
Dependability Considerations in Wireless Sensor
Networks Applications

Amirhosein Taherkordi, Majid Alkaee Taleghan and Mohsen Sharifi
Computer Engineering Department, Iran University of Science and Technology, Tehran, Iran

Email: {taherkordi, alkaee}@comp.iust.ac.ir, msharifi@iust.ac.ir

Abstract—Recently, the use of wireless sensor networks has
spread to applications areas that are not viable or cost-
efficient to be run on other types of networks. Due to some
critical tasks done in these types of networks, the majority
of sensor networks applications should be dependable and
should be run continuously and reliably without
interruption. Hence, the two more significant dependability
factors that should be nowadays taken into account in
developing wireless sensor networks applications are
‘availability’ and ‘reliability’ of application services. The
specific characteristics and constraints of wireless sensor
networks require a different interpretation of these two
factors when developing applications for such networks. In
this paper, we propose a middleware layer mechanism for
satisfying these two factors as more important dependability
issues in sensor networks applications. We propose an
event-based middleware service that is specifically designed
for wireless sensor networks in which a group of sensor
nodes forms a cluster and a replicated service is run on each
cluster head. The communication model among cluster
members and cluster head is based on the publish/subscribe
scheme. We show how the replicated services and
communication model in cluster nodes satisfy dependability
issues and increase the availability and reliability of
applications running under the proposed middleware.

Index Terms—wireless sensor networks, dependability,
middleware, publish/subscribe, event-based

I. INTRODUCTION

Recent advances in wireless communications and
miniaturization of hardware components have enabled the
development of low-cost, low-power, multifunctional and
intelligent sensor nodes. These devices are small in size
and communicate in short distances over an RF (radio
frequency) channel. These tiny nodes, which consist of
sensing, data processing, and communicating
components, realize the objectives of sensor networks.

A Wireless Sensor Network (WSN) is composed of a
large number of integrated sensor nodes that are densely
deployed either inside the phenomenon or very close to it,
and collaborate through a wireless network in collecting
environmental information or reacting to specific events
[2, 5].

Wireless Sensor Networks are amongst the cutting
edge technologies alongside Ubiquitous and Grid
Computing. Like other such innovative technologies, they
have their own unique constraints, capabilities,

complexities, features and specific operational
environments. These include limited and nonrenewable
energy and resources, small size, low cost, operation in
large numbers in physical environments with dynamic
and fault prone conditions, and data-centric nature of
communication. These specific properties differentiate
WSNs from other distributed data networks, e.g. Ad Hoc
networks, but by their very nature, possess several
characteristics of distributed systems such as fault
tolerance, real-time, security, safety, reliability, and
availability [24].

WSNs applications are used to perform many critical
tasks, including aerospace, automation, weather
prediction, medical monitoring, natural event monitoring,
object tracking, monitoring product quality, combat field
reconnaissance, and military command and control [9,
17]. Properties that such applications must have include
availability, reliability, security and etc. The notion of
dependability captures these concerns within a single
conceptual framework, making it possible to approach the
different requirements of a critical system in a unified
way. The unique characteristics of WSNs applications
make dependability satisfaction in these applications
more and more significant.

Similar to other computing areas, sensor network
computing systems are characterized by four fundamental
properties: functionality, performance, cost and
dependability. Dependability of a system is the ability to
deliver services that can justifiably be trusted. The notion
of dependability is broken down into six fundamental
properties: (1) reliability, (2) availability, (3) safety, (4)
confidentiality, (5) integrity and (6) maintainability.
Informally, it is expected that a dependable system will
be operational when needed (availability), that the system
will keep operating correctly while being used
(reliability), that there will be no unauthorized disclosure
(confidentiality) or modification of information that the
system is using (integrity) and that operation of the
system will not be dangerous (safety) [20].

What we discuss in this paper is about achieving two
primary factors of dependability in WSNs applications,
namely availability and reliability. In the classical
definition, a system is highly available if the fraction of
its downtime is very small, either because failures are
rare, or because it can restart very quickly after a failure
[19]. In WSNs context, availability means that in a long

28 JOURNAL OF NETWORKS, VOL. 1, NO. 6, NOVEMBER/DECEMBER 2006

© 2006 ACADEMY PUBLISHER

sensing duration, how much the network services are up
and continue to sense, send and deliver data to base
station. Reliability is defined as the probability that the
system functions properly and continuously in the
interval� ��,0 , assuming that it was operational at time 0
[18]. Based on this definition, in WSNs applications, we
define functions as a set of processes sending interested
data to base station during application execution.
Therefore, less loss of interested data leads us to higher
reliability of system. To explain how we can achieve
these quality factors in WSNs applications, let us first
define the software levels of typical WSNs.

In general, sensor networks software can be layered
into three levels [7]: sensor software, node software and
sensor network software. The sensor software contains
the process by which events in the real world are sampled
and converted into machine-readable signals. The
generated digital signals play the role of input data for the
higher level. Therefore, sensor software has full access to
the sensor hardware and need not to access the network.
The output and functions of sensor software is used by
sensor node software. This level includes system software
for network maintenance and application specific
software. At this level, a collection of common services
for application development, called middleware, reside
over the operating system. Application programs use this
middleware according to their own specific requirements;
these programs often access the individual node resources
and local services, and do not need to access the network
level capabilities. Finally, the sensor network software
specifies the main tasks and required services of the
entire network without assigning either any specific tasks
or services to individual nodes. The levels of sensor
network software are shown in Figure 1.

Figure 1. Software levels in Wireless Sensor Networks

In this paper, we define a new Event-Driven Approach
for WSNs applications that provides its support services
in the middleware, node application and network levels.
Our main objective is to achieve reliability and
availability in WSNs applications through applying
event-driven approach. We use publish/subscribe scheme
[6] as a core architectural model for providing the
essential event-driven services as middleware and adapt
this core to satisfy the requirements and constraints of
WSNs [23]. WSNs are assumed heterogeneous, and the
publish/subscribe scheme is applied to WSNs
applications by assigning tasks according to individual
node features. Furthermore, the cluster-based

organization of sensor nodes is chosen for data
dissipation.

The rest of paper is organized as follows. Section 2
discusses related works on WSNs application architecture
and middleware. A detailed description of the proposed
solution is presented in section 3 as an event-driven
architectural model to achieve reliability and availability.
Evaluation results are shown in section 4. Finally, section
5 presents conclusions and the issues that remain open for
future works.

II. RELATED WORKS

Several research activities have been carried out in
addressing common quality factors and exclusive factors
of WSNs applications by providing some architectural
models. But, most of research activities focus on
exclusive factors such as power efficiency and traffic
reduction. In most reported works, satisfaction of
common factors is usually derived from satisfaction of
exclusive factors.

In the context of distributed systems, solutions such as
Java RMI (Remote Method Invocation), EJB (Enterprise
Java Beans) and CORBA (Common Object Request
Broker Architecture) are reported in [13, 10]. In [14],
attempts are made to leverage the idea of distributed
system architecture to embedded systems, which is called
GAIA. It features coordination of software units and
heterogeneous networks. Although CORBA and EJB
provide a confident infrastructure for satisfying quality
factors of applications, but using CORBA, XML, SQL
and JAVA is not an efficient choice for sensor networks
because they are normally heavy weighted in terms of
memory and computation.

Another work [7] has applied Service-Oriented
Architecture (SOA) to sensor networks applications. The
main objective of this work is the connection of
consumers and service providers in a loosely-coupled
way in order to improve flexibility and extensibility. It
uses a simple and clear interface to bind all participating
software components and provides service reuse.

Another solution with an artificial intelligence flavor is
the Agent-Oriented Architecture (AOA) reported in [12].
It proposes an infrastructure that applies active agent
technology to sensor networks. The idea of this solution
is that, on the one hand, sensor networks must be
dynamically configurable and adaptive in order to
response actively to events, and on the other hand,
security must be built into sensor networks at the very
initial design stages to prevent any potential threats. The
infrastructure which is provided by this model may be
appropriate for establishing security and increasing the
adaptation of sensor networks.

In event-based area, most of the initial related
researches have concentrated on leveraging event-driven
mechanism in a fixed network. But the emergence of
mobile systems in recent years, with properties such as
client mobility, wireless communications and resource
limitations, has opened up new research topics on how to
efficiently adapt the publish/subscribe model for mobile

Node nNode 1

CPU RadioSensor

Operating System

Node Application

Services

Sensor Network Application

CPU RadioSensor

Operating System

Node Application

Services

JOURNAL OF NETWORKS, VOL. 1, NO. 6, NOVEMBER/DECEMBER 2006 29

© 2006 ACADEMY PUBLISHER

environments. Combination of unique characteristics in
publish/subscribe model makes it advantageous in a
mobile or wireless environment. A few numbers of
researches have been carried out in this area that focus on
different aspects of mobile computing. Due to the
commonalities between mobile environments and sensor
networks, the results of these works provide useful hints
in finding appropriate models and methods for WSNs
applications.

 A more recent work based on event-driven model has
been carried out specifically in the WSNs area by Mires
[16]. In Mires, the publish/subscribe scheme in the
middleware layer of WSNs is provided to facilitate the
development of event-based applications. Perhaps, the
only contribution of Mires is in introducing an
aggregation service into every sensor node to aggregate
data gathered from individual nodes, and to send the
result to another node. The use of this technique has
reduced both the number of message transmissions and
power consumption. Simply said, Mires has merely
introduced a primitive middleware for even-based
communication across sensor networks. Mires do not
discuss about quality factors of proposed middleware.

In this paper, we present an integrated collection of
services as a middleware in WSNs that satisfies both
reliability and availability. In this way, we define our
middleware services according to our reasonable
assumption about heterogeneity of sensor networks. To
provide support for availability and reliability of our
middleware, replicated services are run in more powerful
nodes, as is reported in [8].

III.THE PROPOSED APPROACH

To introduce the services of our proposed approach
and their relations, let us first present an overall view of
the publish/subscribe paradigm. Our assumptions,
challenges in finding suitable components of the
infrastructure and the required components themselves
together with their interactions, are detailed immediately
afterwards [22].

The event-driven mechanism is based on the
publish/subscribe paradigm. According to this paradigm,
a user expresses his/her interest in receiving certain types
of events by submitting a predicate, called the user’s
subscription [6]. When a new event is generated and
published to the system, the publish/subscribe
infrastructure is responsible for checking the event
against all current subscriptions and delivering it
efficiently and reliably to all users whose subscriptions
match the event. If the consumer is unavailable, the
infrastructure can store the event and try to forward it
later. Specifically, the key elements in the
publish/subscribe paradigm are the Notification Service,
Subscription Matching Service and the Subscriptions
Data Store.

Subscription Matching Service is responsible to check
the published event against the subscriptions issued by
subscriber to forward the event towards interested ones.
In the earlier versions of publish/subscribe systems, this

service was subject-based (group-based) so that each
event is dispatched to interested objects based on
predefined subjects or groups.

The inflexibility of subject-based approach had forced
researchers to introduce another approach called content-
based [1, 8]. In content-based method, subscriptions are
defined based on events' contents. For each event, the
content of event is checked against the content of
subscriptions reported from interested objects and
registered in Data Store (where the subscriptions are
preserved and messages are queued before they are
passed to subscribers). If the result of matching becomes
true, then the event is forwarded to interested nodes via
Notification Service.

A. Assumptions
To define our architecture, let us make some

assumptions about the overall sensor network structure.
Firstly, each node may have different capabilities and

execute different functions. In other words, the network
consists of heterogeneous nodes. Therefore, some nodes
may have larger battery capacities and more powerful
processing capabilities, and other nodes may only execute
the sensing functions and lightweight processing
operations.

Secondly, cluster-based mechanism [9,11] is adopted
for node communication and routing. In a cluster-based
system, sensor nodes form clusters; a cluster head for
each cluster is selected according to some negotiated
rules. Sensor nodes only transmit their data to their
immediate local cluster head and the cluster head conveys
the data towards the sink node. Consequently, more
powerful nodes in the topology play the role of cluster
heads and other nodes are responsible for sensing data
and forwarding them to cluster nodes.

We assume that events have a record-based structure.
In record-based approach, notifications are defined as sets
of typed fields characterized by a name and a value. For
instance,

Struct NewSensedData{
 String environmentParam = “Temperature”
 Int paramValue = 23
 Time sensingTime = “14:23”
}

is a record-based notification composed of three typed
fields. So, subscriptions are defined based on the record-
based structure of events. For instance,

{environmentParam == “Temperature” �
(paramValue > 22 � paramValue <34)}

is a sample subscription in which every temperature
event that has a value between 22 and 34 can subscribe to
it.

 Contrasting our chosen structure to EDA, we can infer
that sensor nodes play the role of event sources (ES) in
event-driven mechanism, and the task of subscribing and
notification is assigned to cluster head; thus we name this
node Event Broker (EB). As shown in Figure 2, we
assume that the network may have more than one sink

30 JOURNAL OF NETWORKS, VOL. 1, NO. 6, NOVEMBER/DECEMBER 2006

© 2006 ACADEMY PUBLISHER

node. Thus, our environment consists of several ESs,
some EBs, and one or more sink nodes.

Figure 2. Sensor nodes classification and communications in a cluster-
based organization

An ES generates events in response to changes in an
environment variable that it monitors, such as the location
of an object. Events are published to the EB that matches
them against a set of subscriptions and dissipates through
wireless connection to interested sink nodes. For
example, a sink node subscribes to all events reporting
the location of any object within a certain range.

It should be noted that EB, the server of
publish/subscribe, could be implemented as a single
server (one EB), multiple distributed ones working
together or replicated servers. In this paper, we have
assumed that multiple EBs are replicated to increase
availability and reliability. In a replicated mode, a
subscription is monitored by multiple EBs,
independently.

Since EBs are the server of ESs, it is crucial that EBs
be available and reliable in the duration of sensing. In the
rest of paper, we propose the middleware components in
ES and EB and concentrate in achieving reliability and
availability of services provided in ES and EB.

B. Services in Event Source
As mentioned before, ES senses data as an event from

environment and publishes the generated data to cluster
head, namely EB. At this point, we don’t say anything
about the type of ES and assume that ES is connected to
EB continuously. New issues arise when we consider ES
as a mobile sensor node. Specially, we face two critical
challenges: energy constraint and mobility. Sensor nodes
can be frequently disconnected from the cluster head
because they may be off when the battery runs out, or
they might not be accessible because of transient wireless
communication problems or moving into an area outside
radio reception. In fact, all of these factors can influence
the dependability of WSNs application. So, we should
address above challenges toward satisfying application
dependability issues [22].

At first, we should take into consideration the power
constraint problem in sensor nodes. The bottleneck in

energy consumption of sensor nodes is the process of
transmitting data via radio. In other words, the radio
transmission consumes more energy than processing
tasks.

As an example, Table 1 shows the current draw needed
for MICA node [25] in different states of radio and CPU.
It can be illustrated that the required draw for radio
transmission node is considerably more than the value
needed in active mode of CPU. So, we can save more
battery energy when the number of radio transmissions is
decreased.

To decrease the number of radio transmissions, two
alternatives exist: (1) discarding some data in ES and
refusing to send them to EB and (2) aggregating a set of
sensed data based on fusion algorithms and send the
result to EB. Each one has some drawbacks and benefits
which are explained next.

TABLE I. CURRENT DRAW IN DIFFERENT MODES OF CPU AND RADIO
IN MICA NODE

Events should be discarded on the basis of some
knowledge about the content of events. In other words, if
the content of a sensed event is not of interest to any sink
node, we can discard it. To use this approach, in the
network setup phase, we disseminate the sink node
interest to all other nodes. So, in addition to the process
of checking subscriptions in EB, it is possible that similar
processes may be running in ES. But, due to limited
energy in ES, we cannot do exactly the same as in EB.
Therefore, the energy efficient component should be run
in ES which requires significantly lower energy than the
one running in EB. This mechanism is nicknamed
Quenching in the literature [8, 26].

In Quenching, a “combined active subscription
expression” allmatch is given to ES [26]. The allmatch only
says whether any sink node is interested in the sensed
data; it does not exactly identify the interested sink nodes.
Since the quenching service is very lightweight, there is
no need to duplicate all the work that is being done in EB.
When a new event e is generated, ES checks it against

allmatch . If allmatch (e) = false, it means that no
subscription will match e in EB. Hence the event is
discarded (quenched) at the source. If e matches the call,
then at least one subscription will match, and the event is
forwarded to EB as usual. Thus, the mechanism refuses to
send an uninterested event to cluster head, and the
number of radio transmissions is decreased. Quenching
has proved to be particularly effective in reducing
network traffic and the load of the EB, if a significant

 Mode Current
Active 2.9 mA
Idle 2.9 mA
Sleep 1.9 mA CPU

Off 1 µA
Transmit 12 mA
Receiver 1.8 mA Radio
Sleep 5 µA

Sensor Node (ES)

Cluster Head (EB)

Sink

JOURNAL OF NETWORKS, VOL. 1, NO. 6, NOVEMBER/DECEMBER 2006 31

© 2006 ACADEMY PUBLISHER

portion of the events generated do not match any
subscriptions.

Now let's see what can be done for mobility of ES and
wireless communication problems, which may cause the
frequent connection and disconnection of ES from
network. One option is to make the ES queue all events
that are generated when it is disconnected. Running
quenching on queue during disconnection time is not
reliable because it is quite possible that during this time a
new interest is dissipated from a sink node, and the sink
node cannot contact the ES about newly added
subscriptions. The queuing of all events in disconnection
time may not be feasible too, because ES is often a low
capability storage device. Moreover, the rate of event
accumulation can be very high in ES. Consequently, ES
will have to discard some events once its buffer is filled
up. We may explain the approach as follows [8]:

”At the beginning of a disconnection, ES saves all
events in the buffer. If the queue buffer overflows
during disconnection, the first incoming event after
disconnection is checked for quenching criteria
that it has. If it doesn’t match the criteria then it is
de-queued and a new event is en-queued.
Otherwise, the removing process runs on the
second one until the quenching candidate is found.
Upon reconnection, ES searches for new interests
and updates its quenching service data. It then
filters the queued events by quenching and if
matched send to EB”.

The following sample pseudo code shows the
recursive function for finding and removing a
candidate event when queue is filled up.

Overflow Function in Quenching:

function handleOverflow(){

SensorEvent nextEvent =
Queue.nextElement();
if (nextEvent == null){

Queue.dequeue(Queue.headElement());
 return;

}

boolean isMatch =

Quenching.testLightMatch(nextEvent);
if (isMatch){

handleOverflow();
}else{

Quenching.dequeue(nextEvent);
return;

}
}

Another way to decrease the number of queued
events is to apply the aggregation function on a certain
number of queued data. Consequently, instead of
saving all events, we can only store the aggregated
value of them [16]. To realize this solution, several
research activities have been reported in literature with
titles such as data fusion and aggregation. But this

subject is out of the scope of this paper. So, in our
implementation, the output of aggregation service is
just the simple average result of some input data.

In applications that all interested events need to be
sent to sink node in turn, the aggregation service does
not suffice. We have thus added a new component
(called StateChecker) that checks the residual energy in
a sensor node in specific time intervals. If the energy
value is lower than a threshold, then the component
prevents the publisher to send all of matched data and
instead, it aggregates a specific number of events
through aggregation service and sends the output of
aggregation service to EB via publisher. The idea of
including this component in our middleware has come
from the work reported by Lonescu and Marsin in [27].

Figure 3 shows the middleware components and
their interactions in ES. As mentioned in previous
paragraphs, in time of connecting ES to network, each
new event is checked in Quenching service against
existing interests in a lightweight manner and if the

allmatch yields true, then it will be inserted into built-in
queue of Publisher service for sending data to EB
(cluster head). If the aggregation result is sufficient in
the context of application, quenching calls the
Aggregation service to get the aggregation result of
certain number of event data and quenching gives the
aggregation result to publisher. During disconnection,
all of sensed data is queued in Queue service and our
approach is applied for handling the situation. Also
StateCkecker component is added to publisher to check
the residual energy of node in specific intervals. If the
energy value is lower than a predefined threshold, then
the publisher is forced to send the aggregation result of
some data instead of sending all events.

So far, our effort was on how to cope with power
supply constraints and mobility of sensor nodes. Based
on solution proposed the availability of ES has been
increased. But, the more important side of our solution
is how to satisfy dependability issues in EB because
EB is the heart of a cluster in WSN and if factors such
as availability and reliability are not guaranteed the
overall network may not be dependable.

Figure 3. Components of Event Source (ES) and their interactions

C. Services in Event Broker
We assume that after applying the appropriate

mechanism in ES, the primary event or aggregated result
has reached EB (publish/subscribe server) through a

Quenching Queue

Routing Service n

Publisher

Sensor CPU Radio

Operating System

Aggregation

32 JOURNAL OF NETWORKS, VOL. 1, NO. 6, NOVEMBER/DECEMBER 2006

© 2006 ACADEMY PUBLISHER

specific cluster-based routing algorithm. As mentioned
before, EB has more powerful resources than ES. In this
node, the three important parts are: Notification Service,
Subscription Checker and Subscriptions Storage. These
components and their relationships are shown in Figure 4.

As soon as an event reaches EB, the Subscription
Checker checks the content of the event against the
interests stored in Subscriptions Storage. Because of the
higher flexibility of content-based method for checking
subscriptions, we have preferred to implement the
subscription checker service based on this approach.

Figure 4. Components of Event Broker (EB) and their interactions

The output of subscription checker is a list of sink
nodes that are interested in receiving the checked event.
After finding the interested sinks, the content of event
(along with the event handler [15]) is forwarded to sink
nodes by Notification Service in turn.

The mobility of EB raises some problems [4]. In EB,
when a node is disconnected from the sink, the
subscription checker queues all events for the interested
sink(s) in Queue Service. It should be noted that in EB,
the capacity of queue could be lower than the one in ES.
This is because only the interested events are saved in
EB. So, it is less likely that the queue in EB is filled up.
Also, in reconnecting the EB to sink, we face a large
number of events that should be forwarded to sink
node(s) which lead to high traffic in network. So, it is a
trade off between the sending of all saved events and the
aggregated result which is returned by Aggregation
Service.

D. Replicated Services in EBs
As mentioned before, three forms of EB is envisaged:

centralized, distributed and replicated. We select the third
one for increasing the availability and reliability of our
proposed middleware. The one level cluster-based
organization of sensor nodes makes replication of
services a well-suited mechanism for increasing the
aforementioned quality factors.

It should be noted that what we named as replication in
the context of this paper, is different from conventional
ones. In conventional replicated systems, an individual
request from a client is simultaneously dispatched to all
replicated servers in the system. But, in our proposed
model, the cluster members deliver a request only to the
associated cluster head as one of replicated servers.

If we use a single centralized EB, the overload on the
middleware may cause node failure and consequently all
interested events may be lost. But, in a replicated form, if

one of EBs fails, then a limited number of interested
events may be lost. This may be because after
reconfiguration phase of sensor nodes, the remaining EBs
are responsible for monitoring ESs that lost their EB. So,
the replicated services in EBs make it possible for every
ES to select any EB at any time and send an event to the
associated EB without worrying about subscription
storage and checking, or whether the event has arrived in
the sink or not. This is because, all EBs are the same and
have the same subscription content and checking
strategies.

In general, three desirable properties for a replicated
publish/subscribe are envisaged: orderedness, consistency
and completeness [8]. Orderedness indicates that events
from the same ES are delivered to the user in the order
they are generated at the ES. Consistency indicates that
the set of events delivered to a sink over time must be a
set that can possibly be generated by a non-replicated
system. For example, a replicated system that delivers
duplicates to the sink is trivially not consistent. Finally,
completeness guarantees that the publish/subscribe
middleware delivers all notifications of a client
eventually.

As mentioned, according to the proposed replication
mechanism, it is not necessary to worry about
orderedness and consistency properties of our
middleware. However, the completeness may be slightly
unsatisfied; especially during reconfiguration time that
happens when an ES cannot route an event to a specific
EB until reconfiguration finishes successfully.

Application of power efficient matching algorithm in
EB and replicating EBs based on the cluster-based
organization of sensor nodes is advantageous in that if an
EB fails then after reconfiguration phase of sensor nodes,
the remaining EBs can take care of monitoring ESs that
had lost their EB. So, we will not worry about
unavailability of EBs. Also, the power efficient services
in EBs enhance the target architecture with reliable
components which receive large amount of sensed data
from ESs, process them and then forward them to sink
nodes.

IV.EVALUATION

Evaluation of the proposed approach is done according
to our availability and reliability objectives. We used the
JIST simulator [21] to simulate a 20m length by 20m
width field with 20 similar sensor nodes randomly
deployed. As shown in Figure 5, two sink nodes interact
with 6 cluster heads which were more powerful than the
above 20 nodes. Simulation was run for 200 seconds and
in each second, every sensor node sensed the
environment 4 times and generated events if needed.

For measuring the availability of EB, we run the
mobilizer module in EBs. Due to the mobile nature of
EB, EB was in some occasions disconnected from the
base station. Thus, based on the proposed approach, we
measured the amount of data which was lost during the
failure of a specific EB. In our approach, EB failure starts
the reconfiguration phase of sensor nodes, and the
remaining EBs are responsible for getting data from

Subscription
Checker

Queue

Routing Service n

Notification

Sensor CPU Radio

Operating System

Aggregation Subscriptions

JOURNAL OF NETWORKS, VOL. 1, NO. 6, NOVEMBER/DECEMBER 2006 33

© 2006 ACADEMY PUBLISHER

nodes that had lost their cluster head (orphan nodes) and
routing them to base station. During simulation
approximately 16000 events were generated on a normal
distribution basis in which 3500 base station interested
events should had ideally been received by base stations,
but only nearly 3450 events were received. So we defined
the availability of system (our simulated field) as follows:

cHcMtyavailabili , is the measurement of availability of a
cluster within cluster members and cluster head, and

SinkcHtyavailabili , is the value of availability of
connection within cluster head and the base station.

The simulation result showed that 1.5% of events, i.e.
events generated in reconfiguration times, were lost. So,
system availability was nearly 98.5%.

Figure 5. Simulation field and nodes’ scattering

We modeled the reliability of system by comparing the
generated data in ESs and the received data in base
station. If any data in ES is equally received by the base
station we could claim that our system is highly reliable.
As mentioned before, by the provision of replicated
services in EBs, if one of EBs fails, another EB will
handle in reconfiguration phase the orphan nodes that had
generated events. Since the subscription data in all EBs
are the same, so it can be concluded that the interested
data had reached the base station.

Another important parameter studied in the simulation
was the number of interested events delivered to sink
node compared to the events detected in sensor nodes.
Two mobility issues, namely, EB failure and ES
movement, were taken into account simultaneously. In
Our Approach, EB failure starts the reconfiguration phase
of sensor nodes, and ES movement outside radio
reception results in the queuing of generated events in the
queue service within ES. The queue capacity inside ES

was 100 entries. Similar to the previous simulation, this
simulation was also run for 200 seconds. Our desired
mobility cases (EB failure and ES movement) were
activated at times between 50 up to 100.

As shown in Figure 6, the number of delivered
interested events is slightly less than the actual number of
events that must be delivered. The reason for this slight
difference is that a few interested events are lost during
reconfiguration. The loss rate in Mires Approach is
shown to be higher. This is because mobility in this
approach is not supported.

Figure 6. Event delivery in proposed middleware

V. CONCLUSION

WSNs’ applications have placed new challenges to
application developers due to the low availability of
resources and mobile nature of nodes. We demonstrated
that the publish/subscribe scheme can be successfully
deployed to satisfy the quality factors of WSNs. A target
middleware was designed which provided a power
efficient, asynchronous and fault-tolerant mechanism for
the development of applications to be run over WSNs.

We replicated middleware services on more powerful
nodes called cluster heads. Replicated services in EBs
made the services reliable and available in sensing
duration. Although, we had addressed some of the main
issues arising in the development of WSNs applications
by applying a publish/subscribe middleware in WSNs
computing domain, certain issues remain open for future
work. Enhancing the middleware with some standard
services such as caching and resource management and
some quality factors such as security and safety is one of
our future objectives. Achieving availability and
reliability on nodes in a cluster is another research topic
that will be taken into consideration.

REFERENCES

[1] M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, T.D.
Chandra, “Matching Events in a Content-Based
Subscription System”, In Proceedings of the 18th Annual
ACM Symposium on Principles of Distributed Computing,
pp. 53–61, May 1999.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci,
“A Survey on Sensor Networks”, IEEE Communications
Magazine, pp. 102–114, August 2002.

[3] J. Bloomberg, “Events vs. Services: The Real Story”,
ZapThink, LLC, October 2004.

%57.98
3500
3450)200,0(

3450
3500

sec200

),0(

),0(

,

,

,,

����

�
�

�

��

�

	��

�

�

�

tyavailabili

ventsDeliveredE
EventsInterested

ond
EventsInterested

ventsDeliveredE
tyavailabili

tyavailabili
tyavailabilityavailabilityavailabili

SinkcH

cHcM

SinkcHcHcM

0
50

100
150
200
250
300
350
400

Mire Approach Our Approach

N
um

be
r o

f I
nt

er
st

ed
 E

ve
nt

s

Generated

Delivered

Mires Approach

34 JOURNAL OF NETWORKS, VOL. 1, NO. 6, NOVEMBER/DECEMBER 2006

© 2006 ACADEMY PUBLISHER

[4] G. Cugola, E. D. Nitto, “Using a Publish-Subscribe
Middleware to Support Mobile Computing”, In
Proceedings of the Works-hop on Middleware for Mobile
Computing, November 2001.

[5] D. Culler, D. Estrin, M. Srivastava, “Overview of Sensor
Networks”, IEEE Computer magazine, pp. 41–49, August
2004.

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, A. M.
Kermarrec, “The Many Faces of Publish/Subscribe”, ACM
Computing Surveys 35(2), pp. 114–131, May 2003.

[7] F. Golatowski, J. Blumenthal, M. Handy, M. Haase, H.
Burchardt, D. Timmermann, “Service-Oriented Software
Architecture for Sensor Networks”, International
Workshop on Mobile Computing, IMC’03, Jun 2003.

[8] Y. Huang, H. Garacia-Molina, “Publish/Subscribe in a
Mobile Environment”, In Proceedings of the 2nd ACM
International Workshop on Data Engineering for Wireless
and Mobile Access (MobiDE'01), pp. 27–34, May 2001.

[9] M.Ilyas, I. Mahgoub, “Handbook of Sensor Networks:
Compact Wireless and Wired Sensing Systems”, CRC
Press, 2004.

[10] Java 2 Platform, Enterprise Edition (J2EE).
http://java.sun.com/j2ee/

[11] Q. li, J. Aslam, D. Rus, “Hierarchical Power-Aware
Routing in Sensor Networks”, In Proceedings of the
DIMACS Work-shop Pervasive Networking, May 2001.

[12] Z. Liu, Y. Wang, “A Secure Agent Architecture for Sensor
Networks”, In Proceedings of the International Conference
on Artificial Intelligence, IC-AI '03, Las Vegas, Nevada,
June 2003.

[13] Object Management Group. CORBAservices: Common
Object Service Specification. Technical Report, Object
Management Group, July 1998.

[14] M. Roman, R. H. Campbell, “Gaia: Enabling Active
Spaces”, Department of Computer Science, University of
Illinois at Urbana-Champaig, 2002.

[15] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann, “Pattern-
Oriented Software Architecture, Patterns for Concurrent
and Networked Objects”, John Wiley & Sons, 2000.

[16] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N.
Rosa, C. Ferraz, “A Message-Oriented Middleware for
Sensor Networks”, In Proceedings of the 2nd Workshop on
Middleware for Pervasive and Ad-Hoc Computing, pp.
127–134, New York, USA, 2004.

[17] N. Xu, “A Survey of Sensor Network Applications”,
Computer Science Department, University of Southern
California, 2004.

[18] A. Heddaya, A. Helal, “Reliability, Availability,
Dependability and Performability: A User-Centered
View”, Boston University, Computer Science Department,
Tech. Rep. BU-CS-97-011, 1996.

[19] J. C. Knight, “An Introduction To Computing System
Dependability”, In Proceedings of the 26th International
Conference on Software Engineering (ICSE’04), Scotland,
UK, May 2004.

[20] A. Avizienis, J. Laprie, B. Randell, “Fundamental
Concepts of Computer System Dependability”,
IARP/IEEE-RAS Workshop on Robot Dependability:
Technological Challenge of Dependable Robots in Human
Environments – Seoul, Korea, May, 2001.

[21] R. Barr, Z. J. Haas, JiST/SWANS Web site,
http://www.cs.cornell.edu/barr/repository/jist/, 2004.

[22] A. Taherkordi, M. Alkaee Taleghan, M. Sharifi,
“Achieving Availability and Reliability in Wireless Sensor
Networks Applications”, In Proceedings of the First
International Conference on Availability, Reliability and
Security(ARES'06), in conjunction with the IEEE 20th

International Conference on Advanced Information
Networking and Applications (AINA'06), Vienna, Austria,
April 20-22, 2006.

[23] M. Alkaee Taleghan, A. Taherkordi, M. Sharifi, "A
Publish-Subscribe Middleware for Real-Time Wireless
Sensor Networks", Lecture Notes in Computer Science
(LNCS), No. 3991, Springer-Verlag, pp. 981 – 984, May
28-31, 2006.

[24] M. Sharifi, M. Alkaee Taleghan, A. Taherkordi, “A
Middleware Layer Mechanism for QoS Support in
Wireless Sensor Networks”, In Proceedings of the 4th
IEEE International Conference on Networking (ICN'06),
Mauritius, April 23-29, 2006.

[25] Crossbow Technology, Inc., Wireless Sensor Networks
(product data sheet), http://www.xbow.com/
Products/Wireless_Sensor_Networks.htm, 2003.

[26] B. Segall, D. Arnold, “Elvin has left the building: A
publish/subscribe notification service with quenching”, In
Proceedings of the 1997 Australian UNIX Users Group
Technical Conference, pp. 243–255, 1997.

[27] M. Ionescu, I. Marsic, “Stateful Publish-Subscribe for
Mobile Environments”, In Proceedings of the 2nd ACM
International Workshop on Wireless Mobile Applications
and Services on WLAN Hotspots (WMash 2004), pp. 21-
28, Philadelphia, PA, October 2004.

Amirhosein Taherkordi obtained his B. Sc. degree in
software engineering from Sharif University of Technology,
Iran (2001). He received his M. Sc. in Information Technology
(Software Development) from Iran University of Science and
Technology, Iran (2005). He is currently a research assistant in
Computer Engineering Department at Iran University of
Science and Technology and works on middleware,
dependability issues, and application architectures for wireless
sensor networks. His research interests include software
architecture, distributed computing, wireless networks, sensor
networks and web engineering. Mr. Taherkordi has been a
member of Computer Society of Iran (CSI) from 2005.

Majid Alkaee Taleghan obtained his B. Sc. degree in
software engineering from Sharif University of Technology,
Iran (2002). He received his M. Sc. in Software Engineering
from Iran University of Science and Technology, Iran (2005).
Hi currently pursue his research on challenges in wireless
sensor networks such as middleware, quality of service and
fault tolerance in Computer Engineering Department at Iran
University of Science and Technology. His research interests
include distributed computing, wireless networks, sensor
networks, quality of service, fault tolerance, and web
engineering. Mr. Taleghan has been a member of Computer
Society of Iran (CSI) from 2005.

Mohsen Sharifi is a B.Sc., M.Sc. and Ph.D. graduate of
Victoria University of Manchester, U.K. He is an
associate professor of software engineering and the head
of Computer Engineering Department of Iran University
of Science and Technology, working on distributed
system software in fields such as distributed operating
systems, sensor networks and web.

JOURNAL OF NETWORKS, VOL. 1, NO. 6, NOVEMBER/DECEMBER 2006 35

© 2006 ACADEMY PUBLISHER

