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Abstract 

A plant can track an input command signal if 
it is driven by a controller whose transfer func- 
tion approximates the inverse of its transfer func- 
tion. A stable inverse can be obtained even if the 
plant is nonminimum-phase. No direct feedback 
is used, except that the plant output is moni- 
tored and utilized to  adapt the parameters of 
the controller. A model-reference inverse con- 
trol system can learn to  approximate a desired 
reference-model dynamics. 

Control of internal plant disturbance is ac- 
complished with an optimal adaptive disturbance 
canceller. It does not affect plant dynamics, but 
feeds back plant disturbance in a way that mini- 
mizes disturbance power at the plant output. 

Similar principles can be utilized to control 
nonlinear systems. Neural networks are used to  
build a model of the plant and to  construct its 
“inverse” 

1 Introduction 

This paper presents techniques for solving adap- 
tive control problems by means of adaptive filter- 
ing. 

Many problems in adaptive control can be di- 
vided into two parts: (a) control of plant dynam- 
ics, and (b) control of plant disturbance. Very of- 
ten, a single system is utilized to  achieve both of 
these control objectives. Our approach however 
treats each problem separately. Control of plant 
dynamics can be achieved by preceding the plant 
with an adaptive controller whose transfer func- 
tion is the inverse of that of the plant. Control 
of plant disturbance can be achieved by an adap- 
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tive feedback process that minimizes plant out- 
put disturbance without altering plant dynamics. 

The principle of control of plant dynamics can 
be extended to  deal with nonlinear plants. In 
that case, tapped delay lines and neural networks 
are used in place of linear adaptive filters. 

2 

2.1 

Adaptive Inverse Control for 
Linear Plants 

Direct plant identification 

Adaptive plant modeling or identification is an 
important function. Fig. 1 illustrates how this 
can be done with an adaptive FIR filter. The 
plant input signal is the input to  the ada.ptive 
filter. The plant output signal is the desired re- 
sponse, the target signal for the filter output. 
The adaptive algorithm, LMS 111 or RLS [ 2 ] ,  min- 
imizes mean square error, causing the model P 
to  be a best least squares match to the plant P 
for the given input signal and for the given set of 
parameters (weights) allocated to  ?. 
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Figure 1: Direct plant identification. 

2.2 Inverse plant identification 

Another important function is inverse plant iden- 
tification. This technique is illustrated in Fig. 2. 
The plant input is as before. The plant output 
is the input to  the adaptive filter. The desired 
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response for the adaptive filter is the plant in- 
put in this case. Minimizismean square error 
causes the adaptive filter P-l t o  be a best least 
squares inverse to  the plant P for the given im- 
put spectrum and for the given set of weights 
of the adaptive filter. The adaptive algorithm 
attempts to  make the cascade of plant and adap- 
tive inverse behave like a unit gain. This process 
is often called deconvolution. 
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Figure 2: Inverse identification. 

For sake of argument, the plant is assumed to  
have poles and zeros. An inverse, if it also had 
poles and zeros, would need t o  have zeros where 
the plant had poles and poles where the plant had 
zeros. Making an inverse would be no problem 
except for the case of a nonminimum-phase plant. 
It would seem that such an inverse would need 
to  have unstable poles, and this would be true 
if the inverse were causal. If the inverse could 
be noncausal as well as causal however, then a 
two-sided stable inverse would exist for all linear 
time-invariant plants in accord with the theory 
of two-sided Laplace transforms. 

A causal FIR filter can approximate a delayed 
version of the two-sided plant inverse, and an 
adaptive FIR filter can self-adjust to  this func- 
tion. The method is illustrated in Fig. 3. The 
time span of the adaptive filter (the number of 
weights multiplied by the sampling period) can 
be made adequately long so that the mean square 
error of the optimized inverse would be a small 
fraction of the plant input power. To achieve this 
objective with a nonminimum-phase plant, the 
delay A needs to  be chosen appropriately. The 
choice is generally not critical however. 

The inverse filter is used as a controller in the 
present scheme, so that  A becomes the response 
delay of the controlled plant. Making A small is 
generally desirable, but the quality of control de- 
pends upon the accuracy of the inversion process 
which sometimes requires A to be of the order of 
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Figure 3: Delayed inverse identification for a 
nonminimum-phase plant. 

half the length of the adaptive filter, or less. 
A simulation experiment has been done to il- 

lustrate the effectiveness of the inversion pro- 
cess. Fig. 4 shows the impulse response of a 
nonminimum-phase plant having a small trans- 
port delay. Fig. 5 shows the impulse reponse 
of the best least squares inverse with a delay of 
A = 50 sample periods. Fig. 6 is a convolution of 
the plant and its inverse impulse response. The 
result is essentially a unit impulse at  a delay of 
50. 

Figure 4: Impulse response of nonminimum- 
phase plant. 

A model-reference inversion process is shown 
in Fig. 7. A reference model is used in place of 
the delay of Fig. 3. Minimizing mean square er- 
ror with the system of Fig. 7 causes the cascade 
of the plant and its “model-reference inverse” to 
approximate closely the response of a model M .  
Much is known about the design of model ref- 
erence systems [3]. The model is chosen to give 
a desirable response to  the overall system. Some 
delay may need to  be incorporated into the model 
in order to  achieve low error. 
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Figure 5 :  Impulse response of delayed inverse. 

Figure 6: Convolution of plant with delayed in- 
verse. 

2.3 Adaptive Control of Plant Dynam- 
ics 

Now having the plant inverse, it can be used as 
a controller to  provide a driving function for the 
plant. This simple idea is illustrated in Fig. 8 
for minimum-phase plants. Fig. 9 shows the cor- 
responding scheme for nonminimum-phase sys- 
tems. Many simulation examples have been per- 
formed, with consistently good results, as long as 
the plant is stable or is first stabilized by feed- 

Figure 7: Model-reference plant inverse. 

back. Extensive analysis will be presented in the 
forthcoming book by Widrow and Walach [4]. 
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Figure 8: Inverse control scheme for minimum- 
phase plants. 

Figure 9: Inverse control scheme for nonmini- 
mum-phase plants. 

2.4 Adaptive Plant-Disturbance can- 
celling 

The systems of Fig. 8 and Fig. 9 only control and 
compensate for plant dynamics. The disturbance 
appears at the plant output unabated. The only 
way that the plant output disturbance can be 
reduced is to  obtain this disturbance from the 
plant output and process it,  then feed it back 
into the plant input. The system shown in Fig. 10 
does this. 

In Fig. 10, an exact copy of j is fed the same 
input signal as the plant P.  The output of this 
f' copy is subtracted from the plant output. As- 
suming that p has a dynamic response essentially 
identical to  that of the plant P ,  the difference in 
the outputs is a close estimate of the plant dis- 
turbance. This disturbance is filtered by Q and 
then subtracted from the plant input. The filter 
Q is generated by an off-line process that delivers 
new values of Q almost instantaneously with new 
values of P ,  which adapts continually to  keep up 
with changes in the plant P. 

The filter Q is essentially the best inverse 
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Figure 11: Output of undisturbed plant and out- 
put of disturbed plant, with and without distur- 
bance canceller (canceller turned on at k = 300). 

Figure 10: Disturbance cancelling system. 

(without delay) of P .  The synthetic disturbance 
used t o  train Q should have a spectral character 
like that of the plant disturbance. It is shown in 
the Widrow and Walach book [4] that the dis- 
turbance cancelling system of Fig. 10 adapts and 
converges t o  minimize the plant disturbance at 
the plant output. As such, it is an optimal linear 
least squares system. There is no way to  further 
reduce the plant disturbance. 

The system of Fig. 10 appears t o  be a feedback 
system. However, if P is dynamically the same as 
P ,  the transfer function around the loop is zero. 
The transfer function from the Plant Input point 
t o  the Plant Output point is the same as that of 
the plant alone. Thus, the disturbance canceller 
does not affect the plant dynamics. 

Almost perfect disturbance cancellation is pos- 
sible with a minimum-phase plant. With a 
nonminimum-phase plant, even optimal can- 
celling will not cancel all the disturbance. Fig. 11 
and Fig. 12 show results of a plant disturbance 
cancellation experiment. Although the plant in 
this case was nonminimum-phase, the results are 
quite good. 

3 Nonlinear Inverse Control 

The principles of inverse control can be extended 
to deal with nonlinear systems. Nonlinear sys- 
tems behave quite differently from their linear 
counterparts. For example, whereas a linear sys- 
tem possesses a unique inverse, nonlinear systems 
have only local inverses, valid only in a bounded 
region of the signal space. In addition, left and 

Figure 12: Instantaneous power of plant output 
disturbance (canceller turned on at k = 300). 

right inverses are in general different, as in the 
case of multi-input multi-output linear systems. 
As linear adaptive filters are used to  control lin- 
ear plants, the "inverse" controller for nonlinear 
plants involves a type of recurrent neural net- 
work. The ability of multilayered neural net- 
works to  approximate nonlinear mappings over 
compact regions as detailed in [5] makes them 
useful in identifying direct and inverse models. 

The inverse control of nonlinear plants involves 
a two-stage process where a model of the plant is 
first constructed (identification) and second the 
plant model is inverted. 

The system is modelled through the use of a 
feedforward multilayered neural network fitted 
with tapped delay lines at  its input and output 
and a feedback loop. With an appropriate num- 
ber of hidden neurons, such a neural network can 
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represent a system of the form 

over a bounded region of input space. The choice 
of the integers n and p is part of the modelling 
design and follows from requirements of model 
accuracy. The identification scheme is founded 
on a standard technique, which is the nonlinear 
equivalent of the equation-error formulation de- 
scribed in [6] , and is called a series-parallel model 
in [7]. The choice of this formulation allows the 
use of the standard backpropagation algorithm 
for training the neural network. 

The second step is the design of the controller. 
Once the neural network has been trained to per- 
form plant identification, the controller, also im- 
plemented as a neural network, is trained to  be- 
have like the inverse of the system. The algo- 
rithm used for training the controller is a vari- 
ant of the recurrent backpropagation algorithm 
[8]. As previously mentioned and unlike lin- 
ear systems, nonlinear systems do not commute 
with their inverses. This restriction demands 
that the controller be trained upstream from the 
plant model and that the error signal be back- 
propagated through the plant model as shown in 
Fig. 13. 
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Figure 13: Inverse control for nonlinear systems. 

3.1 Example 

Let's consider the nonlinear plant suggested in 
[7] and defined by the equation: 

The input signal is confined in the interval 
[-1,1]. Fig. 14 shows the training configuration 
for the plant model. It had two inputs, the exter- 
nal input U and the output from the real plant, 
and one output. It had one hidden layer with 10 

units. The result of the plant identification is dis- 
played in Fig. 15. Specifically, the outputs of the 
plant and plant model are compared when the 
same test signal is fed to  their inputs. Here the 
test signal is chosen as a sinusoid with increasing 
amplitude. 
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Figure 14: Configuration for plant identification. 

Figure 15: Result of nonlinear plant identifica- 
tion. 

Training of the inverse controller C is illus- 
trated in Fig. 16. The neural network controller 
had a two-tap tapped delay line as input, a hid- 
den layer with 10 units and one output which 
is fed to  the plant model. The error is back- 
propagated through the plant model using on- 
line recurrent backpropagation. The time plots 
of Fig. 17 show the command input fed to the 
trained inverse controller versus the plant out- 
put. Although there are errors, the agreement 
between the two signals is very good. The impor- 
tant thing to  note is that the controller is trained 
to  be an inverse to  the plant model and not the 
plant itself. Consequently, good performance of 
the controller is contingent on building an accu- 
rate model for the plant. 
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Figure 16: Configuration for training of inverse 
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controller. 
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Figure 17: Performance of inverse controller. 

4 conclusion 

Methods for adaptive control of plant dynamics 
and for control of plant disturbance for unknown 
linear plants have been described. In addition 
extension of control of plant dynamics to nonlin- 
ear plants using neural networks have been pre- 
sented. For their proper application, the plant 
must be stable. An unstable plant could first 
be stabilized with feedback, then adaptively con- 
trolled. Details will be found in the Widrow and 
Walach book, which is in press. 
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