Special Issue on Efficient Resource, Service artd BDdels for Grid and P2P-Enabled Applicationdrternational
Journal of Grid and Utility Computing (IJGUC 43

Experiences on Grid Shared Data
Programming

Dacian Tudor*, Georgiana Macariu, Wolfgang
Schreiner**, Vladimir Cretu

“Politehnica” University of Timisoara, Computer 8ance and Engineering
Department, Vasile Parvan Street, No. 2, 300228jsdara, Romania
E-mail: dacian@cs.upt.ro, georgiana@cs.upt.ro,tu@es.upt.ro

*Corresponding author

*%

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, 4040 Linz, Austria
E-mail: Wolfgang.Schreiner@risc.uni-linz.ac.at

Abstract: Despite the continuous advances of the last yéarsggrid computing,
programming paradigms are dominated by the mespagsing concept. There is little
support for other paradigms such as shared datasarciative programming. In this paper
we analyze why previous attempts did not have aifségnt impact in the grid computing
community. We start by assessing the landscapadpgogramming solutions with a focus
on shared data concepts. Next, we introduce aninatigdea to attack shared data
programming on the grid by making use of both rethxconsistency models and user
specified type consistency in an object orientedi@hoLast but not least, we present a
prototype architecture together with experimengsbits.

Keywords: shared memory programming; grid programming; iisted shared memory.

Biographical notes: Dacian Tudor holds a MsC in Computer Science at Braditehnica”
University of Timisoara, Computer Science Departmeinére he is working as a research
group leader. Currently he focuses on creating d gsarvice layer for shared data
programming tailored for wide scale distributed teyss. His research topics include
distributed and grid computing as well as mobilnoounication systems.

Georgiana Macariu is a PhD student at the “PolittnUniversity of Timisoara. Her
research interests are grid and distributed comgugis well as mobile communication
systems.

Prof. Dr. Wolfgang Schreiner is Associate Profesgdhe Research Institute for Symbolic
Computation (RISC) in Linz, Austria. His research iegts are in parallel and distributed
computing, formal methods in computer science,etehrning.

Prof. Dr. Eng. Vladimir-loan Cretu is full professand head of the Department of
Computer Science and Engineering, Faculty of Aut@maand Computers. His research
interests cover real-time and distributed systeswftfware for data acquisition and
processing systems for electrical machines instniatien and measurement, data
structures, algorithm design and analysis, embedgetems, and software development
processes and technologies.

1

INTRODUCTION

2002), file based distributed data services base@ridFTP
(Allcock et. al., 2001) and higher level data ascesrvices

Most of the currently available grid programmingdets like OGSA-DAI (Karasavvas et al., 2005). Serviced a
rely on foreign programming models that are adopiaca high level abstractions for programming shared data
technology porting process. Here we include MPglik structures on the grid are almost not present engitd
libraries like MPICH-G2 (Karonis, Toonen, and Faste programming model landscape. Thus, our idea isdapgse

44 D. TUDOR, G. MACARIU, W. SCHREINER ANDV. CRETU

a new distributed shared memory system and its2.2 Dynamic and heterogeneous configurations
corresponding programming model adapted for thel. gri
Some of the core reasons for considering such a&hsteim
from the drawbacks of message passing solutionpthan
additional burden on the programmer to decompose th
computation handle load balancing and explicit
communication orchestration and the lack of autioridta 7 : . .
. logic is not suitable for large scale grid systeass it

layout and optimization support. obstructs reconfigurations and system evolution

Although many distributed shared systems have been '
developed in the last two decades, most of thentirared
to a certain number of nodes and work best withagt f 2.3 Portability and interoperability
interconnection network. Such systems do not qudbf
the grid as they do not fulfill the scalability amdde range
deployment requirements. Blindly applying such nisdm
the grid will most probably fail to provide the eqied
behavior and reasonable performance. Distributeatesh
data items must be widely shared and the problem o
managing the consistency of mutable data on wida ar
systems is raised.

In this paper we aim to identify the challengesgotl
shared data system design and the reasons why kimekse
of systems did not have a significant impact on dhiel
programming community. We start by elaborating in 2.4 Reliability and fault tolerance
Section 2 the assessment criteria for general gsdsell as
grid shared data systems. In Section 3, we highligk
most important grid shared data attempts and engghas
their weaknesses. In Section 4, we present ourgaesi
strategy in order to achieve a widely distributedalable
and efficient grid shared data system that provalgsneric
and flexible object oriented programming interface.

Dynamic and heterogeneous environments that change
frequently due to machine availability, new conratt
paths, different communication latencies due toneation
changes, new available resources are common assasipt
for any grid system. As a consequence, predefingttib

Portability is not a new topic and is best captubgdthe

sentence “write once, run anywhere”. For grid syste
portability is similar to supporting programs to Ilen

independently of the underlying architecture. Halitg and

Tarchitecture independence is vital to support dynasnd

heterogeneous configurations. Interoperable grigtesys
are based on open standards and protocols. Idehby,
protocols, services and interfaces that realizegtieshared
data model shall expose interoperable conceptels w

Reliability and fault tolerance are general system
desiderates for any grid system with a certain elegf
determinism. Most of the time reliability is assated with
performance reliability, meaning that multiple code
executions shall not have significant performance
deviations. Addressing these issues in the apjicdayer
is not applicable anymore as grids aim to expogh havel
functionality with advanced management supportallgle

2 ASSESSMENT CRITERIA these gharacteristicg shall be part of the run-time
mechanisms of the grid system.

Based on literature study of a different grid sbadata
based systems, we tried to abstract and identifgesof
their properties which are directly related to the
programming model they introduce, their adaptatievel As grids span between virtual organizations witfiedent
towards the grid specific interfaces and their genfance ~ security policies, security issues, rights managenand
behavior in various conditions. The first five erin are privacy have been a major concern. As grid codes ar
based on (Lee et al., 2001) and they reflect systeeaific running across different administrative domainsisitvery
criteria. The following five criteria are abstradteut of our ~ important that security be part of grid system dess
literature based observations we made on seveidl gr Visible on the programming interfaces.

systems and they reflect aspects which are matteofime
overlooked during the system design or during tystesn
assessment and performance measurements.

2.5 Security and privacy

2.6 Flexible replication techniques

Replication techniques have been used in caservicse
centric system to increase service availabilityotigh
resource redundancy. Data-centric systems likeeshdata
Grid shared data abstractions must be suitablerddous ~ Systems make use of replication for performance.
types of problem domains from local computing togéa Depending on the replication techniques and replica
scale high performance computing. There should be n synchronization protocols, it is expected to observ
constraints in building codes that are targeted gpecific ~ significant performance differences. We believet th&ey
architecture so that different development pathg ar pointin assuring reliable performance is to adeptication
folowed depending on the system’s requirements anddecisions and algorithms to specific use caseseMue do
architecture. Next, access to the shared data bhatlone not see the replication decisions as part of thetesy, but
through a generic and transparent interface, whidil not more like information collection from the applicati side
require tailoring for different usage scenarios. based on predefined system metrics.

2.1 Usability and transparency

EXPERIENCES ON GRID SHARED DATA PROGRAMMING 45

2.7 Replica consistency and coherence more meaningful aspects about the system behaviour.
addition, real situation experiments are quite time
consuming to run in various configurations. As some
experiments might require hours to run, runningmglete
experiment suite can easily span to days or weegposite

(Bershad, Zekauskas and Sawdon, 1993) have a mucho this situation, system verification and perfonoa
' ' analysis via computer-aided verification tools can

higher chance to perform better on grid systemsvéver, ; . . .
. . ., dramatically reduce the simulation time and enable

we believe that consistency alone does not provide . . . : . ..

T . . 4 simulation scenarios that are impossible to prowdesal-
sufficient information, as it basically bounds #ystemtoa .. .= .

. . . o life situations.
replica update scheme. Having flexible replicatiahemes
would be a clear advantage in accommodating differe
shared data usage scenarios.

It is generally accepted that strong consistency
specifications like sequential consistency (Lamp&g79)
are not suitable to large scale systems such asida g
Relaxed consistency specifications like entry cstasicy

3 EXISTING GRID SOLUTIONS LANDSCAPE

2.8 Mutual exclusion]]] o
When it comes to programming grid applicationsyehare

Grid shared data systems introduce the problemath d not so many choices of programming paradigms. Mdst
sharing and mutual exclusion. Mutual exclusion Htgms the grid based projects that we have encountereke ma
have been developed during the last decades, bug th extensive use of message passing techniques either
little information on their performance behavior avh grid-integrated solution like MPICH-G2 (Karonis, dieen
applied to the grid level. Some recent investigatio and Foster, 2002) or solutions that simply usegti as an
conducted in (Sopena et al., 2007) and (Bertieanfes and execution environment. The research landscape Hares
Sens, 2004) provide an empirical performance etialiaf data programming on the grid is at its dawn. Weéelelthat
an extended version of the Naimi-Trehel (Naimi, lele some of the major obstacles in the developmenthisf t
and Arnold, 1996) and two level compositional aijons paradigm are coming from the complexity of the tohu
that realize mutual exclusion on the grid level. W&ieve and some challenges described by some of the asseiss
that the performance of grid shared data solusodiriectly criteria. More specifically, we believe that thendmination
determined by the choice of the mutual exclusigo@athm of replication techniques, mutual exclusion andsistency
on the grid level. replication is a major challenge in building scéalnd
efficient shared data grid systems. Last but nastlethe
lack of rigorous system analysis makes previougenrpgent
results questionable in large scale and extremditons.

2.9 Wide scale and extreme conditions

We believe that grids consisting on several strpngl
connected clusters via fast interconnections dgrmtide a
suitable environment for performance analysis.eadtwe
focus on really wide scale systems, which are datethby ~ Grid middleware solutions like Globus (Foster, and
large latency connections. The motivation for sudkeria Kesselman, 1997) provide mechanisms for perfornileg

is simply because of the network saturation effebich replication and replica location services via hiehical
becomes obvious if grids become public, insteachdei catalogs. Unfortunately, these mechanisms arelseitnly
isolated and used as dedicated resources. We bdlat for immutable data handling and not dynamic data as
only on a wide scale the original definition (Fostnd required by shared data programming paradigm. Skver
Kesselman, 1998) and purpose of grid systemslistnat. services for replica consistency handling have been
proposed based on grid middleware, but to our kedgé,
none of them is providing a programming interfacel a
integration into the grid environment. In other d®r the
Most of the grid shared data systems we have sedv@y solutions remain particular to certain scenariogthout

literature study, such as Dedysis (Osrael, Froihod®dd having the required generic level aimed by a pnogning
Goeschka, 2006) and JUXMEM (Antoniu, Bouge, and paradigm.

Mathieu, 2005), have been evaluated empiricallynfrine
performance point of view. A critique perspective these
systems is presented in Section 3. In case of iaéyzed
systems, either some consecrated parallel algositivere Dedisys (Osrael, Froihofer, and Goeschka, 200@nis of
run on several configurations, or an artificiallyeated the very recent research activities towards regitalata
problem that used the system was deployed in otder systems across the grid, where the primary focus is
collect the performance results. Most of the tim#® increased availability by sacrificing consistend@je core
conditions during the experiment were not described idea is to continue the normal execution when aattcur,
suggesting that clusters were used as dedicatedirees. such as network partiions due to disconnected
We believe that only system verification and perfance communication paths, and provide reconciliation npmi
analysis through analytical and formal methods @al when connections are restored. In this way differeplicas

3.1 File and catalogue based solutions

2.10 System verification and performance analysis

3.2 Dedisys

46

could evolve independently at the reconciliatiorcgmpaid
by the programmer which has to provide the reca@imh
logic. Based on the informationencollected on Dedisys,
is not clear how the system performs data repticatbut
we suspect that it is bound at design time and aabe
adjusted based on the application requirementaredt is
not clear how mutual exclusion is realized. Last not
least, system assessment seems to be done ¢
experimental basis, but further performance eveloa
might follow.

3.3 JUXMEM

JUXMEM (Antoniu, Bougé, and Mathieu, 20(, is a recent
grid sharing data solution based on a -to-peer
middleware araitecture that provides a transparent
generic interface to shared data programming ormgtiue It
uses the JXTA Seigneur, Biegel, and Damsgaard, 2!
middleware to provide a sharing service for distrdul
shared data. JUXMEM does not provide anta structure,
but rather a flat view provided as a memory buffdrere
the user has to map its own data representatiom
memory consistency protocol is entry consistency
replication decision is fixed and bound at the tithe
shared data is createtihis means that a high data us:
does not lead to dynamic replication, but it rel@s its
already existing replicas. The system takes cartaibfre
conditions by promoting grid nodes to new rolesiider to
fulfill the system specification.

JUXMEM'’s validation has been performed
experimental basis, by integration into the «RPC DIET
(Caron and Desprez, 20068nvironment and runnin
different parallel applications as benchmarks. Ftbm se!
of run experiments, it is not clear how the systezhave:
on a large scale deployment and large latency ctioms.
Based on the author's descriptions of the reqt
adaptations in the JXTA middleware and the fact #ibthe
constructs are based on peept®r communicatio
protocols, we feel that the peergteer layer might lead to
performance limiting factor on large scale gridteyss

4 A NEW APPROACH

Grid sydems expose several constraints and sp
conditions. For better understanding, one can tbiré grid
like a multilevel hierarchical structure that can be mode
as a non directed graph. Each node represents lsimaaar
a group of machines. Typidgl a group of machines is
cluster or LAN where each machine can communicatie
others within the same group with the same knowd
upper bound latency. Thus, we consider togethel
machine groups and depict them as a single grode a¢
shown in Figure 1Such hierarchical structure is constal
getting deeper (more levels) and wider (more grpdpsng
the evolution of grid systems. A unique characteris the
unpredictable layering as a result of unpredictgbieing
and leaving groups, pu changes in physic

D. TUDOR, G. MACARIU, W. SCHREINER ANDV. CRETU

communication channels. For example, a certain s
connected over the air using wireless LAN or viaégboth
to different hosts, thus it might appear in diffgréayers a
different times. Besides the unpredictable layeramother
characteristic of the model is the unknown bandwiaihd
latency of each communication line between two teabi
groups. To simplify the discussion, we omit theluia
model and we consider that there is an upper anerl
latency bound.

Figurel Grid Node Layerin

We follow two directionsto overcome the problem
communication delay from different perspecs. First, we
reconstruct the problem and partil it into acceptable
communication groups with known laten.. Second, we
provide ugful programming information so that the -
time system can take advantage of semantic inféomaind
apply dynamic optimizations. Both ideas are not newt to
our knowledge they have not been applied togethexr grid
system before. More, the secacidea has not been applied
in the context of grid programming and grid sc
distributed shared data. Network partitioning isagproact
followed by MPI implementations and hierarchi
distributed algorithms to optimize communicatiorc@aling
to the netwrk topology information and providing m-
information is a well known approach in many softa
engineering domains like formal verification andtieg.

4.1 System separation

Some of the previous attempts in designing DSM tfar
grid have used logitamappings over one single lar
machine group. As presented in section three, $e o the
JUXMEM approach, where pe-to-peer groups have been
spawned across the grid, the authors of JUXN
recognized that the wide distribution of peershie tverlay
layer is problematic and current overlay implemgate
such as JXTA %eigneur, Biegel, and Damsgaard, 2!
have serious performance issues in largely didtib
environments. Thus, we argue that another spli
necessary, which clearly identifies tlconnection points
into the entire grid universe. We see this mappisgart o
the system deployment, instead of relaying on aefieed

mapping.

EXPERIENCES ON GRIBBHARED DATA PROGRAMNMNG

In order to address thousands of widely distributedes.
we decompose the system into a federation ocal groups
called universes. The logical representation ohi@arse is
homogeneous and communication latency in a univisr
typically small and bound to a higher known margof.
course, the physical entities that form a universald be
heterogeneouge.g. machines with different resources
operating systems). Communication outside the uséeor
between universes, is unbounded, but still it hasuppetr
limit.

m

Figure2 Physical Universe Mapping Sam

In our view a universe is a logical tmition of machine
nodes which provides a hosting environment forritisted
objects. Nodes are homogeneous and have a datmge
capacity in RAM and code execution capabilitiesche
node can hold a certain number of objects so beastim o
all object weights held by the node shall not exceed
node’s capacity. All existing universes form togathhe
grid universe. Each niverse is a continuously evolvir
entity together with its connections to the otheivarses. 2
universe groups together mophysical machines whic
share the same communication paths, thus
intercommunication channel in aiverse is homogeneo!
and has known and constant characteristics. Conuation
between niverses is unpredictable, unknown and dyna
As an example o0& concrete universe, one can consid
physical cluster or a LAN and a grid universe asess
interconnected clusters. A sample grid universesisting
of four universes mapped to four clusters is depicin
Figure 2.

4.2 Replication handling

We intend to use replication as the primary mechanisn
performance improvement and not for fault toleraniaen
data is created on the grid, we choose the closekt to the
node who issued the “create shared data” requesivhith
has enough capacity lefo accommodate the grid shai
object. The same node who issued the command ci
chosen if it has enough capacity available. Upoma
request during application execution, the grid stadate
might be replicated to other nodes from the sam
different universes in order to reduce large latencie®

a7

system decides at ruime to replicate the data based or
specification. The replication policy follows a s
definition of a rule based specification. This me#mat the
same replication ruleg@considered for all the applicatic
running on the grid. As the rule based replicatmiicy
definition is provided from the outside of the syst(e.g.
deployment information), it can be fine tuned diffietly to
individual systems.

4.3 Consistency protocol

The memory consistency model represents a contiat
the grid shared service has to satisfy at any tistates
what the value of a certain object is, among aofetide

replicated distributed objects, if certain condio are
satisfied. Cbosing a specific consistency model has se\
impacts on the overall system. First, it regulaesertair
degree of overlapped operations so that differeotesse:
are not blocked if they operate on the same datathé
same time the synchronizatimodel is defined implicitly
by the consistency model. Second, different coescst
models imply different underlying operations wh
generate at the end different communication trgffitterns
and volumes. Last but not least, consistency madule ¢
visible impact at the programming level, meaningt

different consistency models have to be expre
differently at the API level. Such a restrictiomits the
adaptability at the consistency level and as altr@su have
to adopt the most suitable cistency model for grid
systems.

We have evaluated several usage scenarios to s
shared data model and we consider as the most sirgy
consistency model the entry consistency model, hwhi
also the least restrictive model (or the most mixInthis
model, synchronization happens between clearlyndd
operations: acquire and release. The drawback as itl
requires additional programming effort to spel
synchronization points. The rationale for this cleois tha
the entry consistency pratol assures data synchronizat
at entry point in the synchronization code, avaidinus the
penalty of update protocols that generate a hi
communication traffic pattern in a large scale emvinent

4.4 Type coherence

We tackle the problem of grishared data in two distinct
dimensions. First, we have considered the consigl
model as the base for object state synchronizatiod
correctness. Second, we follow the object usagenpatin
the idea of communication and object replica
optimizatons. Here we address type specific coher
based on the observation that different classedbafcts are
accessed in different ways and the access pattigyint tme
changing during the process lifetime. Based orsti@mario:
we have selected nine obj types: read-only, private,
migratory, produceconsumer, reemostly, result, write-
mostly, generic and synchronization obj

The programming model we specified defines the al
different types of grid shared objects and syncization

48

mechanisms in order to give the run-time systenfulise
information to allow a higher concurrency degreel ao
minimize wide area communication overhead.

4.5 Mutual exclusion

Some of the very recent activities towards bettertual
exclusion algorithms on the grid have been elaledran
(Sopena et al., 2007) and (Bertier, Arantes anc,SE004),
where the authors proposed a compositional appraadh
an extension to the Naimi-Trehel (Naimi, Trehel,dan
Arnold, 1996) algorithm. Both the proposed extensimd
the compositional approach could be applied toumiverse
structure, but there are various modifications dobke
necessary. It is important to note that all of gneviously
mentioned algorithms refer to the simple case ofuadu

exclusion. In our work we have to address the entry

consistency protocol which requires a differentwien

mutual exclusion, because in some cases simultaneou

object access is possible. This means that if fanmgple an
existing algorithm is considered for realizing thautual
exclusion protocol, it has to be adapted in orddulfill the

entry consistency specification. In addition, type
consistency needs to be addressed as well witkirsdime
algorithm, leading to different

depending on the grid object type specification.

In (Sopena et al., 2007) the authors presentedganithm
composition to realize a hierarchical mutual exclns
protocol on an infrastructure similar to the one have
proposed. Different algorithms pairs are constuicfer
universe and between universe resource exclusiodlihg.
They observed that it is only the “between univetse
algorithm which brings a significant performancepant on
the system, whereas the algorithm applied insidaigerse
has no significant performance impact, except thmber
of exchanged messages. Based on the measurements
(Bertier, Arantes and Sens, 2004), it seems tfaN&imi-
Trehel (Naimi, Trehel, and Arnold, 1996) algorithsnthe
most suitable for exchanging tokens between undgeand
it provides a reasonable trade-off between diffectasses
or applications (highly parallel vs. low parallel
applications).

Although the experiments were run in very particula
environments that are neither widely distributeat, having
large latencies, we took these observation andgsexp a
new mutual exclusion algorithm adapted for entry
consistency specification, where a multi-token Naimehel
algorithm is used between universes and a typdiplara
centralized algorithm is used inside each univergée.hope
to explore the small latency communication within a
universe and centralize information on a speciaenthat
would allow us to achieve fast decisions in terrhgeplica
update and state identification.

4.6 System verification and prototyping

We have previously criticized the lack of rigorosystem
verification and performance modeling for existiggd

D. TUDOR, G. MACARIU, W. SCHREINER ANDV. CRETU

exclusion algorithms which have been evaluatedutino
experiments on fast interconnected machines (Sopkeah,
2007). In case of (Bertier, Arantes and Sens, 20018
system consisted of only three clusters each madieree
machines. We argue that such experiments are
significant for the purpose of our goals, nameletwidely
distributed systems where large latency connectiares
dominant between universes. Thus, we argue thaerbet
instruments for system verification and performance
assessment are necessary. In our current work,iweca
focus on probabilistic formal verification in order validate
our ideas and provide meaningful performance figure
both relaxed and extreme system conditions. Whike w
focus on system verification, we put less imporéamn
prototyping. We still aim to build a prototype aimdegrate

it into the ProActive middleware (Baduel, Baude,dan
Caromel, 2002), which appears quite promising duést
highly asynchronous behavior and concept of futures

not

5 GUNPROTOTYPE

GUN is the acronym for Grid UNiverse and represemts

update mechanisms Java based implementation of the grid universe inode

defined in (Tudor, Cretu and Schreiner, 2008). Remo
interactions are expressed in GUN based on Java®te
object model. First, the Remote Method InvocatiBM()
solution was chosen for its simplicity and easeusé.
Second, because the system model does not require
multicasting support (like Jini (Baker and Smitl®02) or
ProActive (Baduel, Baude, and Caromel, 2002) sohgtido

for example), the RMI model fits well to the abstrenodel.

GUN reflects the architecture of the abstract maated
the abstract system architecture described in (i uietu
and Schreiner, 2008). Similar to the abstract madeBUN
there are a set of processes deployed over sewanabrks
called universe nodes. The universe nodes are hemeogs
and each of them is able to accommodate a certaimber
of data items, until the available capacity of th@verse
node is consumed. Typically universe nodes are pgou
together in network latency proximity and form awvense.
The collection of all deployed universes forms tid
universe. Each universe contains a dedicated nafledc
“primary node” which manages the communication with
other universes and indexes the information on |aiviai
data items accommodated by each node within thee sam
universe. All primary nodes can be seen as a blig&d
registry, each being responsible for managing erta
number of data objects. A sample deployment of id gr
universe across physical machines is depictedgargi2.

The GUN prototype is divided into three layers, as
illustrated in Figure 3. There is a user layer \héxposes
the abstractions and necessary interfaces to thkcation
programmer. The second layer is the kernel which
implements the core algorithms and implements all
interfaces exposed to the outside world by the lesgsr.

shared data systems. The same is true for the mutud-ast but not least, there is a replication layeiciwthandles

object replication policies. The replication layeplements

EXPERIENCES ON GRIBBHARED DATA PROGRAMNMNG

an interface required by the kernel so that theddenvokes
the replication engine at some key points in otdedrigger
object replication. The replication layer is extehk,
meaning that user defined replication rules carelesterec
into the GUN architecture.

cmp GUN

GUN Application

wUEEm

é:____

Kernel | --—-= Replication

Figure 3 GUN High Level Architectu

The user layer depicted in Figure 4 provides ses/io
create, find, delete and acqu@ed objects The services are
exposed through theGridUniverse class which is
implemented as a singleton jebt. When an object
created, GUN returns a handle to that object. Téedle
contains information about the object identifierddQGID
and an URI of the remote object in the RMI domdaihe
handle shall be passed by the client whenever aratpn
on the grid objects is invoked such as removal, aegain
release. Basically, the application programmer reddethe
GridObjectclass in order to implement its custom obje
The GridObject implements the RMI specifitRemote
interface, meaning that GUN uselefined objects at
automatically remote objects. The concrete custarrfiace
is retrieved from GUN using th@etGridObjectRe method
of the GridObjectHandleclass.

+ o
+ Getliergnt) long. Gridstatus
+ Getypeq: OhjectTpe

GUN_SUCCESS
GUN_TIMEOUT
wwwwwwwww

#m_eTyne

WRITE_MOSTLY
SYNCHRONIZATION

Figure4 GUNUser Laye

Objectcreation follows the locality principle and tries
find a node in the proximity of thaode from where th
request was issued (e.g. caller nodgpon completion, th
create service returns a handle to the clientdhe be used
to acquire exclusive or nogxclusive access to the obj
instance as well as tmvoke specialized methods that .

49

provided in the concrete object definition. Ob finding
follows the same data locality principle and tie$ocate ar
object that resideis the proximity o'the caller application.

When the GUN system is started, first all primaodes
are being started. Each primary node has a coafiigur file
which contains at the address of at least othemawi
nodes. The primary nodes are running a simple déesg
protocol, which at the end brings all primary notegnow
the identity of all other primary nodes. The s&
mechanism applies when a primary node is removeith
the grid universe. As a result, in the GUN systdmis
ensured that every primary nodeows all other primary
nodes, or in other terms, all universes know ahet
universes. This decision has been made based o
assumption that primary nodes are running on déati
machines, which have a high availability rate (baydware
fault tolerance). The GUN system can be extended fromr
point of view to a peer-tpeer like discovery protocol
between primary nodes.

After the primary nodes are started, the grid noale=
deployed. Every grid node has a configuration fikat
specifies itsname, capacity and the address of the prir
node where it must register. Normally the grid reodee
located in network latency proximity, meaning timevery
universe there are homogeneous communici
characteristics. When the node is instantiateit
automatically registers to the designated primargten The
primary node stores information in a hash tableuabt the
registered nodes and their status (e.g. availabpmaity,
stored objects etc). Using a hash table mechanisia
ensured that fast lookup time is achieve

The kernel component implements the mutual exciu
algorithms and the model defined (Tudor, Cretu and
Schreiner, 2008)where an extended version of |
distributed multitoken Naim-Trehel algorithm has been
defined. Theinteraction between nodes and primary nc
is happening via remote message invocations (RWh)s
interaction follows the following pattern: requasessage
are sent via methods named liiDoSomething() while
callbacks are received via methods nai
onSomeMessage(). Internally, the asynchronot
communication is realized via message classes dahe
described in Figure 5.

Java o Serslizable
GridOgje cthandle

s || cenumerations
+ Getikeronty fon: GridStatus
+ Getypeq: OhjectTpe

GUN_SUCCESS

GUN_TIMEOUT
wwwwwwwww

#m_eType| READ_DNLY
PRIVATE
wwwwwwwww
PRODUCER_CONSUMER
READ_MOSTLY.
wwww
WRITE_MOSTLY
SYNCHRONIZATION

Figure5 GUNKernel Messages

50

When a client invokes an operation on a grid objea!
the GridUniverse, the node where the cliresides gets,
depending on the desired operation, one of the iWec
AcquireExclusive or Release methods invoked. Thdel
creates the corresponding request message andtadtis
its request queue. Next, the node delegates thetigre to
the primarynode to which it had registered. Next, the n
is waiting for the primary node to reply to its vegt by
calling a wait message on the queued message.
processing the node’s request, the primary nodeorets tc
the node by calling one of the caltka methods whicl
triggers a notification on the awaited messageerAthe
node is notified by the awaited message, the mess
removed from the queue, the original client met
invocation ends and the response is returned taltant.
This mechanisnis used for all interactions between no
and primary nodes.

The interaction between grid primary nodes is n
complex and it basically implements the n-token Naimi-
Trehel algorithm. All requests that are sent byd grodes
are queued by the primanodes in two separate queue:!
queue for acquire requests and one for releaseests
There is a dedicate message queue for each grooipjext
identifiers, as depicted in Figure 6.

[mii-Takan guave

Redassall) ~

G
EEET T

[T][ooz

Released(3)

=

Primary Nede (PN)

AcquredExclusie (3)
AcquireExciusiva (1]

_ = WallFor Messaga (2)

Figure6 GUN Message Que

There are several worker threads theg processing tr
queued requests. In order to facilitate a highealfmism
level as well as lower locking time, the GUN profm
makes use of several worker threads that areling the
following operations:

 Acquire requests

« Acquire exclusive requests

 Release requests

 Token reception

« Synchronization of up-to-date nodes

The distributed mutual exclusion algorithm is basadhe
multi-token concept. For every group of objects thera
token associated. The tokens as well as all dat&teres
are hashed based on the object identOID. The token
structure is depicted in Figure 7. The token caowstai list of
nodes that are having requested the object i-exclusive
mode and did not release the objects yet. Secbedoker
contains alist of nodes that are holding an -to-date
version of the object. For specialized objects tbken
structure has been extended with a list of conssraed
writers (for produceconsumer and result objec

D. TUDOR, G. MACARIU, W. SCHREINER ANDV. CRETU

class Kernel - Token .~

Seializable

Token

m_bExclusive: boolean
m_arMonex: Wector<Modes
m_arLatest: Wector<Node:
m_arConsumers: WVector<Mode:
m_arResliriters: Vector<Modex
m_bTimedOut: boolean = false
m_bOuwned: boolean

Cd o+ o+ o+ o+

Tokentboolean)
isExclusivel] : boolean
waithonExclusived : void
waitEmptyMonEx] @ waid
waitToken(long) : vaid
receiveTokenWectorsModes, Wector<Node®, VectorsModes) : void
nonExChanged]) : woid
is0wned?) : boolean

+ resetToken() : woid
aproperty sete

+ zetBxclusivelboolean) : woid

+ 4+ 4+ 4+ + + + +

Figure7 GUN Toke

In order to collect pdormance related data, a monitori
layer has been integrated into the grid primaryenaad gric
node. The grid universe monitor which keeps tratkhe
time spent for a given operation, such as acquire,
acquire hits and misses and computes <ical information
like acquire success rates. The monitoring compisnare
invoked by the kernel in certain key points in ortte log
the required data. Performance data can be dummel
comma separated value files by invoking a methodhe
node wherehe client application is runnir

GUN defines a generic replication hook that is ezhlby
the kernel when replication can be triggered. GUNtains
a replication layer thatakes care of object replicati and
migration by applying a set of extenda dynamic
replication rules that are supplied to the systetr
deployment time.Object replication and migration c
happen either when an object is loc-up as there could be
a closer replica, or during object acquiring anéase. The
replication mechaam is based on replication rules that
defined at deployment time and are loaded into
replication engine when the GUN system is startethe
replication engine decides to replicate a givereahjthe
object is replicated to the designated tt node and the
client handles are updated so they refer to thdynesgatec
replica. The replication engine and the replicatiook that
is called by the GUN kernel are showrFigure 8.

class Replication

CheckRuleDats

CheckRuleDatalPrimaryMode, Node, GridObject)
getTargetUniversed : Frimantode
getTargetHoded) : Hode

getTargetUIl0 : String

getTagetMID () : Sting

qet0ID(© String

isEnaughCapacity() : boolean

getObject] : GridObject

T

Repli cator

+ ShallReplicate(PrimaryNode, Mode, PrimaryMode, Hode, GridObjectHandle) : Hode
+ CheddfReplicate(FrimaryMode, Mode, GridObject) : boolean

Figure 8 GUN Replication Engir

EXPERIENCES ON GRID SHARED DATA PROGRAMMING

51

6 GUN REPLICATION POLICIES

Whenever a client application searches for a gbijga or
requests exclusive or non-exclusive access to g@tiphhe
kernel layer invokes the replication engine whiclaym
decide to replicate the object closer to the notiere the
client application is running. The decision of tegine is
based on a set of replication policies defined yetesn
deployment time. Each policy has an associatednpstea
(i.,e. number of requests for exclusive or non-esiviel
access to the object, number of times the objestlieen
written by the client application, number of dengtesses)
and a threshold value. The replication engine etakithe
parameter based on information provided by the todng
layer and if its value reaches the threshold vadydication
of grid object is triggered. We define two types of
replication policiesuniverse policiesndnode policiesFor
universe policies the current value of the poliaygmeter is
determined using monitoring information collectednf all
nodes in the client's universe and the object captian be
created on any node in the universe, while for noalecies
only monitoring information about the node where tfient
application resides is considered and also théceeplill be
created on this specific node.

We define four main replication policies based gstesm
status information. Object replication is triggereither if
all policies hold true or if any of the policieslts true, as
specified at system deployment.

Object Usage Degree Palicy: A grid objecto is replicated
on a node or in a universe only if it was useddrea
written) by that node/universe at leddT times. This
policy assures that only objects currently useatigast
one grid application are replicated and avoidsicapihg

objects highly used in the past but not requested

anymore.

Replication Policy 1: Object Usage Degree Policy
Associated Parameter: AcquireTotal+ AcquireExclusiveTotal
Condition:
for policyType= NODE_POLICY
targetNode# sourceNode
targetNode.AcquireTotal(oid)
targetNode.AcquireExclusiveTotal(o)UT
targetNode.Count(oid} 0
for palicyType= UNIVERSE_POLICY
targetUniverset sourceUniverse
targetUniverse.AcquireTotal(oid)
targetUniverse.AcquireExclusiveTotal (ol UT
Comments:
UT - Usage Threshold

Figure5 Object Usage Degree Policy

Object Update Degree Policy: A grid objecto is replicated on a
node or in a universe only if it was written by ttha
node/universe at leadipT times.

Replication Policy 2: Object Update Degree Policy

Associated Parameter: AcquireExclusiveTotal
Condition:
for palicyType= NODE_POLICY
targetNode# sourceNode
targetNode.AcquireExclusiveTotal(oi)UpT
targetNode.Count(oid¥ O
for policyType= UNIVERSE_POLICY
targetUniverset sourceUniverse
targetUniverse.AcquireExclusiveTotal(ol)JUpT
Comments:
UpT - Update Threshold

Figure6 Object Update Policy

Acquire Miss Degree Policy: A grid objecto is replicated on a
node or in a universe only MT requests for the object issued
from that node/universe could not be served withjmeriod of
interest.

Replication Policy 3: Acquire Miss Degree Policy

Associated Parameter: AcquireMiss + AcquireExclusiveMiss
Condition:
for palicyType= NODE_POLICY
targetNode# sourceNode
targetNode. AcquireMiss(oid)
targetNode.AcquireExclusiveMiss(oMT A
targetNode.Count(oid} 0
for palicyType= UNIVERSE_POLICY
targetUniverset sourceUniverse
targetUniverse.AcquireMiss(oid)
targetUniverse.AcquireExclusiveMiss(olMT
Comments:
MT - Acquire Miss Threshold

Figure7 Acquire Miss Degree Policy

Object Count Palicy: An objecto is replicated in a universe only
if the number of copies of the object in the unseedoes not
exceedCT. On any node in the universe at some point in time
an application may start and this application widkd to create
its own objects. This policy assures that the perémce of the
new application will not be degraded simply becahsee was
not enough space for its objects in the universe #hus
objects were created in another universe.

Replication Policy 4: Object Count Policy
Associated Parameter: ObjectCount
Condition:
for policyType= NODE_POLICY
targetNode# sourceNode
targetNode.Count(oidy CT
for palicyType= UNIVERSE_POLICY
targetUniverset sourceUniverse
targetUniverse.Count(oid CT
Comments:
CT - Count Threshold
UNIVERSE TYPE policies can refer to the total numbgr
objects in the universe or to the number of objedtis a
given OID.
NODE TYPE policies refer only to the total numbér o
objects on the node.

Figure8 Object Count Policy

52

D. TUDOR, G. MACARIU, W. SCHREINER ANDV. CRETU

7 GUN EXPERIMENTAL RESULTS

Performance of any distributed application canrtmedased
by improving data

experiments to show how the proposed policy-basedpglicy pg
our
experiments we defined an application scenario whos

replication strategy affects data locality. For
performance is greatly influenced by this charastierand
also stresses the importance of object replication

distributed applications with aggressive concuryerithe

application makes use of a shared object composed o

multiple parts which are also shared objects. Bdlgicthe
application builds the object from its componergsg a set
of worker processes distributed across a grid usézeEach
object part is build by several workers in parabeld a
worker builds one or several parts. While workingaopart
a worker requires exclusive or non-exclusive actedbat

part. The access mode for each part is specifiedgus

another shared object, calldluildingRules The worker
processes are distributed on the nodes of the tagisesuch

locality. We performed several

to this node.

Type: Acquire Miss Policy

A replica of the object is created on a node [eas
40% of total requests for thebject have bee
denied to this node.

Policy P7

Type: Object Update Policy

A replica of the object is created on a node i
object has been updated in at least 20% of
requests issued from each node.

Type: Object Update Policy

A replica of the object is created on a node if
object has been updated in at least 40% of
requests issued from each node.

Policy P9

Table 1 summarizes the tested replication polidissng

these policies we were able to show how the GUN

replication engine reacts to various request pateFor
each policy the average acquire time for each tfpebject
was recorded. Table 2 presents the acquire timethier
BuildingRulesobject for all nine replication policies. As this
object is accessed by all worker processes, thesgtlgr
benefit if the object is replicated closer to théirom Table

that workers that build common parts run in the &am 5 ji can be seen that the acquire time for all wesks lower
universe. An extended version of our experiments iSyhen using replication for all replication policiEhis can

presented in (Macariu, Tudor and Cretu, 2008).

also be observed in Figure 9. When object repbeais not

For the experiments we deployed a grid universeemployed the acquire time is lower only for worker

consisting of three universes connected througlde area
network with an average of five nodes in each us®eThe
nodes in a universe communicate over a faster mkt(eog.

LAN). As the model proposed in (Tudor, Cretu and
Schreiner, 2008ssumes universes are connected wide areg ~<

network, we chose NistNET (Carson and Santay, 2683)

WAN emulation. The WAN emulator connects the three

universes and sets a packet delay of 30 ms betireen
primary nodes of the universes.

Table 1 Tested Replication Policies

Policy P1
Policy P2

No replication

Type: Object Count Policy

“One object per universe”: a replica of the objie
created in each universe where it is requestedh
each universe only one copy of the object will
(the replica is created when the object is
requested).

Type: Object Usage Policy

“One object per node”: a replica of the objec
created on each node where it is requestec
replica is created when the object is first reqedst
Type: Object Update Policy and Obje@oun
Policy

A replica of the object is created in a universéé
object has been updated in at least 20% of
requests issued from each universe (a single ct
the object might exist in each universe).

Type: Object Update Policy an®bject Cour
Policy

A replica of the object is created in a universthé
object has been updated in at least 40% of
requests issued from each universe (a single ct
the object might exist in each universe).

Type: Acquire Miss Policy

A replica of the object is created on a node leas
20% of total request for the object have been dl

Policy P3

Policy P4

Policy P5

Policy P6

processes running in the universe whdéeildingRules
object was created.

— — = No replication
------- One object per universe
\ — - — - One object per node

@ AN
5000

s
8
8
/
/

3000 ~—-T=<
2000 | N

g
i
!
{
1
/
I
[
|

/

7/

BuildingRules Object Acquire time [ms.
s

o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Worker process number

Figure9 BuildingRules acquire time

Table2 Average Acquire time for the BuildingRules object

Policy P1 P2 P3 P4 P5
Acquire time [ms] 2536.93 652.47 761.00812.93 2143.40
Policy P6 P7 P8 P9

Acquire time [ms] 1397.33 1867.93 1560.8797.13

The influence of the policy type on the acquiredioan be
observed in Figure 10 which compares the acquine for
the Object Update Policy applied at universe leased at
node level. If we focus on similar policies for theo
replication levels (e.g. the pairs P4-P8 and P5i#®)can
conclude that replicating at node level resultslawer
acquire time than when replicating at universe lletay
looking at the differences between the values fajuae
time for the two types of policies, we can say thhen the

EXPERIENCES ON GRID SHARED DATA PROGRAMMING

number of worker processes in a universe that hsesame
object is large, it is better to replicate the abjen each
worker node, but if the number of workers is ratherall
using a universe level
performance with a lower storage capacity usage.

11000

10000 ...

©
S
8
S

8000

7000

6000

5000

4000

BigObject AcquireExclusive time [msec]

3000

2000

0 10 20 30 40 50 60 70 80 90
AcquireExclusive operation

Figure10 Node vs.Universe update

The time when replication takes place has effeatshe
time required to acquire an object exclusively ann
exclusively. In Figure 10 for P8 replication occugarly,
after just 20% of total updates, and thus the aeqtime
drops faster than for P9 where replication occtter 0%
of total updates. Same thing can be observed iar€ig1,
for the Acquire Miss Policy.

11000

10000

9000

8000

7000

6000

5000

4000

BigObject AcquireExclusive time [msec]

3000

2000
0 10 20 30 40 50 60 70 80 90
AcquireExclusive operation

Figure1l Object Update vs. Acquire Miss policies

Table 3 Acquire exclusive success rate

Policy Success rate [%0]
No replication 87.88

One object per universe| 90.94
One object per node 95.30

Although the acquire success rate for all policiess
approximately equal, we noticed differences in d@equ
exclusive success rate. These differences are simoWable
3. By creating a replica of an object on each ribdé uses
the object, acquire exclusive success rate camdredsed
with approximately 10% compared with the case when
single copy of the object exists in the grid unseerThis is

53

because through replication the time necessarwfdmng
the object decreases and as a consequence thethéme
object is locked by a client decreases and thezefoore

policy can still assure good clients can be served over a shorter period of.time

8 CONCLUSION AND FUTURE WORK

In this paper we have presented an overview oktloeess
criteria for a grid shared data service. We havplaerd
both traditional system aspects and new aspedt$ehd to

be overlooked in several system designs and pajées.
have briefly presented some of the most important
achievements in the emerging domain of grid shaiata
programming and highlighted some of their drawbacks

We have introduced a new idea on designing gridesha
data services, based on our observations on pdstuarent
attempts. We have described the basic design giatén
system separation, replication handling, consistenc
specification and mutual exclusion. We have emeasi
the original idea of combining memory consistency
specification with type coherence in an object med
model and argued on the importance of thoroughesyst
verification on a wide scale and extreme conditions

Last but not least, we have introduced the architemf a
java based prototype called GUN that implements the
abstract model of the proposed system. We havenésite
the GUN prototype with a generic replication engine
Finally we have shown the results of replicatiotated
experiments that show promising results in term$ath
performance as well as quality parameters sucmpsoved
access success rates.

As part of our future work we focus on extending th
GUN experiments in order to highlight different asfs to
those presented in this paper. More important, ine ta
conduct a computer aided performance analysis an ou
model using the PRISM probabilistic model checker
(Kwiatkowska, Norman and Parker, 2002).

REFERENCES

Allcock, B., Bester, J., Bresnahan, J., Chervenak,, A&sselman,
C., Meder, S., Nefedova, V., Quesnel, D., Tueckead
Foster, I. (2001) ‘Secure, Effcient Data Transport Replica
Management for High-Performance Data-Intensive
Computing’, In Proceedings of the 18th IEEE Symposium on
Mass Storage Systems (MSS 200Qa&Jjge Scale Storage in the
Web, page 13, Washington, DC, USA, IEEE Computer
Society.

Antoniu, G., Bougé, L. and Mathieu, J. (2005) ‘JuxiMeAn
Adaptive Supportive Platform for Data Sharing oe tBrid’,
Scalable Computing: Practice and Experiengelume 6, Pp.
45-55.

Baduel, L., Baude, F. and Caromel, D. (2002) ‘Effitidflexible
and Typed Group Communications for Javiint ACM Java
Grande - ISCOPE 2002 Conferenceattle, Washington, pp.
28-36, ISBN 1-58113-559-8.

Baker, M. Smith, G. (2001) ‘Jini meets the GriBroceedings of
the International Conference on Parallel Processing
Workshopspp. 193-198, ISBN: 0-7695-1260-7.

54

Bershad, B., Zekauskas, M., and Sawdon, W. (1993 Nitdway
distributed shared memory systeniy Proceedings IEEE
COMPCON ConferenceéEEE, pp 528-37.

Bertier, M., Arantes, L. and Sens, P. (2004) ‘Hieh&ral token
based mutual exclusion algorithm®roceedings of the IEEE
International Symposium on Cluster Computing andGinie,
ISBN: 0-7803-8430-%, Page 539- 546.

Caron, E. and Desprez, F. (2006) ‘DIET: A Scalabtelbox to
Build Network Enabled Servers on the Gridihternational
Journal of High Performance Computing Applicatip@9(3),
Pp. 335-352.

Carson, M. and Santay, D. (2003) ‘NIST Net: a Lirhased
network emulation tool’, SIGCOMM Computer
Communication Reviev@3(3):111-126.

Foster, I. and Kesselman, C. (1998) ‘The Grid: Blirdpfor a
New Computing Infrastructure’, Morgan Kaufmann
Publishers.

Foster, I. and Kesselman, C. (1997) ‘Globus: A Metaguting
Infrastructure Toolkit’, The International Journal of
Supercomputer Applications and High Performance
Computing 11(2):115-128.

Karasavvas, K., Antonioletti, M., Atkinson, M., Ho, N.,
Sugden, T., Hume, A., Jackson, M., Krause, A., and
Palansuriya, C. (2005) ‘Introduction to OGSA-DAI @ees’,
Lecture Notes in Computer Scienpe. 1-12, Volume 3458.

Karonis, N.T., Toonen, B. and Foster, I. (2002) ‘@PLG2: A
Grid-Enabled Implementation of the Message Passing
Interface’.

Kwiatkowska, M., Norman, G., and Parker, D. (20RRISM:
Probabilistic Symbolic Model Checker'Proceedings of
TOOLS 2002 volume 2324 of Lecture Notes in Computer
Science, pages 200-204, Springer.

Lamport, L. (1979) ‘How to Make a Multiprocessor Quuter that
Correctly Executes Multiprocessor Programs’|EEE
Transactions Computer¥ol. C-28, No. 9, pp. 690-1

Lee, C., Matsuoka, S., Talia, D., Sussman, A., MugM., Allen,
G. and Saltz, J. (2001) ‘A Grid Programming Primd&réch
report, Advanced Programming Models Research Group.

Macariu, G., Tudor, D. and Cretu, V. (2008) ‘Desigma dynamic
replication engine for grid shared data programmiSyNASC
International Symposium on Symbolic and Numeric dtlyos
for Scientific Computingn print.

Naimi, M., Trehel, M., and Arnold, A. (1996) ‘A lodN)
distributed mutual exclusion algorithm based orhpaversal’,
JPDC, 34(1), pp. 1-13.

Osrael, J., Froihofer, L. and Goeschka, K.M. (2086Replication
Model for Trading Data Integrity against Availabili The
12th Int. Symp. on Pacific Rim Dependable Computing
(PRDC'2006) IEEE CS Press.

Seigneur, J.M., Biegel, G. and Damsgaard, C. (20B3p ‘ with
JXTA-Java pipes’, Proceedings of the 2nd International
Conference on the Principles and Practice of Prograng in
Java Ireland.

Sopena, J., Legond-Aubry, F., Arantes, L. and SBn$2007) ‘A
Composition Approach to Mutual Exclusion Algorithrfar
Grid Applications’, Proceedings of the 2007 International
Conference on Parallel Processing (ICPP 2Q0Vdlume 00,
Page: 65, ISBN 0-7695-2933-X.

Tudor, D., Cretu V., and Schreiner, W. (2008), ‘Dedg an
architecture for distributed shared data on thed’gri
Proceedings of the International Conference on Atpors
and Architectures for Parallel Processingolume 22 of
Lecture Notes in Computer Science, pages 261-264.

D. TUDOR, G. MACARIU, W. SCHREINER ANDV. CRETU

