
An Integrated Partitioning and Synthesis System for

Dynamically Recon�gurable Multi-FPGA Architectures ?

Iyad Ouaiss, Sriram Govindarajan, Vinoo Srinivasan,

Meenakshi Kaul, and Ranga Vemuri

DDEL, Department of ECECS, University of Cincinnati, OH 45221.

Abstract. This paper presents an integrated design system called sparcs

(Synthesis and Partitioning for Adaptive Recon�gurable Computing Sys-
tems) for automatically partitioning and synthesizing designs for recon-
�gurable boards with multiple �eld-programmable devices (fpgas). The
sparcs system accepts design speci�cations at the behavior level, in the
form of task graphs. The system contains a temporal partitioning tool
to temporally divide and schedule the tasks on the recon�gurable archi-
tecture, a spatial partitioning tool to map the tasks to individual fpgas,
and a high-level synthesis tool to synthesize e�cient register-transfer
level designs for each set of tasks destined to be downloaded on each
fpga. Commercial logic and layout synthesis tools are used to complete
logic synthesis, placement, and routing for each fpga design segment. A
distinguishing feature of the sparcs system is the tight integration of the
partitioning and synthesis tools to accurately predict and control design
performance and resource utilizations. This paper presents an overview
of sparcs and the various algorithms used in the system, along with
a brief description of how a jpeg-like image compression algorithm is
mapped to a multi-fpga board using sparcs.

1 Introduction
During the past few years, recon�gurable computers (rcs) based on multiple �eld-
programmable devices (fpgas) have become ubiquitous. In order to fully realize the
performance and cost advantages o�ered by these architectures, it is necessary to de-
velop architecture-independent partitioning and synthesis environments for recon�g-
urable computers.

Although well-developed commercial tools exist to perform the tasks of logic and
layout synthesis for fpgas, high-level synthesis and multi-fpga partitioning, both spa-
tial and temporal, need to be further developed before mature commercial tools can
emerge. Especially ignored, even in the academic community, is the problem of tem-
poral partitioning.

This paper presents the architecture of the sparcs environment and describes a
typical design ow through sparcs. In addition, a brief summary of each major tool
in sparcs is provided. Whereas various algorithms and tools in sparcs are subjects of
detailed topic-speci�c publications in their own right, the aim of this paper is to provide
a birds-eye view of the sparcs system, with a speci�c focus on algorithm integration
and users' view.

The rest of this paper is organized as follows: Section 2 provides an overview of
the sparcs design environment. Sections 3, 4 and 5 discuss the temporal partitioning,
spatial partitioning, and high-level synthesis algorithms and techniques used in the
sparcs system. Section 6 examines a design ow in sparcs and Section 7 contains
concluding remarks.

2 Users' View of SPARCS
Figure 1 shows the architecture of the sparcs system. A design speci�cation is sub-
mitted in the form of four inputs to the sparcs system:

? This work is supported in part by the US Air Force, Wright Laboratory, WPAFB,
under contract number F33615-97-C-1043.

1. Application's Behavior Speci�cation:The sparcs system accepts a behavioral spec-
i�cation of an application in the form of a set of tasks. Shared data is stored
in memories. In addition, tasks may communicate through direct communication
channels. Tasks are modeled in behavior-level vhdl. We assume that the speci-
�cation is written such that the user provides resolution for critical regions that
access shared memory.

2. rc Architecture Speci�cation: sparcs admits the speci�cation of the target recon-
�gurable fpga board. Allowed features include local memories, globally shared
memory, various interconnect topologies, and features of the fpga and memory
devices used on the board. Architecture speci�cation includes the type of fpgas
used, number of fpgas, number of resources (function generators and ip-ops)
on each fpga, interconnect topology, sizes of memory modules, etc.

3. Constraints: Users of sparcs specify a constraint on the minimum clock speed at
which to clock the design. In addition, users may specify timing constraints on any
straight-line block of vhdl code inside the tasks.

4. Macro Library: The macro library contains parameterized register-level compo-
nents. These macros are used to estimate resource counts and performance of
contemplated designs during high-level synthesis.

Typically, the recon�gurable board is attached

Pre-Processor

Bitmap files

HOST Multi-FPGA
Board

Behavioral Specification

RTL Design + Floorplan

Synthesis
Logic/Layout

Spatial

Temporal
Partitioning

Partitioning

and Constraints

High-Level Synthesis

Estimates Based
on Light-Weight

Target
Architecture

Macro
Library

Estimates Based
on Light-Weight
Layout Synthesis

SPARCS Core

Synthesis
High-Level

Schedule
Reconfiguration

Fig. 1. SPARCS System

to a host computer. The host controls the loading of
the design and monitors the execution of the board.
The sparcs system produces a set of fpga bitmap
�les, a recon�guration schedule that speci�es when
these bitmap �les should be loaded on the individual
fpgas in the rc, and in the case of programmable
interconnect, a mask (con�guration) of the intercon-
nect for each temporal segment.

Preprocessing is the �rst stage of the sparcs de-
sign ow. Three tasks are performed during prepro-
cessing: (1) memory graph extraction, (2) depen-
dency analysis for each task, and (3) resource and
performance estimation for each task. A memory
graph represents the relationship among the tasks
and memories explicitly and will be used during par-
titioning. Dependency analysis captures the task-
level dependencies and the dataow among the tasks.
Finally, each task is processed by an estimator that

estimates the fpga resource requirements, clock speed, and schedule length of each
task, as if it were to be individually synthesized.

3 Temporal Partitioning
The temporal partitioner has an abstract view of the board resources and uses aggre-
gate costs for partitioning. From the architectural speci�cation described in Section 2,
the overall resource constraint (C) and shared memory size (Ms) are derived. The
temporal partitioner heuristically estimates the upper-bound on the number of tem-
poral segments (N) for building a Non-Linear Programming (nlp) formulation. It uses
a fast list-scheduling heuristic (a variation of [1]) for this estimation. We have incor-
porated a synthesis model to determine the amount of resource sharing among tasks.
This requires an operation level modeling of each task for the synthesis subproblem.
As a preprocessing step, we determine the mobility ranges (asap and alap values) of
all the operations in the combined graph of the entire speci�cation. The nlp model is
linearized and solved by an ilp (Integer Linear Program) solver. We use the following
notation:
ti ! tj , a directed edge between tasks, ti; tj 2 T , represents a dependency; Bandwidth(ti; tj),
number of data units to be communicated between tasks ti and tj ; Fu(i), the set of functional units
on which operation i can execute; F , the set of functional units corresponding to the most parallel

schedule obtained from the high-level synthesis estimator; N, the upper bound on the number of
segments which are numbered 1 to N , the index speci�es the order of execution of the segments;
Ms, the shared memory available for storage between segments; FG(k), the number of function
generators used for functional unit k; C, the resource capacity of the underlying board architecture;
I, the set of all operations in the speci�cation.

Non-Linear 0-1 Model: We describe here the variables, constraints, and cost function
of our nlp model. Not all constraints have been shown in mathematical form. The
variables: (1) ytp models the partitioning at the task level: ytp = 1, if task t 2 T is
placed in segment p, 1 � p � N; 0 otherwise. (2) xijk models the synthesis subproblem
at the operation level: xijk = 1, if operation i 2 I is placed in control step j 2 CS(i)
and uses functional unit k 2 Fu(i); 0 otherwise. (3) wpt1t2 models the communication
cost incurred if two tasks connected to each other are not placed in the same segment:
wpt1t2 = 1, if task t1 is placed on any segment 1 � � � p� 1 and t2 on any of p � � �N and
t1 ! t2: 0 otherwise. ytp and xijk are the fundamental modeling variables. All other
variables are secondary and are constrained in terms of the fundamental variables.

1. Temporal Partitioning Model: Temporal partitioning has the following constraints:
a. Uniqueness constraint: Each task should be placed in exactly one segment.
b. Temporal order constraint: A task t1 on which another task t2 is dependent
cannot be placed in a later segment than the segment in which task t2 is placed.
c. Shared memory constraint: The amount of intermediate data stored between
segments should be less than the shared memory Ms. The variable wpt1t2 , if 1,
signi�es that t1 and t2 have a data dependency and are being placed across segment
p. Therefore, the data being communicated between them, Bandwidth(t1; t2), will
have to be stored in the memory of segment p.

8p; 2 � p � N :
X
t22T

X
t1!t2

(wpt1t2
�Bandwidth(t1; t2)) � Ms (1)

2. Synthesis Model: The constraints due to synthesis are:
a. Unique operation assignment constraint: Each operation should be scheduled at
one control step and on only one functional unit.
b. Temporal mapping constraint: Prevents more than one operation from being
scheduled at the same control step on the same functional unit.
c. Dependency constraint: Maintains the dependency relationship between opera-
tions.

3. Combined Partitioning and Synthesis Model: The set F , obtained initially, is an
upper-bound on the number of functional units that can be used in a segment. To
determine whether a functional unit has been used in a segment, we de�ne upk;
upk = 1, if functional unit k 2 F is used in segment p, 1 � p � N , 0 otherwise.
a. Resource constraints: We introduce resource constraints in terms of variables
upk. Typical fpga resources include function generators, combinational logic blocks
(clbs), etc. Similar equations can be added if multiple resource types exist in the
fpgas. � is a user de�ned logic-optimization factor in the range [0;1]. Typical
values [2] of � using Synopsys fpga components are in the range [0.6;0.8].

8p : � �
X
k2F

(upk � FG(k)) � C (2)

b. Unique control step constraint: We introduce this constraint to make sure that
each control step is mapped uniquely to a segment.

4. Cost Function: Minimize the cost of data transfer between segments.
Minimize:

X
t22T

X
t1!t2

X
1�p�N

(wpt1t2
�Bandwidth(t1; t2)) (3)

For the sake of brevity we have presented only a part of the nlp model. For more
details about the constraints, linearization, and solution by ilp techniques refer to [3].
To reduce the amount of time required for solving the ilp model, the model may be
solved to �nd a constraint satisfying solution rather than an optimal one.
Interaction with Spatial Partitioner: Each segment in the temporal partition must
�t spatially on the recon�gurable board. Since the temporal partitioner uses aggregate

estimates to model the underlying resources, the segment may fail to �t on the board.
In such cases the spatial partitioner provides a feedback to the temporal partitioner
by posing tightened constraints on the architectural resources to compensate for un-
derestimations. Depending on the number of temporal segments that failed spatial
partitioning, the temporal partitioner may choose to re-partition the entire task graph
or may just re-partition the segments that violated the constraints.

4 Spatial Partitioning
Problem Formulation: Let F = ff1; f2; � � � fNg be the N fpgas available on the
target recon�gurable board. Each fpga has a set of attributes associated with it. For
any f 2 F : C(f), F (f), P (f), and L(f) denote the bounds on the number of function
generators, ip-ops, uncommitted I/0 pins, and local memory size in f . CM repre-
sents the direct connection matrix. It de�nes the number of dedicated lines pre-routed
between each pair of fpgas. Ic denotes the number of programmable interconnection
channels available on the board. All of the above constraints posed by the recon�gurable
board are part of the architectural constraints as described in Section 2.
A spatial partition of a task graph, TG = (V;M;E), where V is the set of task nodes,
M is the set of memory segments, and E is the set of dependency edges and channels,
is a binding of each task in V to a unique fpga and each logical memory segment to a
unique local/shared memory, such that all architectural constraints are satis�ed. Each
task graph that is partitioned, corresponds to a temporal segment which is a subgraph
of the whole design.
Genetic Spatial Partitioning Algorithm: We model and solve the spatial parti-
tioning problem through a Genetic Algorithm (ga). The genetic search procedure was
developed by John Holland in 1975 [4], and since then has been used successfully for
solving several combinatorial problems in vlsi design automation [5].
Encoding: The solution representation must capture the binding of tasks to the fpgas
and the binding of logical memory segments to local/shared physical memories. We
use a simple integer array to encode the above information. Each chromosome has two
integer arrays - task array TA and memory array MA. The length of the TA is equal
to the number of tasks in the task graph (t) and the length of the MA is equal to
the number of memory segments (m). Consider a board having N fpgas with local
memories and a shared memory. For 1 � i � t, the variable TA[i], ranging from 1
through N , represents the fpga number to which task i is assigned. Similarly, for
1 � i � m, the variable MA[i], ranging from 0 through N , represents the memory
bindings. MA[i] = 0 implies that the memory segment i is mapped to the shared
memory.
Initial Population: The task arrays for all chromosomes in the initial population are
set to random legal values. Then based on the task assignments, for each chromosome,
we assign the logical memory segments to local physical memories. If the majority of
the tasks which access a memory segment are assigned to fpga k then we bind the
memory segment to the local memory of fpga k.
Crossover: We use a uniform crossover operator. A binary string, T , whose length is
equal to the greater of the number of tasks and the number of memory segments, is
generated. Each bit in this template is randomly set to either 0 or 1. Next, two parents
are probabilistically selected for mating. Let pt1, pt2 be the task arrays and pm1; pm2

the memory arrays in the parents. Then ct1; ct2; cm1; and cm2, are the corresponding
arrays in the two child chromosomes resulting from a crossover de�ned as:

ct1[i] =

�
pt1[i] if T (i) = 0
pt2[i] otherwise

ct2[i] =

�
pt1[i] if T (i) = 1
pt2[i] otherwise

cm1[j] =

�
pm1[j] if T (j) = 0
pm2[j] otherwise

cm2[j] =

�
pm1[j] if T (j) = 1
pm2[j] otherwise

In these equations; i and j have legal values

Mutation: The mutation operator randomly selects an entry from the chromosome
arrays and changes its value to another legal value.

Partition Cost Estimation: The cost of each chromosome (spatial partition) is de-
pendent on several constraint satisfaction requirements. The constraints we consider
are area constraint (A), Speed Constraint (S), Pin Constraints (P), Interconnect Con-
straint (I), and Memory Constraint (M). We use the the same multi-constraint cost
cost function used in [5, 6]. In the case when the spatial partitioner cannot achieve a
constraint satisfying solution, it ags a failure and returns tighter constraints for use
by the temporal partitioner. The new aggregate constraints are based on the degree of
cost violated by the best achieved partition.

5 Design Synthesis
At the core of the sparcs system is a high-level syn-

Estimation
Interconnect

Controller
Estimation

Register
Estimation

Performance
HLS

Estimator

Design

Estimates

Estimators
HLS design
Light-Weight

RTL Macro Library
Pre-Characterized

Analyzer

Routability

Floorplanner

Performance

Estimator

RTL + Floorplan

Behavioral Specification

GENERATION

SCHEDULING

REGISTER

OPTIMIZATION

INTERCONNECT

OPTIMIZATION

GENERATION

CONTROLLER

COMPONENT SET

Estimators
Layout
Light-Weight

Design-Space
Exploration
Phases of HLS

Fig. 2. HLS FlowGraph

thesis (hls) tool, dss [7] (Distributed Synthesis Sys-
tem), which accepts a behavioral description speci-
�ed in vhdl and produces an equivalent rtl design
consisting of a Datapath and a Controller. A collec-
tion of light-weight layout algorithms is integrated
into dss in order to generate a oorplan along with
the rtl design (Figure 2). This enables sparcs to
accurately predict the performance of the fpga im-
plementation. dss accepts a clock period constraint,
and tries to minimize the maximum combinational
delay of any register transfer. The area constraint is
satis�ed by trying to minimize the size of both the
datapath and the controller.
The hls process consists of component set genera-
tion, scheduling and performance estimation, regis-
ter and interconnect optimization, and controller generation. For a detailed discussion
of these phases, we refer the reader to Roy et al. [7]. For the purpose of this paper, we
briey discuss the scheduling and controller generation phases.
Scheduling and Performance Estimation: The scheduler [7] in dss handles several con-
straints provided by the sparcs system. The scheduler resolves memory access conicts
by scheduling operations that access the same memory in di�erent time steps. Also,
if the dataow graph has user-speci�ed critical regions, a time-constrained scheduling
is performed and the estimated resources are checked with those available in the rtl
component set. The sparcs system also has a global scheduler that tries to resolve
memory conicts across tasks assigned to di�erent fpgas. After the scheduling phase,
the sparcs system estimates the performance of the design in one of two ways: (1)
The hls performance estimator can be invoked to get the rough design estimates; and
(2) The complete rtl design can be estimated using the light-weight hls design es-
timators. The estimated rtl design along with the macro library can be provided to
the light-weight layout estimators to get the design estimates. The second approach is
slower than the �rst but provides more accurate estimates.
Controller Generation: The controller for each fpga is conceptually organized as a
collection of communicating synchronous Finite State Machines (fsms) each corre-
sponding to a vhdl process (task). There is a privileged fsm called the root fsm that
controls the execution of all other fsms. This controller model directly facilitates the
resolution of memory access conicts between tasks. The root fsm also generates a
�nish signal after all other fsms have reached their �nish states. In order to let the
host computer know the completion of a temporal segment, the hls tool synthesizes
logic in the form of an and-gate chain, across all fpgas that tie up the individual �nish
signals to provide the done signal for the entire board. The hls tool of the sparcs

system produces a datapath and controller pair for each fpga assuming a synchronous
clock for all the fpgas on the board.
The hls tool can be used in a lighter form in order to obtain area and performance
estimates on one or more possible rtl implementations. This would involve invocation

of only the initial design space exploration phases (refer Figure 2) of hls. The light-
weight hls estimator always over-estimates the design performance, ensuring that the
actual hls process will generate only a better rtl implementation. Also, since the
estimation process does not go through the entire (heavy-weight) hls process, it will
be considerably faster than the actual hls.

6 Case Study
For the case study, we consider the Joint Photographic Experts

M7

DCT

M2

M3

M4

M5

Quantization

Zig-Zag
Transform

Run-Length

Huffman
Encoding

Encoding

M6

s1

s4

s2

s3

M1

Fig. 3. JPEG

Group (jpeg) [8] still image compression standard, shown in
Figure 3. The �ve main tasks in the jpeg ow are: (1) Dis-
crete Cosine Transform (dct), (2) Quantization, (3) Zig-Zag
Transformation, (4) Run-Length Encoding, and (5) Hu�man
Encoding. As a �rst step, the task graph of the jpeg algorithm,
shown in Figure 3, was implemented in behavioral vhdl and
thoroughly simulated. dss[7] was then used to perform high-
level synthesis on each individual task in the design. Following
high-level synthesis, the rtl designs and their oorplans were
taken through Xilinx place and route tools. The Hu�man en-
coding task, due to its large size was transformed further into
a collection of tasks, each requiring at most one fpga.
A board consisting of 512 interconnect channels, 32KBytes of
shared memory, and four XC4008 fpgas with 4KBytes of local
memory each, was considered for this experiment. Temporal

partitioning of the jpeg task graph resulted in the �rst four tasks (dct, quantization,
zig-zag and run-length encoding) being mapped to the �rst temporal partition and
tasks of Hu�man Encoding to the second. For each of the temporal steps the spatial
partitioner trivially assigned the tasks to one fpga each, satisfying the architectural
and routing constraints. The entire jpeg compression was successfully executed in two
recon�gurations of the rc for several test images. The algorithm achieved an average
compression factor of 30 times the original image size.

7 Summary
We presented an integrated design environment for automatically partitioning and
synthesizing behavioral speci�cations onto multi-fpga based recon�gurable comput-
ers. Approaches for temporal partitioning, spatial partitioning, and high-level synthesis
geared towards recon�gurable architectures were presented. sparcs system is continu-
ing to develop towards handling large designs.

References
1. M. Vasilko and D. Ait-Boudaoud, \Architectural Synthesis Techniques for Dynamically Recon-
�gurable Logic", FPL'96.

2. M. Vootukuru, R. Vemuri, and N. Kumar, \Resource Constrained RTL Partitioning for Synthesis
of Multi-FPGA Designs", Proceedings of the 10th International Conference on VLSI Design,

IEEE Press, 12 pages, 140-144, January 1997.
3. M. Kaul and R. Vemuri, \Optimal Temporal Partitioning and Synthesis for Recon�gurable Ar-
chitectures", to appear in Design, Automation, and Test in Europe, February 98.

4. Holland J., \Adaptation in Natural and Arti�cial Systems", Ann Arbor: University of Michigan

Press, 1975.
5. Ram Vemuri, \Genetic Algorithms for Partitioning, Placement, and Layer Assignment for Mul-
tichip Modules", PhD thesis, University of Cincinnati, USA, July 1994.

6. V. Srinivasan, S. Radhakrishnan, and R. Vemuri, \Hardware/Software Partitioning with Inte-
grated Hardware Design Space Exploration", to appear in Design, Automation, and Test in

Europe, February 1998.
7. J.Roy, R.Dutta, N.Kumar, R.Vemuri, \DSS: A Distributed High-Level Synthesis System for
VHDL Speci�cations", IEEE Design and Test of Computers 1992.

8. Gregory K. Wallace, \The JPEG Still Picture Compression Standard", Communications of the

ACM, pages 30{44, April 1991.

This article was processed using the LaTEX macro package with LLNCS style

