
1

Analysis of Min-Sum based Decoders Implemented

on Noisy Hardware
Christiane L. Kameni Ngassa∗†, Valentin Savin∗, David Declercq†

∗CEA-LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble, France
†ETIS ENSEA/UCP/CNRS UMR 8051, 95014 Cergy-Pontoise Cedex, France

{christiane.kameningassa, valentin.savin}@cea.fr, declercq@ensea.fr

Abstract—Motivated by the problem of designing fault-tolerant
memories built out from unreliable components, this paper inves-
tigates the performance of two noisy Min-Sum-based decoders
on Binary Symmetric Channels. We analyze the performance of
the noisy Min-Sum decoder in terms of useful regions and target
bit-error rate threshold values, derived by using “noisy” density
evolution equations. We also present the finite length performance
of two Min-Sum based decoders, and point out the excellent
performance of the noisy Self-Corrected Min-Sum decoder, which
exhibits almost the same performance as the noiseless decoder.

I. INTRODUCTION

One of the most critical challenges for the next-generation

electronic circuit design is the nanoscale integration of chips

built out of unreliable components. The ineluctable integration

density increase and the imperative requirements of low-

energy consumption, for energy preservation, can only be

sustained through low-powered components, which will be

inherently unreliable. The design of storage, interconnect, and

processing elements will require completely new approaches,

which are inconceivable without the use of powerful fault

tolerant techniques.

This paper is motivated by the problem of designing fault-

tolerant memories built out from unreliable components. In

traditional models of memory systems with error correction

coding, it is assumed that the operations of an error correction

encoder and decoder are deterministic and that the noise exists

only in the storage (memory) channel. This assumption is

certainly appropriate in systems designed so that the reliability

of logic gates used in the encoder and decoder is many orders

of magnitude higher than reliability of memory cells. However,

if digital logic in the encoder and decoder is built from faulty

components, then the errors occurring at the gate level do

affect operations performed in the encoder and decoder, and

reduce the reliability of a whole system.

Except the pioneered works by Taylor and Kuznetsov on

reliable memories [1], [2], later generalized in [3] to the case of

powerful hard-decision decoders, this new paradigm of noisy

decoders has merely not been addressed until recently in the

coding literature. It is worth noting that Taylor also proved

that no decoding scheme other than iterative Low-Density

Parity-Check LDPC decoding [4] can achieve non-zero storage

capacity. Roughly, the storage capacity is the ratio between

the amount of data stored in the memory and the number of

faulty components of the memory (consisting of both noisy

registers and the correcting circuit). Recently, the asymptotic

behavior of the noisy Gallager-A and Gallager-B LDPC de-

coders (defined over binary or non-binary alphabets) has been

investigated [5], [6]. However, these papers deal with very

simple error models, which emulate the noisy implementation

of the decoder, by passing each of the exchanged messages

through a binary (or non-binary, for non-binary LDPC codes)

symmetric channel.

This paper deals with more powerful iterative decoders,

namely the Min-Sum (MS) and Min-Sum-based decoders.

While we consider transmission over a Binary Symmetric

Channel (which models the storage channel), we also propose

probabilistic error models for the arithmetic components of

the MS decoder, in order to emulate its noisy implementation.

We further analyze the asymptotic performance of the noisy

Min-Sum decoder, and provide useful regions and target-BER-

threshold values [5] for a wide range of parameters of the

proposed error models. Finally, we investigate the finite length

performance of the noisy Min-Sum and Self-Corrected Min-

Sum decoders.

II. LDPC CODES AND MIN-SUM ALGORITHM

A. LDPC Codes

LDPC codes [4] are linear block codes defined by sparse

parity-check matrices. They can be advantageously represented

by bipartite (Tanner) graphs [7] and decoded by message-

passing iterative algorithms.

We consider an LDPC code defined by a bipartite (Tanner)

graph H, with N variable-nodes and M check-nodes [7].

Variable-nodes and check-node are denoted, respectively, by

n ∈ {1, 2, ..., N} and m ∈ {1, 2, ...,M}. H(n) and H(m)
denote the set of neighbor nodes of the variable-node n and

of the check-node m, respectively.

We further consider a codeword (x1, . . . , xN) that is sent

over a Binary Symmetric Channel (BSC) with crossover

probability p0, and denote by (y1, . . . , yN) the received word.

The following notation will be used throughout the paper, with

respect to message passing decoders:

• γn is the log-likelihood ratio (LLR) value of xn according

to the received yn value; it is also referred to as the a

priori information of the decoder concerning the variable-

node n;

• γ̃n is the a posteriori information (LLR value) of the

decoder concerning the variable-node n;

2

• αm,n is the variable-to-check message sent from variable-

node n to check-node m;

• βm,n is the check-to-variable message sent from check-

node m to variable-node n.

B. Min-Sum Decoding

The MS decoding works as follows. First variable to-check-

messages are initialized according to the corresponding a

priori LLR values. Then each decoding iteration consists of

three steps, namely the check-node (CN) processing step, the

a posteriori (AP) information update, and the variable-node

(VN) processing step.

Initialization

• γn = log

(
Pr(xn = 0|yn)

Pr(xn = 1|yn)

)
= (1− 2yn) log

(
1− p0

p0

)
;

• αm,n = γn, ∀ n ∈ {1, . . . , N} and m ∈ H(n);

Iterations

• CN-processing: ∀ m ∈ {1, . . . ,M} and n ∈ H(m)

βm,n =


 ∏

n′∈H(m)\n

sgn(αm,n′)


 min

n′∈H(m)\n
(|αm,n′ |)

• AP-update: for ∀ n ∈ {1, . . . , N}

γ̃n = γn +
∑

m∈H(n)

βm,n

• VN-processing: for ∀ n ∈ {1, . . . , N} and m ∈ H(n)

αm,n = γ̃n − βm,n

Finaly, note that each iterations also comprises a hard

decision step (not shown in the algorithm), in which each

transmitted bit is estimated according to the sign of the a

posteriori LLR value, and the syndrome of the estimated

word is computed. Decoding algorithm stops when whether

the syndrome is zero or a maximum number of iterations is

reached.

C. Fixed-Point Min-Sum decoder

We consider a fixed-point Min-Sum decoder, in which the

exchanged messages (αm,n and βm,n) are quantized on q bits.

The a posteriori information γ̃n is quantized on q̃ bits with

q̃ > q (usually q̃ = q + 1, or q̃ = q + 2). We further denote:

• M = {−Q, . . . ,−1, 0,+1, . . . , Q−1}, where Q = 2q−1,

the alphabet of the exchanged messages;

• M̃ = {−Q̃, . . . ,−1, 0,+1, . . . , Q̃−1}, where Q = 2q̃−1,

the alphabet of the a posteriori information;

• sM : Z → M, the q-bit saturation map defined by:

sM(z) =





−Q, if z < −Q

z, if z ∈ M
Q− 1, if z ≥ +Q

• s
M̃

: Z → M̃, the q̃-bit saturation map defined in a

similar manner as the previous one

The decoder is initialized by γn = 1−2yn ∈ {−1,+1} ⊂ M,

∀n ∈ {1, . . . , N} (hence the multiplicative factor log
(

1−p0

p0

)

is omitted from the definition of γn).

Finally, note that saturation maps sM and s
M̃

define

the fixed-point saturation of the exchanged messages and a

posteriori LLR values, during the iterative decoding process.

III. ERROR MODEL FOR NOISY ARITHMETIC

COMPONENTS

In order to emulate the noisy implementation of the VN-

processing step and the CN-processing step we propose error

models for the two arithmetic components of the decoder,

adders and the comparators, as well as an error model for

the logic XOR gate needed to compute the sign of the check-

to-variable node messages. We shall not consider here the case

of errors that may occur due to the temporary storage of the

exchanged messages in possibly noisy registers (in order not to

depend on a specific decoder architecture). However, we note

that the effect of noisy register on the exchanged messages can

be integrated into the probabilistic models of the arithmetic

components, in the sens that adding noise in those registers

would modify the parameters of the probabilistic arithmetic

components.

A. Model for the Noisy Adder

Adders are used in the decoder to compute the a posteriori

information γ̃n (quantized on q̃ bits) and the variable-to-check

node messages αm,n (quantized on q bits). Given that q̃ > q,

we only consider q̃-bits adders (which also corresponds to

practical implementations, since the value of αm,n is derived

from that of γ̃n).

The noisy (probabilistic) adder is defined by the following

parameters:

• pa is the probability of the adder’s output being in error;

• qe is the number of bits of the adder output, starting from

the least significant bit (LSB), that can be affected by

errors. Hence, qe ≤ q̃, and it is referred as the depth of

the probabilistic model.

The probabilistic model is further specified as follows. Let

d be an integer, referred to as error-pattern, for which the

positions of 1’s (within its binary representation) indicate the

locations of the erroneous bits in the adder’s output. The output

of the adder is error-free if and only if d = 0. The error-pattern

d belongs to an alphabet D, which is defined as follows.

• When qe < q̃ the error-pattern d is an unsigned integer

represented on qe-bits, hence D = {0, 1, . . . , Qe}, with

Qe = 2qe − 1.

• When qe = q̃ the sign of the output may also be in error,

hence d is a signed integer represented on qe = q̃ bits

and D = M̃ = {−Q̃, . . . ,−1, 0, 1, . . . , Q̃− 1}

The output of the noisy adder is obtained by performing a

bit-wise xor operation between the output of the noiseless

adder and d. Furthermore, we consider that all non-zero error

patterns have equal probability. Since pa =
∑

d 6=0 Pr(d),
it follows that for any d 6= 0, Pr(d) = pa

|D|−1 , while

p(0) = 1− pa. Thus, the probabilistic adder is defined by:

apr(x, y) = s
M̃
(x+ y) ∧ d, ∀(x, y) ∈ M̃ × M̃,

where d is drawn randomly from D according to the above

probabilities, and ∧ symbol denotes the bitwise XOR operation.

Table I gives an example of an erroneous adder output, for

q̃ = 5 and qe = 4. In this case, since qe < q̃, the sign bit of

the output cannot be affected by errors. However, it worth

3

Table I
EXAMPLE OF AN ERROR INJECTION IN THE OUTPUT OF THE NOISY ADDER

integer 2’s complement bit representation

exact output −11 1 0 1 0 1

error pattern 6 0 1 1 0

erroneous output −13 1 0 0 1 1

bit position q̃=5 qe=4 3 2 1

noting that in case of an “addition chain”, as for instance

(x+ y)+ z, the sign of the noiseless fixed-point output, given

by s
M̃
(s

M̃
(x+ y)+ z), may be different from the sign of the

noisy output, given by apr(apr(x, y), z).
Finally, we note that the depth parameter qe is used to

investigate the decoder behavior when errors may occur on

increasing significantly bits. It can be used as a guideline for

the hardware architecture of adders made from noisy compo-

nents (logic gates). In order to ensure a target performance

of the decoder, adders should be specifically designed, such

that to be compliant with the maximum admissible qe value

(e.g. by using classical fault-tolerant solutions for the MSBs,

as modular redundancy).

B. Model for the Noisy XOR Logic Gate

The probabilistic error model of the noisy XOR is much

more simple, and it is specified only by a single error proba-

bility parameter, denoted by px.

For any a, b ∈ {0, 1} the probabilistic XOR of a and b, denoted

by xpr(a, b) is defined by:

xpr(a, b) =

{
XOR(a, b), with probability1− px

XOR(a, b), with probabilitypx

C. Model for Noisy Comparator

Similarly to the XOR operator, the probabilistic error model

of the noisy comparator is simple, and it is specified only by a

single error probability parameter, denoted by pc. We consider

q-bit comparators that are used at the CN-processing step. For

any x, y ∈ M the probabilistic minimum of x and y, denoted

by mpr(x, y) is defined by:

mpr(x, y) =

{
min(x, y), with probability1− pc
max(x, y), with probabilitypc

IV. NOISY FIXED-POINT MIN-SUM DECODER

A. Noisy Min-Sum decoding

Using the previous notation, the noisy fixed-point Min-Sum

decoder can be described as follows (probabilistic components

appear in red):

Initialization

• γn = 1− 2yn ∈ {−1,+1} ⊂ M, ∀ n ∈ {1, . . . , N};

• α
(0)
m,n = γn, ∀ n ∈ {1, . . . , N} and m ∈ H(n);

Iterations: for ℓ ≥ 1

• CN-processing: ∀ m ∈ {1, . . . ,M} and n ∈ H(m)

sgn
(
β
(ℓ)
m,n

)
= xpr

(
xpr

(
sgn(α

(ℓ−1)
m,n1

), sgn(α
(ℓ−1)
m,n2

)
)
· · · ,

sgn(α
(ℓ−1)
m,ndc−1

)
)

|β
(ℓ)
m,n| = mpr

(
mpr

(
|α

(ℓ−1)
m,n1

|, |α
(ℓ−1)
m,n2

|
)
· · · , |α

(ℓ−1)
m,ndc−1

|
)

• AP-update: for ∀ n ∈ {1, . . . , N}

γ̃(ℓ)
n = apr

(
apr

(
γn, β

(ℓ)
m1,n

)
· · · , β(ℓ)

mdv
,n

)

• VN-processing: for ∀ n ∈ {1, . . . , N} and m ∈ H(n)

α(ℓ)
m,n = apr

(
γ̃(ℓ)
n ,−β(ℓ)

m,n

)

In the CN-processing step, sgn(x) denote the sign bit, in

{0, 1}, of the message x. Finally, we note that the hard

decision and the syndrome computation step, mentioned at

the end of Section II-B, are assumed to be noiseless.

B. Density Evolution for the noisy Min-Sum decoding

The objective of the density evolution technique is to

recursively compute the probability mass functions of ex-

changed messages, through the iterative decoding process.

This is done under the independence assumption of exchanged

messages, holding in the asymptotic limit of the code length, in

which case the decoding performance converges to the cycle-

free case. Concentration and convergence properties for the

asymptotic performance of noisy message-passing decoders

have been proved in [5].

We derived density evolution equations for the noisy fixed-

point MS decoding, not included here due to space limitations.

However, density evolution equations for the noisy fixed-point

MS decoding with parameters pa > 0, pc > 0, but px = 0
(i.e. XOR gates needed to compute the sign of the check-to-

variable node messages are assumed to be noiseless) have been

provided in [8]. These equations can be ready generalized to

the case px > 0, and they will be included in an extended

version of this paper.

1) Useful region: Since the input error probability can

actually be increased when the decoder is run on noisy

hardware, the first step is to evaluate the channel and hardware

parameters yielding a final probability of error (after decoding)

less than the channel error probability. Using the notation from

[8], we denote by P
(ℓ)
e the error probability of the decoder at

iteration ℓ. Following [5], decoder is said to be useful if the

lim
ℓ→∞

P (ℓ)
e exists and:

lim
ℓ→∞

P (ℓ)
e ≤ p0

where P
(ℓ)
e is the error probability at iteration ℓ, and p0 is

the crossover probability of the BSC. The ensemble of the

parameters that satisfy this condition constitutes the useful

region of the decoder.

2) Threshold region: For noiseless-decoders traditionally

considered in classical coding theory, the decoding threshold

is defined as the supremum p0, such that the error probability

converges to zero as the number of decoding iterations goes

to infinity. However, for noisy decoders this error probability

does not converge to zero, and an alternative definition of the

decoding threshold has been introduced in [5]. Accordingly,

for a target bit-error rate η, the η-threshold is defined by:

p∗0(η) = sup{p0 : lim
ℓ→∞

P ℓ
e < η}

where p0 is the crossover probability of the BSC channel.

4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

p
0
 (

ch
an

n
el

 e
rr

o
r

p
ro

b
ab

il
it

y
)

pa (adder error probability)

pinf < 10
-6

10
-6

 < pinf < 10
-5

10
-5

 < pinf < 10
-4

10
-4

 < pinf < 10
-3

pinf > p0 black border: pinf = p0

red border: pinf < p0

pinf = 10
-6

pinf = 10
-5

pinf = 10
-4

pinf = 10
-3

Figure 1. Useful region for pa > 0 with qe = 4 (px = pc = 0)

V. ASYMPTOTIC ANALYSIS OF THE NOISY MIN-SUM

DECODER

Density evolution equations for noisy fixed-point MS de-

coder were run on MATLAB for a regular (3, 6) LDPC code

over the Binary Symmetric Channel, with exchanged messages

quantized on q = 4 bits, and the a posteriori information

quantized on q̃ = 5 bits.

A. Study of the impact of the noisy adder

In order to evaluate the influence of the noisy adder on

the performance of the decoder, the useful region and the η-

threshold regions have been computed, assuming that only the

adders within the VN-processing step are noisy (pa > 0),

while the CN-processing step is noiseless (px = pc = 0). This

regions are represented in Fig. 1 and Fig. 2, for error depth

parameters qe = 4 and qe = 5, respectively.

The border of the useful region is divided in two parts: the

bottom border plotted in black (a straight line), and the right

and top borders plotted in red. Although one would expect

that p∞ = p0 on the border of the useful region, this equality

only holds for the black (bottom) border. On the red border,

one has p∞ < p0. The reason why the useful region does not

extend beyond the red border is that for points located close

to, but on the other side of the border, the sequence (P
(ℓ)
e)ℓ>0

becomes periodic, and hence p∞ does not exist.

Another surprising result is that the decoder’s error prob-

ability p∞ seems to be independent of p0, as long as p0 is

below the top boundary of the useful region. This is indicated

by the vertical lines that divide the useful region on η-threshold

regions, for η = 10−n, 3 ≤ n ≤ 6. On each line p∞ is equal

to the corresponding η-value. It should also be noted, that by

increasing the error depth parameter from qe = 4 (Fig. 1) to

qe = 5 (Fig. 2), the maximum pa value for which p∞ ≤ η

is decreased by a a factor of ≈ 30. Moreover, for qe = 5,

the decoder error probability p∞ seems to be very close (but

slightly higher) than the pa value.

B. Study of the impact of the noisy XOR gate

The useful region and the η-threshold regions of the de-

coder, assuming that only the XOR-gate used within the CN-

processing step is noisy, are plotted in Fig. 3. Similar to the

noisy-adder case, the border of the useful region is divided in

two parts: the black border corresponding to points for which

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

p
0
 (

ch
an

n
el

 e
rr

o
r

p
ro

b
ab

il
it

y
)

pa (adder error probability)

pinf < 10
-6

10
-6

 < pinf < 10
-5

10
-5

 < pinf < 10
-4

10
-4

 < pinf < 10
-3

pinf > p0 black border: pinf = p0

red border: pinf < p0

pinf = 10
-6

pinf = 10
-5

pinf = 10
-4

pinf = 10
-3

Figure 2. η-regions for pa > 0 with qe = 5 (px = pc = 0)

p∞ = p0 and the red border separating the useful region from

the “non-convergence” region. It is worth noting that usually

the value of px is much less than the value of pa (given the high

number of elementary gates contained in the adder). It practice

it can be reasonably assumed that px < 10−4. Moreover, since

the XOR-gates used to compute the βm,n signs represent only

a very small part of the decoder, this part of the circuit may be

made reliable by using classical fault-tolerant methods, with

a limited impact on the overall decoder design.

C. Study of the impact of the noisy comparator

This section investigates the case when comparators used

within the CN-processing step are noisy (pc > 0), but pa =
px = 0. Contrary to the previous cases, this case exhibits a

threshold phenomenon: for a given pc > 0, the exists a p0-

threshold value, denoted by pth, such that for any p0 < pth, one

has p∞ = 0. Tis threshold value is plotted as a function of pc
in Fig. 4. Although such a threshold phenomenon might seem

surprising for a noisy decoder, it can be easily explained. As it

can be seen from Fig. 4, if p0 = 0.01 then for any pc > 0 one

has p∞ = 0. The idea behind is that in this case the crossover

probability of the channel is small enough, so that in the CN-

processing step only the sign of check-to-variable messages is

important, but not their amplitudes. In other words a decoder

that only computes the signs of βm,n messages and randomly

chooses their amplitudes, would be able to perfectly decode

the received word (in the asymptotic length of the codeword).

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
-4

10
-3

p
0
 (

ch
an

n
el

 e
rr

o
r

p
ro

b
ab

il
it

y
)

px (XOR-gate error probability)

pinf < 10
-6

10
-6

 < pinf < 10
-5

10
-5

 < pinf < 10
-4

1
0

-4
 <

 p
in

f
<

 1
0

-3

pinf > p0

black border: pinf = p0

red border: pinf < p0

pinf = 10
-6

pinf = 10
-5

pinf = 10
-4

pinf = 10
-3

Figure 3. η-regions for px > 0 (pa = pc = 0)

5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.2 0.4 0.6 0.8 1

p
0
 (

ch
an

n
el

 e
rr

o
r

p
ro

b
ab

il
it

y
)

pc (comparator error probability)

 pinf = 0

threshold

Figure 4. η-regions for pc > 0 (pa = px = 0)

VI. FINITE LENGTH PERFORMANCE OF MIN-SUM BASED

DECODERS

In this section we evaluate the finite-length performance of

two noisy Min-Sum based decoders: the Min-Sum (MS) and

the Self-Corrected Min-Sum (SCMS) [9]. The objective of the

SCMS is to determine if a correction circuit “plugged into” the

noisy MS decoder can improve the robustness of the decoder

to hardware noise.

The noisy SCMS decoder performs the same computations

as the noisy MS (Section IV), except that the VN processing

step further includes a correction step, as follows:

• VN-processing: for ∀ n ∈ {1, . . . , N} and m ∈ H(n)

α
(ℓ)
m,n = apr

(
γ̃
(ℓ)
n ,−β

(ℓ)
m,n

)
;

if sgn
(
α
(ℓ)
m,n

)
6= sgn

(
α
(ℓ−1)
m,n

)
and α

(ℓ−1)
m,n 6= 0

α
(ℓ)
m,n = 0 ;

end

The body enclosed between the if condition and the matching

end is referred to as correction step. Note that the correction

step is implemented with reliable circuitry, which can be

reasonably assumed, since the required circuitry is very simple

(see also the discussion concerning the sign of check-to-

variable messages in Section V-B).

Fig. 5 shows the Bit Error Rate (BER) performance of

the two decoders for the (N = 504,K = 252) and (dv =
3, dc = 6)-regular LDPC code available online at [10]. The

solid curves with filled markers correspond to the performance

of the fixed-point (q = 4, q̃ = 5) noiseless MS and SCMS

decoders. For comparison purposes, the performance of the

floating-point noiseless Belief-Propagation decoder is also

shown (solid curve, no markers). The four dashed curves

correspond to the performance of the noisy MS and SCMS

decoders, with parameters (qe = 4, pa = pc = 0.01, px = 0)

and (qe = 5, pa = pc = 0.001, px = 0).

While it can be seen that hardware noise alter the perfor-

mance of the MS decoder, the noisy SCMS decoder exhibits

very good performance, very close to that of the noiseless

decoder. Therefore, one can think of the self-correction circuit

as a noiseless patch applied to the noisy MS decoder, in order

to improve its robustness to hardware noise.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

B
it

 E
rr

o
r

R
at

e
(B

E
R

)

p0 (BSC crossover probability)

noiseless, MS
noisy(qe=4, pa=pc=0.010), MS

noisy(qe=5, pa=pc=0.001), MS

noiseless, SCMS
noisy(qe=4, pa=pc=0.010), SCMS

noisy(qe=5, pa=pc=0.001), SCMS

noiseless, floating-point, SP

Figure 5. BER performance of noisy vs. noiseless MS and SCMS decoders

VII. CONCLUSION

In this paper we investigated the performance of noisy

MS-based decoders over the BSC. We proposed probabilistic

error models for the arithmetic components of the MS-based

decoders, in order to emulate their implementation on noisy

hardware. We analyzed the performance of the MS decoder in

terms of useful regions and target-BER thresholds, derived by

using “noisy” density evolution. We further evaluated the finite

length performance of the MS and SCMS decoders, for various

parameters of the hardware noise models. We highlighted the

excellent performance of the SCMS decoder, which is due to

its intrinsic ability to detect and discard unreliable messages

during the iterative decoding process. Finally, the results of our

work may serve as guidelines for the design of noisy arithmetic

components for Min-Sum-based decoders on BSC.

ACKNOWLEDGMENT

This work was supported by the Seventh Framework Pro-

gramme of the European Union, under Grant Agreement

number 309129 (i-RISC project).

REFERENCES

[1] M. G. Taylor, “Reliable information storage in memories designed from
unreliable components,” Bell System Technical Journal, vol. 47, pp.
2299–2337, 1968.

[2] A. V. Kuznetsov, “Information storage in a memory assembled from
unreliable components,” Problemy Peredachi Informatsii, vol. 9, no. 3,
pp. 100–114, 1973.

[3] B. Vasic and S. K. Chilappagari, “An information theoretical framework
for analysis and design of nanoscale fault-tolerant memories based on
low-density parity-check codes,” IEEE Trans. on Circuits and Systems

I: Regular Papers, vol. 54, no. 11, pp. 2438–2446, 2007.
[4] R. G. Gallager, “Low density parity check codes,” MIT Press, Cam-

bridge, 1963, research Monograph series.
[5] L. R. Varshney, “Performance of LDPC codes under faulty iterative

decoding,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4427–4444, 2011.
[6] S. Yazdi, H. Cho, and L. Dolecek, “Gallager b decoder on noisy

hardware,” IEEE Trans. on Comm., 2013.
[7] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.

on Inf. Theory, vol. 27, no. 5, pp. 533–547, 1981.
[8] C. L. Kameni Ngassa, V. Savin, and D. Declercq, “Min-sum-based

decoders running on noisy hardware,” in proc. of IEEE Global Com-

munications Conference (GLOBECOM), 2013.
[9] V. Savin, “Self-corrected min-sum decoding of LDPC codes,” in Proc.

of IEEE Int. Symp. on Information Theory (ISIT), 2008, pp. 146–150.
[10] D. J. C. MacKay. Encyclopedia of sparse graph codes. [Online].

Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

