proximity and form a universe. 
The collection of all deployed universes forms the grid 
universe. Each universe contains a dedicated node called 
“primary node” which manages the communication with 
other universes and indexes the information on available 
data items accommodated by each node within the same 
universe. All primary nodes can be seen as a distributed 
registry, each being responsible for managing certain 
number of data objects. A sample deployment of a grid 
universe across physical machines is depicted in Figure 2. 

The GUN prototype is divided into three layers, as 
illustrated in Figure 3. There is a user layer which exposes 
the abstractions and necessary interfaces to the application 
programmer. The second layer is the kernel which 
implements the core algorithms and implements all 
interfaces exposed to the outside world by the user layer. 
Last but not least, there is a replication layer which handles 
object replication policies. The replication layer implements 
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an interface required by the kernel so that the kernel invokes 
the replication engine at some key points in order to trigger 
object replication. The replication layer is extendable, 
meaning that user defined replication rules can be registered 
into the GUN architecture. 

Figure 3  GUN High Level Architecture

The user layer depicted in Figure 4 provides services to 
create, find, delete and acquire grid objects. 
exposed through the GridUniverse 
implemented as a singleton object. When an object is 
created, GUN returns a handle to that object. The handle 
contains information about the object identifiers OID, GID 
and an URI of the remote object in the RMI domain. The 
handle shall be passed by the client whenever an operation 
on the grid objects is invoked such as removal, acquire or 
release. Basically, the application programmer extends the 
GridObject class in order to implement its custom objects. 
The GridObject implements the RMI specific 
interface, meaning that GUN user defined objects are 
automatically remote objects. The concrete custom interface 
is retrieved from GUN using the GetGridObjectRef
of the GridObjectHandle class. 

Figure 4  GUN User Layer

Object creation follows the locality principle and tries to 
find a node in the proximity of the node from where the 
request was issued (e.g. caller node). Upon completion, the 
create service returns a handle to the client that can
to acquire exclusive or non-exclusive access to the object 
instance as well as to invoke specialized methods that are 
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an interface required by the kernel so that the kernel invokes 
the replication engine at some key points in order to trigger 
object replication. The replication layer is extendable, 
meaning that user defined replication rules can be registered 
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creation follows the locality principle and tries to 
node from where the 

. Upon completion, the 
create service returns a handle to the client that can be used 

exclusive access to the object 
invoke specialized methods that are 

provided in the concrete object definition. Object
follows the same data locality principle and tries to locate an 
object that resides in the proximity of

When the GUN system is started, first all primary nodes 
are being started. Each primary node has a configuration file 
which contains at the address of at least other primary 
nodes. The primary nodes are running a simple discovery 
protocol, which at the end brings all primary nodes to know 
the identity of all other primary nodes. The same 
mechanism applies when a primary node is removed from 
the grid universe.  As a result, in the GUN system, it is 
ensured that every primary node kn
nodes, or in other terms, all universes know all other 
universes. This decision has been made based on the 
assumption that primary nodes are running on dedicated 
machines, which have a high availability rate (e.g. hardware 
fault tolerance). The GUN system can be extended from this 
point of view to a peer-to-
between primary nodes. 

After the primary nodes are started, the grid nodes are 
deployed. Every grid node has a configuration file that 
specifies its name, capacity and the address of the primary 
node where it must register. Normally the grid nodes are 
located in network latency proximity, meaning that in every 
universe there are homogeneous communication 
characteristics. When the node is instantiated, 
automatically registers to the designated primary node. The 
primary node stores information in a hash table about all the 
registered nodes and their status (e.g. available capacity, 
stored objects etc). Using a hash table mechanism it is 
ensured that a fast lookup time is achieved.

The kernel component implements the mutual exclusion 
algorithms and the model defined in 
Schreiner, 2008) where an extended version of the 
distributed multi-token Naimi
defined. The interaction between nodes and primary nodes 
is happening via remote message invocations (RMI). This 
interaction follows the following pattern: request messages 
are sent via methods named like 
callbacks are received via methods named 
onSomeMessage(). Internally, the asynchronous 
communication is realized via message classes that are 
described in Figure 5. 

Figure 5  GUN 
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automatically registers to the designated primary node. The 
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The kernel component implements the mutual exclusion 

algorithms and the model defined in (Tudor, Cretu and 
where an extended version of the 

token Naimi-Trehel algorithm has been 
interaction between nodes and primary nodes 

is happening via remote message invocations (RMI). This 
interaction follows the following pattern: request messages 
are sent via methods named like DoSomething() while 
callbacks are received via methods named 

Internally, the asynchronous 
communication is realized via message classes that are 
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When a client invokes an operation on a grid object via 
the GridUniverse, the node where the client 
depending on the desired operation, one of the Acquire, 
AcquireExclusive or Release methods invoked. The node 
creates the corresponding request message and adds it into 
its request queue. Next, the node delegates the operation to 
the primary node to which it had registered. Next, the node 
is waiting for the primary node to reply to its request by 
calling a wait message on the queued message. After 
processing the node’s request, the primary node responds to 
the node by calling one of the callback methods which 
triggers a notification on the awaited message. After the 
node is notified by the awaited message, the message is 
removed from the queue, the original client method 
invocation ends and the response is returned to the client. 
This mechanism is used for all interactions between nodes 
and primary nodes. 

The interaction between grid primary nodes is more 
complex and it basically implements the multi
Trehel algorithm. All requests that are sent by grid nodes 
are queued by the primary nodes in two separate queues: a 
queue for acquire requests and one for release requests. 
There is a dedicate message queue for each group of object 
identifiers, as depicted in Figure 6. 

Figure 6   GUN Message Queue

There are several worker threads that are processing the 
queued requests. In order to facilitate a higher parallelism 
level as well as lower locking time, the GUN prototype 
makes use of several worker threads that are hand
following operations: 

• Acquire requests 
• Acquire exclusive requests 
• Release requests 
• Token reception 
• Synchronization of up-to-date nodes 
The distributed mutual exclusion algorithm is based on the 

multi-token concept. For every group of objects there is a 
token associated. The tokens as well as all data structu
are hashed based on the object identifier 
structure is depicted in Figure 7. The token contains a list of 
nodes that are having requested the object in non
mode and did not release the objects yet. Second, the token 
contains a list of nodes that are holding an up
version of the object. For specialized objects the token 
structure has been extended with a list of consumers and 
writers (for producer-consumer and result objects).
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its request queue. Next, the node delegates the operation to 
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are processing the 
queued requests. In order to facilitate a higher parallelism 
level as well as lower locking time, the GUN prototype 
makes use of several worker threads that are handling the 

The distributed mutual exclusion algorithm is based on the 
token concept. For every group of objects there is a 

token associated. The tokens as well as all data structures 
are hashed based on the object identifier OID. The token 
structure is depicted in Figure 7. The token contains a list of 
nodes that are having requested the object in non-exclusive 
mode and did not release the objects yet. Second, the token 

list of nodes that are holding an up-to-date 
version of the object. For specialized objects the token 
structure has been extended with a list of consumers and 

consumer and result objects). 

Figure 7   GUN Token

In order to collect performance related data, a monitoring 
layer has been integrated into the grid primary node and grid 
node. The grid universe monitor which keeps track of the 
time spent for a given operation, such as acquire time, 
acquire hits and misses and computes statist
like acquire success rates. The monitoring components are 
invoked by the kernel in certain key points in order to log 
the required data. Performance data can be dumped into 
comma separated value files by invoking a method of the 
node where the client application is running.

GUN defines a generic replication hook that is called by 
the kernel when replication can be triggered. GUN contains 
a replication layer that takes care of object replication
migration, by applying a set of extendable
replication rules that are supplied to the system at 
deployment time. Object replication and migration can 
happen either when an object is looked
a closer replica, or during object acquiring and release. The 
replication mechanism is based on replication rules that are 
defined at deployment time and are loaded into the 
replication engine when the GUN system is started. If the 
replication engine decides to replicate a given object, the 
object is replicated to the designated targe
client handles are updated so they refer to the newly created 
replica. The replication engine and the replication hook that 
is called by the GUN kernel are shown in 

Figure 8   GUN Replication Engine
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object is replicated to the designated target node and the 
client handles are updated so they refer to the newly created 
replica. The replication engine and the replication hook that 
is called by the GUN kernel are shown in Figure 8. 
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6 GUN REPLICATION POLICIES 

Whenever a client application searches for a grid object or 
requests exclusive or non-exclusive access to an object, the 
kernel layer invokes the replication engine which may 
decide to replicate the object closer to the node where the 
client application is running. The decision of the engine is 
based on a set of replication policies defined at system 
deployment time. Each policy has an associated parameter 
(i.e. number of requests for exclusive or non-exclusive 
access to the object, number of times the object has been 
written by the client application, number of denied accesses) 
and a threshold value. The replication engine evaluates the 
parameter based on information provided by the monitoring 
layer and if its value reaches the threshold value replication 
of grid object is triggered. We define two types of 
replication policies: universe policies and node policies. For 
universe policies the current value of the policy parameter is 
determined using monitoring information collected from all 
nodes in the client’s universe and the object replica can be 
created on any node in the universe, while for node policies 
only monitoring information about the node where the client 
application resides is considered and also the replica will be 
created on this specific node. 

We define four main replication policies based on system 
status information. Object replication is triggered either if 
all policies hold true or if any of the policies holds true, as 
specified at system deployment.  
Object Usage Degree Policy: A grid object o is replicated 

on a node or in a universe only if it was used (read or 
written) by that node/universe at least UT times. This 
policy assures that only objects currently used by at least 
one grid application are replicated and avoids replicating 
objects highly used in the past but not requested 
anymore. 

Replication Policy 1: Object Usage Degree Policy  
Associated Parameter: AcquireTotal + AcquireExclusiveTotal 
Condition: 

for policyType = NODE_POLICY 
targetNode ≠ sourceNode   
targetNode.AcquireTotal(oid) +  

targetNode.AcquireExclusiveTotal(oid) ≥ UT   
targetNode.Count(oid) = 0 

for policyType = UNIVERSE_POLICY 
targetUniverse ≠ sourceUniverse   
targetUniverse.AcquireTotal(oid) + 

targetUniverse.AcquireExclusiveTotal(oid) ≥ UT 
Comments: 

UT - Usage Threshold  

Figure 5  Object Usage Degree Policy 

Object Update Degree Policy: A grid object o is replicated on a 
node or in a universe only if it was written by that 
node/universe at least UpT times. 

Replication Policy 2: Object Update Degree Policy  
Associated Parameter: AcquireExclusiveTotal 
Condition: 

for policyType = NODE_POLICY 
targetNode ≠ sourceNode  
targetNode.AcquireExclusiveTotal(oid) ≥ UpT  
targetNode.Count(oid) = 0 

for policyType = UNIVERSE_POLICY 
targetUniverse ≠ sourceUniverse 
targetUniverse.AcquireExclusiveTotal(oid) ≥ UpT 

Comments: 
UpT - Update Threshold  

Figure 6  Object Update Policy 

Acquire Miss Degree Policy: A grid object o is replicated on a 
node or in a universe only if MT requests for the object issued 
from that node/universe could not be served within a period of 
interest. 

Replication Policy 3: Acquire Miss Degree Policy  
Associated Parameter: AcquireMiss + AcquireExclusiveMiss 
Condition: 

for policyType = NODE_POLICY 
targetNode ≠ sourceNode   
targetNode. AcquireMiss(oid) +  

targetNode.AcquireExclusiveMiss(oid) ≥ MT ˄   
targetNode.Count(oid) = 0 

for policyType = UNIVERSE_POLICY 
targetUniverse ≠ sourceUniverse   
targetUniverse.AcquireMiss(oid) + 

targetUniverse.AcquireExclusiveMiss(oid) ≥ MT 
Comments: 

MT - Acquire Miss Threshold  

Figure 7   Acquire Miss Degree Policy 

Object Count Policy: An object o is replicated in a universe only 
if the number of copies of the object in the universe does not 
exceed CT. On any node in the universe at some point in time 
an application may start and this application will need to create 
its own objects. This policy assures that the performance of the 
new application will not be degraded simply because there was 
not enough space for its objects in the universe, and thus 
objects were created in another universe. 

Replication Policy 4: Object Count Policy  
Associated Parameter: ObjectCount 
Condition: 

for policyType = NODE_POLICY 
targetNode ≠ sourceNode   
targetNode.Count(oid) ≤ CT  

for policyType = UNIVERSE_POLICY 
targetUniverse ≠ sourceUniverse   
targetUniverse.Count(oid) ≤ CT 

Comments: 
CT - Count Threshold 
UNIVERSE TYPE policies can refer to the total number of 
objects in the universe or to the number of objects with a 
given OID.  
NODE TYPE policies refer only to the total number of 
objects on the node.  

Figure 8   Object Count Policy 
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7 GUN EXPERIMENTAL RESULTS 

Performance of any distributed application can be increased 
by improving data locality. We performed several 
experiments to show how the proposed policy-based 
replication strategy affects data locality. For our 
experiments we defined an application scenario whose 
performance is greatly influenced by this characteristic and 
also stresses the importance of object replication in 
distributed applications with aggressive concurrency. The 
application makes use of a shared object composed of 
multiple parts which are also shared objects. Basically, the 
application builds the object from its components using a set 
of worker processes distributed across a grid universe. Each 
object part is build by several workers in parallel and a 
worker builds one or several parts. While working on a part 
a worker requires exclusive or non-exclusive access to that 
part. The access mode for each part is specified using 
another shared object, called BuildingRules. The worker 
processes are distributed on the nodes of the universes such 
that workers that build common parts run in the same 
universe. An extended version of our experiments is 
presented in (Macariu, Tudor and Cretu, 2008). 

For the experiments we deployed a grid universe 
consisting of three universes connected through a wide area 
network with an average of five nodes in each universe. The 
nodes in a universe communicate over a faster network (e.g. 
LAN). As the model proposed in (Tudor, Cretu and 
Schreiner, 2008) assumes universes are connected wide area 
network, we chose NistNET (Carson and Santay, 2003) for 
WAN emulation. The WAN emulator connects the three 
universes and sets a packet delay of 30 ms between the 
primary nodes of the universes. 

Table 1 Tested Replication Policies 

Policy P1 No replication 
Policy P2 Type: Object Count Policy 

“One object per universe”: a replica of the object is 
created in each universe where it is requested but in 
each universe only one copy of the object will exist 
(the replica is created when the object is first 
requested). 

Policy P3 Type: Object Usage Policy 
“One object per node”: a replica of the object is 
created on each node where it is requested (the 
replica is created when the object is first requested). 

Policy P4 Type: Object Update Policy and Object Count 
Policy  
A replica of the object is created in a universe if the 
object has been updated in at least 20% of total 
requests issued from each universe (a single copy of 
the object might exist in each universe). 

Policy P5 Type: Object Update Policy and Object Count 
Policy  
A replica of the object is created in a universe if the 
object has been updated in at least 40% of total 
requests issued from each universe (a single copy of 
the object might exist in each universe). 

Policy P6 Type: Acquire Miss Policy 
A replica of the object is created on a node if at least 
20% of total request for the object have been denied 

to this node. 
Policy P7 Type: Acquire Miss Policy 

A replica of the object is created on a node if at least 
40% of total requests for the object have been 
denied to this node. 

Policy P8 Type: Object Update Policy 
A replica of the object is created on a node if the 
object has been updated in at least 20% of total 
requests issued from each node. 

Policy P9 Type: Object Update Policy 
A replica of the object is created on a node if the 
object has been updated in at least 40% of total 
requests issued from each node. 

 
Table 1 summarizes the tested replication policies. Using 

these policies we were able to show how the GUN 
replication engine reacts to various request patterns. For 
each policy the average acquire time for each type of object 
was recorded. Table 2 presents the acquire time for the 
BuildingRules object for all nine replication policies. As this 
object is accessed by all worker processes, they greatly 
benefit if the object is replicated closer to them. From Table 
2 it can be seen that the acquire time for all workers is lower 
when using replication for all replication policies. This can 
also be observed in Figure 9. When object replication is not 
employed the acquire time is lower only for worker 
processes running in the universe where BuildingRules 
object was created. 
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Figure 9   BuildingRules acquire time 

Table 2   Average Acquire time for the BuildingRules object 

Policy P1 P2 P3 P4 P5 
Acquire time [ms] 2536.93 652.47 761.00 1812.93 2143.40 

Policy P6 P7 P8 P9  

Acquire time [ms] 1397.33 1867.93 1560.8 1797.13  

 
The influence of the policy type on the acquire time can be 

observed in Figure 10 which compares the acquire time for 
the Object Update Policy applied at universe level and at 
node level. If we focus on similar policies for the two 
replication levels (e.g. the pairs P4-P8 and P5-P9) we can 
conclude that replicating at node level results in lower 
acquire time than when replicating at universe level. By 
looking at the differences between the values for acquire 
time for the two types of policies, we can say that when the 
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number of worker processes in a universe that use the same 
object is large, it is better to replicate the object on each 
worker node, but if the number of workers is rather small 
using a universe level policy can still assure good 
performance with a lower storage capacity usage. 
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Figure 10   Node vs.Universe update 
 

The time when replication takes place has effects on the 
time required to acquire an object exclusively or non-
exclusively. In Figure 10 for P8 replication occurs early, 
after just 20% of total updates, and thus the acquire time 
drops faster than for P9 where replication occurs after 40% 
of total updates. Same thing can be observed in Figure 11, 
for the Acquire Miss Policy. 
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Table 3 Acquire exclusive success rate 

Policy Success rate [%] 
No replication  87.88 
One object per universe 90.94 
One object per node 95.30 

 
Although the acquire success rate for all policies was 

approximately equal, we noticed differences in acquire 
exclusive success rate. These differences are shown in Table 
3. By creating a replica of an object on each node that uses 
the object, acquire exclusive success rate can be increased 
with approximately 10% compared with the case when a 
single copy of the object exists in the grid universe. This is 

because through replication the time necessary for writing 
the object decreases and as a consequence the time the 
object is locked by a client decreases and therefore more 
clients can be served over a shorter period of time. 

8 CONCLUSION AND FUTURE WORK  

In this paper we have presented an overview of the success 
criteria for a grid shared data service. We have explored 
both traditional system aspects and new aspects that tend to 
be overlooked in several system designs and papers. We 
have briefly presented some of the most important 
achievements in the emerging domain of grid shared data 
programming and highlighted some of their drawbacks.  

We have introduced a new idea on designing grid shared 
data services, based on our observations on past and current 
attempts. We have described the basic design strategies in 
system separation, replication handling, consistency 
specification and mutual exclusion. We have emphasized 
the original idea of combining memory consistency 
specification with type coherence in an object oriented 
model and argued on the importance of thorough system 
verification on a wide scale and extreme conditions. 

Last but not least, we have introduced the architecture of a 
java based prototype called GUN that implements the 
abstract model of the proposed system. We have extended 
the GUN prototype with a generic replication engine. 
Finally we have shown the results of replication related 
experiments that show promising results in terms of both 
performance as well as quality parameters such as improved 
access success rates. 

As part of our future work we focus on extending the 
GUN experiments in order to highlight different aspects to 
those presented in this paper. More important, we aim to 
conduct a computer aided performance analysis on our 
model using the PRISM probabilistic model checker 
(Kwiatkowska, Norman and Parker, 2002). 
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