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Time-Course Contingencies in Perceptual Organization and Identification

of Fragmented Object Outlines

Sven Panis and Johan Wagemans
University of Leuven

To study the dynamic interplay between different component processes involved in the identification of
fragmented object outlines, the authors used a discrete-identification paradigm in which the masked
presentation duration of fragmented object outlines was repeatedly increased until correct naming
occurred. Survival analysis was used to investigate whether and when different types of information—
such as contour integration cues (proximity, collinearity, and fragment density), fragment properties (low
vs. high curvature), stimulus complexity (global symmetry, number and saliency of the parts), and
memory factors (natural vs. artifactual)—influenced the timing of identification. The results show that
the importance of these different types of information can change over the time course of object
identification, indicating so-called time-course contingencies. Most important, the straight segments of a
contour played a larger role for complex outlines with high part saliency during early (bottom-up)
grouping processes, whereas the curved segments of object outlines were more important during later
(top-down) matching processes for simpler outlines with lower part saliency. This new insight can
explain why different studies on shape-based object identification have produced seemingly contradic-
tory results.
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tive processing

Visual object categorization or identification at the basic level
(e.g., a dog, chair, car, hammer, etc.) requires the extraction of
shape information from the retinal input, which is informative or
diagnostic for a certain object class. To study the processing of
shape information, researchers have used line-drawings of objects
and object outlines as stimuli.' During the last decades, multiple
approaches have been developed to address the following general
question: Which segments or points of the contours of an object
are most informative or perceptually relevant for their identifica-
tion? Although some have presented a theoretical account based on
information theory (Feldman & Singh, 2005), others have ad-
dressed this question empirically, by letting observers mark salient
points (SPs) on the contours (Attneave, 1954; De Winter & Wage-

Sven Panis and Johan Wagemans, Laboratory of Experimental Psychol-
ogy, University of Leuven, Leuven, Belgium.

This research was supported by University of Leuven Research Council
Grant OT/00/007 and Fund for Scientific Research (FWO Flanders) Grant
G.0189.02N. This study is part of a larger research program with financial
support from University Research Council Grant GOA/2005/03-TBA to
the Laboratory of Experimental Psychology, University of Leuven. The
research was conducted according to the American Psychological Associ-
ation’s ethical standards after approval by the local Ethics Commission.
We thank Joeri De Winter for implementing stimulus construction soft-
ware; Kris Bogaerts for advice with data analysis; and Yuhong Jiang, Hans
Op de Beeck, and Tom Sanocki for helpful comments on previous versions
of this article.

Correspondence concerning this article should be addressed to Johan Wage-
mans, University of Leuven, Laboratory of Experimental Psychology,
Tiensestraat 102, 3000 Leuven, Belgium. E-mail: johan.wagemans@
psy.kuleuven.be

661

mans, 2008b; Norman, Phillips, & Ross, 2001), connecting par-
ticular points with straight lines (Attneave, 1954; De Winter &
Wagemans, 2008a), showing fragments around selected points
(i.e., contour deletion studies; refer to the research performed by
Biederman & Blickle, 1985 [in the context of Blickle’s doctoral
thesis], referenced in Biederman, 1987; Kennedy & Domander,
1985; Panis, De Winter, Vandekerckhove, & Wagemans, 2008), or
just presenting the selected points alone (Panis et al., 2008) and
then measuring identification performance. Typically, the selected
points in these studies have high or low curvature values. Because
these different approaches have generated seemingly contradictory
results, theoretical progress on this issue has been limited.

This study is part of a larger research program on the role of
curvature singularities in shape and object perception (for an
overview, see De Winter & Wagemans, 2004). By comparing the
effect of these different empirical approaches on the identifiability
of a single, large set of object outlines, in a series of studies using
long presentation times, we have found that the same set of points
are not always most informative for identifying a particular object.
Identification diagnosticity of selected points (presented alone or
connected with straight lines) and that of selected fragments con-
taining those points apparently does not depend only on the “local”
curvature value in those points but also on more global properties
of the stimulus.

' We use the term pictures when photographs of objects are used as
stimuli (i.e., surface and contour cues), the term line-drawings when only
the contours are presented (i.e., the exterior or bounding contour as well as
the internal contours or outlines of the parts), and the term outlines when
only the bounding contour is shown.
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For example, just as Kennedy and Domander (1985)—but in
contrast to Biederman and Blickle (1985, referenced by Bied-
erman, 1987)—Panis et al. (2008) found that fragmented object
outlines showing curved fragments are on average less fre-
quently identified correctly compared with (relatively) straight
fragments at each deletion level tested (85%, 80%, 75%, and
70% contour deletion). However, when dividing the object
outlines into three groups, depending on the difference in
identification performance between curved and straight frag-
ments at each deletion level (percent identification was based
on data from 25-26 participants for each combination of frag-
ment type and deletion level), it turned out that these groups
differed on average on a number of objective measures (i.e.,
geometric attributes) that together define the saliency of the
parts (see also Table 1).

In short, outlines that showed an advantage for straight frag-
ments for at least one fragmentation level, and no advantage for the
other levels, had more inflections, stronger extrema, a longer
contour, a larger area, lower compactness values,” more parts,
more fragments or SPs, lower homogeneity values, and as a result,
more salient parts.® In contrast, object outlines that showed an
advantage for curved fragments for at least one fragmentation
level and no advantage for the other levels had the opposite
characteristics (shorter contour, less parts, smaller area, higher
compactness, etc.), resulting in less salient parts (Panis et al.,
2008). Such an influence of factors indexing global outline
complexity or part saliency has also been observed in other
studies that used the same stimulus set. For example, De Winter
and Wagemans (2008a) and De Winter and Wagemans (2006)
found global influences on identifiability of straight-line ver-
sions and on segmentation, respectively (see also De Winter &
Wagemans, 2004). These findings are consistent with psycho-
physical, anatomical, and neurophysiological research on con-
tour integration, which has shown that the local orientation-
specific interactions between neurons in early visual cortical
areas involved in perceiving closure and figure-ground assign-
ment are context-dependent (for a review, see Kovics, 1996).
For example, Fulvio and Singh (2006) found a strong effect of
nonlocal region-based geometric factors on the perceived shape
of illusory contours.

Why are outlines with high part saliency better identified from
straight fragments, whereas outlines with low part saliency
benefit from curved fragments? The purpose of this study is to
test a conceptual framework that provides an answer to this
specific question. This framework addresses another general,
more subtle, but probably more pertinent question: When are
certain segments of the contours of an object more informative
or perceptually relevant for their identification? We first discuss
recent findings from diverse research lines on perceptual orga-
nization and object identification that have contributed to our
knowledge about how shape information is processed and
which variables influence the time course of identification.
From this literature, we extract three hypotheses that are put to
test and used to validate our procedure and analysis methods
(see below). The integration of these three hypotheses into a
single coherent conceptual framework provides a testable ex-
planation of the observations of Panis et al. (2008).

Low Spatial Frequencies, Covert Matching,
and Attentional Top-Down Processing

One of the most obvious variables to influence identification
performance is presentation time (next to extreme contrast, view-
points, etc.). Recent exemplar-based recognition theories assume a
process of evidence accumulation about image-based feature com-
binations leading to object recognition (Gabroi & Lisman, 2003;
Lamberts, 2000; Nosofsky, 1986). However, to reduce the com-
putational burden of matching the perceptual input representation
to all possible object images in memory, it has been suggested that
the system first uses coarse, global information contained in low
spatial frequencies to reduce the number of activated candidate
stored object representations, and to guide the incoming informa-
tion about the local properties or details, which is only available
later when focused attention is directed to it (Bar, 2003; Hochstein
& Ahissar, 2002; Kveraga, Boshyan, & Bar, 2007; Sanocki, 1993;
Schendan & Kutas, 2007). For example, Sugase, Yamane, Ueno,
and Kawano (1999) have shown that object-selective neurons in
the ventral occipito-temporal cortex (VOT) first convey global,
categorical information before they convey local, fine identity
information. Also, the results of a combined functional magnetic
resonance imaging—magnetoencephalography study that used
masked object pictures as stimuli (Bar et al., 2006) suggested that
only the low spatial frequencies in an object image are projected
quickly from V1 to VOT and prefrontal areas where they activate
the long-term memory visual and semantic representations of
candidate objects.

These triggered memory representations generate object-based
expectancies that are then top-down projected to the rest of the
visual cortex (see also Kosslyn et al., 1994; Tomita, Ohbayashi,
Nakahara, Hasegawa, & Miyashita, 1999). Under suboptimal
grouping conditions (short masked presentations and/or fragmen-
tation), recognition signals peak first in prefrontal cortex, well
before their emergence in VOT (Bar et al., 2006; Schendan &
Kutas, 2002). Although this prefrontal signal might be weak (and
undetectable), under optimal grouping conditions and long presen-
tation times, a lot of covert matching processes can be engaged
before an overt response is made during natural viewing conditions
(Schendan & Kutas, 2007). For example, when the system starts
fixating an object after a saccade from another object to recognize
the current object, certain candidate object representations might
already have been ruled out on the basis of (a) scene recognition,
(b) the presence of other identified objects, and (c) the low spatial
frequencies of the current object that have already been processed

2 Compactness is defined as contour length divided by squared area; a
circle is the most compact object, that is, it has the highest compactness
value.

3 When defining outline homogeneity as the number of strong extrema
divided by contour length squared, this measure will increase when there
are more strong extrema and/or when the contour gets shorter. Because the
contours are closed, higher outline homogeneity values (e.g., when
the contour gets shorter for a constant number of strong extrema) will
indicate lower part saliency and vice versa. It is the combination of these
geometric measures (compactness, homogeneity, contour length, area,
number of strong extrema) that defines the part saliency (see De Winter &
Wagemans, 2008b; Hoffman & Singh, 1997).
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Table 1

Geometric Attributes and Concept Identifiability of the 60 Objects

LPS MPS HPS
Contour type n=12 n =24 n =24
Closed contour
No. of strong extrema 22.42 (10.87) 29.75 (12.85) 25.13 (11.54)
Concept 91.43 (16.91) 97.47 (5.39) 93.66 (10.17)
Area 31,380 (10,906) 36,989 (14,000) 40,037 (16,140)
Length 1,202 (373) 1,347 (449) 1,339 (413)
Homogeneity 39.17 (63.57) 30.01 (47.10) 16.77 (13.05)
Compactness 0.017 (0.013) 0.015 (0.014) 0.013 (0.013)
No. of fragments 22.42 (10.87) 29.75 (12.85) 25.125 (11.54)
No. of parts 433 (3.17) 5.167 (2.70) 4917 (2.43)
Fragmented contour
Collinearity MP 10.35 (4.32) 10.04 (3.20) 7.74 (2.79)
Collinearity SP 13.53 (2.52) 13.58 (2.86) 13.34 (3.28)
Gap length MP 194.88 (38.20) 189.56 (38.36) 198.07 (37.94)
Gap length SP 243.83 (65.42) 230.486 (54.20) 248.53 (55.69)
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Note. Average values (and standard deviations) on different continuous measures (rows) in each of three
groups (columns). Stimuli were divided in these three groups based on behavioral criteria from a study with
different fragmentation levels and 5-s presentations (Panis et al., 2008). In the low part salience (LPS) group,
versions with fragments around salient points (SPs) were identified better than versions with fragments around
midpoints (MPs); in the high part salience (HPS) group, there was an MP advantage; and in the medium part
salience (MPS) group, both versions were identified equally well. These groups differed on a number of
geometric attributes (see main text). The measures highlighted in bold do not intercorrelate significantly and are

used as predictors in the present study.

in the periphery during the previous fixation of the other object
(Bar, 2003).

Unlike most traditional recognition models that assume that
feedforward activity causes the activation of the correct object-
node, Gabroi and Lisman (2003) have shown how bidirectional
flow of information in reciprocally connected hierarchical cortical
areas can be organized to produce recognition of objects through
the detection of combinations of features, and how the serial
process of attention can be integrated with the parallel recognition
processes. After the early activation of a set of candidate objects
based on the low spatial frequencies, later bottom-up flow of
detailed information through a narrow window of attention then
leads to the inactivation (exclusion) of candidate object that are
inconsistent with the sampled information, thereby reducing the set
of possible objects. Algorithms for moving attention make use of
top-down connections to compute the relative probability of each
feature, given the set of still-possible objects, which will determine
the subsequent location of attention. Recognition occurs after a
few cycles when the serially sampled information leads to the
inactivation of all but one candidate object (Gabroi & Lisman,
2003). The observation that activity in object-related areas of the
brain increases during the prerecognition period (Eger, Henson,
Driver, & Dolan, 2006) is consistent with a decreasing competition
between candidates. Because time is such an important variable in
object recognition, we used survival analysis to study whether and
when different types of information influence the time course of
identification.

Contour Integration and the Early Dominance of
Configural Properties

With fragmented object outlines, geometric extrapolation accu-
racy can be expected to be determined by the interaction between

local fragment properties (absolute position, length, orientation,
curvature) and Gestalt, configural, or nonaccidental properties
between fragments (relative position or proximity, collinearity and
curvilinearity, symmetry or parallelism, density, etc.). The ob-
served patterns of horizontal connections between orientation-
selective V1 and V2 neurons are consistent with the Gestalt laws
of grouping (proximity, collinearity, and density; see Claessens &
Wagemans, 2005, 2008; Kubovy, Holcombe, & Wagemans, 1998;
Kubovy & van den Berg, 2008; Kubovy & Wagemans, 1995;
Strother & Kubovy, 2006) that have all been shown to influence
contour detection, grouping, completion, and identification of frag-
mented object outlines (Boucart, Delord, & Giersch, 1994; Elder &
Zucker, 1993, 1994; Field, Hayes, & Hess, 1993; Li & Gilbert,
2002; Tversky, Geisler, & Perry, 2004).

Psychophysical, neurophysiological and computational research
on perceptual organization and, more specifically, contour integra-
tion, has shown that competitive grouping of contour segments
occurs at all levels of the hierarchically and retinotopically orga-
nized visual system (Lamote & Wagemans, 1999; Palmer, Brooks,
& Nelson, 2003; Rolls & Deco, 2002), ranging from competition
between short and longer edge orientations in V1 and V2, respec-
tively (Hess & Field, 1999), over competition between larger
curved segments detected in V4 (Pasupathy & Connor, 1999,
2001, 2002), to competition in VOT between different object
features signaling the presence of an object part or a whole object
(e.g., configural relations between a number of segments; Brincat
& Connor, 2004; Wang, Fujita, & Murayama, 2000). This com-
petition is mediated by horizontal connections at each level with
the strongest groupings being fed back to lower levels where they
contextually constrain the ongoing competitive representations of
the input. For example, global convexity relations between contour
segments can override local good continuation and relatability of
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fragments during grouping (Liu, Jacobs, & Basri, 1999). Thus,
visual processing at each level is influenced by bottom-up image-
based geometric characteristics as well as by top-down influences
(Kimchi & Hadad, 2002; Lamme, Super, & Spekreijse, 1998;
Murray, Schrater, & Kersten, 2004).

Two sets of findings are essential in the current context. First,
Singh and Fulvio (2005) found an extrapolation cost for curvature,
that is, straight segments convey more direction information com-
pared with curved segments of the same length. Second, Kimchi
and Bloch (1998) have suggested that when both local properties
and global properties are present in the stimuli and when both can
be used for the task, global properties (the configural relations
between fragments) dominate early completion processes, and not
the local fragment properties such as curvature (see also Schendan
& Kutas, 2007; Sekuler, Palmer, & Flynn, 1994; Spillman, 1999).
This early dominance of configural properties during grouping is
the first hypothesis that we extract from the literature.*

Visual Complexity and Basic-Level Categories

A shape variable that is often neglected in research on object
recognition is visual complexity (but see Gerlach, Law, & Paulson,
2004, 2006; Liu, Kersten, & Knill, 1999). According to Donderi
(2006), the visual complexity of a single form can be measured in
two ways: either with or without reference to other forms. Because
shapes with a low complexity as such (i.e., without reference to
other forms) have a high a priori probability of occurrence and vice
versa (Donderi, 2006), we cannot only expect that fragmented
outlines of low complex shapes are a priori easier to group
(bottom-up) but also that they will activate a larger number of
(previously experienced) candidate objects early in processing
compared with high complex shapes, and that later matching and
decisional processes will therefore last longer, and vice versa. In
other words, if a simple fragmented outline with low part salience
(LPS)—and therefore weak convexity relations—is not identified,
the likely cause is a matching problem; if a complex fragmented
outline with high part salience (HPS)—and strong convexity rela-
tions—is not identified, the likely cause is a grouping problem.
This influence of complexity as such (independent from object
category; see below) on grouping and matching is the second
hypothesis that we extract from the literature.

The second way in which complexity can be measured is with
reference to other forms (Donderi, 2006). Because natural objects
are more structurally similar than artifacts (Humphreys & Forde,
2001; Humphreys, Riddoch, & Quinlan, 1988), they can be said to
have a lower complexity with reference to other forms than arti-
facts (although without reference to other forms, the complexity of
animals may be higher than that of artifacts). Just as with com-
plexity defined without reference to other forms, Gerlach et al.
(2002, 2004, 2006) have suggested that the structural similarity
between stored exemplars of different categories (i.e., complexity
defined with reference to other forms) affects the matching and the
grouping processes that are required to access a stored object shape
representation in a different way (see also Op de Beeck, Béatse,
Wagemans, Sunaert, & Van Hecke, 2000; Op de Beeck & Wage-
mans, 2001). High structural similarity (or low complexity with
reference to other forms) between stored exemplars is advanta-
geous for integrating local object features into whole object rep-
resentations because the global and local features of these exem-

plars are more stable and more highly correlated than the features
of exemplars from categories with low structural similarity. At the
same time, however, high structural similarity is harmful for
matching operations because there will be more competition be-
tween activated integral units delaying object selection or covert
identification.

As a result, Gerlach et al. (2002, 2004, 2006) have suggested
that under optimal grouping conditions (i.e., with complete line-
drawings and unlimited exposure), high complex objects (with low
structural similarity; e.g., artifactual objects) are named faster and
more accurately because there is less competition at the level
where activated object representations compete for selection
(a matching advantage), compared with low complex objects (with
high structural similarity; e.g., natural objects; see Figure 1a). In
contrast, and most importantly, under suboptimal grouping condi-
tions (i.e., fragmentation and/or limited exposure duration), low
complex objects (e.g., animals) can be named faster and more
accurately (see Figure 1b). This happens because (a) under such
conditions task performance tends to depend on global shape
information carried by low spatial frequencies and (b) outlines and
silhouettes of natural objects are better identifiable than those of
artifacts because the global shape of natural objects might contain
more salient features or less 2D/3D ambiguity (Lloyd-Jones &
Luckhurst, 2002; Wagemans et al., 2008), whereas artifacts are
believed to rely more on a part-based structural description
(Riddoch & Humphreys, 2004). Thus, because difficult grouping
and segmentation processes can be influenced by early feedback
information from activated object representations (see also Grill-
Spector & Kanwisher, 2005; Ullman, 2007), the global shape
characteristics of activated natural object representations produce a
grouping advantage under suboptimal grouping conditions, which
can outweigh their disadvantage during matching under optimal
conditions (Figure 1b vs. 1a; Gerlach et al., 2002, 2004, 2006). An
identification advantage for natural objects under suboptimal
grouping conditions (because of early feedback), independent from
complexity as such, is the third hypothesis that we extract from the
literature.

Interaction Between Fragment Curvature, Part Saliency,
and Time

The above review of recent findings can now be integrated into
a general conceptual framework that suggests a testable answer to
the question posed previously: Why are outlines with high part
saliency better identified from straight fragments, whereas outlines
with low part saliency benefit from curved fragments? The answer
is based on an interaction between part saliency, fragment curva-
ture, and time, in the following way.

First, we hypothesize that outlines that are high complex as such
(i.e., with HPS) benefit from straight fragments during early
grouping processes because straight segments contain more direc-
tion information; therefore, the configural relations between them
can “survive” larger spatial distances and are less influenced by
increasing shape complexity (see Figure 1d, “less slow/bad group-

4 Note that configural properties can range from local (e.g., proximity,
collinearity; i.e., contour integration cues) to global (e.g., convexity rela-
tions, global symmetry; i.e., shape integration cues).



IDENTIFICATION HAZARD OF FRAGMENTED OBJECT OUTLINES 665

Grouping: Matching:
a) under optimal grouping conditions identification of complete contours of
low complex shapes: [fast/good] slow/bad
can be slower/less accurate than for
high complex shapes: [fast/good] fast/good
b) under suboptimal grouping conditions identification of fragmented contours of
low complex shapes: fast/good [slow/bad]
can be faster/more accurate than for
high complex shapes: slow/bad [fast/good]

¢) under suboptimal grouping conditions identification of curved fragments of

low complex shapes: [fast/good] less slow/bad

can be faster/more accurate than for

high complex shapes: very slow/bad [fast/good]

d) under suboptimal grouping conditions identification of straight fragments of

low complex shapes: [fast/good] very slow/bad

can be slower/less accurate than for

high complex shapes: less slow/bad [fast/good]

Figure 1. Schema of the effect of complexity defined without or with
reference to other forms on grouping and matching processes (a and b;
Donderi, 2006; Gerlach et al., 2002, 2004, 2006), and our hypotheses
concerning the interaction between part saliency (outline complexity as
such) and fragment curvature (c and d). (a) With complete line-drawings of
objects, grouping is always good, and therefore this process is not so
important in understanding performance differences (always indicated by
the square brackets). Naming objects that are low complex as such or in
relation to other forms (e.g., natural objects) can be slower or less accurate
than naming objects that are more complex as such or in relation to other
forms (e.g., artifactual objects) because of a matching disadvantage (“slow/
bad”) for low complex objects. (b) With fragmented line-drawings of
objects, naming objects that are low complex as such or in relation to other
forms can be faster and more accurate than naming high complex because
of a grouping advantage (“fast/good”) for low complex objects. (c) With
curved fragments, outlines that are high complex as such will show a
grouping disadvantage (“very slow/bad”), and objects that are low complex
as such will show a matching advantage (“less slow/bad”). (d) With
straight fragments, outlines that are high complex as such will show a
grouping advantage (“less slow/bad”), and objects that are low complex as
such will show a matching disadvantage (“very slow/bad”).

ing”). Because correct matching is contingent on a sufficiently
correct grouping process, the coarse global shape and location of
the grouped fragments will rule out many candidate object repre-
sentations because the parts are highly salient even with low
resolution. In contrast, because of their extrapolation cost, group-
ing of curved fragments of a HPS outline is difficult, and many
spurious groupings might be in competition (see Figure lc, “very
slow/bad grouping”). Therefore, it will take a long time and
increased resolution at different locations (more covert and overt
movements of attention) before the correct parts become salient.

Second, outlines that are low complex as such (i.e., with LPS)
benefit from curved fragments especially during matching or co-
vert object selection because these curved fragments depict crucial
diagnostic information about the exact shape and location of
part-boundaries and about the end-points of parts (see Figure 1c,

“less slow/bad matching”). The low spatial frequencies of the
easily grouped fragments will not be diagnostic enough to signal a
certain category, and few candidates will be ruled out early.
Detailed information about local fragment properties is needed to
progressively rule out all but one of the activated candidate object
representations by comparing different parts of the image with the
remaining candidate representations, either through covert spatial
attention shifts or overt eye-movements. Straight fragments pro-
vide little diagnostic information during this top-down attention-
ally guided part-decomposition process (see Figure 1d, “very slow/
bad matching”).

In other words, we predict that the disadvantage of fragmenta-
tion for HPS outlines during grouping (see Figure 1b) can be
ameliorated by presenting straight fragments or worsened by pre-
senting curved fragments. In contrast, the disadvantage of frag-
mented LPS outlines during matching can be ameliorated by
presenting curved fragments or worsened by presenting straight
fragments (compare Figures 1b, 1c, and 1d).

Third, Panis et al. (2008) observed that most of the objects
with medium part salience (MPS) were perfectly identifiable
from both fragment types using long presentation durations. We
hypothesize that these MPS outlines did not show any measur-
able advantage for curved or straight fragments because any
advantage for straight fragments during grouping or for curved
fragments during matching is simply washed out by the use of
a long presentation time.

The Current Study

To test (a) the prediction that configural properties (e.g., sym-
metry, collinearity) enjoy an early processing advantage, (b) the
prediction by Donderi (2006) that complexity as such influences
grouping and matching processes differently, (c) the prediction by
Gerlach et al. (2004, 2006) of an identification advantage for
natural compared with artifactual categories for fragmented object
outlines, and (d) our hypotheses concerning the influence of the
interaction between part saliency and fragment curvature on the
duration of the grouping and matching processes, we employed a
discrete-identification paradigm, in which we systematically in-
crease the masked presentation duration of fragmented object
outlines on each of their repeated presentations until identification
by naming occurs (see Stark & McClelland, 2000, for a related
paradigm). This allows us to present our fragmented object out-
lines short enough to disrupt grouping, and long enough to allow
a matching success for a reasonable number of objects, and to
apply survival analysis to test whether and when these factors exert
their effects across repetitions.

By measuring the information in the stimuli, we thus could
perform a microgenetic analysis of the development over time of
the effects of contour integration cues (density of fragments,
proximity and collinearity between fragments), fragment proper-
ties (their curvature), stimulus complexity (global symmetry, part
saliency, and the number of parts), and memory factors (the
structural similarity between stored exemplars from natural and
artifactual object categories) on grouping and matching processes
leading to identification.

Outlines (no internal contours) are used because this avoids
(a) differences in occlusion cues during preattentive grouping
of their fragmented versions, as well as (b) the presence of
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internal features that could differ in identification diagnosticity
between both types of fragmentation used in this study (e.g., the
pedal of a bicycle), and to control (c) the position and extent of
deletions and (d) the similarity of the distribution of both sets of
resulting fragments more systematically than done by Bieder-
man and Blickle (1985, referenced in Biederman, 1987) and
Kennedy and Domander (1985). Our fragmentation procedure
resulted in gap lengths that were not constant across and within
fragmented versions. Thus, these stimuli will initiate grouping
processes at different levels of the visual system, from simple
local filling-in to the global integration of parts in a structural
description (Lamote & Wagemans, 1999; see also Kourtzi,
Tolias, Altmann, Augath, & Logothetis, 2003, for related neu-
rophysiological evidence).

Two global configural properties (i.e., convexity relations and
global symmetry) and the number of parts (Biederman, 1987) can
be used to index global shape complexity (as such) for the frag-
mented object outlines in this study. First, the presence of global
symmetry is advantageous for grouping processes (e.g., Locher &
Wagemans, 1993; Nucci & Wagemans, 2007; Wagemans, 1992,
1993; Wagemans, Van Gool, Swinnen, & Van Horebeek, 1993;
for reviews, see Wagemans, 1995, 1997, 1999), and its detec-
tion might also limit the number of activated candidate objects.
Second, convexity relations become more pronounced when
part saliency increases. Group membership as defined by Panis
et al. (2008) was used to index overall part saliency (i.e., LPS,
MPS, and HPS outlines). We realize the ad-hoc and functional
nature of the group assignments to measure part saliency.
However, using only one continuous measure might not capture
all the structural differences that might be important for ob-
serving the effect of fragment curvature (at shorter presentation
times). It is the combination of the measures in Table 1 (i.e.,
contour length, area, number of strong extrema, outline homo-
geneity, compactness), some of which intercorrelate, that de-
fines the overall part saliency. Also, a categorical predictor
indexing part saliency with three levels (LPS, MPS, HPS)
always improved the fit of our models most strongly (even
when one of the other measures was included), is easier to
interpret, and will keep the final model relatively simple. Any-
way, to avoid a possible selection bias, we selected only object
outlines that showed no strong differences in identification
performance between curved and straight fragments when pre-
sented for 5 s to ensure that both fragmented versions were
matched for nameability and familiarity, and that the differen-
tial effects of fragment curvature in this study are resulting only
from the short and masked presentations that we used here.

As we discuss later, the results of our analysis are consistent
with the concept of a time-course contingency (TCC), first defined
by Sanocki (1993, p. 878) as “the modification of later phases of
object recognition contingent upon stimulus information extracted
earlier in processing.” In fact, our conceptual framework is con-
sistent with the existence of many different and concurrent time-
course contingencies during the process of visual object identifi-
cation because the efficiency of a later global-to-local matching
process is contingent upon the information extracted during an
earlier grouping process. We discuss this in more detail in the
Discussion section.

Method

Participants

Sixty-four 1st-year psychology students at the University of
Leuven (Leuven, Belgium) participated in this experiment as a
mandatory component of their curriculum. They were all naive
regarding the purpose of the experiment, unfamiliar with the
stimuli, and had normal or corrected-to-normal vision. Completing
the experiment took around 45 min.

Stimuli

The stimulus set consisted of outlines derived from the 260
line-drawings of everyday objects in Snodgrass and Vanderwart
(1980), as explained by Wagemans et al. (2008; see also De Winter
& Wagemans, 2004; Wagemans, Notebaert & Boucart, 1998).
Silhouettes were made by filling-in the interior surfaces of the
line-drawings in black. Outlines were subsequently extracted au-
tomatically and spline-fitted to obtain smooth curvature values at
all points along the contour.

Some outlines were excluded for the following reasons: (a)
outlines that were too difficult to identify with a long presentation
time, (b) outlines that were too simple (i.e., squares or circles)
were excluded because of numerous possible valid namings, and
(c) some outlines had some small anomalies in the outline shape
(because of the spline-fitting procedure), and they were excluded
because these anomalies might affect the fragmented versions
differentially and, hence, our major results of interest. These
selection criteria led to a set of 186 outlines (out of 260), with an
average identification rate of 82.8% (SD = 23.1%).

Panis et al. (2008) fragmented these object outlines in two ways
on the basis of the location of empirically defined SPs that were
marked by an independent sample of observers on the complete
outlines in an extensive independent study by De Winter and
Wagemans (2008b). De Winter and Wagemans observed that
participants usually marked points with high curvature. Frag-
mented versions were created by placing fragments around the SPs
or around the midpoints (MPs)—the points halfway in-between
two SPs, with distance measured on the original outline as the
Euclidean distance in pixels from point to point. Because salient
contour points typically have large (positive or negative) curvature
values, placing fragments around SPs creates curved fragments,
whereas placing fragments around MPs (i.e., the contour points
in-between two SPs) creates relatively straight fragments.

Four fragmentation levels were used by Panis et al. (2008):
15%, 20%, 25%, or 30% of the total contour was shown. The
requested percentage was approximated in both conditions by
starting from the relevant set of “target” points (i.e., SPs or MPs)
and letting the fragments grow until each of both parts of a
fragment occupied the requested percentage of the distance on the
contour between the target point and the neighboring MPs (in case
of SP target points) or SPs (in case of MP target points). Thus,
each fragment contained an SP or an MP but was not necessarily
divided exactly in half by the target point because the distance
between the target point and each of both the neighboring MPs or
SPs, respectively, was not necessarily the same. Using this proce-
dure, the same number and equally evenly distributed fragments
are present in each fragmented version of an object outline.
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For the current study, we used two additional stimulus selec-
tion criteria, on the basis of the naming data of 25-26 partici-
pants in each fragmentation condition (Panis et al., 2008). First,
objects should be well identifiable (>20%) in both fragmentation
conditions (SP and MP) when presented for 5 s. Second, we
selected only the fragmentation level for which the highest number
of objects (N = 60) showed no strong difference in percent
identification between SP and MP versions when presented for 5 s
(ISP% — MP%| < 10%). This was the 20% fragmentation level
(i.e., 80% contour deleted). These 60 selected object outlines have
an average identification rate of 86% when MP fragments are
visible (SD = 21%; MIN = 24%; MAX = 100%) and of 85% for
SP fragments (SD = 21%; MIN = 24%; MAX = 100%). Their
average values on the continuous measures are presented in Table 1
(see the Appendix for measurement details), as a function of group
membership (LPS, MPS, HPS). These stimuli and the data are
available at http://ppw.kuleuven.be/labexppsy/johanw/wag_
2D.htm.

Procedure

The experiment was performed in a computer class room with
33 PCs separated by about 1 m. The experiment consisted of three
sessions with a maximum number of 25 participants per session.
We presented all the stimuli centered on a 17-in. (43.18-cm)
cathode ray tube (CRT) display at a viewing distance of maximally
0.7 m (viewing distance was not strictly controlled). The display
resolution was set to 1024 X 768 pixels. The refresh rate was 60
Hz. Stimuli were all contained within a box of 640 X 480 pixels
(not drawn as such), resulting in a viewing angle of about 16° X
12°. E-Prime (www.pstnet.com) was used to deliver presentation
times at millisecond accuracy.

Trials were self-paced and started with a fixation cross for 500
ms, followed by an object outline that was presented first for 80 ms
in one of both fragmentation conditions and then replaced by a
mask. Participants were asked to identify each stimulus and sub-
sequently input its name via the computer keyboard and click on
an “OK” button with the mouse when finished. When the response
was scored as correct (see below), a new object outline was shown
for 80 ms in the next trial. When the answer was wrong, the same
stimulus was shown again for 93 ms (and possibly again for 106,
120, 133, 146, 160, 173, 186, and 200 ms) in the next trial,
resulting in a minimum of 60 trials and a maximum of 600 trials
per participant. Participants were given feedback about the cor-
rectness of their answer and were informed when the first presen-
tation of a new object would appear. Half of the participants saw
all 60 stimuli in the SP condition; the other 32 participants tried to
identify MP fragmented versions. The presentation order of the
objects was randomized for each participant separately, and the
experimenter secured silence throughout the session until the last
participant was finished. The experimenter informed the partici-
pants at the beginning of the sessions that identifying the objects
would be difficult and perhaps even impossible for some stimuli.
Participants received practice trials with a separate set of 10
fragmented object outlines before the experiment. These practice
stimuli were shown first for 500 ms, then for 200, 150, 100, and
finally for 80 ms to familiarize the participants with the short
presentation durations. Before the practice and experimental trials,
the names of the objects (10 and 60, respectively) were presented

in a random order for 2 s each, to minimize naming variation for
online automatic scoring purposes.

Scoring

A response was counted as correct when either the same name
was given as the one listed by Snodgrass and Vanderwart (1980)
or when it was a synonym or dialect name that clearly indicated the
same concept. This was done because we used Flemish partici-
pants in all experiments, and Flemish has many more synonyms
and dialect names than English or Dutch (e.g., Severens, Van
Lommel, Ratinckx, & Hartsuiker, 2005). We also approved names
referring to related objects if these were not visually distinguish-
able in our outlines. For example, we approved “aircraft” for
“airplane,” “cradle” for “baby carriage,” “mouth” for “lips,” “rat”
for “mouse,” “nutcracker” for “pliers,” and so forth; however, we
also approved “dromedary” for “camel” because many people do
not know the difference. However, slightly related names that were
referring to different basic-level categories were not allowed when
they were visually distinguishable in our contour stimuli (e.g.,
“seat” for “bed,” “bee” for “beetle,” “chicken” for “bird,” “shoe”
for “boot,” etc.). Scoring was done automatically and online for all
the names that were already contained in our database from pre-
vious studies (see De Winter & Wagemans, 2004; Wagemans et
al., 2008). After the experiment, all collected answers were
checked manually by applying the same criteria (in case of doubt,
the authors decided together) because sometimes good answers
were not detected automatically (mostly because of typing errors).
For each combination of stimulus and participant, we recorded the
lowest trial number (1-10) that allowed correct naming.

9 < 99

Survival Analysis

Considering correct identification as the target event, the 120
fragmented contours as the experimental units, the participants as
repeated identifiability measures on the experimental units, and
each trial (or, more accurately, the time interval between subse-
quent repetitions) as a discrete time unit, we can describe and
model the occurrence and timing of events using survival analysis
(Allison, 1995; Collett, 1994; Singer & Willett, 2003). Because
survival analysis is a technique that is not frequently used in the
psychological literature, we present a short description of its main
features that are required to interpret the figures and tables. Further
details can be found in the Appendix. Readers familiar with
(discrete-time) survival analysis can skip this section.

The hallmark of survival data is that for some cases (in this
context, a combination of an experimental unit and a participant),
the target event will not occur during data collection (these are
called censored observations). In other words, some fragmented
outlines will never be identified correctly by some participants
during data collection. In contrast to statistics such as averages and
standard deviations, survival analysis deals evenhandedly with
both observed and censored event times. Because of data collec-
tion constraints (the use of masking), we are forced to use intervals
(trials) to record the passage of time, and we therefore obtain
discrete time data that are interval censored (i.e., we only know
that identification occurred somewhere during a trial).

The sample distribution of event occurrence is summarized by
the life table, which includes information for each of the time
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intervals on the number of cases that entered the interval, experi-
enced the target event during the interval, and were censored at the
end of the interval. Two statistical summaries of this information
are the hazard function and the survivor function, as explained
next.

Discrete-time hazard probability, (), is defined in the current
analysis as the conditional probability that a Stimulus i will be
identified in Trial j given that it has not been identified in earlier
trials. The set of discrete-time hazard probabilities expressed as a
function of time—labeled A(r;)—is known as the population
discrete-time hazard function. Whereas the hazard function as-
sesses the unique risk of event occurrence associated with each
trial, the survivor function cumulates the trial-by-trial risks of
event nonoccurrence to assess the probability that a randomly
selected stimulus will “survive” Trial j, in this study meaning that
it will not be identified correctly. Because hazard is conditional
and only describes the risk of event occurrence among those
stimuli at risk (i.e., the stimuli that are eligible to experience the
event in a trial), survivor and hazard functions need to be examined
together to identify the trial in which most identification events
occurred.

To explain why identification occurs at different trials for dif-
ferent types of fragmented object outlines, researchers fit discrete-
time hazard models to the data. Because hazard is bounded be-
tween 0 and 1, a transformation is applied before generalized linear
models are fitted. We applied the nonlinear and asymmetric com-
plementary log—log link function {cloglog hazard = In[—In(1 —
hazard)]} because this is most attractive when the underlying
metric of time is truly continuous but only discrete interval-
censored data are available because of the type of measurement
(Singer & Willett, 2003).

The population discrete-time hazard model can be written as
follows: cloglog h(t;) = [o,Dy; + a,Dy;; + ... + oDyl +
[BiXy; + BoXsy; + ... + BpXp,l, in which DD, are dichoto-
mous time indicators whose values index the 10 discrete time
intervals or trials in this study. The first set of terms within
brackets, the alpha parameters multiplied by their respective time
indicators, act as multiple intercepts, one for each of the 10 trials
or time periods. As a group, these parameters represent the base-
line cloglog hazard function, the value of cloglog hazard when all
substantive P predictors are 0.° The second set of terms, the beta
parameters multiplied by their respective predictors, represent the
(vertical) shift in the baseline cloglog hazard function correspond-
ing to a unit difference in the associated predictors. Each beta
parameter therefore quantifies the (vertical) difference in the pop-
ulation value of cloglog hazard per unit difference in the predictor
while statistically controlling for the effects of all other predictors
in the model. For each dichotomous and polytomous predictor,
antilogging its beta parameter yields a hazard ratio, the ratio of the
hazard in two groups—the one for which the predictor value is 1
and the one for which it is 0 (the baseline). For each continuous
predictor, antilogging its beta parameter yields the hazard ratio of
two groups of stimuli that differ only by one unit difference on the
continuous predictor.

Data Analysis

There are 3,840 cases in our study (64 participants X 60
stimuli), and our “Case X Trial” data set contains 25,095 rows or

data points. To build a discrete-time hazard model for our discrete
time-to-event data, we selected nine predictors from a larger set of
possible measures because they allow answering our different
research questions.

The dichotomous predictors included global symmetry (no = 0
or the baseline, yes = 1), fragment type (SP = 0, MP = 1), and
object category (natural = 0, artifactual = 1). We modeled the
polytomous predictor part saliency (LPS, MPS, HPS) using two
dichotomous indicator variables (LPS, HPS) with MPS serving as
the baseline level. The continuous predictors based on the closed
contour included a measure of the identifiability of the closed
contour (concept identifiability), number of parts, and a measure of
compactness (higher values indicate more circle-like outlines).
Because the distribution of the fragments was similar for both
fragmented versions of an object outline, compactness was used to
measure fragment density, which is inversely related to it. The
predictor concept identifiability served mainly to control for se-
mantic and lexical access. The continuous predictors that were
calculated on the fragmented versions themselves were a measure
of gap length (inversely related to proximity) and a measure of
collinearity. Details on stimulus measurements, variable selection
and transformation, and model building and fitting can be found in
the Appendix.

Results

Descriptive Statistics

Correct identification of a fragmented picture by an observer
occurred 2,549 times out of a possible 3,840 times (34% not
identified). In Figure 2, we show the number of objects (max N =
60) identified by each participant (MIN = 21; MAX = 51; M =
38.42; STD = 6.31) and the number of participants (max N = 64)
who identified each stimulus correctly (MIN = 4; MAX = 64; M =
40.98; STD = 15.64). Although each participant could identify
between 21 and 51 objects, some stimuli were almost never iden-
tified correctly, and others were always identified correctly some-
where during the course of the experiment. Thus, the event of
identification was determined more strongly by stimulus than by
participant properties.

Table 2 shows the life table for both fragmentation types,
summarizing the distribution of event occurrence in our sample.
The last two columns of each life table display the estimated
sample hazard and survivor functions, plotted in Figures 3a and 3b,
respectively. Inspection of the overall shape of both estimated
hazard functions reveals that hazard was low during the first trial
when stimuli were presented for 80 ms, and increased during the
second and third trial. Between the third and seventh trial hazard
stayed at its maximum, abruptly dropped to a low value during
Trial 8, and increased again during the last two trials. Although
eye-movements were not measured, we believe that they caused
the unexpected dip in hazard during the eighth presentation, be-

5 The precise interpretation of the alphas requires identification of the
baseline group, that is, those stimuli for which every substantive predictor
in the model takes on the value 0. However, the baseline hazard function
does not need to refer to an actual (or even plausible) group of stimuli.
Because 0 is not a valid value for the continuous predictors in our models,
the alphas should never be interpreted.
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Figure 2. Distribution of (a) the number of objects that were identified
correctly by each participant and of (b) the number of participants who
identified each object correctly.

cause the conditional nature of hazard and its low value in Trial 8
suggests that not much more information was extracted during the
eighth trial (when the stimuli were presented for 173 ms) com-
pared with the seventh trial (when stimuli were presented for 160
ms). Given that saccade latencies typically fall within the range of
160-250 ms, it is plausible that participants tended to start making
eye-movements before stimulus offset in Trial 8 because of the
limited information in the stimuli. Indeed, the dip occurred for
both groups of participants (or fragment types), suggesting that it
is a consequence of the nature of visual processing itself, whereas
the rise in hazard during the two final trials discards an explanation
in terms of a floor-effect.

Most importantly, the hazard probability of identifying MP
fragments was higher compared with SP fragments during the first
trial, and this identification advantage for MP fragments decreased
with repetitions. This overall MP advantage is consistent with the
overall better performance with MP fragments compared with SP
fragments with long presentation times (Panis et al., 2008). From
Figure 3 we can deduce that for both fragment types, most iden-
tification events occurred at the third presentation when hazard and
survivor probabilities are both high (see Table 2). However, to
study the effects of fragment type while controlling for the effects
of the other variables of interest, we need to fit discrete-time
hazard models.

Discrete-Time Hazard Models

To address the question of why identification occurred at dif-
ferent times for different fragmented object outlines, varying in
complexity, object category, fragment type, and so forth, we fitted
discrete hazard models to the data. Modeling allows us to examine
the statistical significance of the effect of each predictor while
controlling for the effects of other factors in the model. Note that
our goal was not to develop the best-fitting model with the smallest
possible number of parameters but to use modeling as a tool to get
answers to our questions and to test our guiding hypotheses in the
most appropriate statistical way. We come back to this in the
Discussion section.

The Main-Effects-Only Model

The first informative model fitted was the main-effects-only
model, which was obtained as follows. First, the main effects of all
predictors were included together, except that of fragment type.°

The main effect with the largest p value was deleted, and the
reduced model was refitted. This process was repeated until each
effect was significant,” resulting in the main-effects-only model
that included the nonlinear main effect of time (D80-D200) and
the main effects of global symmetry, HPS, LPS, artifactual, con-
cept, and collinearity. Table 3 shows the 16 parameter estimates of
the main-effects-only model, as well as their standard errors, z
values, and p values. In Figure 4, the fitted cloglog hazard func-
tions and the fitted hazard functions are shown for hypothetical
groups of natural stimuli (a) with an average values for collinear-
ity, (b) with perfect recognition from the closed contour (concept
identifiability = 100), but (c) differing in the possible values for
three categorical predictors of interest (LPS, MPS, and global
symmetry).®

Several notes should be made at this point. First, because this
main-effects-only model adheres to the assumptions of proportion-
ality (effects do not vary over time), linearity (no nonlinear ef-
fects), and additivity (no interactions) for all predictors, the fitted
cloglog hazard functions have the same shape, the effect of the
continuous predictors concept and collinearity do not depend on
the position of the unit difference along their scales (i.e., their
effects are linear), and the effect of global symmetry is the same
for MPS and LPS shapes, that is, a vertical upward shift of .4091
cloglog units (Parameter 11), respectively. Second, whereas the
fitted cloglog hazard functions run parallel, the fitted hazard func-
tions do not. The nonlinearity of the gaps between the hazard
functions is a consequence of transforming the fitted cloglog
hazard values back to fitted (raw) hazard functions using the
inverse of the asymmetric cloglog link.” Thus, a varying gap
between fitted hazard functions does not imply a statistical inter-
action (i.e., between time and a predictor); on the contrary, if the
size of the gap between fitted hazard functions is constant over
time, the effect of the predictor must vary over time (Singer &
Willett, 2003). Finally, selecting other values for collinearity and
concept will simply shift the fitted cloglog hazard functions up or
down (e.g., a decrease of 10 concept units [from 100 to 90] will

¢ We first wanted to model the effects of the other predictors uncon-
founded by the effect of fragment type. The latter predictor was only
included at a later stage of the model building process. When added to the
main-effects model, the effect of fragment type was not significant (p = .58).

7 As recommended by Singer and Willett (2003), we used a liberal
criterion for intermediate models (i.e., critical p value of .12).

8 Fitted cloglog hazard values can be calculated by summing appropriate
multiples of the parameter estimates with valid predictor values. The fitted
cloglog hazard functions can be transformed back to fitted hazard func-
tions by the inverse of the cloglog link {hazard = 1 — exp[—exp(cloglog
hazard)]}. For example, the predicted cloglog hazard value at Trial 1
(D80 = 1, others are 0) for asymmetrical (symmetry = 0), natural (cate-
gory = 0), and MPS (LPS = 0, HPS = 0) fragmented outlines with
average collinearity (value 11.35) and perfect identifiability from the
closed contour (concept = 100) equals — 6.1176 (Parameter 1) X D80 +
.0407 (Parameter 15) X 100 — .0302 (Parameter 16) X 11.35 = —2.3898
(see Figure 4a, black diamond in Trial 1). The fitted hazard value equals 1 —
exp[—exp(—2.3898)] = .0876 (see Figure 4b, black diamond in Trial 1).

? The effect of the asymmetry of the cloglog link can be observed for the
effect of global symmetry in Figure 4: The same cloglog hazard value
(.4091, Parameter 11) translates to a low hazard value when overall hazard
is low and to a high hazard value when overall hazard is high.
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Table 2
The Life Table for Both Fragmented Versions

PANIS AND WAGEMANS

Trial No. begin No. identified No. censored Hazard Survival probability
MP
1 1,920 156 0 0.08125 0.91875
2 1,764 199 0 0.11281 0.81510
3 1,565 205 0 0.13099 0.70833
4 1,360 172 0 0.12647 0.61875
5 1,188 150 0 0.12626 0.54063
6 1,038 123 0 0.11850 0.47656
7 915 123 0 0.13443 0.41250
8 792 48 0 0.06061 0.38750
9 744 61 0 0.08199 0.35573
10 683 45 638 0.06589 0.33229
11,969 1,282
Sp
1 1,920 79 0 0.04115 0.95885
2 1,841 158 0 0.08582 0.87656
3 1,683 179 0 0.10636 0.78333
4 1,504 164 0 0.10904 0.69792
5 1,340 153 0 0.11418 0.61823
6 1,187 134 0 0.11289 0.54844
7 1,053 137 0 0.13010 0.47708
8 916 36 0 0.03930 0.45833
9 880 78 0 0.08864 0.41771
10 802 59 743 0.07357 0.38698
13,126 1,177
Note. For both the midpoint (MP) and salient point (SP) versions, the following items are included: trial (Trial;

column 1), the risk set or the number of cases entering the trial (No. begin; column 2), the number of events
during the trial (No. identified; column 3), and the number of censored observations at the end of the trial (No.
censored; column 4). Estimated hazard in each trial (column 5) equals the number of events divided by the risk
set for that trial. Estimated survivor probabilities are presented in column 6. A correct identification occurred in
1,282 and 1,177 trials of the 11,969 and 13,126 trials containing MP and SP versions, respectively.

shift all the fitted cloglog hazard functions down with .0407
[Parameter 15] X 10 = .407 cloglog hazard units). We simply
chose these specific values to generate general predictions that can
be compared with the results of other studies (e.g., Biederman &
Blickle, 1985, referenced in Biederman, 1987; Kennedy &
Domander, 1985).

According to the main-effects-only model, global symmetry has
the same positive effect (.4091 in cloglog hazard units, Parameter
11) in every trial on grouping and/or matching processes. Antilog-
ging the parameter estimate (e°*°°" = 1.51) shows that the fitted
hazard of identifying a stimulus with symmetry is estimated to be
1.51 times that of identifying a stimulus without symmetry during
each trial, assuming all the rest to be equal (p = .0143). The fitted
hazard of identifying a LPS stimulus is estimated to be (e~ *%*7 =
44) times that of identifying a MPS stimulus during each trial,
everything else staying equal (Parameter 12, p < .0001), consistent
with matching difficulties for outlines that are low complex as
such. Although not shown in Figure 4, a smaller negative effect
was present for HPS relative to MPS (—0.4494 in cloglog hazard
units, Parameter 13, p = .0349), consistent with grouping diffi-
culties for outlines that are high complex as such, and for artifac-
tual relative to natural objects (—0.2755 in cloglog hazard units,
Parameter 14, p = .1163), consistent with an advantage for natural
objects during suboptimal grouping conditions. Each unit increase
in concept identifiability leads to an increase of .0407 cloglog

hazard units in each trial (Parameter 15, p < .0001), consistent
with an increase in semantic and lexical access. Each unit increase
in collinearity leads to a decrease of .0302 cloglog hazard units in
each trial (Parameter 16, p = .086). Although this latter finding
might seem counterintuitive if one considers only grouping, it
makes sense when matching processes are also considered. Stimuli
with higher collinearity values will become easier to group, but
their outline complexity as such (or part salience) will decrease
(e.g., highest collinearity for the outline of a bowl), leading to
matching difficulties.

However, given our guiding hypotheses, we can expect that we
have to relax these assumptions for some predictors to increase the
fit of our model. In separate stages of the model building process
(see the Appendix for details), we extended the main-effects-only
model to relax the proportionality assumption (e.g., by including
Symmetry X Time + Symmetry X Time?), the linearity assump-
tion (e.g., by including Concept®> + Concept®), and the additivity
assumption (e.g., by including Symmetry X HPS). In the next
stage, we added the best fitting specifications of the different
effects, and the effect of fragment type and its interactions with
time and other predictors together in one single model (176 pa-
rameters). The effect with the largest p value that was not part of
any higher order interaction was deleted, the reduced model was
refitted, and this process was repeated until each effect that was not
part of a higher order interaction was significant (p < .05; 56
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Figure 3. Plots of the estimated (a) sample hazard and (b) survivor
functions for both types of fragmentation. The confidence intervals repre-
sent =1 estimated SE in each time period or trial. MP = midpoint; SP =
salient point.

parameters). Finally, we included one extra parameter to test
whether an expected early SP advantage for LPS shapes could be
found, resulting in the final model with 57 parameters that is
discussed next.

The Final Model

Table 4 shows the 57 parameter estimates of the final nonpro-
portional, nonlinear, and nonadditive model, as well as their stan-
dard errors, z values, and p values. Parameter numbers that are
highlighted in bold indicate the effect of these predictors during
the first trial.'"® For all the continuous predictors except concept
identifiability (i.e., number of parts, gap length, collinearity, com-
pactness), a polytomous specification of their nonlinear effect
(dividing the range of predictor values into eight equally spaced
classes represented by seven dummy variables; lowest class with
the lowest values served as the baseline) led to a higher goodness-
of-fit (GOF) compared with a polynomial specification.'' GOF
values of the final model can be found in Table 5.

To help the reader in understanding the combined effects of the
most interesting categorical predictors (and to compare our results
with those of others), we present in Figure 5 the fitted hazard
functions from the final model for hypothetical groups of stimuli
(a) with average values for gap length, collinearity, compactness,

and number of parts, (b) with perfect recognition from the closed
contour (concept identifiability = 100), but (c) differing in the
possible values for the categorical predictors of interest (part
saliency, fragment type, global symmetry, object category). Note
again that choosing other values for concept, compactness, and
number of parts will simply shift all the (cloglog) hazard functions
up or down because they do not interact with other predictors. Gap
length and collinearity, however, interacted with fragment type
(Parameters 24-27). We come back to this later.

The effect of global symmetry. The positive main effect of
global symmetry was strongest during the first trial (0.7567 in
cloglog hazard units, Parameter 11, p = .0006) and significantly
decreased in a nonlinear way in the next trials (a quadratic trend,
Parameters 12 and 13), as can be seen most clearly in Figures 5a
and 5b.'? This finding is consistent with the known advantage of
symmetry during perceptual organization (e.g., Wagemans, 1995,
1997) and with the hypothesis of an early dominance of configural
properties. It is also consistent with the fact that the detection of
symmetry in low spatial frequencies can lead to fewer activated
candidates, resulting in a larger identification probability com-
pared with asymmetrical stimuli.

Furthermore, there was a significant interaction between sym-
metry and HPS (0.7951 in cloglog hazard units, Parameter 14, p =
.0051). Thus, in each trial, the presence of global symmetry has an
additional positive influence on the grouping of the fragments of
outlines that are complex as such and probably also on the number
of activated candidates (see Figures 5c and 5d).

The effect of part salience (or complexity as such). First,
although the grouping and edge assignments of the fragments of
objects that are low complex as such (i.e., LPS) should be easier
compared with MPS objects, they showed a constant disadvantage
in each trial (—0.8112 in cloglog units, Parameter 15, p < .0001)
compared with the MPS objects (compare Figures 5a and 5b). As
in the main-effect-model, this observation is consistent with
matching difficulties because their low complexity as such will
activate many candidate objects. Note that the fitted hazard func-
tions of MPS and LPS outlines have very similar shapes, except
that those of LPS outlines never exceeded .2 (the other difference
is discussed later).

Second, compared with MPS, there was a nonsignificant main
advantage for HPS outlines during the first trial (0.1089 in cloglog
hazard units, Parameter 16, p = .6925), which decreased nonlin-
early and reversed in time (a significant quadratic trend, Parame-

10 Because the values of time for each trial were a linear function of the
trial number (starting with Value O for Trial 1), the main effect of, for
example, symmetry in Trial 1 is represented by Parameter 11 only. The
main effect of symmetry in later trials is represented by Parameters 11, 12,
and 13.

! For example, the range of gap length values was divided into eight
equally spaced classes. These classes were represented by seven dummy
variables (GapL2, GapL3, ..., GapL8) with the first class (always con-
taining the lowest values) serving as the baseline. Sometimes neighboring
classes were collapsed (e.g., GapL78).

12 Although it might seem that the effect of symmetry increases from the
first to the second (and third) trial when one looks at the fitted hazard
functions in Figure 5, it actually decreases for the cloglog hazard functions
that are modeled (but not shown). The asymmetric cloglog link is again
responsible for this behavior.
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Table 3
The Main-Effects-Only Model
No. Parameter Estimate SE z p
1 D80 —6.1176 0.8704 —7.03 <.0001
2 D93 —5.5209 0.8700 —6.35 <.0001
3 D106 —5.2413 0.8723 —6.01 <.0001
4 D120 —5.1612 0.8719 -5.92 <.0001
5 D133 —5.0665 0.8812 =575 <.0001
6 D146 —5.0439 0.8739 =577 <.0001
7 D160 —4.8548 0.8721 —5.57 <.0001
8 D173 —5.6583 0.8842 —6.40 <.0001
9 D186 —5.1745 0.8752 —5.91 <.0001
10 D200 —5.3074 0.8701 —6.10 <.0001
11 Symmetry 0.4091 0.1670 245 .0143
12 LPS —0.8257 0.1986 —4.16 <.0001
13 HPS —0.4494 0.2131 -2.11 .0349
14 Artifactual —0.2755 0.1754 —1.57 1163
15 Concept 0.0407 0.0090 4.53 <.0001
16 Collinearity —0.0302 0.0176 —-1.72 .0860

Note. This table includes the 16 parameter estimates for the 10 intercepts (D80-D200; alpha parameters) and
the 6 predictors (beta parameters), as well as their standard errors, z scores, and p values. LPS = low part

salience; HPS = high part salience.

ters 17 and 18), resulting in a lower (cloglog) hazard for HPS
outlines during the final trials compared with MPS outlines (see
Figures 5c and 5d). Thus, hazard functions for HPS outlines peak
relatively early, consistent with efficient matching if initial group-
ings are correct. When identification did not occur during the first
four or so trials, the correct groupings are too difficult to extract
and/or participants are being led by a wrong hypothesis regarding
the identity of the object, resulting in low hazard values in later
trials.

The effect of fragment type. First, the main effect of fragment
type (an advantage for MP fragments because the parameter is
positive and SP acted as the baseline) was not significant during
the first trial (0.1995 in cloglog hazard units, Parameter 19, p =
.3794), but this nonsignificant advantage for MP fragments during
the first trial significantly decreased in a linear way with time
(Parameter 20, p = .0425). This resulted in an SP advantage that
emerged during the fifth trial and that increased until the final trial,
as can be seen most clearly in Figures 5a and 5b.

Second, HPS outlines enjoyed a significant and constant MP
advantage across all trials (0.4963 in cloglog units, Parameter 21,
p = .0409). Thus, only for complex enough outlines will the better
direction information conveyed by straight MP fragments allow a
superior grouping performance based on configural properties
between the MP fragments compared with curved SP fragments
(compare Figures 5c and 5d with 5a and 5b). Note that this extra
grouping advantage of MP fragments overwhelms the emergent SP
advantage during Trials 5-10.

Third, compared with MPS outlines, the SP advantage for LPS
outlines started already in Trial 4 (compare Figures 5b and 5a), as
indicated by the significant three-way interaction between frag-
ment type, LPS, and the time period covered by Trial 4 and Trial
5 (—0.2887 in cloglog hazard units, Parameter 22, p = .021; the
negative value of Parameter 22 indicates a MP disadvantage dur-
ing Trial 4 and Trial 5 for LPS outlines).'> The fact that the
matching advantage for curved fragments of outlines with low part
saliency only starts to emerge during Trial 4 and not in earlier

trials, can be explained by taking into account that detailed prop-
erties of fragments (e.g., their position, length, and amount of
curvature) are only perceived when attention can be focused to it,
requiring recurrent processing down to low-level visual areas (i.e.,
a core idea in reverse hierarchy theory; Hochstein & Ahissar,
2002).

Finally, as noticed above in The Final Model section, the inter-
action effects between fragment type and two configural properties
changed in time. First, the (few) outlines with the highest values of
collinearity (class Coll8) showed a significant MP disadvantage
during the first trial (—0.9782 in cloglog units, Parameter 23, p =
.0243), which significantly decreased in a linear way with repeti-
tion (Parameter 24, p < .0001). Thus, the most circle-like objects
benefit early from the information conveyed by the curved frag-
ments, because straight fragments convey a false sense of angu-
larity in such outlines making correct matching difficult. Second,
fragmented contours with moderately small gap lengths (i.e., mod-
erately high proximity; class GapL3) showed a significant MP
advantage during the first trial (2.2035 in cloglog units, Parameter
25, p = .0142), which significantly decreased in a linear way in
time (Parameter 26, p = .0062), consistent with the extrapolation
cost for curvature when the gaps get too large compared with
straight fragments, as observed by Singh and Fulvio (2005).

The effect of object category (or complexity with reference to
other visual forms). The small main disadvantage for artifactual
compared with natural stimuli was not significant (—0.0682 in
cloglog hazard units, Parameter 27, p = .6929). However, com-
pared with natural HPS outlines, artifactual HPS outlines enjoyed
a significant hazard disadvantage in all trials (—0.5922 in cloglog

'3 Parameter 22 was added to the model with 56 parameters to test the
expected early advantage for SP fragments with LPS outlines. Importantly,
its addition did not change the significance status of the other effects,
although the values for the parameters, standard errors, z values, and p
values could have changed slightly compared with the 56-parameter model.
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Figure 4. Plots of the (a) fitted cloglog hazard functions and (b) fitted
hazard functions based on the main-effects-only model, for groups of
fragmented object outlines with average values for collinearity, a value of
100 for concept identifiability, but different values for global symmetry
(symmetrical [SYM], asymmetrical [ASYM]) and part saliency (medium
part salience [MPS], low part salience [LPS]).

hazard units, Parameter 28, p = .0242), resulting in similar shaped
but lowered hazard functions for artifactual compared with natural
objects (compare Figures Sc and 5d).

The effect of concept and number of parts. Concept identifi-
ability (percent identification of the complete outline) had a non-
linear and nonproportional main effect on hazard (Parameters
29-37) and served mainly to control for differences in stimulus
familiarity and semantic and lexical access. Interestingly, the val-
ues of Parameters 29-37 result in a positive effect of concept
identifiability on identification hazard that was strongest during
the first trial and decreased over the next trials, consistent with the
idea that after the first presentation, a set of candidate objects is
selected and then reduced further by incoming evidence from a
detailed inspection of different parts.

In comparison with objects consisting of one or two parts (the
baseline class), objects with three or four parts (class Part2) en-
joyed a significant main disadvantage in identification probability
during the first trial (—1.1589 in cloglog units, Parameter 38, p <
.0001), which decreased nonlinearly with repetition (a significant
quadratic trend, Parameters 39 and 40). This suggests that espe-
cially objects with three or four parts were difficult to identify
during the first presentations, compared with other part numbers.
This finding is consistent with the data of Panis et al. (2008),
showing that simple object outlines with few parts can generate

more alternative wrong naming responses compared with object
outlines with many parts. Note that part salience is independent
from the number of parts: two parts can be salient (heart) or not
(potato); many parts can be salient (star) or not (shoe with laces
and heel).

The effects of proximity, compactness, and collinearity. The
nonlinear main effects of the three contour integration factors (gap
length or proximity, compactness or density, and collinearity)
interacted with time. Again, the effects of compactness and col-
linearity might seem counterintuitive if one considers only their
role during grouping, but they make sense when matching pro-
cesses are also considered.

First, stimuli with moderately small (class GapL3) and the
largest (class GapL78) gap lengths showed a disadvantage at the
first presentation (—2.4024 and —0.1181 in cloglog hazard units,
Parameter 41, p = .0053, and Parameter 44, p = .729, respec-
tively). These effects significantly decreased in a nonlinear way in
the next trials (both quadratic trends; Parameters 42, 43 and
Parameters 44, 45, respectively). The fact that only the interactions
between these two sets of values of gap length and time were
significant, is the result of the arbitrarily chosen significance level
(¢ = .05). In Stage 5 of the model building process (see the
Appendix), we came across a model in which all relevant p < .10,
and in this model with 109 parameters, there was also evidence for
interactions between the intermediate intervals (average and mod-
erately high gap lengths; classes GapL4—-GapL.6) and time in the
expected direction (i.e., parameter estimates for Trial 1 were
negative). Thus, when the gaps between the fragments are higher
than a certain threshold, there is a negative effect on identification
hazard during the first trials, which decreases during later trials,
consistent with the fact that difficult grouping processes (along the
contour) take time to develop.

Second, stimuli with average values for compactness (class
Comp45) showed a nonsignificant disadvantage in identification
hazard during the first trial (—0.1868 in cloglog hazard units,
Parameter 47, p = .5012), which significantly decreased in a
nonlinear way in the next trials (a significant quadratic trend,
Parameters 48 and 49). A similar negative effect was found for
stimuli with the largest compactness values (class Comp78) at the
first presentation (—0.2481 in cloglog hazard units, Parameter 50,
p = .306), which also significantly evolved in a nonlinear way
with repetition (a cubic trend, Parameters 51, 52, and 53). Again,
in the model with 109 parameters, there was evidence that the
identification probability of stimuli that are more compact (circle-
like) than on average (or, in other words, of which the density of
fragments is lower than on average) is lower during the first
presentations. Although figure-ground edge assignments can be
expected to become more clear when the density of the fragments
decreases (when the outline becomes more compact and less
complex), many candidates would be activated because of the
resulting low complexity, causing a lowered identification hazard
during the first trials.

Third, stimuli with the highest collinearity between the frag-
ments (class Coll8) showed a disadvantage in hazard during the
first trial (—0.5853 in cloglog hazard units, Parameter 54, p =
.0866), which decreased in a nonlinear way with repetition (a
significant cubic trend, Parameters 55, 56, and 57). Again, the few
stimuli with the highest collinearity values will be easiest to group
but will have a low complexity because only the more circle-like



Table 4
The Final Model
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No. Parameter Estimate SE z P
1 D80 —24.7313 13.5231 —1.83 .0674
2 D93 —23.7462 12.0691 —1.97 .0491
3 D106 —21.9968 10.8050 —2.04 .0418
4 D120 —19.2153 9.6861 —1.98 .0473
5 D133 —15.7529 8.9419 —1.76 .0781
6 D146 —11.6994 8.5700 —1.37 1722
7 D160 —6.5522 8.6409 —0.76 4483
8 D173 —2.4509 9.1247 —0.27 7882
9 D186 3.2400 9.9866 0.32 7456
10 D200 8.6634 11.2519 0.77 4413
11 Symmetry 0.7567 0.2197 3.44 .0006
12 Symmetry X Time —0.0160 0.0048 —3.37 .0008
13 Symmetry X Time” 0.0001 0.0000 2.28 0229
14 Symmetry X HPS 0.7951 0.2838 2.80 .0051
15 LPS —0.8112 0.1796 —4.52 .0000
16 HPS 0.1089 0.2754 0.40 .6925
17 HPS X Time —0.0229 0.0046 —4.91 .0000
18 HPS X Time? 0.0001 0.0000 3.42 .0006
19 Type 0.1995 0.2270 0.88 3794
20 Type X Time —0.0043 0.0021 —2.03 .0425
21 Type X HPS 0.4963 0.2428 2.04 .0409
22 Type X LPS X Tr4&5 —0.2887 0.1251 —2.31 0210
23 Type X Coll8 —0.9782 0.4344 —2.25 .0243
24 Type X Coll8 X Time 0.0132 0.0029 4.64 .0000
25 Type X GapL3 2.2035 0.8985 245 .0142
26 Type X GapL3 X Time —0.0161 0.0059 —2.74 .0062
27 Artifactual —0.0682 0.1727 —0.39 .6929
28 Artifactual X HPS —0.5922 0.2627 —2.25 0242
29 Concept 1.1005 0.5768 1.91 .0564
30 Concept X Time —0.0065 0.0061 —1.07 2827
31 Concept X Time? —0.0001 0.0000 —3.35 .0008
32 Concept X Time? 0.0000 0.0000 2.32 0202
33 Concept® —0.0171 0.0079 —2.17 .0297
34 Concept? X Time 0.0002 0.0001 1.86 .0630
35 Concept’ X Time? 0.0000 0.0000 2.43 0150
36 Concept® 0.0001 0.0000 2.40 .0163
37 Concept® X Time 0.0000 0.0000 —2.33 0196
38 Part2 —1.1589 0.2575 —4.50 .0000
39 Part2 X Time 0.0348 0.0059 5.92 .0000
40 Part2 X Time? —0.0002 0.0000 —4.59 .0000
41 GapL3 —2.4024 0.8609 —2.79 .0053
42 GapL3 X Time 0.0355 0.0099 3.57 .0004
43 GapL3 X Time? —0.0002 0.0001 —2.74 .0061
44 GapL78 —0.1181 0.3405 —0.35 7286
45 GapL78 X Time 0.0113 0.0075 1.51 1316
46 GapL78 X Time? —0.0001 0.0001 —1.98 0474
47 Comp45 —0.1868 0.2777 —0.67 5012
48 Comp45 X Time 0.0176 0.0067 2.63 .0085
49 Comp45 X Time? —0.0001 0.0000 —2.45 0144
50 Comp78 —0.2481 0.2424 —1.02 .3060
51 Comp78 X Time —0.0087 0.0082 —1.06 .2883
52 Comp78 X Time? 0.0005 0.0002 291 .0036
53 Comp78 X Time? 0.0000 0.0000 —3.65 .0003
54 Coll8 —0.5853 0.3416 —1.71 .0866
55 Coll8 X Time 0.0385 0.0112 3.44 .0006
56 Coll8 X Time? —0.0008 0.0002 —3.90 .0001
57 Coll8 X Time? 0.0000 0.0000 3.47 .0005

Note. This table includes the 57 parameter estimates for the 10 intercepts (D80—D200; alphas) and the 47 effects (betas),
as well as their standard errors, z scores, and p values. The parameter estimates with a number highlighted in bold directly
show the effect of the corresponding predictor during the first trial only (see Footnote 10), whereas those with a p value
highlighted in bold indicate significant effects that are not part of any higher order interaction (p < .05) and that needed
to be significant to stay in the final model. GapL, Comp, Coll, and Type refer to gap length (proximity), compactness,
collinearity, and fragment type, respectively. The range of values of continuous predictors (except concept identifiability)
is divided in 1-8 classes, indicated by numbers—for example, Coll8 refers to very high collinearity, Comp45 refers to
average compactness values (4 and 5 are in the middle of the range), and so forth.
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Table 5
Model Comparison of Goodness-of-Fit (GOF) Values
No. of

Model r. R2 parameters

A 01588 .00762 10

B .07697 .02245 16

C 13458 .06708 176

D 11402 05215 57

E 14050 07227 70

Note. This table shows two GOF measures (r, and R?) for five selected
models and their number of parameters. Model A fits only the nonlinear
main effect of time (10 alphas). Model B is the main-effects-only model.
Model C is the model of Section 5 of the model building process (see the
Appendix). Model D is the final model (reported completely in Table 4).
Model E fits the main effect of time (10 alphas), the linear effect of concept
identifiability (one beta), and the effects of individual stimuli (n = 60)
using 59 dichotomous dummies (the first stimulus is the baseline) and 59
betas.

outlines can have the highest collinearity values with 80% contour
deletion (e.g., the outline of a bowl). Therefore, we believe that
many stored representations are activated, resulting in a delayed
matching process and an identification disadvantage during the
first trial.

Fitted survivor functions. In Figure 6, we present the fitted
survivor functions computed from the fitted hazard functions in
Figure 5. These survivor functions depict the probability that a
stimulus with certain characteristics is not being identified in each
trial. When the survivor functions cross the line where the survivor
probability equals .5, half of those stimuli are estimated to be
identified. As predicted in Figure 1, HPS outlines are being iden-
tified faster when MP fragments are shown compared with SP
fragments (everything else being equal), indicating a grouping
advantage for MP fragments when part-saliency or complexity as
such is high. In contrast, LPS outlines showed an SP matching
advantage that started to emerge during the fifth trial when the
stimuli were presented long enough to incorporate the details of
certain fragments (location, curvature, length, etc.) into the per-
ceptual representation. Only the details of curved SP fragments
contain information on the exact position and shape of part bound-
aries, which is most informative to reduce the large number of
activated candidates.

Some Results for Example Stimuli

Figure 7 shows example stimuli including the fixation cross
(first column), an illustration of the configural relations between
the low spatial frequencies that might be quickly available (second
column), and an illustration of the effect of focused attention on
certain parts of the stimulus (third column). Graphs on the right
show the estimated sample hazard for the individual stimuli. The
first three objects have parts that are highly salient in the complete
outline (see Figures 7a, 7b, and 7c). The MP fragments of these
objects (shown in the upper rows) are identified more frequently
during the first trial compared with SP fragments (shown in the
lower rows).

For example, as can be seen in Figure 7a, 6 out of 32 observers
identified the chair correctly from the MP fragments after the first
presentation, leading to a hazard probability of (6/32 =) .19 during

the first trial. Of the (32 — 6 =) 26 participants who did not
identify the chair after the first presentation (80 ms), 9 observers
did so after the second presentation (93 ms) leading to a hazard of
(9726 =) .35 during the second trial, and so forth. The first answer
of 17 observers (not necessarily after the first presentation) was the
correct one, all observers identified the MP fragments correctly as
“chair” at the end of the experiment, and 19 wrong concepts were
recorded (including dog, horse, bird, cat, church, table, computer,
bed). In contrast, none of the 32 observers identified the chair
correctly from the SP fragments after the first and second presen-
tation. Only 5 observers responded first with the correct name, 16
observers never identified the SP fragments correctly, and 38
different concepts were given (including dog, cat, deer, duck,
horse, fox, guitar, glass, pants, tooth). The second column of
Figure 7a illustrates how the configural relations between the low
spatial frequencies contained in the MP fragments resemble the
global shape of a chair more closely compared with SP fragments.
The third column illustrates that details that become available after
focused attention are more informative for the MP version com-
pared with the SP version, allowing correct responding after the
first presentation of 80 ms, but only for MP versions. In contrast,
because of the extrapolation cost of curvature, SP fragments will
not group into a single structure, and the low spatial frequencies of
one of these structures will activate unrelated object representa-
tions. Resolving the strong competition between different grouping
possibilities and object representations will require extended co-
vert and overt attentional examinations during later trials before
the correct parts and their relative positions are perceived.

Similarly, Figure 7b shows that all but 1 observer identified the
heart (with two salient parts) from MP fragments after the third
presentation (1 observer needed a fourth presentation), whereas 7
participants required more than three presentations to identify the
heart correctly from SP fragments. This might seem strange be-
cause the most important SP feature, the curved fragment in the
upper and middle region of the stimulus, is closer to the fixation
point compared with the two most important straight fragments in
the MP version. However, as can be seen in the second column of
Figure 7b, the configural relations (e.g., better symmetry) between
the coarse shape information provided by the visible MP fragments
again resemble the global shape of a heart better compared with SP
fragments. Also, for the SP fragments, the configural relations
between coarse shape information might lead to the incorrect
grouping at the top of the figure (indicated by the thin line),
leading to recorded responses such as apple, tomato, strawberry,
and bowl.

Figure 7c shows that all but 1 participant identified the star from
MP fragments after the second presentation (1 observer needed a
third presentation), whereas 4 participants never identified the star
from SP fragments. Again, coarse shape information provided by
straight fragments resembles a star more closely (only four differ-
ent concepts: dog, beetle, butterfly, kettle) compared with curved
fragments that elicited 16 different recorded concepts (including
turtle, man, leave, butterfly, hammer, castle, horse).

The other three example objects have parts that are not highly
salient (see Figures 7d, 7e, and 7f). These objects are usually not
identified frequently after the first presentation, probably because
the coarse shape information is not diagnostic enough to identify
the correct basic-level category (second column). After a few
presentations, however, an advantage for SP fragments emerges
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Figure 5. Plots of the fitted hazard functions based on the final model, for groups of fragmented object outlines
with average values for proximity, number of parts, collinearity, and compactness—a value of 100 for concept
identifiability but different values for global symmetry (absent [NOSYM], present [SYM]), fragment type
(salient point [SP], midpoint [MP]), object category (natural or artifactual), and part saliency (medium part
salience [MPS], high part salience [HPS], low part salience [LPS]). (a) MPS natural and artifactual; (b) LPS
natural and artifactual; (¢) HPS natural; and (d) HPS artifactual.

probably because the details of curved SP fragments deliver more
useful information to exclude incorrect object candidates, such as
the position and shape of part boundaries and part tips (column 3).

Even without modeling, the data of these 120 stimuli are con-
sistent with our prediction of an early MP grouping advantage and
a later SP matching advantage. First, only one object was better
identified from SP fragments compared with MP fragments after
the first presentation (i.e., bowl), and the difference was actually
rather small, as was the overall identifiability of the bowl, whereas
a much larger number showed an advantage for MP fragments
after the first presentation (e.g., Figures 7a, 7b, and 7¢). Second, if
an SP advantage emerged, it was always after the first few trials
(except for bowl; see Figures 7d, 7e, and 7f).

Discussion

In this study, we investigated which information is extracted
when during the time course of object identification, using survival
analysis. We want to note here that although both GOF measures
were rather low for the final discrete-time hazard model (as well as
for other models; see Table 5), this low fit is a necessary conse-
quence of the fact that individual object outlines constitute the
experimental units of the analysis and of the huge differences
between stimuli in their geometric factors and how these influence
perceptual organization and object identification (see range in
Table 1 and Figure 2a). As a result, individual stimulus patterns are
not predicted well (compare individual sample hazard functions in
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Figure 6. Plots of the fitted survivor functions based on the fitted hazard functions, for groups of fragmented
object outlines with average values for proximity, number of parts, collinearity, and compactness—a value of
100 for concept identifiability but different values for global symmetry (absent [NOSYM], present [SYM]),
fragment type (salient point [SP], midpoint [MP]), object category (natural or artifactual), and part saliency
(medium part salience [MPS], high part salience [HPS], low part salience [LPS]). (a) MPS natural and
artifactual; (b) LPS natural and artifactual; (c) HPS natural; and (d) HPS artifactual.

Figure 7 and the fitted hazard functions in Figure 5). We have tried
to illustrate in Figure 7 that even within each hypothetical group
(e.g., symmetric HPS objects) the mechanisms at work can differ
between individual stimuli. Indeed, note that the fitted hazard
functions for the hypothetical groups reflect only the measured
main effect of time (the shape of the sample hazard functions in
Figure 3a) modulated by the effects of the different predictors in
the model. It is possible to build a better fitting model with almost
the same number of parameters as our final model. For example,
Model E in Table 5 fits the main effects of time, concept, and
individual stimuli, and it has the highest GOF we ever encoun-
tered. However, this model is not informative at all for our re-
search questions because we are interested in modeling general
processes occurring with every fragmented outline, not interindi-
vidual stimulus differences. We are, of course, interested in un-
derstanding important differences between stimuli, but we try to do
that by incorporating stimulus factors that are more general (e.g.,
object category, global symmetry, part saliency, collinearity)
rather than by adding an extra parameter for each individual

stimulus. Thus, the final model is, we believe, the simplest (but
still rather complex) and most informative with regard to our
research questions.

The results of the current survival analysis (a) are generally
consistent with the four predictions outlined in the introduction, (b)
allow an explanation of previous seemingly contradictory results
concerning the identification of fragmented objects, and (c) sug-
gest that part-decomposition based on locating concavities is not
necessary to activate object representations.

Confirmation of Predictions

Different observations are consistent with the hypothesis of an
early dominance of configural properties during grouping pro-
cesses. First, we found that global symmetry exerted the strongest
effects on identification probability during the first trial when the
stimuli were presented for 80 ms, after which its effect decreased
(at least for LPS and MPS outlines). The fact that the effects of
local configural properties, such as proximity and collinearity,
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Figure 7. Plots of the estimated sample hazard functions as a function of fragment type for individual stimuli
(right panels). Stimulus examples are shown in the first column, and illustrations of the coarse shape information
and the effect of focused attention are shown in the second and third columns (respectively). (a) No. 53, chair;
(b) No. 119, heart; (c) No. 217, star; (d) No. 204, shoe; (e) No. 197, scissors; and (f) No. 244, turtle. Numbers
refer to the set of stimuli in Snodgrass and Vanderwart’s (1980) study. SP = salient point; MP = midpoint.
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Figure 7.

were usually not significant in the first trial, supports the idea that
other more global configural relations between fragments (e.g.,
global symmetry, convexity relations) dominate early completion
processes more strongly compared with more local ones. Second,
no effect of fragment curvature was observed during the first trial,
except for the most complex outlines with high part saliency. The
better direction information provided by straight fragments allows
faster closure during early completion processes for complex out-
lines. Nevertheless, for high complex outlines with high part
saliency, identification probability was predicted to be higher for
curved fragments of symmetrical shapes than for straight frag-
ments of asymmetrical shapes (see Figures 5c and 5d), suggesting
again that global symmetry has a stronger effect on completion
processes than the curvature of fragments, early in processing.
The hypothesis that complexity as such (independent from ob-
ject category) influences grouping and matching differently was
confirmed, as reflected most strongly by the effect of part saliency.
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(continued)

Specifically, when part saliency is high and grouping cues are
optimal (global symmetry present), the competition between the
strong convexity relations is weak, and the low spatial frequen-
cies will already be very diagnostic, resulting in a large iden-
tification probability already during the first trials. This obser-
vation is consistent with efficient top-down facilitation after
stimulus offset (i.e., few top-down guided serial attentional
movements are required to reject the few wrong object candi-
dates). The fact that HPS hazard functions declined after their
peak during Trial 2 and/or Trial 3 indicates (a) strong grouping
problems for HPS outlines that require many trials to be iden-
tified and/or (b) because the initial hypotheses were wrong, that
the preservation of incorrect candidates might delay the correct
groupings (see also Bruner & Potter, 1964, for similar interfer-
ence effects from incorrect hypotheses during object recogni-
tion attempts). When symmetry is absent, grouping of frag-
ments of complex HPS outlines is very difficult, and the hazard
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probability of identification stays rather low, especially for
curved SP fragments.

In contrast, when part saliency is low, the competition between
the weak convexity relations is strong, and many candidates will
become activated. Because grouping and edge assignment should
be obvious for these simple outlines, the relative inability to
identify LPS objects cannot be due to grouping difficulties but
must be caused by the negative effect of low complexity as such on
matching. Resolving the competition between many activated can-
didate objects will require increased spatial resolution for specific
parts of the stimulus (space-based attention) to extract high spatial
frequencies that are used to evaluate the hypotheses about object
identity (object-based attention). Indeed, LPS hazard functions
started low, increased steadily during the first trials and peaked in
Trial 7, suggesting that with repetition, more and more useful
information can be extracted if correct identification did not occur
in previous trials.

Third, we observed an advantage for natural objects over arti-
factual objects as predicted by Gerlach et al. (2004, 2006). How-
ever, we only observed a significant advantage for natural objects
for the most complex object outlines, not for simpler ones. This
suggests that top-down facilitation from activated candidates
(frontal — VOT — lower level areas) is only helpful if the low
spatial frequencies contain enough diagnostic information to limit
the number of activated candidate objects, for example, to struc-
turally similar exemplars from natural categories. Consistent with
the higher diagnosticity of global shape information (carried by
low spatial frequencies) for natural objects, the advantage for
complex natural objects was already present during the first trial
when the stimuli were presented only for 80 ms, a presentation
time that is actually long enough to activate visual and semantic
representations of candidate objects in prefrontal cortex (Bar,
2003; Bar et al., 2006). This interpretation is supported by the fact
that the effect of concept identifiability is strongest during the first
trial, after which it declines.

Fourth and most importantly, the results of this study show that
global part saliency (or complexity as such) determines whether
and when straight or curved segments of a contour are more
important for identification, revealing the presence of a TCC in
line with Sanocki’s (1993, 2001) view: “the importance of differ-
ent types of information changes over the time course of object
identification, with early information being used to increase the
efficiency of later processing” (Sanocki, 1993, p. 896). Indeed, the
influence of fragment curvature changed during the time course of
object identification, that is, straight (MP) fragments are more
informative early, during the grouping of complex shapes, leading
to fast matching, whereas curved (SP) fragments are more infor-
mative later, during the slow matching of simple shapes, when
top-down object-based attentional selection effects are comparing
local details of the input against the structural information in the
activated candidate object representations in long-term memory.

Our interactive conceptual framework is in fact consistent with
the presence of many different and concurrent TCCs during object
identification. For example, (a) V1 responds to illusory contours
after V2 (Lee & Nguyen, 2001) and other downstream areas have
“decided” that this is required by the contextual visual informa-
tion; (b) the detection of global configural relations (convexity
relations, global symmetry) in V4 or VOT will constrain the
processing of more local ones such as good continuation in V2

later; (c) early processing of occlusion information can change the
efficiency of later figure-ground organization, completion, and
attentional selection; (d) early detection of global symmetry in-
creases the efficiency of later matching processes; and (e) later
top-down facilitation based on early processing of the low spatial
frequencies is most efficient if the outline contains enough diag-
nostic information about object identity. In general, the appearance
of midlevel aspects of vision (grouping, segmentation, figure-
ground) and even high-level aspects (attention, behavioral goals,
etc.) in the responses of V1 neurons (Gilbert, Ito, Kapadia, &
Westheimer, 2000; Lee, Yang, Romero, & Mumford, 2002) can be
regarded as examples of concurrent TCCs in which early process-
ing of shape information in V2, V4, and VOT and early attentional
biases influence later processing (in V1 and elsewhere). Our re-
sults support the view of recognition as the settling of a multistage,
hierarchical, and dynamical system in which recurrent processing
between separate levels dominates (Deco & Schiirmann, 2000;
Heinke & Humphreys, 2003; Humphreys, Riddoch, & Price, 1997;
Rolls & Deco, 2002), and not as a series of discrete and separate
stages of which the transition depends only on a few variables.
Instead, at each time, different types of information are processed
in parallel and influence each other to reach a recognition state.

Explaining Seemingly Contradictory Results

Our conceptual framework provides explanations for seemingly
contradictory results in the literature on the role of curvature
singularities during shape perception and object identification. For
example, Kennedy and Domander (1985) found an advantage for
straight segments and concluded that they contain more direction
information for extrapolation or contour integration. Our results
are consistent with this conclusion, but it is now integrated in a
much larger framework. We found that identification performance
also depends on other configural properties in addition to mere
collinearity and proximity along the contour, such as global sym-
metry and convexity relations. Our data suggest that Kennedy and
Domander’s overall advantage for straight (MP-like) segments is a
consequence of their use of only a few, probably symmetric
objects (e.g., a washing machine).

Similarly, there are at least three possible reasons why Bieder-
man and Blickle (1985; referenced in Biederman, 1987) found an
overall advantage for midsegment deletion (comparable with SP
fragments) compared with vertex deletion (comparable with MP
fragments) using a presentation duration of 100 ms. First, rela-
tively long fragment lengths were used, and our final model shows
that for well-relatable fragments, there is an SP advantage (Param-
eter 23), consistent with the observed saliency of curved segments
when contours are complete (De Winter & Wagemans, 2008b).
Second, on the basis of visual inspection of their published stimuli
and considering the fact that only a small number of line-drawings
were used, it is possible (and on the basis of the results of our
model quite likely) that most of their stimuli had outlines with a
low part saliency. Third, the presence of vertices only in the
midsegment deletion condition is a confounding factor in their
fragmented versions, and these vertices might provide more oc-
clusion information (which was actually the point they wanted to
make to support recognition-by-components [RBC] theory). Oc-
clusion cues such as Y- and T-vertices or junctions (Rubin, 2001)
are believed to influence visual processing very early after stim-
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ulus onset, even before figure-ground coding and shape binding
(Giersch, Humphreys, Boucart, & Kovacs, 2000; Kogo, Strecha,
Caenen, Wagemans, & Van Gool, 2002; Kogo, Strecha, Van Gool,
& Wagemans, 2008). Finally, the fact that they observed their
effect using a presentation time (100 ms) that is somewhat shorter
than ours during the fourth trial (120 ms) might be because they
also showed the (fragmented) interior contours, which provide
more matching information, and because of procedural differences
(i.e., one single presentation vs. repeated and increasing expo-
sures). Nevertheless, the fact that we are now able to identify the
conditions under which an advantage for either straight or curved
fragments will emerge is more important than the exact timing
differences between these studies.

Broader Implications: Part-Decomposition Is Not
Necessary for Identification

Three lines of evidence in the literature have been interpreted to
suggest that identifying the parts of an object based on the parallel
detection of concavities occurs early in time and is required to
access a stored object representation. However, our framework
suggests that object representations can be activated (bottom-up)
by coarse configural information, and that the detection of con-
cavities is part of a later (top-down) matching process.

A first line of evidence comes from visual search experiments
studying the perceptual status of concavities (Hulleman, te Winkel,
& Boselie, 2000) and part cuts based on concavities (Xu & Singh,
2002). For example, the fact that a shape with a concave corner
pops out among a set of distracters with convex corners, whereas
the reverse visual search is slow and inefficient, has been taken as
evidence that the visual system detects the concavities quickly
(Singh & Hoffman, 2001).

However, Pasupathy and Connor (1999) found that V4 neurons
that respond to straight contour segments and to oriented contour
features (curves and angles) display a convexity (and outline) bias.
They suggested that the minima rule of Hoffman and Richards
(1984) is instantiated in the neural circuitry of the ventral visual
pathway. Furthermore, on the basis of the results of visual search
and dual task experiments, VanRullen, Reddy, and Koch (2004)
argued that attention works along two independent dimensions (1)
to dynamically generate neuronal selectivities that are not explic-
itly implemented in the visual system at the level of single neurons
and (2) to resolve spatial ambiguities that arise when multiple
stimuli fall into the same receptive field. Interestingly, the former
dimension might be identified as object/part/feature-based atten-
tional bias to the ventral visual stream (e.g., generating selectivity
for concavities to evaluate early object hypotheses), whereas the
latter dimension could refer to space-based attentional bias to the
dorsal visual stream (e.g., to resolve the spatial relations between
different parts falling in the same receptive field by attentionally
zooming in on a location). Anyway, the consequence is that
pop-out can be the result of parallel discrimination (requiring that
the target feature is represented in low-level areas with small
receptive fields; e.g., orientation, color, curvature) or parallel de-
tection of the target based on low-level grouping and segmentation
mechanisms that work to isolate the target but are blind to its
identity (VanRullen et al., 2004). Thus, if it is true that visual
search target objects with concavities are only detected and not
discriminated in parallel, one would predict that it should be hard

to discriminate a shape with a concavity from a shape without one
if attention is focused somewhere else in a dual task experiment.

Theories stressing identification of parts prior to any matching
require fast detection of concavities (as well as discrimination
from convexities) in parallel across the visual field. Although such
a fast and parallel detection process seems to be supported by the
visual search experiments, it can be questioned whether visual
search results can inform us about identification because the
former involves finding the location containing a target object that
is different from distracter objects (“where from what”), whereas
object identification involves extracting the shape from an object
at a certain location (“what from where”; Rolls & Deco, 2002). In
any case, reaction times for fast searches for targets containing
concavities or part-cuts (~500 ms; Hulleman et al., 2000) are
slower than those for categorization (~400 ms; Grill-Spector &
Kanwisher, 2005).

A second line of evidence comes from gap detection (e.g.,
Beckers, Wagemans, Boucart, & Giersch, 2001; Lamote & Wage-
mans, 1999) and change detection experiments (e.g., Cohen,
Barenholtz, Singh, & Feldman, 2005; Vandekerckhove, Panis, &
Wagemans, 2007). Lamote and Wagemans (1999) manipulated
figure-ground organization to show that identical gaps in outlines
with high part saliency are detected faster when they are made at
a convexity (curvature extrema pointing into the background) than
when made at a concavity (curvature extrema pointing into the
object). In contrast, Cohen et al. (2005) found that changes in the
position of concavities in silhouettes are easier to detect compared
with equally large changes in the position of convexities. Although
these studies might seem contradictory, their results have been
interpreted to suggest that the system is sensitive to the figure-
ground status of a curved segment in a contour (whether it is a
convexity or a concavity), and that this might occur early in
processing.

These results make sense when the processing of object struc-
ture evolves from fast, parallel, bottom-up grouping of convex
(and therefore part-like) image fragments, to a detailed structural
representation based on top-down part-decomposition involving
covert and overt spatial attentional biases, as in our conceptual
framework. Because Lamote and Wagemans (1999) used outlines
and very short presentation times, competition between bottom-up
signaled curved fragments will not be resolved at stimulus offset.
Given that the system is highly sensitive to end-stopping very
early, there will be more competition between the visible segments
when gaps are located at convexities because (a) curved segments
pointing into the shape are complete and are signaled strongly in
V4 (but actually do not belong to the object), whereas (b) the
curved segments pointing into the background (the object parts)
are incomplete (because of the gap) and will be signaled less
strongly in V4. Because convex part-like segments are grouped or
integrated in parallel (Driver & Baylis, 1995), integrating the
identical gap-containing curve and the rest of the outline will be
efficient when gaps are located at concavities but not when located
at convexities. We propose that this competition guides the detec-
tion performance, and not the fact that the system detected the
concavities in parallel. In contrast, Cohen et al. (2005) needed to
present their silhouettes for 500 ms to allow participants to per-
form above chance levels when detecting equally large changes in
the position of concavities and convexities. This strongly suggests
that the construction of a detailed structural description of an
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object—for example, on the basis of a medial axis representation
including the position and identification of concavities versus
concavities—takes more time than required for recognition. Rec-
ognition signals already emerge around 150 ms (Bar et al., 2006;
Johnson & Olshausen, 2003).

Consistent with this alternative explanation are the results from
Barenholtz and Feldman (2003), who showed that the single-part
superiority effect—faster perceptual comparisons when crossing
curvature maxima (convexities) than minima (concavities)—is
sensitive to the strength of the concavities, suggesting that atten-
tional selection is based on competing forces, that is, local
bottom-up and more global top-down grouping cues. Furthermore,
they demonstrated that the single-part superiority effect disappears
when the global configuration was not consistent with a part-
boundary interpretation (see also Bertamini & Farrant, 2005).
Thus, identifying a curved segment as a concavity is only possible
when information about the (completed) global shape is available,
and top-down object hypotheses can create selectivities that are not
implemented at the level of single neurons (VanRullen et al.,
2004). This is consistent with the fact that concavities contain
more information than convexities only under the assumption that
there is closure (Feldman & Singh, 2005). Because detection of a
global shape is necessary to identify concavities, and because
categorization is as fast as detection because both rely on the
feedback from stored object information to perceptual input rep-
resentations (Grill-Spector & Kanwisher, 2005), the logical con-
sequence is that explicit processing of parts identified by concav-
ities follows categorization.

A third line of evidence comes from priming studies that have
used fragmented line-drawings (Biederman & Cooper, 1991;
Hayworth & Biederman, 2006). Their results have often been
interpreted as experimental evidence for Biederman’s (1987) RBC
theory. According to RBC, a part decomposition is required before
matching against information in memory occurs. For example,
Biederman and Cooper (1991) deleted either every other image
feature from each part or half the components, and on a second
(primed) block of trials either the same version, the complemen-
tary version, or a same name-different exemplar was shown.
Whereas speed and accuracy of naming identical and complemen-
tary images were equivalent for feature deletion, performance with
identical images was better than for complementary images for
component deletion. However, Cave and Kosslyn (1993) argued
convincingly that the priming results can be explained by
the (completed) overall global shape alone, which is similar for
both complementary fragment deletion versions but different for
both complementary part-deletion versions. Using line-drawings
and different operations to create parts and configurations, they
showed that proper spatial relations between parts are indeed
critical for recognition, whereas it seemed that objects need not
necessarily be parsed at concavities prior to recognition (Cave &
Kosslyn, 1993; Keane, Hayward, & Burke, 2003). Finally, using a
similar priming paradigm as Biederman and Cooper (1991) in
combination with scalp recordings, Schendan and Kutas (2007)
concluded that the representations used for view-based matching
evolve from one in which the global shapes of objects and their
parts are represented regardless of the details of the local contours,
to one in which detailed information—such as the length, orien-
tation, and spatial location—is represented explicitly.

Conclusions

We conclude that the detection of global configural relations
between contour segments can activate object representations
without the detection of concavities, because we found the best
performance on the first presentation with straight fragments of
natural outlines with high part saliency. If part saliency is high,
global shape information in low spatial frequencies can be diag-
nostic and recognition fast. If part saliency is low, many candidate
objects get activated, and a top-down guided part-decomposition
process based on identifying the exact location and shape of
concavities will be necessary to reduce the competition between
the different candidate objects.

Measuring the information in stimuli and finding the conditions
under which time-course contingencies emerge during visual ob-
ject recognition proves to be a fruitful approach to analyze the
behavior of this complex system and to gain insight into the nature
of dynamic object representations. Our results support the idea that
all segments of an object contour are important for object recog-
nition but that straight segments are more important during early
grouping for complex outlines, whereas curved segments are more
important during later matching for simple outlines. Although we
used fragmented object outlines, we believe that this new insight
about visual processing also applies under natural viewing condi-
tions because (a) our results are consistent with research that has
used intact object images (e.g., Bar et al., 2006; Keane et al.,
2003), and (b) they fit nicely into a general global-to-local pro-
cessing strategy (Bar, 2003; Sanocki, 1993, 2001).
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Appendix

Details on Survival Analysis and Stimulus Measurements

Survival Analysis: Descriptive Statistics

Discrete-time hazard probability h(z;) was defined in the current
analysis as the conditional probability that a stimulus i will be iden-
tified in Trial j given that it has not been identified in earlier trials. Let
T represent a discrete random variable whose values 7; indicate the
Trial j when stimulus i is being recognized. For a stimulus identified
in Trial 1, T; = 1, and so forth. Because event occurrence is inherently
conditional we characterize T by its conditional probability density
function: the distribution of the probability that stimulus i is identified
correctly in Trial j given that it was not identified correctly at any time
prior to j. Thus, h(t;) = PHT, = jIT, = j). The set of discrete-time
hazard probabilities expressed as a function of time—Ilabeled
h(t,;)—is known as the population discrete-time hazard function. The
maximum likelihood estimates of the discrete-time hazard function
for a random stimulus in the population (column 5 in Table 2) equals
the number of correct identifications in period j (column 3) divided by
the risk set (column 2).

Whereas the hazard function assesses the unique risk of event
occurrence associated with each trial, the survivor function S(z;;) =
Pr(T; > j) cumulates the trial-by-trial risks of event nonoccurrence
to assess the probability that a randomly selected stimulus will
“survive” Trial j. The maximum likelihood estimates of the sur-
vival probability of a random stimulus for Trial j (column 6 in
Table 2) equals the estimated survival probability for the previous
trial multiplied by one minus the estimated hazard probability for
Trial j.

Measurements of Predictor Variables

The dichotomous and polytomous predictors included global
symmetry (0 = asymmetrical; 1 = symmetrical), fragment type
(0 = salient point [SP]; 1 = midpoint [MP]), object category (0 =

natural; 1 = artifactual), and part saliency (low part salience
[LPS], medium part salience [MPS], high part salience [HPS]) on
the basis of the functional group assignments (SP > MP; SP =
MP; SP < MP) defined by Panis et al. (2008). Outlines for which
the absolute difference in identification performance between SP
and MP versions when presented for 5 s was smaller than 10%
(ISP% — MP%| < 10%) for every fragment length had medium
values on the continuous variables indexing part saliency (MPS
objects: HPS = LPS = 0). HPS objects (HPS = 1; LPS = 0)
showed an advantage for MP fragments (SP% — MP% < —10%)
for at least one fragmentation level and no advantage (ISP% —
MP%!| < 10%) for the other levels, whereas LPS objects (HPS =
0; LPS = 1) showed an SP advantage for at least one fragmenta-
tion level (SP% — MP% > 10%) and no advantage (ISP% —
MP%| < 10%) for the other levels. Remember that we selected
stimuli in the current study that showed no difference for a frag-
mentation level of 20% (i.e., ISP20% — MP20%| < 10%).
Some of the available continuous predictors based on the closed
contour (see also Table 1) included percent correct identification
of the closed contour (concept identifiability) as obtained in Wage-
mans et al.’s (2008) study, number of parts (on the basis of the
empirical segmentation data of De Winter & Wagemans, 2006),
the number of “strong” extrema in the outline (or the number of
peaks in the curvature graph; determined by the shape-specific
adaptive smoothing algorithm of Horng, 2003), contour length,
area (number of pixels in the silhouette version), the average and
variance of the absolute curvature values of every point of a
contour, the number of fragments (the number of SPs), a measure
of compactness (contour length divided by area squared; inversely
related to fragment density), and a measure of outline homogeneity
(number of peaks divided by area squared). The selected contin-
uous predictors that were calculated on fragmented versions were

(Appendix continues)
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a measure of gap length based on the measure of closure of Elder
and Zucker (1994; i.e., the n-th root of the sum of the n gap
lengths, each first raised to the power n; inversely related to
proximity) and a measure of collinearity (i.e., the sum of the
squared differences between each Angle i and pi divided by the
number of fragments minus 1, where the Angle i is measured
between the end of Fragment i and the start of fragment i + 1; the
orientation of the start and end of each fragment was defined as the
slope of the line through the starting or end-point of each fragment
and the fragment point lying two points away).

Variable Selection and Transformation

The only continuous predictor for which the distribution of
values was skewed was compactness, and its values were trans-
formed to the log(compactness X 100). Because (1) the variable
selection process should be sensitive to the objectives of the study,
(2) all redundant and unnecessary explanatory variables should be
excluded on principle, and (3) the particular continuous variable
that is chosen from a subset that intercorrelate is relatively unim-
portant (Ramsey & Schafer, 2002), five continuous predictors
were selected that did not intercorrelate significantly, including
concept, compactness, gap length, collinearity, and the number of
parts. The number of parts intercorrelated significantly with the
number of fragments and with the average and variance of the
curvature values at each point of the contour. Compactness inter-
correlated significantly with outline homogeneity, area, and con-
tour length.

Survival Analysis: Fitting Discrete-Time Hazard Models,
Parameter Interpretation, and Model Building

To fit discrete-time hazard models, we constructed a “Case X
Trial” data set and introduce observed heterogeneity (the hypoth-
esis that stimuli will have different hazard functions if they have
different values for observed predictors) into the definition of
hazard by writing h(t;) = PH(T, = jIT, = jand X,;; = x;;;, Xo,; =
Xojp v+ » Xpy = Xp;). We thus redefine the population value of
discrete-time hazard for Stimulus 7 in Trial j as the probability that
it will be recognized correctly in Trial j, conditional on no prior
event occurrence and its particular values for the P predictors in
that trial.

We used the GENMOD procedure of SAS, which (1) allows
selecting the complementary log—log link function to fit general-
ized linear models, (2) can handle repeated measures (to account
for the fact that the 32 discrete identification times of each exper-
imental unit can be correlated), and (3) computes parameter esti-
mates based on generalized estimating equations (Ballinger, 2004).
Because the GENMOD procedure does not provide any goodness-
of-fit measures when general estimating equations are used, we
implemented the concordance correlation coefficient r, and the
extended coefficient of determination RZ, (Zheng, 2000, pp. 1269 —
1270) to compare the fit of different models and effect specifica-
tions. The scale parameter was fixed to 1, and the exchangeable
variance—covariance structure was selected (because the serial one
is meaningless because objects were presented randomly, and
because there were not enough data points to estimate all the
parameters of the general variance—covariance structure).

Reported parameter estimates are in cloglog hazard units, and
fitted cloglog hazard values can be calculated by summing appro-

priate multiples of the parameter estimates with valid predictor
values (see Footnote 8). The fitted cloglog hazard functions can be
transformed back to fitted hazard functions (see Figure 4 for
examples) by the inverse of the cloglog link {hazard = 1 —
exp[—exp(cloglog hazard)]}. Fitted survivor functions (see Fig-
ure 6 for examples) are calculated on the basis of the fitted hazard
functions as follows: S(#;) = [1 — h(t)] [1 — h(t,_)]. . .[1 — h(t,)]
(Singer & Willett, 2003).

The model building stage consisted of six stages. As recom-
mended by Singer and Willett (2003), we applied the hierarchical
principle (i.e., when a term corresponding to an interaction is
included in the model, the corresponding lower order terms should
also be included). In Stage 1, we modeled the (nonlinear) main
effect of time. Because this was not the focus of our research, we
used a general specification using 10 dichotomous time indicator
variables (Model A in Table 5). The predictor “time” refers to
a linear combination of the trial numbers and was calculated as
the presentation duration in each trial minus 80, that is, value 0
at the first trial, 13 at the second (etc.), 26, 40, 53, 66, 80, 93,
106, and 120.

In Stage 2, all main effects of our predictors were included
together, except fragment type. The main effect with the largest p
value was deleted and the reduced model was refitted. This process
was repeated until each effect was significant, resulting in the
main-effects-only model (Model B in Table 5).

In Stage 3, we evaluated the tenability of the linearity assump-
tion, which states that a continuous predictor’s effect does not
depend on the position of the unit difference along its scale (i.e.,
the effect is linear), and of the proportionality assumption, which
states that the effect of a predictor is constant over time (i.e.,
effects do not vary over time). We investigated interactions be-
tween time and each dichotomous or polytomous predictor P in
separate extensions of the main-effects model using a general
specification (10 dummy variables: P X D8O + P X D93 + ... +
P X D200). Visual inspection of plots of the parameter estimates
and their standard errors of this general specification showed that
the changes in time of the effects of the categorical predictors
could all be captured by a more parsimonious cubic specification
(to model possible significant linear, quadratic, and/or cubic
changes in the increases or decreases of the categorical effect over
time). For each continuous Predictor C on the other hand, we
compared the fit of two specifications of nonlinearity in separate
extensions of the main-effects model, that is, (1) a third-order
polynomial (cubic) specification (C + C? + C?) and (2) a poly-
tomous specification for which we divided the range of values into
eight equally spaced classes (Class 1 with the lowest values served
as the baseline, that is, no parameter was included in the model for
the baseline class) and created a series of seven dummy variables
indicating class membership (C2 + C3 + ... + C8). Adjacent
classes for which the effect evolved similarly in time (assessed by
visual inspection of the parameter estimates from a general spec-
ification of the interaction with time by 10 dummy variables for
each class, i.e., C2 X D80 + C2 X D93 + ... + C2 X D200 +
C3 X D80 + ....+ C8 X D200) were collapsed together (e.g.,
C45). We allowed all terms in both specifications to interact with
time using a cubic specification (e.g., C4 + C4 X Time + C4 X
Time? + C4 X Time?, or C2 + C3 X Time + C> X Time? + C> X
Time®). The specification that increased the goodness-of-fit the
most compared with the main-effects model was selected for each
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continuous predictor. Fitting the selected specifications for each
predictor together generated a nonlinear, nonproportional hazard
model (still including nonsignificant effects).

In Stage 4, we evaluated the additivity assumption, which states
that the effect of a predictor does not depend on the values of other
predictors in the model (e.g., no interactions between predictors).
The first-order interactions between global symmetry, object cat-
egory, and part saliency were included. These interactions were
allowed to change in time (modeled with a quadratic specification;
e.g., Symmetry X HPS + Symmetry X HPS X Time + Symme-
try X HPS X Time?). No other interactions were included because
models including first-order interactions between terms of the
polytomous specifications of continuous predictors did not con-
verge. Models including first-order interactions between global
symmetry, object category, HPS or LPS, and one term of the
polytomous specification of a continuous predictor generated very
large and unreliable parameter estimates.

In Stage 5, the main effect of type and a quadratic specification
of the interaction of type with time were included (i.e., Type +
Type X Time + Type X Time?), together with all interactions up

to order four, between each of these three terms and the other terms
in the Stage 4 model (176 parameters in total; Model C in Table 5).
The effect with the largest p value that was not part of any higher
order interaction was deleted, the reduced model was refitted, and
this process was repeated until each term that was not part of a
higher order interaction was significant (p < .05), leaving us with
a model with 56 parameters.

In Stage 6, we tested whether the interaction between LPS and
fragment type would become significant when limited to a certain
range of trials in different extensions of this 56-parameter model.
This was done by adding the second-order interaction between
fragment type, global part saliency, and a limited time period
(covered by Trials 4 and 5), resulting in the final model with 57
parameters (Model D in Table 5). Extending the time period with
Trial 3 changed the significance status of some predictors of the
56-parameter model (see also Footnote 13).
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