
Special Issue on Efficient Resource, Service and Data Models for Grid and P2P-Enabled Applications of International
Journal of Grid and Utility Computing (IJGUC). 43

Experiences on Grid Shared Data
Programming
Dacian Tudor*, Georgiana Macariu, Wolfgang
Schreiner**, Vladimir Cretu
“Politehnica” University of Timisoara, Computer Science and Engineering
Department, Vasile Parvan Street, No. 2, 300223, Timisoara, Romania
E-mail: dacian@cs.upt.ro, georgiana@cs.upt.ro, vcretu@cs.upt.ro

*Corresponding author

**
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, 4040 Linz, Austria
E-mail: Wolfgang.Schreiner@risc.uni-linz.ac.at

Abstract: Despite the continuous advances of the last years in grid computing,
programming paradigms are dominated by the message passing concept. There is little
support for other paradigms such as shared data or associative programming. In this paper
we analyze why previous attempts did not have a significant impact in the grid computing
community. We start by assessing the landscape of grid programming solutions with a focus
on shared data concepts. Next, we introduce an original idea to attack shared data
programming on the grid by making use of both relaxed consistency models and user
specified type consistency in an object oriented model. Last but not least, we present a
prototype architecture together with experimental results.

Keywords: shared memory programming; grid programming; distributed shared memory.

Biographical notes: Dacian Tudor holds a MsC in Computer Science at the “Politehnica”
University of Timisoara, Computer Science Department where he is working as a research
group leader. Currently he focuses on creating a grid service layer for shared data
programming tailored for wide scale distributed systems. His research topics include
distributed and grid computing as well as mobile communication systems.

Georgiana Macariu is a PhD student at the “Politehnica” University of Timisoara. Her
research interests are grid and distributed computing as well as mobile communication
systems.

Prof. Dr. Wolfgang Schreiner is Associate Professor at the Research Institute for Symbolic
Computation (RISC) in Linz, Austria. His research interests are in parallel and distributed
computing, formal methods in computer science, and e-learning.

Prof. Dr. Eng. Vladimir-Ioan Cretu is full professor and head of the Department of
Computer Science and Engineering, Faculty of Automation and Computers. His research
interests cover real-time and distributed systems, software for data acquisition and
processing systems for electrical machines instrumentation and measurement, data
structures, algorithm design and analysis, embedded systems, and software development
processes and technologies.

1 INTRODUCTION

Most of the currently available grid programming models
rely on foreign programming models that are adopted via a
technology porting process. Here we include MPI-like
libraries like MPICH-G2 (Karonis, Toonen, and Foster,

2002), file based distributed data services based on GridFTP
(Allcock et. al., 2001) and higher level data access services
like OGSA-DAI (Karasavvas et al., 2005). Services and
high level abstractions for programming shared data
structures on the grid are almost not present on the grid
programming model landscape. Thus, our idea is to propose

44 D. TUDOR, G. MACARIU, W. SCHREINER AND V. CRETU

a new distributed shared memory system and its
corresponding programming model adapted for the grid.
Some of the core reasons for considering such a model stem
from the drawbacks of message passing solutions that put an
additional burden on the programmer to decompose the
computation handle load balancing and explicit
communication orchestration and the lack of automatic data
layout and optimization support.

Although many distributed shared systems have been
developed in the last two decades, most of them are limited
to a certain number of nodes and work best with a fast
interconnection network. Such systems do not qualify for
the grid as they do not fulfill the scalability and wide range
deployment requirements. Blindly applying such models on
the grid will most probably fail to provide the expected
behavior and reasonable performance. Distributed shared
data items must be widely shared and the problem of
managing the consistency of mutable data on wide area
systems is raised.

In this paper we aim to identify the challenges of grid
shared data system design and the reasons why these kinds
of systems did not have a significant impact on the grid
programming community. We start by elaborating in
Section 2 the assessment criteria for general grids as well as
grid shared data systems. In Section 3, we highlight the
most important grid shared data attempts and emphasize
their weaknesses. In Section 4, we present our design
strategy in order to achieve a widely distributed, scalable
and efficient grid shared data system that provides a generic
and flexible object oriented programming interface.

2 ASSESSMENT CRITERIA

Based on literature study of a different grid shared data
based systems, we tried to abstract and identify some of
their properties which are directly related to the
programming model they introduce, their adaptation level
towards the grid specific interfaces and their performance
behavior in various conditions. The first five criteria are
based on (Lee et al., 2001) and they reflect system specific
criteria. The following five criteria are abstracted out of our
literature based observations we made on several grid
systems and they reflect aspects which are most of the time
overlooked during the system design or during the system
assessment and performance measurements.

2.1 Usability and transparency

Grid shared data abstractions must be suitable for various
types of problem domains from local computing to large
scale high performance computing. There should be no
constraints in building codes that are targeted to a specific
architecture so that different development paths are
followed depending on the system’s requirements and
architecture. Next, access to the shared data shall be done
through a generic and transparent interface, which shall not
require tailoring for different usage scenarios.

2.2 Dynamic and heterogeneous configurations

Dynamic and heterogeneous environments that change
frequently due to machine availability, new connection
paths, different communication latencies due to connection
changes, new available resources are common assumptions
for any grid system. As a consequence, predefined built-in
logic is not suitable for large scale grid systems as it
obstructs reconfigurations and system evolution.

2.3 Portability and interoperability

Portability is not a new topic and is best captured by the
sentence “write once, run anywhere”. For grid systems,
portability is similar to supporting programs to be run
independently of the underlying architecture. Portability and
architecture independence is vital to support dynamic and
heterogeneous configurations. Interoperable grid systems
are based on open standards and protocols. Ideally, the
protocols, services and interfaces that realize the grid shared
data model shall expose interoperable concepts as well.

2.4 Reliability and fault tolerance

Reliability and fault tolerance are general system
desiderates for any grid system with a certain degree of
determinism. Most of the time reliability is associated with
performance reliability, meaning that multiple code
executions shall not have significant performance
deviations. Addressing these issues in the application layer
is not applicable anymore as grids aim to expose high level
functionality with advanced management support. Ideally,
these characteristics shall be part of the run-time
mechanisms of the grid system.

2.5 Security and privacy

As grids span between virtual organizations with different
security policies, security issues, rights management and
privacy have been a major concern. As grid codes are
running across different administrative domains, it is very
important that security be part of grid system and less
visible on the programming interfaces.

2.6 Flexible replication techniques

Replication techniques have been used in case of service-
centric system to increase service availability through
resource redundancy. Data-centric systems like shared data
systems make use of replication for performance.
Depending on the replication techniques and replica
synchronization protocols, it is expected to observe
significant performance differences. We believe that a key
point in assuring reliable performance is to adapt replication
decisions and algorithms to specific use cases. More, we do
not see the replication decisions as part of the system, but
more like information collection from the application side
based on predefined system metrics.

EXPERIENCES ON GRID SHARED DATA PROGRAMMING 45

2.7 Replica consistency and coherence

It is generally accepted that strong consistency
specifications like sequential consistency (Lamport, 1979)
are not suitable to large scale systems such as a grid.
Relaxed consistency specifications like entry consistency
(Bershad, Zekauskas and Sawdon, 1993) have a much
higher chance to perform better on grid systems. However,
we believe that consistency alone does not provide
sufficient information, as it basically bounds the system to a
replica update scheme. Having flexible replication schemes
would be a clear advantage in accommodating different
shared data usage scenarios.

2.8 Mutual exclusion

Grid shared data systems introduce the problem of data
sharing and mutual exclusion. Mutual exclusion algorithms
have been developed during the last decades, but there is
little information on their performance behavior when
applied to the grid level. Some recent investigations
conducted in (Sopena et al., 2007) and (Bertier, Arantes and
Sens, 2004) provide an empirical performance evaluation of
an extended version of the Naimi-Trehel (Naimi, Trehel,
and Arnold, 1996) and two level compositional algorithms
that realize mutual exclusion on the grid level. We believe
that the performance of grid shared data solution is directly
determined by the choice of the mutual exclusion algorithm
on the grid level.

2.9 Wide scale and extreme conditions

We believe that grids consisting on several strongly
connected clusters via fast interconnections do not provide a
suitable environment for performance analysis. Instead we
focus on really wide scale systems, which are dominated by
large latency connections. The motivation for such criteria
is simply because of the network saturation effect which
becomes obvious if grids become public, instead being
isolated and used as dedicated resources. We believe that
only on a wide scale the original definition (Foster and
Kesselman, 1998) and purpose of grid systems is truly met.

2.10 System verification and performance analysis

Most of the grid shared data systems we have surveyed by
literature study, such as Dedysis (Osrael, Froihofer, and
Goeschka, 2006) and JUXMEM (Antoniu, Bougé, and
Mathieu, 2005), have been evaluated empirically from the
performance point of view. A critique perspective on these
systems is presented in Section 3. In case of the analyzed
systems, either some consecrated parallel algorithms were
run on several configurations, or an artificially created
problem that used the system was deployed in order to
collect the performance results. Most of the times, the
conditions during the experiment were not described,
suggesting that clusters were used as dedicated resources.
We believe that only system verification and performance
analysis through analytical and formal methods can reveal

more meaningful aspects about the system behaviour. In
addition, real situation experiments are quite time
consuming to run in various configurations. As some
experiments might require hours to run, running a complete
experiment suite can easily span to days or weeks. Opposite
to this situation, system verification and performance
analysis via computer-aided verification tools can
dramatically reduce the simulation time and enable
simulation scenarios that are impossible to provide in real-
life situations.

3 EXISTING GRID SOLUTIONS LANDSCAPE

When it comes to programming grid applications, there are
not so many choices of programming paradigms. Most of
the grid based projects that we have encountered make
extensive use of message passing techniques either as a
grid-integrated solution like MPICH-G2 (Karonis, Toonen
and Foster, 2002) or solutions that simply use the grid as an
execution environment. The research landscape for shared
data programming on the grid is at its dawn. We believe that
some of the major obstacles in the development of this
paradigm are coming from the complexity of the solution
and some challenges described by some of the assessment
criteria. More specifically, we believe that the combination
of replication techniques, mutual exclusion and consistency
replication is a major challenge in building scalable and
efficient shared data grid systems. Last but not least, the
lack of rigorous system analysis makes previous experiment
results questionable in large scale and extreme conditions.

3.1 File and catalogue based solutions

Grid middleware solutions like Globus (Foster, and
Kesselman, 1997) provide mechanisms for performing file
replication and replica location services via hierarchical
catalogs. Unfortunately, these mechanisms are suitable only
for immutable data handling and not dynamic data as
required by shared data programming paradigm. Several
services for replica consistency handling have been
proposed based on grid middleware, but to our knowledge,
none of them is providing a programming interface and
integration into the grid environment. In other words, the
solutions remain particular to certain scenarios, without
having the required generic level aimed by a programming
paradigm.

3.2 Dedisys

Dedisys (Osrael, Froihofer, and Goeschka, 2006) is one of
the very recent research activities towards replicated data
systems across the grid, where the primary focus is
increased availability by sacrificing consistency. The core
idea is to continue the normal execution when faults occur,
such as network partitions due to disconnected
communication paths, and provide reconciliation points
when connections are restored. In this way different replicas

46

could evolve independently at the reconciliation price paid
by the programmer which has to provide the reconciliation
logic. Based on the information we collected on Dedisys, it
is not clear how the system performs data replication, but
we suspect that it is bound at design time and cannot be
adjusted based on the application requirements. Second, it is
not clear how mutual exclusion is realized. Last bu
least, system assessment seems to be done on an
experimental basis, but further performance evaluations
might follow.

3.3 JUXMEM

JUXMEM (Antoniu, Bougé, and Mathieu, 2005)
grid sharing data solution based on a peer
middleware architecture that provides a transparent and
generic interface to shared data programming on the grid. It
uses the JXTA (Seigneur, Biegel, and Damsgaard, 2003)
middleware to provide a sharing service for distributed
shared data. JUXMEM does not provide any da
but rather a flat view provided as a memory buffer where
the user has to map its own data representation. The
memory consistency protocol is entry consistency and
replication decision is fixed and bound at the time the
shared data is created. This means that a high data usage
does not lead to dynamic replication, but it relies on its
already existing replicas. The system takes care of failure
conditions by promoting grid nodes to new roles in order to
fulfill the system specification.

JUXMEM’s validation has been performed on
experimental basis, by integration into the Grid
(Caron and Desprez, 2006) environment and running
different parallel applications as benchmarks. From the set
of run experiments, it is not clear how the system behaves
on a large scale deployment and large latency connections.
Based on the author’s descriptions of the required
adaptations in the JXTA middleware and the fact that all the
constructs are based on peer-to-peer communication
protocols, we feel that the peer-to-peer layer might lead to a
performance limiting factor on large scale grid systems.

4 A NEW APPROACH

Grid systems expose several constraints and special
conditions. For better understanding, one can think of a grid
like a multi-level hierarchical structure that can be modelled
as a non directed graph. Each node represents a machine or
a group of machines. Typically, a group of machines is a
cluster or LAN where each machine can communicate with
others within the same group with the same known and
upper bound latency. Thus, we consider together all
machine groups and depict them as a single group node as
shown in Figure 1. Such hierarchical structure is constantly
getting deeper (more levels) and wider (more groups) during
the evolution of grid systems. A unique characteristic is the
unpredictable layering as a result of unpredictable joining
and leaving groups, plus changes in physical

D. TUDOR, G. MACARIU, W.

could evolve independently at the reconciliation price paid
by the programmer which has to provide the reconciliation

e collected on Dedisys, it
is not clear how the system performs data replication, but
we suspect that it is bound at design time and cannot be
adjusted based on the application requirements. Second, it is
not clear how mutual exclusion is realized. Last but not
least, system assessment seems to be done on an
experimental basis, but further performance evaluations

Antoniu, Bougé, and Mathieu, 2005), is a recent
grid sharing data solution based on a peer-to-peer

hitecture that provides a transparent and
generic interface to shared data programming on the grid. It

Seigneur, Biegel, and Damsgaard, 2003)
middleware to provide a sharing service for distributed
shared data. JUXMEM does not provide any data structure,
but rather a flat view provided as a memory buffer where
the user has to map its own data representation. The
memory consistency protocol is entry consistency and
replication decision is fixed and bound at the time the

This means that a high data usage
does not lead to dynamic replication, but it relies on its
already existing replicas. The system takes care of failure
conditions by promoting grid nodes to new roles in order to

validation has been performed on
experimental basis, by integration into the Grid-RPC DIET

environment and running
different parallel applications as benchmarks. From the set
of run experiments, it is not clear how the system behaves
on a large scale deployment and large latency connections.
Based on the author’s descriptions of the required

aptations in the JXTA middleware and the fact that all the
peer communication

peer layer might lead to a
performance limiting factor on large scale grid systems.

tems expose several constraints and special
conditions. For better understanding, one can think of a grid

level hierarchical structure that can be modelled
as a non directed graph. Each node represents a machine or

ly, a group of machines is a
cluster or LAN where each machine can communicate with
others within the same group with the same known and
upper bound latency. Thus, we consider together all
machine groups and depict them as a single group node as

. Such hierarchical structure is constantly
getting deeper (more levels) and wider (more groups) during
the evolution of grid systems. A unique characteristic is the
unpredictable layering as a result of unpredictable joining

s changes in physical

communication channels. For example, a certain group is
connected over the air using wireless LAN or via Bluetooth
to different hosts, thus it might appear in different layers at
different times. Besides the unpredictable layering, an
characteristic of the model is the unknown bandwidth and
latency of each communication line between two arbitrary
groups. To simplify the discussion, we omit the failure
model and we consider that there is an upper and lower
latency bound.

Figure 1 Grid Node Layering

We follow two directions to overcome the problem of
communication delay from different perspective
reconstruct the problem and partition
communication groups with known latencies
provide useful programming information so that the run
time system can take advantage of semantic information and
apply dynamic optimizations. Both ideas are not new, but to
our knowledge they have not been applied together on a grid
system before. More, the second
in the context of grid programming and grid scale
distributed shared data. Network partitioning is an approach
followed by MPI implementations and hierarchical
distributed algorithms to optimize communication according
to the network topology information and providing meta
information is a well known approach in many software
engineering domains like formal verification and testing.

4.1 System separation

Some of the previous attempts in designing DSM for the
grid have used logical mappings over one single large
machine group. As presented in section three, in case of the
JUXMEM approach, where peer
spawned across the grid, the authors of JUXMEM
recognized that the wide distribution of peers in the overlay
layer is problematic and current overlay implementations
such as JXTA (Seigneur, Biegel, and Damsgaard, 2003)
have serious performance issues in largely distributed
environments. Thus, we argue that another split is
necessary, which clearly identifies the
into the entire grid universe. We see this mapping as part of
the system deployment, instead of relaying on a predefined
mapping.

W. SCHREINER AND V. CRETU

communication channels. For example, a certain group is
connected over the air using wireless LAN or via Bluetooth
to different hosts, thus it might appear in different layers at
different times. Besides the unpredictable layering, another
characteristic of the model is the unknown bandwidth and
latency of each communication line between two arbitrary
groups. To simplify the discussion, we omit the failure
model and we consider that there is an upper and lower

Grid Node Layering

to overcome the problem of
communication delay from different perspectives. First, we
reconstruct the problem and partition it into acceptable
communication groups with known latencies. Second, we

eful programming information so that the run-
time system can take advantage of semantic information and
apply dynamic optimizations. Both ideas are not new, but to
our knowledge they have not been applied together on a grid
system before. More, the second idea has not been applied
in the context of grid programming and grid scale
distributed shared data. Network partitioning is an approach
followed by MPI implementations and hierarchical
distributed algorithms to optimize communication according

ork topology information and providing meta-
information is a well known approach in many software
engineering domains like formal verification and testing.

Some of the previous attempts in designing DSM for the
l mappings over one single large

machine group. As presented in section three, in case of the
JUXMEM approach, where peer-to-peer groups have been
spawned across the grid, the authors of JUXMEM
recognized that the wide distribution of peers in the overlay
layer is problematic and current overlay implementations

Seigneur, Biegel, and Damsgaard, 2003)
have serious performance issues in largely distributed
environments. Thus, we argue that another split is
necessary, which clearly identifies the connection points
into the entire grid universe. We see this mapping as part of
the system deployment, instead of relaying on a predefined

EXPERIENCES ON GRID SHARED DATA PROGRAMM

In order to address thousands of widely distributed nodes,
we decompose the system into a federation of logi
called universes. The logical representation of a universe is
homogeneous and communication latency in a universe is
typically small and bound to a higher known margin. Of
course, the physical entities that form a universe could be
heterogeneous (e.g. machines with different resources and
operating systems). Communication outside the universe, or
between universes, is unbounded, but still it has an upper
limit.

Figure 2 Physical Universe Mapping Sample

In our view a universe is a logical collection of machine
nodes which provides a hosting environment for distributed
objects. Nodes are homogeneous and have a data storage
capacity in RAM and code execution capabilities. Each
node can hold a certain number of objects so that the sum of
all object weights held by the node shall not exceed the
node’s capacity. All existing universes form together the
grid universe. Each universe is a continuously evolving
entity together with its connections to the other universes. A
universe groups together more physical machines which
share the same communication paths, thus the
intercommunication channel in a universe is homogeneous
and has known and constant characteristics. Communication
between universes is unpredictable, unknown and dynamic.
As an example of a concrete universe, one can consider a
physical cluster or a LAN and a grid universe as several
interconnected clusters. A sample grid universe consisting
of four universes mapped to four clusters is depicted in
Figure 2.

4.2 Replication handling

We intend to use replication as the primary mechanism for
performance improvement and not for fault tolerance. When
data is created on the grid, we choose the closest node to the
node who issued the “create shared data” request and which
has enough capacity left to accommodate the grid shared
object. The same node who issued the command can be
chosen if it has enough capacity available. Upon data
request during application execution, the grid shared data
might be replicated to other nodes from the same or
different universes in order to reduce large latencies. The

SHARED DATA PROGRAMMING

In order to address thousands of widely distributed nodes,
we decompose the system into a federation of logical groups
called universes. The logical representation of a universe is
homogeneous and communication latency in a universe is
typically small and bound to a higher known margin. Of
course, the physical entities that form a universe could be

(e.g. machines with different resources and
operating systems). Communication outside the universe, or
between universes, is unbounded, but still it has an upper

Physical Universe Mapping Sample

lection of machine
nodes which provides a hosting environment for distributed
objects. Nodes are homogeneous and have a data storage
capacity in RAM and code execution capabilities. Each
node can hold a certain number of objects so that the sum of

ct weights held by the node shall not exceed the
node’s capacity. All existing universes form together the

niverse is a continuously evolving
entity together with its connections to the other universes. A

physical machines which
share the same communication paths, thus the

niverse is homogeneous
and has known and constant characteristics. Communication

niverses is unpredictable, unknown and dynamic.
a concrete universe, one can consider a

physical cluster or a LAN and a grid universe as several
interconnected clusters. A sample grid universe consisting
of four universes mapped to four clusters is depicted in

end to use replication as the primary mechanism for
performance improvement and not for fault tolerance. When
data is created on the grid, we choose the closest node to the
node who issued the “create shared data” request and which

to accommodate the grid shared
object. The same node who issued the command can be
chosen if it has enough capacity available. Upon data
request during application execution, the grid shared data
might be replicated to other nodes from the same or

nt universes in order to reduce large latencies. The

system decides at run-time to replicate the data based on its
specification. The replication policy follows a system
definition of a rule based specification. This means that the
same replication rules are considered for all the applications
running on the grid. As the rule based replication policy
definition is provided from the outside of the system (e.g.
deployment information), it can be fine tuned differently to
individual systems.

4.3 Consistency protocol

The memory consistency model represents a contract that
the grid shared service has to satisfy at any time. It states
what the value of a certain object is, among a set of wide
replicated distributed objects, if certain conditions are
satisfied. Choosing a specific consistency model has several
impacts on the overall system. First, it regulates a certain
degree of overlapped operations so that different processes
are not blocked if they operate on the same data. At the
same time the synchronization
by the consistency model. Second, different consistency
models imply different underlying operations which
generate at the end different communication traffic patterns
and volumes. Last but not least, consistency models have a
visible impact at the programming level, meaning that
different consistency models have to be expressed
differently at the API level. Such a restriction limits the
adaptability at the consistency level and as a result we have
to adopt the most suitable cons
systems.

We have evaluated several usage scenarios to such a
shared data model and we consider as the most promising
consistency model the entry consistency model, which is
also the least restrictive model (or the most relaxed). In
model, synchronization happens between clearly defined
operations: acquire and release. The drawback is that it
requires additional programming effort to specify
synchronization points. The rationale for this choice is that
the entry consistency protocol assures data synchronization
at entry point in the synchronization code, avoiding thus the
penalty of update protocols that generate a higher
communication traffic pattern in a large scale environment.

4.4 Type coherence

We tackle the problem of grid
dimensions. First, we have considered the consistency
model as the base for object state synchronization and
correctness. Second, we follow the object usage pattern, in
the idea of communication and object replication
optimizations. Here we address type specific coherence
based on the observation that different classes of objects are
accessed in different ways and the access pattern might be
changing during the process lifetime. Based on the scenarios
we have selected nine object
migratory, producer-consumer, read
mostly, generic and synchronization object.

The programming model we specified defines the above
different types of grid shared objects and synchronization

47

time to replicate the data based on its
specification. The replication policy follows a system
definition of a rule based specification. This means that the

re considered for all the applications
running on the grid. As the rule based replication policy
definition is provided from the outside of the system (e.g.
deployment information), it can be fine tuned differently to

The memory consistency model represents a contract that
the grid shared service has to satisfy at any time. It states
what the value of a certain object is, among a set of wide
replicated distributed objects, if certain conditions are

oosing a specific consistency model has several
impacts on the overall system. First, it regulates a certain
degree of overlapped operations so that different processes
are not blocked if they operate on the same data. At the
same time the synchronization model is defined implicitly
by the consistency model. Second, different consistency
models imply different underlying operations which
generate at the end different communication traffic patterns
and volumes. Last but not least, consistency models have a
isible impact at the programming level, meaning that

different consistency models have to be expressed
differently at the API level. Such a restriction limits the
adaptability at the consistency level and as a result we have
to adopt the most suitable consistency model for grid

We have evaluated several usage scenarios to such a
shared data model and we consider as the most promising
consistency model the entry consistency model, which is
also the least restrictive model (or the most relaxed). In this
model, synchronization happens between clearly defined
operations: acquire and release. The drawback is that it
requires additional programming effort to specify
synchronization points. The rationale for this choice is that

col assures data synchronization
at entry point in the synchronization code, avoiding thus the
penalty of update protocols that generate a higher
communication traffic pattern in a large scale environment.

We tackle the problem of grid shared data in two distinct
dimensions. First, we have considered the consistency
model as the base for object state synchronization and
correctness. Second, we follow the object usage pattern, in
the idea of communication and object replication

ons. Here we address type specific coherence
based on the observation that different classes of objects are
accessed in different ways and the access pattern might be
changing during the process lifetime. Based on the scenarios
we have selected nine object types: read-only, private,

consumer, read-mostly, result, write-
mostly, generic and synchronization object.

The programming model we specified defines the above
different types of grid shared objects and synchronization

48 D. TUDOR, G. MACARIU, W. SCHREINER AND V. CRETU

mechanisms in order to give the run-time system useful
information to allow a higher concurrency degree and to
minimize wide area communication overhead.

4.5 Mutual exclusion

Some of the very recent activities towards better mutual
exclusion algorithms on the grid have been elaborated in
(Sopena et al., 2007) and (Bertier, Arantes and Sens, 2004),
where the authors proposed a compositional approach and
an extension to the Naimi-Trehel (Naimi, Trehel, and
Arnold, 1996) algorithm. Both the proposed extension and
the compositional approach could be applied to our universe
structure, but there are various modifications could be
necessary. It is important to note that all of the previously
mentioned algorithms refer to the simple case of mutual
exclusion. In our work we have to address the entry
consistency protocol which requires a different view on
mutual exclusion, because in some cases simultaneous
object access is possible. This means that if for example an
existing algorithm is considered for realizing the mutual
exclusion protocol, it has to be adapted in order to fulfill the
entry consistency specification. In addition, type
consistency needs to be addressed as well within the same
algorithm, leading to different update mechanisms
depending on the grid object type specification.

In (Sopena et al., 2007) the authors presented an algorithm
composition to realize a hierarchical mutual exclusion
protocol on an infrastructure similar to the one we have
proposed. Different algorithms pairs are constructed for
universe and between universe resource exclusion handling.
They observed that it is only the “between universes”
algorithm which brings a significant performance impact on
the system, whereas the algorithm applied inside a universe
has no significant performance impact, except the number
of exchanged messages. Based on the measurements in
(Bertier, Arantes and Sens, 2004), it seems that the Naimi-
Trehel (Naimi, Trehel, and Arnold, 1996) algorithm is the
most suitable for exchanging tokens between universes and
it provides a reasonable trade-off between different classes
or applications (highly parallel vs. low parallel
applications).

Although the experiments were run in very particular
environments that are neither widely distributed, nor having
large latencies, we took these observation and proposed a
new mutual exclusion algorithm adapted for entry
consistency specification, where a multi-token Naimi-Trehel
algorithm is used between universes and a type-parallel
centralized algorithm is used inside each universe. We hope
to explore the small latency communication within a
universe and centralize information on a special node that
would allow us to achieve fast decisions in terms of replica
update and state identification.

4.6 System verification and prototyping

We have previously criticized the lack of rigorous system
verification and performance modeling for existing grid
shared data systems. The same is true for the mutual

exclusion algorithms which have been evaluated through
experiments on fast interconnected machines (Sopena et al.,
2007). In case of (Bertier, Arantes and Sens, 2004), the
system consisted of only three clusters each made of three
machines. We argue that such experiments are not
significant for the purpose of our goals, namely true widely
distributed systems where large latency connections are
dominant between universes. Thus, we argue that better
instruments for system verification and performance
assessment are necessary. In our current work, we aim to
focus on probabilistic formal verification in order to validate
our ideas and provide meaningful performance figures in
both relaxed and extreme system conditions. While we
focus on system verification, we put less importance on
prototyping. We still aim to build a prototype and integrate
it into the ProActive middleware (Baduel, Baude, and
Caromel, 2002), which appears quite promising due to its
highly asynchronous behavior and concept of futures.

5 GUN PROTOTYPE

GUN is the acronym for Grid UNiverse and represents a
Java based implementation of the grid universe model
defined in (Tudor, Cretu and Schreiner, 2008). Remote
interactions are expressed in GUN based on Java’s remote
object model. First, the Remote Method Invocation (RMI)
solution was chosen for its simplicity and ease of use.
Second, because the system model does not require
multicasting support (like Jini (Baker and Smith, 2001) or
ProActive (Baduel, Baude, and Caromel, 2002) solutions do
for example), the RMI model fits well to the abstract model.

GUN reflects the architecture of the abstract model and
the abstract system architecture described in (Tudor, Cretu
and Schreiner, 2008). Similar to the abstract model, in GUN
there are a set of processes deployed over several networks
called universe nodes. The universe nodes are homogeneous
and each of them is able to accommodate a certain number
of data items, until the available capacity of the universe
node is consumed. Typically universe nodes are grouped
together in network latency proximity and form a universe.
The collection of all deployed universes forms the grid
universe. Each universe contains a dedicated node called
“primary node” which manages the communication with
other universes and indexes the information on available
data items accommodated by each node within the same
universe. All primary nodes can be seen as a distributed
registry, each being responsible for managing certain
number of data objects. A sample deployment of a grid
universe across physical machines is depicted in Figure 2.

The GUN prototype is divided into three layers, as
illustrated in Figure 3. There is a user layer which exposes
the abstractions and necessary interfaces to the application
programmer. The second layer is the kernel which
implements the core algorithms and implements all
interfaces exposed to the outside world by the user layer.
Last but not least, there is a replication layer which handles
object replication policies. The replication layer implements

EXPERIENCES ON GRID SHARED DATA PROGRAMM

an interface required by the kernel so that the kernel invokes
the replication engine at some key points in order to trigger
object replication. The replication layer is extendable,
meaning that user defined replication rules can be registered
into the GUN architecture.

Figure 3 GUN High Level Architecture

The user layer depicted in Figure 4 provides services to
create, find, delete and acquire grid objects.
exposed through the GridUniverse
implemented as a singleton object. When an object is
created, GUN returns a handle to that object. The handle
contains information about the object identifiers OID, GID
and an URI of the remote object in the RMI domain. The
handle shall be passed by the client whenever an operation
on the grid objects is invoked such as removal, acquire or
release. Basically, the application programmer extends the
GridObject class in order to implement its custom objects.
The GridObject implements the RMI specific
interface, meaning that GUN user defined objects are
automatically remote objects. The concrete custom interface
is retrieved from GUN using the GetGridObjectRef
of the GridObjectHandle class.

Figure 4 GUN User Layer

Object creation follows the locality principle and tries to
find a node in the proximity of the node from where the
request was issued (e.g. caller node). Upon completion, the
create service returns a handle to the client that can
to acquire exclusive or non-exclusive access to the object
instance as well as to invoke specialized methods that are

SHARED DATA PROGRAMMING

an interface required by the kernel so that the kernel invokes
the replication engine at some key points in order to trigger
object replication. The replication layer is extendable,
meaning that user defined replication rules can be registered

GUN High Level Architecture

The user layer depicted in Figure 4 provides services to
grid objects. The services are

 class which is
ject. When an object is

created, GUN returns a handle to that object. The handle
contains information about the object identifiers OID, GID
and an URI of the remote object in the RMI domain. The
handle shall be passed by the client whenever an operation

the grid objects is invoked such as removal, acquire or
release. Basically, the application programmer extends the

class in order to implement its custom objects.
implements the RMI specific Remote

r defined objects are
automatically remote objects. The concrete custom interface

GetGridObjectRef method

User Layer

creation follows the locality principle and tries to
node from where the

. Upon completion, the
create service returns a handle to the client that can be used

exclusive access to the object
invoke specialized methods that are

provided in the concrete object definition. Object
follows the same data locality principle and tries to locate an
object that resides in the proximity of

When the GUN system is started, first all primary nodes
are being started. Each primary node has a configuration file
which contains at the address of at least other primary
nodes. The primary nodes are running a simple discovery
protocol, which at the end brings all primary nodes to know
the identity of all other primary nodes. The same
mechanism applies when a primary node is removed from
the grid universe. As a result, in the GUN system, it is
ensured that every primary node kn
nodes, or in other terms, all universes know all other
universes. This decision has been made based on the
assumption that primary nodes are running on dedicated
machines, which have a high availability rate (e.g. hardware
fault tolerance). The GUN system can be extended from this
point of view to a peer-to-
between primary nodes.

After the primary nodes are started, the grid nodes are
deployed. Every grid node has a configuration file that
specifies its name, capacity and the address of the primary
node where it must register. Normally the grid nodes are
located in network latency proximity, meaning that in every
universe there are homogeneous communication
characteristics. When the node is instantiated,
automatically registers to the designated primary node. The
primary node stores information in a hash table about all the
registered nodes and their status (e.g. available capacity,
stored objects etc). Using a hash table mechanism it is
ensured that a fast lookup time is achieved.

The kernel component implements the mutual exclusion
algorithms and the model defined in
Schreiner, 2008) where an extended version of the
distributed multi-token Naimi
defined. The interaction between nodes and primary nodes
is happening via remote message invocations (RMI). This
interaction follows the following pattern: request messages
are sent via methods named like
callbacks are received via methods named
onSomeMessage(). Internally, the asynchronous
communication is realized via message classes that are
described in Figure 5.

Figure 5 GUN

49

provided in the concrete object definition. Object finding
follows the same data locality principle and tries to locate an

in the proximity of the caller application.
When the GUN system is started, first all primary nodes

are being started. Each primary node has a configuration file
which contains at the address of at least other primary
nodes. The primary nodes are running a simple discovery
protocol, which at the end brings all primary nodes to know
the identity of all other primary nodes. The same
mechanism applies when a primary node is removed from
the grid universe. As a result, in the GUN system, it is
ensured that every primary node knows all other primary
nodes, or in other terms, all universes know all other
universes. This decision has been made based on the
assumption that primary nodes are running on dedicated
machines, which have a high availability rate (e.g. hardware

ance). The GUN system can be extended from this
-peer like discovery protocol

After the primary nodes are started, the grid nodes are
deployed. Every grid node has a configuration file that

name, capacity and the address of the primary
node where it must register. Normally the grid nodes are
located in network latency proximity, meaning that in every
universe there are homogeneous communication
characteristics. When the node is instantiated, it
automatically registers to the designated primary node. The
primary node stores information in a hash table about all the
registered nodes and their status (e.g. available capacity,
stored objects etc). Using a hash table mechanism it is

fast lookup time is achieved.
The kernel component implements the mutual exclusion

algorithms and the model defined in (Tudor, Cretu and
where an extended version of the

token Naimi-Trehel algorithm has been
interaction between nodes and primary nodes

is happening via remote message invocations (RMI). This
interaction follows the following pattern: request messages
are sent via methods named like DoSomething() while
callbacks are received via methods named

Internally, the asynchronous
communication is realized via message classes that are

GUN Kernel Messages

50

When a client invokes an operation on a grid object via
the GridUniverse, the node where the client
depending on the desired operation, one of the Acquire,
AcquireExclusive or Release methods invoked. The node
creates the corresponding request message and adds it into
its request queue. Next, the node delegates the operation to
the primary node to which it had registered. Next, the node
is waiting for the primary node to reply to its request by
calling a wait message on the queued message. After
processing the node’s request, the primary node responds to
the node by calling one of the callback methods which
triggers a notification on the awaited message. After the
node is notified by the awaited message, the message is
removed from the queue, the original client method
invocation ends and the response is returned to the client.
This mechanism is used for all interactions between nodes
and primary nodes.

The interaction between grid primary nodes is more
complex and it basically implements the multi
Trehel algorithm. All requests that are sent by grid nodes
are queued by the primary nodes in two separate queues: a
queue for acquire requests and one for release requests.
There is a dedicate message queue for each group of object
identifiers, as depicted in Figure 6.

Figure 6 GUN Message Queue

There are several worker threads that are processing the
queued requests. In order to facilitate a higher parallelism
level as well as lower locking time, the GUN prototype
makes use of several worker threads that are hand
following operations:

• Acquire requests
• Acquire exclusive requests
• Release requests
• Token reception
• Synchronization of up-to-date nodes
The distributed mutual exclusion algorithm is based on the

multi-token concept. For every group of objects there is a
token associated. The tokens as well as all data structu
are hashed based on the object identifier
structure is depicted in Figure 7. The token contains a list of
nodes that are having requested the object in non
mode and did not release the objects yet. Second, the token
contains a list of nodes that are holding an up
version of the object. For specialized objects the token
structure has been extended with a list of consumers and
writers (for producer-consumer and result objects).

D. TUDOR, G. MACARIU, W.

When a client invokes an operation on a grid object via
the GridUniverse, the node where the client resides gets,
depending on the desired operation, one of the Acquire,
AcquireExclusive or Release methods invoked. The node
creates the corresponding request message and adds it into
its request queue. Next, the node delegates the operation to

node to which it had registered. Next, the node
is waiting for the primary node to reply to its request by
calling a wait message on the queued message. After
processing the node’s request, the primary node responds to

ck methods which
triggers a notification on the awaited message. After the
node is notified by the awaited message, the message is
removed from the queue, the original client method
invocation ends and the response is returned to the client.

is used for all interactions between nodes

The interaction between grid primary nodes is more
complex and it basically implements the multi-token Naimi-
Trehel algorithm. All requests that are sent by grid nodes

nodes in two separate queues: a
queue for acquire requests and one for release requests.
There is a dedicate message queue for each group of object

GUN Message Queue

are processing the
queued requests. In order to facilitate a higher parallelism
level as well as lower locking time, the GUN prototype
makes use of several worker threads that are handling the

The distributed mutual exclusion algorithm is based on the
token concept. For every group of objects there is a

token associated. The tokens as well as all data structures
are hashed based on the object identifier OID. The token
structure is depicted in Figure 7. The token contains a list of
nodes that are having requested the object in non-exclusive
mode and did not release the objects yet. Second, the token

list of nodes that are holding an up-to-date
version of the object. For specialized objects the token
structure has been extended with a list of consumers and

consumer and result objects).

Figure 7 GUN Token

In order to collect performance related data, a monitoring
layer has been integrated into the grid primary node and grid
node. The grid universe monitor which keeps track of the
time spent for a given operation, such as acquire time,
acquire hits and misses and computes statist
like acquire success rates. The monitoring components are
invoked by the kernel in certain key points in order to log
the required data. Performance data can be dumped into
comma separated value files by invoking a method of the
node where the client application is running.

GUN defines a generic replication hook that is called by
the kernel when replication can be triggered. GUN contains
a replication layer that takes care of object replication
migration, by applying a set of extendable
replication rules that are supplied to the system at
deployment time. Object replication and migration can
happen either when an object is looked
a closer replica, or during object acquiring and release. The
replication mechanism is based on replication rules that are
defined at deployment time and are loaded into the
replication engine when the GUN system is started. If the
replication engine decides to replicate a given object, the
object is replicated to the designated targe
client handles are updated so they refer to the newly created
replica. The replication engine and the replication hook that
is called by the GUN kernel are shown in

Figure 8 GUN Replication Engine

W. SCHREINER AND V. CRETU

GUN Token

rformance related data, a monitoring
layer has been integrated into the grid primary node and grid
node. The grid universe monitor which keeps track of the
time spent for a given operation, such as acquire time,
acquire hits and misses and computes statistical information
like acquire success rates. The monitoring components are
invoked by the kernel in certain key points in order to log
the required data. Performance data can be dumped into
comma separated value files by invoking a method of the

the client application is running.
GUN defines a generic replication hook that is called by

the kernel when replication can be triggered. GUN contains
takes care of object replication and

, by applying a set of extendable dynamic
replication rules that are supplied to the system at

Object replication and migration can
happen either when an object is looked-up as there could be
a closer replica, or during object acquiring and release. The

ism is based on replication rules that are
defined at deployment time and are loaded into the
replication engine when the GUN system is started. If the
replication engine decides to replicate a given object, the
object is replicated to the designated target node and the
client handles are updated so they refer to the newly created
replica. The replication engine and the replication hook that
is called by the GUN kernel are shown in Figure 8.

GUN Replication Engine

EXPERIENCES ON GRID SHARED DATA PROGRAMMING 51

6 GUN REPLICATION POLICIES

Whenever a client application searches for a grid object or
requests exclusive or non-exclusive access to an object, the
kernel layer invokes the replication engine which may
decide to replicate the object closer to the node where the
client application is running. The decision of the engine is
based on a set of replication policies defined at system
deployment time. Each policy has an associated parameter
(i.e. number of requests for exclusive or non-exclusive
access to the object, number of times the object has been
written by the client application, number of denied accesses)
and a threshold value. The replication engine evaluates the
parameter based on information provided by the monitoring
layer and if its value reaches the threshold value replication
of grid object is triggered. We define two types of
replication policies: universe policies and node policies. For
universe policies the current value of the policy parameter is
determined using monitoring information collected from all
nodes in the client’s universe and the object replica can be
created on any node in the universe, while for node policies
only monitoring information about the node where the client
application resides is considered and also the replica will be
created on this specific node.

We define four main replication policies based on system
status information. Object replication is triggered either if
all policies hold true or if any of the policies holds true, as
specified at system deployment.
Object Usage Degree Policy: A grid object o is replicated

on a node or in a universe only if it was used (read or
written) by that node/universe at least UT times. This
policy assures that only objects currently used by at least
one grid application are replicated and avoids replicating
objects highly used in the past but not requested
anymore.

Replication Policy 1: Object Usage Degree Policy
Associated Parameter: AcquireTotal + AcquireExclusiveTotal
Condition:

for policyType = NODE_POLICY
targetNode ≠ sourceNode
targetNode.AcquireTotal(oid) +

targetNode.AcquireExclusiveTotal(oid) ≥ UT
targetNode.Count(oid) = 0

for policyType = UNIVERSE_POLICY
targetUniverse ≠ sourceUniverse
targetUniverse.AcquireTotal(oid) +

targetUniverse.AcquireExclusiveTotal(oid) ≥ UT
Comments:

UT - Usage Threshold

Figure 5 Object Usage Degree Policy

Object Update Degree Policy: A grid object o is replicated on a
node or in a universe only if it was written by that
node/universe at least UpT times.

Replication Policy 2: Object Update Degree Policy
Associated Parameter: AcquireExclusiveTotal
Condition:

for policyType = NODE_POLICY
targetNode ≠ sourceNode
targetNode.AcquireExclusiveTotal(oid) ≥ UpT
targetNode.Count(oid) = 0

for policyType = UNIVERSE_POLICY
targetUniverse ≠ sourceUniverse
targetUniverse.AcquireExclusiveTotal(oid) ≥ UpT

Comments:
UpT - Update Threshold

Figure 6 Object Update Policy

Acquire Miss Degree Policy: A grid object o is replicated on a
node or in a universe only if MT requests for the object issued
from that node/universe could not be served within a period of
interest.

Replication Policy 3: Acquire Miss Degree Policy
Associated Parameter: AcquireMiss + AcquireExclusiveMiss
Condition:

for policyType = NODE_POLICY
targetNode ≠ sourceNode
targetNode. AcquireMiss(oid) +

targetNode.AcquireExclusiveMiss(oid) ≥ MT ˄
targetNode.Count(oid) = 0

for policyType = UNIVERSE_POLICY
targetUniverse ≠ sourceUniverse
targetUniverse.AcquireMiss(oid) +

targetUniverse.AcquireExclusiveMiss(oid) ≥ MT
Comments:

MT - Acquire Miss Threshold

Figure 7 Acquire Miss Degree Policy

Object Count Policy: An object o is replicated in a universe only
if the number of copies of the object in the universe does not
exceed CT. On any node in the universe at some point in time
an application may start and this application will need to create
its own objects. This policy assures that the performance of the
new application will not be degraded simply because there was
not enough space for its objects in the universe, and thus
objects were created in another universe.

Replication Policy 4: Object Count Policy
Associated Parameter: ObjectCount
Condition:

for policyType = NODE_POLICY
targetNode ≠ sourceNode
targetNode.Count(oid) ≤ CT

for policyType = UNIVERSE_POLICY
targetUniverse ≠ sourceUniverse
targetUniverse.Count(oid) ≤ CT

Comments:
CT - Count Threshold
UNIVERSE TYPE policies can refer to the total number of
objects in the universe or to the number of objects with a
given OID.
NODE TYPE policies refer only to the total number of
objects on the node.

Figure 8 Object Count Policy

52 D. TUDOR, G. MACARIU, W. SCHREINER AND V. CRETU

7 GUN EXPERIMENTAL RESULTS

Performance of any distributed application can be increased
by improving data locality. We performed several
experiments to show how the proposed policy-based
replication strategy affects data locality. For our
experiments we defined an application scenario whose
performance is greatly influenced by this characteristic and
also stresses the importance of object replication in
distributed applications with aggressive concurrency. The
application makes use of a shared object composed of
multiple parts which are also shared objects. Basically, the
application builds the object from its components using a set
of worker processes distributed across a grid universe. Each
object part is build by several workers in parallel and a
worker builds one or several parts. While working on a part
a worker requires exclusive or non-exclusive access to that
part. The access mode for each part is specified using
another shared object, called BuildingRules. The worker
processes are distributed on the nodes of the universes such
that workers that build common parts run in the same
universe. An extended version of our experiments is
presented in (Macariu, Tudor and Cretu, 2008).

For the experiments we deployed a grid universe
consisting of three universes connected through a wide area
network with an average of five nodes in each universe. The
nodes in a universe communicate over a faster network (e.g.
LAN). As the model proposed in (Tudor, Cretu and
Schreiner, 2008) assumes universes are connected wide area
network, we chose NistNET (Carson and Santay, 2003) for
WAN emulation. The WAN emulator connects the three
universes and sets a packet delay of 30 ms between the
primary nodes of the universes.

Table 1 Tested Replication Policies

Policy P1 No replication
Policy P2 Type: Object Count Policy

“One object per universe”: a replica of the object is
created in each universe where it is requested but in
each universe only one copy of the object will exist
(the replica is created when the object is first
requested).

Policy P3 Type: Object Usage Policy
“One object per node”: a replica of the object is
created on each node where it is requested (the
replica is created when the object is first requested).

Policy P4 Type: Object Update Policy and Object Count
Policy
A replica of the object is created in a universe if the
object has been updated in at least 20% of total
requests issued from each universe (a single copy of
the object might exist in each universe).

Policy P5 Type: Object Update Policy and Object Count
Policy
A replica of the object is created in a universe if the
object has been updated in at least 40% of total
requests issued from each universe (a single copy of
the object might exist in each universe).

Policy P6 Type: Acquire Miss Policy
A replica of the object is created on a node if at least
20% of total request for the object have been denied

to this node.
Policy P7 Type: Acquire Miss Policy

A replica of the object is created on a node if at least
40% of total requests for the object have been
denied to this node.

Policy P8 Type: Object Update Policy
A replica of the object is created on a node if the
object has been updated in at least 20% of total
requests issued from each node.

Policy P9 Type: Object Update Policy
A replica of the object is created on a node if the
object has been updated in at least 40% of total
requests issued from each node.

Table 1 summarizes the tested replication policies. Using

these policies we were able to show how the GUN
replication engine reacts to various request patterns. For
each policy the average acquire time for each type of object
was recorded. Table 2 presents the acquire time for the
BuildingRules object for all nine replication policies. As this
object is accessed by all worker processes, they greatly
benefit if the object is replicated closer to them. From Table
2 it can be seen that the acquire time for all workers is lower
when using replication for all replication policies. This can
also be observed in Figure 9. When object replication is not
employed the acquire time is lower only for worker
processes running in the universe where BuildingRules
object was created.

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B
u
ild

in
g
R

u
le

s
O

b
je

ct
 A

cq
u
ir

e
 ti

m
e
 [m

s]

Worker process number

No replication

One object per universe

One object per node

Figure 9 BuildingRules acquire time

Table 2 Average Acquire time for the BuildingRules object

Policy P1 P2 P3 P4 P5
Acquire time [ms] 2536.93 652.47 761.00 1812.93 2143.40

Policy P6 P7 P8 P9

Acquire time [ms] 1397.33 1867.93 1560.8 1797.13

The influence of the policy type on the acquire time can be

observed in Figure 10 which compares the acquire time for
the Object Update Policy applied at universe level and at
node level. If we focus on similar policies for the two
replication levels (e.g. the pairs P4-P8 and P5-P9) we can
conclude that replicating at node level results in lower
acquire time than when replicating at universe level. By
looking at the differences between the values for acquire
time for the two types of policies, we can say that when the

EXPERIENCES ON GRID SHARED DATA PROGRAMMING 53

number of worker processes in a universe that use the same
object is large, it is better to replicate the object on each
worker node, but if the number of workers is rather small
using a universe level policy can still assure good
performance with a lower storage capacity usage.

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 10 20 30 40 50 60 70 80 90

B
ig

O
bj

ec
t A

cq
ui

re
E

xc
lu

si
ve

 ti
m

e
[m

se
c]

AcquireExclusive operation

P4

P5

P8

P9

Figure 10 Node vs.Universe update

The time when replication takes place has effects on the
time required to acquire an object exclusively or non-
exclusively. In Figure 10 for P8 replication occurs early,
after just 20% of total updates, and thus the acquire time
drops faster than for P9 where replication occurs after 40%
of total updates. Same thing can be observed in Figure 11,
for the Acquire Miss Policy.

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 10 20 30 40 50 60 70 80 90

B
ig

O
bj

ec
t A

cq
ui

re
E

xc
lu

si
ve

 ti
m

e
[m

se
c]

AcquireExclusive operation

P6

P7

P8

P9

Figure 11 Object Update vs. Acquire Miss policies

Table 3 Acquire exclusive success rate

Policy Success rate [%]
No replication 87.88
One object per universe 90.94
One object per node 95.30

Although the acquire success rate for all policies was

approximately equal, we noticed differences in acquire
exclusive success rate. These differences are shown in Table
3. By creating a replica of an object on each node that uses
the object, acquire exclusive success rate can be increased
with approximately 10% compared with the case when a
single copy of the object exists in the grid universe. This is

because through replication the time necessary for writing
the object decreases and as a consequence the time the
object is locked by a client decreases and therefore more
clients can be served over a shorter period of time.

8 CONCLUSION AND FUTURE WORK

In this paper we have presented an overview of the success
criteria for a grid shared data service. We have explored
both traditional system aspects and new aspects that tend to
be overlooked in several system designs and papers. We
have briefly presented some of the most important
achievements in the emerging domain of grid shared data
programming and highlighted some of their drawbacks.

We have introduced a new idea on designing grid shared
data services, based on our observations on past and current
attempts. We have described the basic design strategies in
system separation, replication handling, consistency
specification and mutual exclusion. We have emphasized
the original idea of combining memory consistency
specification with type coherence in an object oriented
model and argued on the importance of thorough system
verification on a wide scale and extreme conditions.

Last but not least, we have introduced the architecture of a
java based prototype called GUN that implements the
abstract model of the proposed system. We have extended
the GUN prototype with a generic replication engine.
Finally we have shown the results of replication related
experiments that show promising results in terms of both
performance as well as quality parameters such as improved
access success rates.

As part of our future work we focus on extending the
GUN experiments in order to highlight different aspects to
those presented in this paper. More important, we aim to
conduct a computer aided performance analysis on our
model using the PRISM probabilistic model checker
(Kwiatkowska, Norman and Parker, 2002).

REFERENCES

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A.L., Kesselman,
C., Meder, S., Nefedova, V., Quesnel, D., Tuecke, S. and
Foster, I. (2001) ‘Secure, Effcient Data Transport and Replica
Management for High-Performance Data-Intensive
Computing’, In Proceedings of the 18th IEEE Symposium on
Mass Storage Systems (MSS 2001), Large Scale Storage in the
Web, page 13, Washington, DC, USA, IEEE Computer
Society.

Antoniu, G., Bougé, L. and Mathieu, J. (2005) ‘JuxMem: An
Adaptive Supportive Platform for Data Sharing on the Grid’,
Scalable Computing: Practice and Experience, Volume 6, Pp.
45-55.

Baduel, L., Baude, F. and Caromel, D. (2002) ‘Efficient, Flexible
and Typed Group Communications for Java’, Joint ACM Java
Grande - ISCOPE 2002 Conference, Seattle, Washington, pp.
28-36, ISBN 1-58113-559-8.

Baker, M. Smith, G. (2001) ‘Jini meets the Grid’, Proceedings of
the International Conference on Parallel Processing
Workshops, pp. 193-198, ISBN: 0-7695-1260-7.

54 D. TUDOR, G. MACARIU, W. SCHREINER AND V. CRETU

Bershad, B., Zekauskas, M., and Sawdon, W. (1993) ‘The Midway
distributed shared memory system’, In Proceedings IEEE
COMPCON Conference, IEEE, pp 528-37.

Bertier, M., Arantes, L. and Sens, P. (2004) ‘Hierarchical token
based mutual exclusion algorithms’, Proceedings of the IEEE
International Symposium on Cluster Computing and the Grid,
ISBN: 0-7803-8430-x, Page 539- 546.

Caron, E. and Desprez, F. (2006) ‘DIET: A Scalable Toolbox to
Build Network Enabled Servers on the Grid’, International
Journal of High Performance Computing Applications, 20(3),
Pp. 335-352.

Carson, M. and Santay, D. (2003) ‘NIST Net: a Linux-based
network emulation tool’, SIGCOMM Computer
Communication Review, 33(3):111–126.

Foster, I. and Kesselman, C. (1998) ‘The Grid: Blueprint for a
New Computing Infrastructure’, Morgan Kaufmann
Publishers.

Foster, I. and Kesselman, C. (1997) ‘Globus: A Metacomputing
Infrastructure Toolkit’, The International Journal of
Supercomputer Applications and High Performance
Computing, 11(2):115-128.

Karasavvas, K., Antonioletti, M., Atkinson, M., Hong, N.,
Sugden, T., Hume, A., Jackson, M., Krause, A., and
Palansuriya, C. (2005) ‘Introduction to OGSA-DAI Services’,
Lecture Notes in Computer Science, pp. 1-12, Volume 3458.

Karonis, N.T., Toonen, B. and Foster, I. (2002) ‘MPICH-G2: A
Grid-Enabled Implementation of the Message Passing
Interface’.

Kwiatkowska, M., Norman, G., and Parker, D. (2002) ‘PRISM:
Probabilistic Symbolic Model Checker’, Proceedings of
TOOLS 2002, volume 2324 of Lecture Notes in Computer
Science, pages 200-204, Springer.

Lamport, L. (1979) ‘How to Make a Multiprocessor Computer that
Correctly Executes Multiprocessor Programs’, IEEE
Transactions Computers, Vol. C-28, No. 9, pp. 690-1

Lee, C., Matsuoka, S., Talia, D., Sussman, A., Mueller, M., Allen,
G. and Saltz, J. (2001) ‘A Grid Programming Primer’, Tech
report, Advanced Programming Models Research Group.

Macariu, G., Tudor, D. and Cretu, V. (2008) ‘Designing a dynamic
replication engine for grid shared data programming’, SYNASC
International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, in print.

Naimi, M., Trehel, M., and Arnold, A. (1996) ‘A log (N)
distributed mutual exclusion algorithm based on path reversal’,
JPDC, 34(1), pp. 1–13.

Osrael, J., Froihofer, L. and Goeschka, K.M. (2006) ‘A Replication
Model for Trading Data Integrity against Availability’, The
12th Int. Symp. on Pacific Rim Dependable Computing
(PRDC'2006), IEEE CS Press.

Seigneur, J.M., Biegel, G. and Damsgaard, C. (2003) ‘P2P with
JXTA-Java pipes’, Proceedings of the 2nd International
Conference on the Principles and Practice of Programming in
Java, Ireland.

Sopena, J., Legond-Aubry, F., Arantes, L. and Sens, P. (2007) ‘A
Composition Approach to Mutual Exclusion Algorithms for
Grid Applications’, Proceedings of the 2007 International
Conference on Parallel Processing (ICPP 2007), Volume 00,
Page: 65, ISBN 0-7695-2933-X.

Tudor, D., Cretu V., and Schreiner, W. (2008), ‘Designing an
architecture for distributed shared data on the grid’,
Proceedings of the International Conference on Algorithms
and Architectures for Parallel Processing, volume 22 of
Lecture Notes in Computer Science, pages 261–264.

