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Abstract—This paper studies the problem of minimum delay
scheduling in wireless networks with multi-packet transmission
capability. Specifically, we assume that the network employs
superposition coding at the physical layer in order to implement
multi-packet transmission. While most studies on superposition
coding assume that unbounded number of packets can be coded
together, physical and MAC layer limitations restrict the number
of concurrent packets in a transmission set. Taking this constraint
into consideration, we formulate the minimum delay scheduling
as a combinatorial optimization problem and study its computa-
tional complexity under different transmission set sizes. We show
that, when the transmission set size is limited to 2 packets, the
problem can be solved optimally in polynomial time. Moreover,
while the complexity of the problem for larger transmission set
sizes is unknown, we present close-to-optimal heuristic algorithms
that compute efficient solutions for the problem in polynomial
time. Numerical results are also presented to study the efficiency
and utility of the presented scheduling algorithms. Our results
show that the heuristic algorithms are highly efficient, achieving
delays that are less than 2% away from the optimal values.

I. INTRODUCTION

In traditional wireless networks, a wireless device can only
transmit or receive a single packet at a time. There are, how-
ever, advanced physical layer techniques such as successive
interference cancellation (SIC) [1] and superposition coding
(SC) [1] that enable, respectively, multiple packet reception
and transmission at a device (even with a single antenna).
With recent advances in multi-user signal processing, the
implementation of multi-packet transmission and reception is
advancing rapidly. Indeed, software-defined radio implemen-
tations of multi-packet reception and transmission have been
reported in the literature [2], [3]. Such techniques increase
the network capacity substantially by decoding the otherwise
colliding packets.

However, appropriate scheduling algorithms are needed to
coordinate transmissions properly in order to create optimal
transmission opportunities for concurrent transmissions in
the network. In practice, even with a single-packet-at-a-time
scheduler at the link layer, a multi-packet capable physical
layer results in some increase in the network throughput by
preventing some of the potential collisions [2]. However, a
multi-packet scheduling algorithm is required to fully exploit
the potential of such a physical layer capability [4]. In
this work, we investigate downlink scheduling in SC-enabled
wireless networks, which is particularly important due to the
dominance of downlink traffic in wireless networks.

A brief description of SC follows. Consider a system

consisting of a transmitter and two receivers (i.e., users)
s1 and s2. Let h1 and h2 denote, respectively, the channel
gain between the transmitter and s1 and s2. Without loss of
generality, assume that |h1| ≤ |h2|. The transmitter commu-
nicates with the receiver si with transmission power pi and
intends to send packet Li to it for i = 1, 2. Using SC, the
user with the low quality channel, i.e., s1, treats the other
user’s signal as noise and achieves the transmission rate of
R1 = log(1 + p1|h1|2

p2|h1|2+N0
), where N0 is the noise power at

the receiver. Since s2 enjoys a higher channel quality, it can
also decode packet L1 destined for s1. After decoding L1, s2
reconstructs the corresponding analog signal and subtracts it
from the combined received signal. This step is essentially
an application of successive interference cancellation. The
remaining signal is not affected by s1’s signal, therefore, L2 is
decoded without any interference from s1. Thus the achieved
transmission rate of s2 is given by R2 = log(1 + p2|h2|2

N0
).

Comparing this rate with the traditional case where both
users treat each others’ signals as noise (s2 achieves the
rate R2 = log(1 + p2|h2|2

p1|h2|2+N0
) in the traditional case), SC

obviously achieves a higher transmission rate.
While the above example demonstrates two levels of decod-

ing, SC may utilize more than two levels to combine packets
for multiple receivers. It has been shown that [5], in a system
with n receivers, for any rate vector r = [r1, . . . , rn] achiev-
able via orthogonal division of resources (time or frequency),
there exists a rate vector r′ = [r′1, . . . , r

′
n] achievable via SC in

which r′ ≥ ri for all 1 ≤ i ≤ n, where ri is the transmission
rate of receiver i. Note that SC exploits disparity of channels
between the transmitter and receivers to provide a higher total
transmission rate. It is more effective when channel gains
across users are more diverse [1]. However when channel gains
were equal, both orthogonalization and SC would result in the
same transmission rates.

In this paper, we investigate the problem of minimum delay
1 Scheduling with Superposition Coding (SSC). The objective
is to minimize the total delay spent to send all the users’ data
using multi-packet transmission capability of SC. Based on the
optimality of SC compared to all orthogonalization methods,
to attain this goal, all packets should be coded together and
transmitted concurrently. However, practical considerations at
the PHY and MAC layer limit the number of packets that
can be coded together to a small constant. Considering this

1We use the terms delay and finish time interchangeably from now on.



constraint, the following questions need to be addressed in
solving SSC:

1) How to partition packets to transmission sets in order to
minimize the transmission time of all packets.

2) How to allocate power to packets in a transmission set
in order to minimize the transmission time of the set.

We note that the latter question has been answered in the
literature. The focus of this work, on the other hand, is on
the former question.

There has been extensive research on resource allocation
on broadcast channels [1], [6]. More recently, in [7], utility
maximization through joint power and rate allocation in fading
OFDMA broadcast channels is investigated. optimizing effec-
tive capacity of multicast service in wireless networks using
SC is addressed in [8]. There has also been a line of works on
scheduling with SC. For example, Eryilmaz et al. [9] proposed
a queue proportional scheduling algorithm and demonstrated
that it achieves the network capacity, while guaranteeing
system stability. Seong et al. [10] extends the work by
proposing an efficient geometric programming formulation for
the optimal power allocation problem over broadcast channels.
Inspiring for our work, the minimum delay region of the
broadcast channel was characterized in [11]. The delay region
is defined as the set of all delay vectors achievable by a
scheduling algorithm when there are no further packet arrival
in the system. Moreover, in [12] a practical design of a SC-
enabled MAC scheduler was presented where the objective
was to optimize throughput. An experimental implementation
and evaluation of SC using software-define radio was pre-
sented in [13].

The main contributions of this paper can be summarized as
follows:
• Minimum-delay scheduling problem is formulated for-

mally.
• An optimal solution to a special instance of SSC where

cardinality of transmission sets is limited to 2 is pre-
sented.

• To cope with the computational complexity of solving
SSC for larger transmission sets, two polynomial-time
heuristics algorithms are proposed.

• Numerical results are provided to demonstrate the effi-
ciency of the proposed heuristics in solving SSC.

The rest of the paper is organized as follows. Section II
describes the network and channel model used in the paper and
formulates the problem. Optimal solution for a special case
of the problem is described in Section II-D. In Section IV,
heuristic algorithms are proposed to solve general instances
of the problem. Sample numerical results are provided in
Section V. Section VI concludes the paper.

II. SYSTEM MODEL

A. Network Model

We consider a wireless network consisting of a base station
(access point) with maximum transmission power P and the
set S = {s1, ..., sn} of receivers.

The base station sends signal x, which is composed of
multiple user signals. The received signal at receiver sl is given
by:

yl = hlx+ wl,

where wl is the Gaussian noise at the receiver, and hl is the
complex channel gain between the base station and receiver
sl. If the transmission power allocated for transmitting sl’s
signal is pl, then the received signal power at the receiver is
given by glpl, where gl = |hl|2 is the corresponding power
gain. In general, for the set of receivers {s1, . . . , sK}, their
allocated transmission powers {p1, . . . , pK}, and power gains
{g1, . . . , gK} such that g1 ≤ · · · ≤ gK , the achievable rate
region of SC is given by [1],

Rl ≤ log
(
1 +

plgl∑K
j=l+1 pjgl +N0

)
, l ∈ {1, . . . ,K} (1)

where N0 is the noise power at a receiver.
Decoding transmitted information requires that both the

base station and the receivers know the channel state informa-
tion (CSI). To obtain this information, each receiver estimates
its channel and feeds CSI to the base station via control
channels. Also, the base station informs every receiver in a
transmission set about the other users CSI at the beginning of
each frame. We assume that changes in channel conditions are
negligible during a scheduling frame.

B. Practical Considerations

Regardless of the objective e.g., delay, throughput, capacity
of the system can be achieved when SC is employed with suit-
able power vector [5]. However, there are practical constraints
that limit the size of the transmission set, i.e., the number of
concurrently transmitted packets. Some of these limitations are
summarized as follows.
• Decoding complexity. Decoding time at the receivers

increases linearly with the size of the transmission set.
To keep the decoding complexity and time manageable,
only a few packets should be coded together.

• Decoding error. Removal of a signal from the composite
signal cannot be done perfectly. Therefore, in practice,
the size of the transmission set cannot be unbounded to
limit the effect of imperfect signal cancellation at the
receivers.

• Minimum SINR requirement. As the size of trans-
mission set increases, the SINR level at the receivers
decreases. Some decoders require a minimum SINR
threshold to be able to decode the signal. Thus, trans-
mission sets should be chosen small enough to satisfy
the SINR threshold.

Due to these restrictions, we assume that transmission sets
could have sizes of at most K where K � |S|. Correspond-
ingly, the Constrained power set of S denoted by PK(S)
is defined as PK(S) = {Sj ⊆ S, |Sj | ≤ K}. Members of
PK(S) are the potential transmission sets that the scheduler
can choose from.



C. Power Allocation
We assume that all the packets have the size of 1. For

a given transmission set, the optimal delay can be attained
when all packets are coded together. However, different power
allocation policies could lead to different results. In the worst
case, the total transmission power P could be allocated to just
one receiver until its packet is sent. This strategy is effectively
equal to orthogonalization of transmissions in time which
offers no SC benefit. Given the increasingly ordered power
gain vector [g1, . . . , gK ] for the set Sj = {s1, . . . , sK}, we aim
to find the power vector [p1, . . . , pK ] that minimizes the delay
for transmission of all users’ information. Seong et al. [10]
showed that the optimal power allocation ensures that all
packet transmissions complete at the same time. When all
packets have the same length, to obtain the same finish
time, all transmission rates should be equal. Consequently,
all signals attain the same SINR which leads to a simple
method to find the optimal transmission powers. A backward
substitution procedure is used starting from the receiver with
the best channel. Suppose s∗ is the maximum achievable SINR
at each receiver. Then s∗ is given by,

pKgK
N0

= s∗ ⇒ pK =
N0s

∗

gK
, (2)

which yields,
pK−1gK−1
pKgK +N0

= s∗ ⇒ pK−1 =
N0s

∗(1 + s∗)

gK−1
. (3)

In general, pK−i is given by the following relation:

pK−i =
N0s

∗(1 + s∗)i

gK−i
. (4)

As
∑K
l=1 pl = P , there are enough equations to find the

optimal power allocation vector. The achievable transmission
rate of the set Sj is then given by RSj = log (1 + s∗).

D. Problem definition
In this paper, we adopt the aggregate delay to transfer

all users’ information or minimal potential delay [14] as the
objective. When the number of users is greater than K i.e.,
|S| > K, multiple transmission sets from PK(S) should be
selected to schedule all users.

Definition 1. Schedule: The set E = {S1, . . . ,Sm|Sj ∈
PK(S)} is called a schedule if ∪mj=1Sj = S and Si ∩ Sj = ∅
for all 0 ≤ i < j ≤ m.

We denote the set of all possible schedules by EK(S). Delay
of schedule E is defined as the summation of delay of all its
subsets i.e.,

D(E) =
∑
Sj∈E

1

RSj
. (5)

Accordingly, we aim to solve the following problem.

Definition 2. SSC: From the set EK(S), find schedule E∗
which results in minimal delay, i.e.,

E∗ = argmin
E∈EK(S)

D(E) . (6)

III. MINIMUM DELAY SCHEDULING ALGORITHMS

Two cases of problem (8) where K = 1 and K ≥ |S|
are trivial to solve. In the former case which is orthogonal
scheduling, packets are sent without using SC. In this case,
the minimum delay is computed as follows

DO(S) =
∑
sl∈S

1

log(1 + Pgl
N0

)
(7)

In the latter case, all packets are coded together and the
problem is reduced to a simple power allocation as illustrated
in Section II-C. However, the general case of 1 < K < |S| is
challenging. In the remainder of this section we present some
algorithms to solve (8).

A. Integer programming solution

Problem (8) can be solved by standard integer programming
algorithms such as branch and cut [15]. To do so, a binary
decision variable xj is defined for each member of PK(S) as
follows

xj =

{
1, Sj is present in the schedule
0, otherwise.

Then, SSC is expressed as the following integer linear
program

Minimize
∑

Sj∈PK(S)

tjxj (8)

subject to:
∑
sl∈Sj

xj ≥ 1, ∀sl ∈ S .

The objective function captures the desire to minimize the
delay while the constraint enforces the coverage of all the
receivers.

The number of variables in (8) is equal to the cardinality of
PK(S) which is given by, |PK(S)| =

∑K
i=1

(
n
i

)
. Since K is

considered to be a small constant, K! is also a constant and(
n
i

)
≤
(
n
K

)
for i < K, therefore,

|PK(S)| =
K∑
i=1

(
n

i

)
=

K∑
i=1

n(n− 1) . . . (n− i+ 1)

i!
≤ K

(
n

K

)
≤ KnK

K!
∈ O(nK), K � n .

Thus, the number of variables in (8) is polynomially
bounded. However, the number of possible schedules |EK(S)|
is exponential in terms of |S|. This can be realized based on
the following argument. Let un denote the number of partitions
of a set of size n to subsets of maximum size K. Based on
the possibilities to choose the subset that contains receiver sn
, un can be computed by the following recurrence relation

un =

K−1∑
i=0

(
n− 1

i

)
un−(i+1),

where
(
n−1
i

)
is the number of possible ways to choose i other

members of that subset. The size of the subset excluding sn
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Fig. 1. SC scheduling where K = 2.

can vary from 0 to K−1. In the simplest form where K = 2,
un is simplified to

un = (n− 1)un−2 + un−1

≥ un−2 + un−1 .

A comparison between the recurrence relation for un and
the one for Fibonacci numbers, i.e., fn = fn−1+fn−2, shows
that the growth rate of un is faster than fn, which we already
know is exponential2.

Thus, exhaustive search of all possible schedules to find the
optimal one is a computationally intensive task. Interestingly,
when the transmission set size is bounded to 2 (K = 2), under
reasonable assumptions regarding the maximum achievable
SINR during transmission of two messages, there exist exact
polynomial-time algorithms to solve SSC which are presented
next. We note that this case is important in practice as in
most implementations, SC is limited to transmission of 2
packets [3], [12] due to aforementioned physical constraints.

B. Polynomial-time solution to SSC for K = 2

Suppose the number of receivers is even, that is n = 2n1
for some n1 ≥ 2. Assume the associated set of power gains
G = {g1, . . . , g2n} are ordered increasingly, that is gi ≤ gj
for all i < j. We define the optimal configuration for G as the
schedule in which each gi, 1 ≤ i ≤ n1 is paired with gn1+i.
Such a schedule is demonstrated in Figure 1. In the next two
lemmas, we show that the optimal configuration is the optimal
schedule when K is 2.

The next lemma demonstrates this case for n1 = 2.

Lemma 1. Let [g1, g2, g3, g4] denote an increasingly sorted list
of power gains. Let S(x, y) denote the maximum SINR that
can be achieved simultaneously by two receivers with power
gains x and y when total power P is distributed optimally
between them. Assume that S(g3, g4) log(1 + S(g3, g4)) < 2
and the maximum transmission set size is set to 2 i.e.,
K = 2. Schedule E∗ = {{g1, g3}, {g2, g4}} always results
in minimum delay.

Proof. Other than E∗, there are two other schedules namely,
E1 = {{g1, g4}, {g2, g3}} and E2 = {{g1, g2}, {g3, g4}}.
Firstly, we demonstrate that the finish time of E∗ is always
lower than the finish time of E1.

2fn ≥ rn−2 for r = 1+
√

5
2

[16].

Case 1: D(E∗) < D(E1).
Let I(, ) denote the reciprocal of S(, ) i.e., I(x, y) =

1/S(x, y). Also let R(, ) and T (, ) denote the rate and time
functions defined respectively as,

R(x, y) = log(1 + S(x, y))

and
T (x, y) =

1

R(x, y)
.

We define function F (.) as follows,

F (y) = T (g1, y)− T (g2, y), for y > g2 .

If F (g3) < F (g4) i.e., F is increasing, we have

T (g1, g3)− T (g2, g3) < T (g1, g4)− T (g2, g4),

and hence,

T (g1, g3) + T (g2, g4) < T (g1, g4) + T (g2, g3),

which shows that E∗ results in a lower finish time in com-
parison to E1. To show that F is increasing, it is sufficient to
demonstrate that its derivative is always positive. Derivative
of F is given by,

dF (y)

dy
= −

∂R(g1,y)
∂y

R2(g1, y)
+

∂R(g2,y)
∂y

R2(g2, y)
.

To show that dF (y)
dy ≥ 0, the following inequality

∂R(gj ,y)
∂y

R2(gj , y)
>

∂R(gi,y)
∂y

R2(gi, y)
,

has to be demonstrated which is equivalent to showing that
∂R(x,y)

∂y

R2(x,y) is increasing in terms of x. Based on definitions of

T (, ) and R(, ), this equals to proving that ∂T (x,y)
∂x∂y < 0.

Towards this goal, we initially establish a relation between
∂T (x,y)
∂x∂y and ∂I(x,y)

∂x∂y . ∂I(x,y)∂y is given by,

∂I(x, y)

∂y
= −

∂S(x,y)
∂y

S2(x, y)
.

Then, ∂I(x,y)∂x∂y is obtained as,

∂I(x, y)

∂x∂y
= −

∂S(x,y)
∂x∂y S2(x, y)− 2∂S(x,y)∂y

∂S2(x,y)
∂x

S(x, y)4

= −
∂S(x,y)
∂x∂y S(x, y)− 2∂S(x,y)∂y

∂S(x,y)
∂x

S(x, y)3
.

(9)

As SINR is always positive i.e., S(x, y) > 0, ∂I(x,y)
∂x∂y is

negative if the numerator i.e.,

I1(x, y) =
∂S(x, y)

∂x∂y
S(x, y)− 2

∂S(x, y)

∂y

∂S(x, y)

∂x
, (10)

is positive or equivalently the following inequality
∂S(x,y)
∂x∂y

∂S(x,y)
∂y

∂S(x,y)
∂x

>
2

S(x, y)
, (11)



holds. As we will show later in the proof, (11) does actually
hold. Repeating the same process for T (, ), ∂T (x,y)

∂x∂y is found
as follows,

∂T (x, y)

∂x∂y
= − 1

R3(x, y)

(
− 2

∂S(x,y)
∂x

1 + S(x, y)

∂S(x,y)
∂y

1 + S(x, y)

+

∂S(x,y)
∂x∂y (1 + S(x, y))− ∂S(x,y)

∂x
∂S(x,y)
∂y

(1 + S(x, y))2
R(x, y)

)
.

(12)

By removing the common terms in the numerator and
denominator of (12), we find that ∂T (x,y)

∂x∂y < 0 only if,

T1(x, y) =
∂S(x, y)

∂x∂y
− ∂S(x, y)

∂x

∂S(x, y)

∂y

R(x, y) + 2

1 + S(x, y)
, (13)

is positive. On the other hand, T1(x, y) > 0 only if
∂S(x,y)
∂x∂y

∂S(x,y)
∂y

∂S(x,y)
∂x

>
R(x, y) + 2

1 + S(x, y)
. (14)

As g3 and g4 are the largest available power gains, assump-
tion of the Lemma i.e., S(g3, g4)R(g3, g4) < 2, implies that
for all power gain pairs x and y in {g1, g2, g3, g4}, we also
have

S(x, y)R(x, y) ≤ 2 . (15)

(15) can be rewritten as follows,

2

S(x, y)
>
R(x, y) + 2

1 + S(x, y)
, (16)

which consists of the right-hand side terms of (11) and (14).
Consequently, if I1(x, y) > 0, (11) holds that based on (16)
implies that (14) also holds which is the sufficient condition to
conclude that T1(x, y) > 0 or ∂T (x,y)

∂x∂y < 0. Therefore, to prove
the first part of lemma, it remains to show that I1(x, y) > 0

or ∂I(x,y)
∂x∂y < 0 .

To this end, we obtain a closed-form representation of S(, )
in terms of the power gains and allocated powers to users.
Based on (2), S(x, y) = P2y

N0
where P1 and P2 are the optimal

powers allocated to user s1 and s2. The following constraints
hold on P1 and P2 (3):

P1x

P2x+N0
=
P2y

N0
and P1 + P2 = P . (17)

Solving the above equations, S(, ) is obtained as follows,

S(x, y) =
−xN0 − yN0 +

√
N0 (4Px2y + (x+ y) 2N0)

2xN0
.

(18)
Accordingly, ∂I(x,y)∂x∂y is found as follows,

∂I(x, y)

∂x∂y
=

(x− y)
(
N0

(
2xyN0 + y2N0 + x2 (4Py +N0)

))
3/2

(2xyN0 + y2N0 + x2 (4Py +N0)) 3

(19)

which shows that ∂I(x,y)
∂x∂y is always negative as x < y. This

completes the proof for the optimality of the E∗ compared to
E1.

Case 2: D(E∗) < D(E2).
In this section, we demonstrate that the optimal configura-

tion results in lower delay than E2. Let G denote the following
function

G(x) = T (g1, x)− T (x, g4) .

If G(g3) < G(g2), then we have

T (g1, g3)− T (g3, g4) < T (g1, g2)− T (g2, g4),

and hence,

T (g1, g3) + T (g2, g4) < T (g1, g2) + T (g3, g4) .

Therefore if G(x) is shown to be decreasing, the result is
achieved. To do so, we demonstrate that dG(x)

dx < 0 where
dG(x)
dx is given by,

dG(x)

dx
= −

∂S(g1,x)
∂x

1+S(g1,x)

R2(g1, x)
+

∂S(x,g4)
∂x

1+S(x,g4)

R2(x, g4)
(20)

The power gain pair {x, g4} achieves a higher SINR than the
pair {g1, x} i.e., S(x, g4) > S(g1, x). Since the log function
is monotonically increasing, this implies that,

1

R2(g1, x)
>

1

R2(x, g4)
.

Therefore, showing the following inequality
∂S(g1,x)

∂x

1 + S(g1, x)
−

∂S(x,g4)
∂x

1 + S(x, g4)
> 0, (21)

for the numerators in (20), proves the result. Using the closed-
form representation of S(, ) (18), we find (21) as,

−g1−x+
√

(ag1)2x+(g1+x)2√
(ag1)2x+(g1+x)2

2x
+

2g4
(
(ax)2+x+g4−

√
(ax)2g4+(x+g4)2

)
√

(ax)2g4+(x+g4)2
(
x−g4+

√
(ax)2g4+(x+g4)2

)
2x

,

(22)

where a = 4P/N0. The first term of (22) is positive as√
(ag1)2x+ (g1 + x)2 > g1 + x .

In addition, we have(
(ax)2 + x+ g4

)2 − (
√
(ax)2g4 + (x+ g4)2)

2 =

(ax)4 + 2(x+ g4)
2 + (ax)2(2x+ g4),

which indicates that the second term is also positive. There-
fore, (22) is positive which completes the proof.

Note that, the assumption regarding the maximum achiev-
able SINR when transmitting two messages concurrently is
not restrictive since the achievable SINR values using SC are
typically low.

In the next lemma, we extend the previous lemma for the
general case of n1 > 2. Although it is not stated explicitly
in the following we assume that any available pair of power
gains x and y satisfies condition S(x, y)R(x, y) < 2.



Lemma 2. For K = 2 and n = 2n1, the “optimal configura-
tion” described above is the solution of SSC.

Proof. The lemma is proved by induction. The induction
basis (case n1 = 2) is proved in Lemma 1. Assume that
the lemma holds for any set of power gains with cardi-
nality n = 2n

′ − 2. To prove the induction step (case
n = 2n

′
), we show that the optimal partition for the set G =

{g1, . . . , g2n′} contains the pair {gn′ , g2n′}. If this is the case,
the optimal schedule for the remaining set G\{gn′ , g2n′ } =
{g1, . . . , gn′−1, gn′+1, . . . , g2n′−1} is obtained based on the
induction hypothesis as {{g1, gn′+1}, . . . , {gn′−1, g2n′−1}}
which proves the result.

Suppose that instead of pairing up with gn′ , in the optimal
partition, g2n′ pairs with gi where gi 6= gn′ . If gi < gn′ ,
according to the induction hypothesis gn′ pairs with g2n′−1
so the optimal solution contains the pairs {gi, g2n′} and
{gn′ , g2n′−1} where i < n′ < 2n′ − 1 < 2n′. However,
according to Lemma 1, if these two pairs are replaced by
{gi, g2n′−1} and {gn′ , g2n′} a solution with lower delay is
achieved . This contradicts the solution’s optimality assump-
tion. The same argument applies for the case where gi > gn′ .
In this case, according to the induction hypothesis, the solution
contains {g1, gn′} and {gi, g2n′ } where 1 < n′ < i < 2n′.
Based on Lemma 1, a solution with lower delay is obtained
if the two pairs are replaced by the pairs {g1, gi} and
{gn′ , g2n′}.

The complexity of finding the optimal configuration for a set
of users is bounded by the complexity of the sort operation
which is O(n log n). This result can be extended to finding
the minimum delay schedule for any odd number of users,
i.e., n = 2n1 + 1, as presented in the next lemma.

Lemma 3. For K = 2 and n = 2n1 + 1, SSC can be solved
optimally in O(n2).

Proof. Using the optimality property of SC [5], the optimal
schedule would include n1 pairs of packets that are coded
and sent together and a packet that is sent individually. There
are n possibilities to select the packet that will be transmitted
without coding. For each of these possibilities, the delay is
computed as the sum of the delay of transmuting the individual
packet and the delay of the rest of packets. The latter one
includes transmission of an even number of packets and can
be obtained via Lemma 2. The optimal schedule is the one
with the minimum delay among all n. Assuming that, the
transmission time for a pair is computed in constant time, the
complexity of finding the optimal schedule is O(n2) which
proves the lemma.

IV. HEURISTIC ALGORITHMS

When K > 2, the optimal schedule does not conform
a simple configuration. We conjecture that this case of the
problem is NP-hard, however, computational complexity of
SSC in this case is an open problem. Thus, in this section, we
focus on heuristic algorithms of polynomial-time complexity
to solve SSC.

A. GreedySelect Algorithm

We first present the GreedySelect algorithm. A greedy
algorithm iteratively makes locally optimal decisions based
on a greedy rule until a solution is found. Assume packets
for subset S ′

of the receivers (S ′ ⊂ S) have already been
transmitted. Suppose Sj is chosen to be transmitted next, then
the optimal finish time for receivers in S − S ′

is given by,

1

RSj
+DSC(S\S

′
∪ Sj), (23)

where DSC(S\S
′ ∪ Sj) is the optimal delay for transmitting

the remaining packets using SC. Then, the greedy rule for
SSC is to choose the subset Sj ∈ PK(S\S ′) that results in
the minimum of (23). Since DSC(S\S

′ ∪ Sj) is not known
prior to scheduling all receives, it is approximated with the
result obtained from orthogonal scheduling. Thus, we define
the cost of subset Sj as follows:

Costj =
1

RSj
+DO(S\S

′
∪ Sj)

=
[ 1

RSj
−DO(Sj)

]
+DO(S\S

′
) .

(24)

In (24), DO(S\S
′
) is constant, therefore, a minimum cost

subset Sj is the one that offers the minimum 1
RSj
−DO(Sj).

A greedy heuristic algorithm based on the definition of cost
in (24) is presented in Algorithm 1. We show the list of
selected subsets by E and the covered receivers by S ′

. Initially
both sets are empty. In each iteration of the while loop, the
subset with the minimum cost is selected and added to the
schedule E . Moreover, the associated receivers are added to S ′

.
This process continues until all receivers are covered. There
are O(nK) subsets to choose from. Assuming constant time to
compute the transmission time for each subset, O(nK) takes
to compute all the costs. At each step, at least one receiver is
covered, therefore the running time of GreedySelect algorithm
is in O(nK+1).

Algorithm 1: GreedySelect Algorithm
Input: S,K
Output: E
begin
S ′ ← ∅;
E ← ∅;
while |S ′ | < |S| do
P ← PK(S − S ′);
Smin ← argminSj∈P

1
RSj
−DO(Sj) ;

E ← E ∪ {Smin};
S ′ ← S ′ ∪ Smin;

The running time of GreedySelect algorithm depends on
the maximum size of transmission set K. As a result, al-
though GreedySelect features polynomial-time computational



complexity, its running time of GreedySelect becomes pro-
hibitive for larger Ks. In the next subsection, we introduce
GreedyMerge algorithm to address this problem.

B. GreedyMerge Algorithm

In GreedySelect, the selected subset is chosen based on the
approximation of finish time for a possibly large number of
remaining users. Moreover, the decision at each step is final.
Instead, in GreedyMerge algorithm, the transmission sets are
greedily and incrementally constructed using a bottom-up pro-
cess. The algorithm is demonstrated in Algorithm 2. The initial
schedule consists of all individual users, similar to orthogonal
transmission scenario. At each step of the algorithm, we merge
the two transmission subsets that combining them gives the
highest gain compared to orthogonal transmission, i.e., the sets
Si and Sj such that

1

RSi
+

1

RSj
− 1

RSi∪Sj

is maximal. The process continues until no further set union
can be done. To find the two subsets that satisfy this condition,
at most

(
n
2

)
∈ O(n2) comparisons are required. Moreover,

in each iteration of the algorithm, one transmission subset is
removed from the schedule. Hence, the number of iterations
is at most n − n/K ∈ O(n). Overall, the computational
complexity of the GreedyMerge algorithm is then in O(n3),
which is independent of K.

Algorithm 2: GreedyMerge Algorithm
Input: S,K
Output: E
begin
Si ← {si},∀i, 1 ≤ i ≤ |S|};
E ← {S1 ∪ S1 ∪ · · · ∪ S|S|};
im ← 0, jm ← 0;
while im, jm 6= 0 do
C = {(Si,Sj), |Si ∪ Sj | ≤ K} ;
Sim ,Sjm ←
argmax(Si,Sj)∈C

1
RSi

+ 1
RSj
− 1

RSi∪Sj
;

if Sim 6= ∅ then
E ← E ∪ {Sim ∪ Sjm} ;
E ← E\Sim ;
E ← E\Sjm ;

V. NUMERICAL RESULTS

In this section, we provide numerical results to compare
different scheduling algorithms in various network configura-
tions. The results are obtained using a simulator that is written
in Python. Each result depicted in this section is obtained by
averaging over 20 simulation runs with different seeds. Power
allocation among users of a transmission set is formulated as
a geometric program which is described next. The program is
implemented using CVXOPT [17] package.

A. Geometric Program for Optimal Power Allocation

Allocation of power among users can be represented as
the maximization of the minimum received SINR i.e., s =
mini{ pigi∑n

j=i+1 pjgi+N0
} for all power gains g1, . . . , gn. This

objective can be expressed as follows

Maximize s

subject to: s ≤ pigi∑n
j=i+1 pjgi +N0

∀i ∈ 1, ..., n

n∑
i=1

pi ≤ P .

The first constraint of the above program can be represented
as

n∑
j=i+1

spjgi + sN0 ≤ pigi .

Due to term spj , this is a quadratic constraint which its
associated second-order matrix is not positive semidefinite so
the problem is nonconvex [18]. However s, pi, gi, P , and N0

are all positive so the objective and constraints are posyno-
mials and the problem can be transformed to the following
geometric program [19],

Minimize s−1

subject to:
n∑

j=i+1

spjp
−1
i + sp−1i g−1i N0 ≤ 1 ∀i ∈ 1, ..., n

n∑
i=1

pi
P
≤ 1 .

With a logarithmic change of variables the problem is trans-
formed to a convex problem which can be solved efficiently
and reliably. At the optimal point, all instances of the first
constraint of (25) become active and all users will receive the
same SINR s∗.

B. Simulated Algorithms

In addition to GreedySelect and GreedyMerge algorithms,
the following algorithms have been also implemented in our
simulations:

• Optimal. This case represents coding all packets with SC
without any bound on the size of the transmission sets.

• ConstOptimal. In this case, the size of the transmission
sets is bounded. The scheduling problem formulated
in (8) is solved numerically using Gurobi Optimizer [20]
to find the optimal solution in this case.

• Random. In this algorithm, the number of transmission
sets is determined to be d nK e. For each user one of the
transmission sets is selected randomly.

• Orthogonal. Messages are sent orthogonally and the
finish time is computed as formulated in (7).



C. Simulation Parameters

The simulation parameters are adopted from [21] as the
assumptions about the channel gains are consistent with the
standard 3GPP propagation models. The power gain between
the sender and a receiver is g = f(d), where d is the distance
from the sender to the receiver in (km). Also, f(d) = 10h0d−κ

with path loss exponent κ = 3.5 and h0 = −14.4. The
background noise is N0 = −174 dBm (Hz−1). The bandwidth
is 1 MHz and the maximum power P is selected to be 8W,
12W, or 16W. We simulate a base station that covers a circular
area of radius 1 km. Users are uniformly distributed in the area.
In our simulations, packet sizes are assumed to be equal and
set to L = 1 kb.

D. Effect of Transmission Power

In the first set of simulations, we evaluate the effect of
changing the maximum transmission power of the base station.
Three power levels of 8W, 12W, and 16W are considered.
The results are shown in Figure 2. We change the number of
receivers from 6 to 15 and record the finish times obtained for
all of the above algorithms. As depicted in the figure, a higher
transmission power results in a lower finish time. In addition,
as the number of users increases, the finish time increases as
well. Figure 2 shows that SC methods constantly outperform
the orthogonal algorithm by a large margin. Notably, 30−40%
reduction in the finish time is observed using a limited form
of SC (i.e., ConstOptimal) in comparison to the orthogonal
scheduling, in all cases.

E. Effect of Transmission Set Size

The maximum transmission set size (K) is changed in
this experiment to demonstrate its effect on the performance
of SC scheduling. As shown in Figure V-E, decreasing K
results in larger finish times. However, even when K is
set to the minimum value of K = 2, the gain of using
SC is substantial (about 27% improvement compared to the
orthogonal scheduling). This is about 60% of the gain that can
be obtained using SC without the bound on the transmission
set size (which can achieve about 46% improvement compared
to the orthogonal scheduling).

F. Performance of Greedy Heuristics

We have already observed in Figure 2 that the finish times
obtained with ConstOptimal, GreedySelect, GreedyMerge al-
gorithms are very close. To evaluate our heuristic algorithms,
GreedySelect and GreedyMerge are compared with the random
scheduling algorithm. As expected, the heuristic algorithms
outperform the random algorithm in all cases. An interesting
observation is that, while the results obtained from GreedyS-
elect and GreedyMerge algorithms are almost the same, they
are slightly in favor of GreedyMerge. This can be related to
the fact that GreedyMerge works on smaller transmission sets
to build larger ones. As a result, at each step of the algorithm,
it makes smaller moves towards minimizing the finish time,
which results in a slight improvement in its performance.
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(a) P = 8W .
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(b) P = 12W .
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(c) P = 16W .

Fig. 2. Finish time with changing transmission power, K = 3. As
demonstrated, a higher transmission power results in a lower finish time. In
addition, even with limited form of SC (K is set to 3), 30 − 40% reduction
in the finish time is observed.
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Fig. 3. Finish time with changing transmission set size, P = 8W . Larger
transmission set size results in smaller finish times. Around 60% of the
gain that can be obtained using unbounded SC compared to orthogonal
transmission is also achievable when SC is used with bounded transmission
set size of K = 2.
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Fig. 4. Finish time of different heuristic algorithms, P = 8W , K = 3. Finish
times obtained from GreedySelect and GreedyMerge are compared with the
finish times achieved from the random algorithm. The GreedyMerge works
better than the GreedySelect algorithm while both outperform the Random
algorithm considerably.

VI. CONCLUSION AND FUTURE WORKS

The problem of minimum delay (in terms of the finish time)
scheduling with superposition coding is investigated in this
paper. Considering physical layer constraints, a simple frame-
work to model SSC as an optimization problem is provided
and complexity of the problem is discussed. Several algorithms
are presented to solve SSC for different transmission set
sizes. Through simulations, it is shown that the presented
algorithms are able to improve finish time between 27-40%
compared with the traditional orthogonal scheduling. Several
issues are considered as possible future works. First, existence
of polynomial-time algorithms to solve the problem when K

is larger than 2 is unknown. However, we conjecture that this
case is NP-hard. Moreover, we believe that the upper bound
that is set on the SINR values to conform to the optimal
configuration is unnecessary and the algorithm is correct for all
SINR values. However, proving the result for general SINR’s
seems to be challenging as the closed-form of the achievable
SINR is complex. In addition, in this work, we considered that
communication between the base station and receivers takes
place on a single channel. In the future, we plan to extend
this work to parallel channels, where frequency bandwidth is
divided into many subchannels. In this case, each user could
have different power gain on different subchannels.
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