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ABSTRACT

With the rapid development of network visual communications,
there is an urgent need of effective and efficient video quality as-
sessment (VQA) methods for quality control and resource allocation
purposes. In this paper, a spatial and temporal reduced-reference
(RR) VQA measure is combined with a robust video watermarking
approach, leading to a quality-aware video (QAV) system. At the
sender side, both intra- and inter-frame RR features are calculated
from the original video based on statistical models of natural video.
This is followed by error control coding to improve robustness. The
encoded features are then embedded invisibly into the same video
signal using a robust angle quantization index modulation based
watermarking method in 3D discrete cosine transform domain. At
the receiver side, the RR features are extracted and decoded from the
distorted video and employed to predict the perceptual degradation
of the video signal. Experimental results demonstrate the applica-
bility of the proposed approach to a wide range of distortion types
and levels.

Index Terms— video quality assessment, quality-aware video,
natural video statistics, video watermarking, temporal motion
smoothness, angle quantization index modulation

1. INTRODUCTION

Objective video quality assessment (VQA) metrics play an essential
role in network visual communication systems for the evaluation,
control, and improvement of the perceptual quality of video content.
Although recent full-reference (FR) VQA measures have achieved
notable success in predicting perceived image/video quality [1], they
are not applicable in visual communication scenarios because full
access to the original video is not available. Reduced-reference (RR)
VQA measures provide a practically useful solution, which evaluate
video quality with only partial information about the original video
in the form of a set of RR features extracted from the original video
at the sender side [1]. One difficulty in the deployment RR-VQA ap-
proaches is that they require the RR features to be transmitted to the
receiver through a lossless ancillary channel [1], which is often hard
to provide in real-world application environment. This motivated
the ideas of quality-aware image (QAI) [2] and quality-aware video
(QAV) [3], where the extracted RR features are embedded into the
original image/video signal as invisible messages and transmitted to
the receiver together with the image/video content.

In this paper, we propose a novel QAV system based on spatial
and temporal RR-VQA and robust video watermarking. The general
framework is depicted in Fig. 1. At the sender side, the extracted
RR features include intra-frame features based on a statistical model
of the marginal distribution of wavelet coefficients [2], and inter-
frame RR features calculated by temporal motion smoothness mea-

surement computed in the complex wavelet transform domain [4].
An error control encoding scheme, which consists of cyclic redun-
dancy check (CRC) for error detection and low-density parity-check
(LDPC) for error correction [5], is employed to improve the robust-
ness in the subsequent transmission of the RR features. This is fol-
lowed by embedding the encoded RR features into the same video
signal invisibly using a robust angle quantization index modulation
(AQIM) [6] based video watermarking approach in 3D discrete co-
sine transform (3D-DCT) domain. The resulting video is called a
QAV, which is transmitted to the receiver through a lossy communi-
cation channel. At the receiver side, after a distorted version of the
QAV is received, the same feature extraction process as at the sender
side is applied to the distorted video. Meanwhile, the hidden mes-
sages are extracted, followed by error control decoding to recover
the RR features. The error control code has the capability to identify
errors. If it is found that the RR features are not fully recovered cor-
rectly, then the system reports an error message, indicating a failure
in assessing the video quality. Otherwise, the recovered RR features,
together with the corresponding features extracted from the distorted
video, are employed by an RR-VQA algorithm, which evaluates the
perceptual quality degradation of the distorted QAV.

2. RR VQA METHOD

2.1. Intra-frame feature extraction and distortion measure

Let p(x) and q(x) denote the probability density functions of the
wavelet coefficients in the same subband of the same frame in the
reference and distorted images, respectively. The Kullback-Leibler
distance (KLD) between them is

d(p||q) =

∫
p(x) log

p(x)

q(x)
dx . (1)

q(x) can be easily calculated from the distorted frame at the receiver.
p(x) needs to be transmitted from the sender. To do that efficiently,
it is useful to summarize it using a 2-parameter generalized Gaussian
density model that provides a good approximation [2]

pm(x) =
β

2αΓ(1/β)
e−(|x|/α)β , (2)

where Γ(a) is the Gamma function. The model approximation error
is computed as the KLD between pm(x) and p(x):

d(pm||p) =

∫
pm(x) log

pm(x)

p(x)
dx . (3)

In the end, only three RR parameters, α, β and d(pm||q), are ex-
tracted from each subband. At the receiver side, the intra-frame dis-
tortion is computed as an estimate of d(p||q) given by

Dintra = d̂(p||q) = d(pm||q)− d(pm||p) . (4)
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Fig. 1. Framework of the proposed QAV system.

2.2. Inter-frame feature extraction and distortion measure

The inter-frame features are extracted from 2D complex wavelet
transforms applied on a frame-by-frame basis. Consider a family of
symmetric complex wavelets whose “mother wavelets” can be writ-
ten as a modulation of a low-pass filter w(x)= g(x) ejωcx, where ωc
is the center frequency of the modulated band-pass filter, and g(x)
is a slowly varying and symmetric function. The family of wavelets
are dilated/contracted and translated versions of the mother wavelet:
ws,p(x) = 1√

s
w
(
x−p
s

)
, where s ∈ R+ is the scale factor, and

p ∈ R is the translation factor. Let f(x) be a real signal, where x
is the spatial position index. Using Fourier transform properties, we
can compute the complex wavelet transform of f(x) as

F (s, p) = 1
2π

∫∞
−∞ F (ω)

√
sG(s ω − ωc) ejωp dω (5)

where F (ω) and G(ω) are the Fourier transforms of f(x) and g(x),
respectively. A time varying image sequence can be created from
f(x) with rigid motion and constant variations of average intensity:

h(x, t) = f(x+ u(t)) + b(t) , (6)

where u(t) and b(t) indicate image position and background lumi-
nance changes as a function of time. Applying complex wavelet
transform to both sides of Eq. (6) at time instance t, we have

H(s, p, t) =
1

2π

∫ ∞
−∞

F (ω)
√
sG(s ω − ωc) ejω(p+u(t)) dω

≈ F (s, p) ej(ωc/s)u(t) . (7)

We can then define an N -th order temporal correlation function and
energy function as

LN (s, p) =

N∑
n=0

(−1)n+N

(
N

n

)
logH(s, p, t0 + n∆t) ,

MN (s, p) =

N∑
n=0

(
N

n

)
logH(s, p, t0 + n∆t) . (8)

The strength of temporal motion smoothness can be characterized
by the circular variance (CV) curve of the conditional distribution
of the imaginary part of L2(s, p)} versus the real part of M2(s, p).
We found that the CV curve can be well fitted using a 4-th order
polynomial, and therefore the 5 fitting parameters used to describe
the polynomial are employed as the RR features for each complex
wavelet subband.

At the receiver side, the CV curve of the distorted video is calcu-
lated and compared with that of the model CV curve reconstructed
from the RR features. This leads to an inter-frame distortion measure

Dinter =

{
1

N

N∑
n=1

[CV(n)− CVmodel(n)]2
}1/2

, (9)

where N is the number of samples in CV curve, and CV(n) and
CVmodel(n) are the n-th sample computed from the distorted video
and the model CV curve, respectively. Finally, the overall distortion
is computed as the average of intra- and inter-frame distortions:

D =
1

2
(Dintra +Dinter) . (10)

3. ROBUST INFORMATION EMBEDDING

Robustness of information embedding is a critical issue to the suc-
cess of QAV systems. To achieve it, the scalar RR features are first
quantized to 7-bit representations, resulting in a binary RR bitstream.
The bitstream is then expanded by a 16-bit CRC code for error de-
tection, and then encoded using a binary LDPC code for error cor-
rection [5]. The column number of the sparse parity-check matrix of
LDPC encoder was designed to be twice of the row number, so that
it can correct up to 1 bit of error out of every 2 bits.

The error control coded bitstream is embedded invisibly into the
original video using a watermarking scheme. Our method is based
on an AQIM approach, which was shown to be extremely robust to
contrast scaling attacks [6]. The novelty of our scheme is to apply
it to pairs of coefficients in 3D-DCT domain, so that it is not only
robust to scaling, but also to blur and other types of attacks. An ex-
ample is illustrated in Fig. 2, where 1 bit of information is embedded
into the plane composed of 2 3D-DCT coefficients. The plane is di-
vided intoR0 andR1 regions, corresponding to 0 and 1, respectively.
The division is based on angular values and the angular quantization
step is ∆ = π/4. Let a and b be the values of a pair coefficients, and
6 c be the angle of the complex number c = a+ jb. Then the AQIM

Fig. 2. Illustration of AQIM for ∆ = π/4.



Fig. 3. Robustness test of information embedding schemes.

embedding scheme is given by an angular quantization operation

6 cnew = Q(6 c+ d(m))− d(m) ≡ Qm( 6 c) ,

cnew = |c| exp(j 6 cnew) , (11)

where m is the bit being embedded, Q is an angular quantization
operator as exemplified by Fig. 2, cnew is the complex coefficient
pair after embedding, and d(m) is a dithering operator defined as

d(m) =

{
−∆/4, if m = 0

∆/4, if m = 1 .
(12)

At the receiver side, after a distorted version (denoted as cd) of the
embedded complex coefficient pair cnew is received, the embedded
bit can be estimated using a minimum angular distance criterion:

m̂( 6 cd) = argmin
m∈{0,1}

‖ 6 cd −Qm( 6 cd)‖ . (13)

3D-DCT often leads to strong energy concentration when ap-
plied to natural video signals. As a result, the coefficients corre-
sponding to low spatial and temporal frequencies have much higher
energy than that of the high frequency ones. To maximize robust-
ness, we choose the low frequency coefficients for AQIM embed-
ding that are much less sensitive to typical distortions such as com-
pression and noise contamination. Since both 3D-DCT and contrast
scaling are linear operators, 3D-DCT domain AQIM is automatically
robust to contrast scaling attack because the angular value in Fig. 2 is
invariant to scaling. In addition, the coefficients selected for embed-
ding are paired so that two coefficients that form a pair correspond to
the same spatial and temporal frequencies (though may be different
in orientation). This is critical to make the AQIM scheme robust to
blur attack, because blur causes the two coefficients to scale down
by the same ratio, such that the angular value in Fig. 2 remains un-
changed. The value of ∆ is tuned to achieve a compromise between
robustness and imperceptibility of information embedding. The lo-
cations of the selected 3D-DCT coefficients are shared between the
sender and receiver as the embedding key, as illustrated in Fig. 1.

4. IMPLEMENTATION AND EXPERIMENT

In our implementation, every 30 consecutive frames form a group
of picture (GOP), where each frame is decomposed using a complex
version [7] of a two-orientation steerable pyramid transform [8]. The
subband statistics are carried out on the two orientation subbands
at the finest scale by accumulating the coefficients of all frames in
the GOP. These include the marginal statistics of real coefficients
for intra-frame features and the statistics of the temporal correlation
function conditioned on the energy function for inter-frame features.
The intra- and inter-frame RR features are then extracted using the
methods described in Section 2. This results in 8 features for each
subband (3 intra- and 5 inter-frame features) and a total of 16 scalar
features for both subbands. They are converted to 116 bits after 7-
bit quantizations, and 256 bits after CRC and LDPC coding. The
resulting encoded RR bitstream is then embedded into a 3D-DCT
transform of the GOP using the method described in Section 3.

We simulated six types of distortions to test the proposed QAV
system, which include 1) Gaussian noise contamination, where the
distortion level is defined as the standard deviation of noise; 2) Gaus-
sian blur, where the standard deviation of the blur filter defines the
distortion level; 3) line jittering, simulated by shifting each line hor-
izontally by a random number uniformly distributed between [−S,
S], and S defines the jittering level; 4) frame jittering, which is sim-
ilar to line jittering except that the whole frame shifts together; 5)
frame dropping, simulated by discarding every 1 out of N frames
(empty frames are filled by repeating their previous frame) and 12-N
defines the distortion level; and 6) MPEG2 compression, where the
compression ratio defines the distortion level. All distortion types
are observed in real-world scenarios. For example, frame dropping
occurs when the bandwidth of a real-time communication channel
drops; and frame jittering is often caused by irregular camera move-
ment such as hand shaking.

Figure 3 shows the test results for the robustness of information
embedding, where the bit-error rates are calculated without LDPC



Fig. 4. RR VQA consistency with and without QAV information embedding.

correction, which can further improve the robustness. Compared
with the traditional “3DDCT+QIM” method, “3DDCT+AQIM”
leads to consistent improvement for all distortion types. As ex-
pected, the improvement is the most significant for blur distortions.
Since information embedding alters the original video signal and
thus its statistics, it is important to verify that such alteration does
not have significant impact on the performance of the VQA algo-
rithm. A comparison between the RR-VQA evaluation results with
and without QAV information embedding is shown in Fig. 4 for six
types of distortions. It appears that the differences are generally
small relative to the distortion measures. This may be explained by
the fact that the VQA algorithm mostly relies on the variations of the
statistics of the fine scale coefficients, while information embedding
mainly affects relatively lower frequencies of the video content.

5. CONCLUSION

We propose a QAV system that incorporates state-of-the-art RR-
VQA algorithms with a novel robust information data hiding ap-
proach. Such a QAV system has a number of attractive properties: It
provides the useful functionality of “quality-awareness” without af-
fecting the conventional use of the video content; It avoids the neces-
sity of an ancillary channel in the deployment of RR-VQA schemes;
It allows the video content to be converted and distributed using any
existing or user-defined formats, provided the embedded messages
are not corrupted during lossy format conversion; It also provides
an opportunity at the receiver side to partially “repair” the distorted
video signal using the embedded RR features. Future work includes
improving the performance of both the accuracy of RR-VQA and
the robustness of information embedding, and providing meaningful
video quality evaluations in the case that the RR features cannot be
fully recovered (for example, by relating decoding error rate with
perceived video quality).
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