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ABSTRACT
The use of utility on-demand computing infrastructures, such
as Amazon’s Elastic Clouds [1], is a viable solution to speed
lengthy parallel computing problems to those without access
to other cluster or grid infrastructures. With a suitable mid-
dleware, bag-of-tasks problems could be easily deployed over
a pool of virtual computers created on such infrastructures.

In bag-of-tasks problems, as there is no communication
between tasks, the number of concurrent tasks is allowed
to vary over time. In a utility computing infrastructure, if
too many virtual computers are created, the speedups are
high but may not be cost effective; if too few computers are
created, the cost is low but speedups fall below expectations.
Without previous knowledge of the processing time of each
task, it is difficult to determine how many machines should
be created.

In this paper, we present an heuristic to optimize the num-
ber of machines that should be allocated to process tasks
so that for a given budget the speedups are maximal. We
have simulated the proposed heuristics against real and the-
oretical workloads and evaluated the ratios between number
of allocated hosts, charged times, speedups and processing
times. With the proposed heuristics, it is possible to ob-
tain speedups in line with the number of allocated comput-
ers, while being charged approximately the same predefined
budget.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distribu-
ted Systems
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1. INTRODUCTION
Grid or cluster infrastructures are the best way to solve

lengthy jobs, but require the user to have membership or
institutional relationship with the organization owning the
computing power. In the case of scientists with punctual
computing needs, or even home users, the use of these sys-
tems in impractical.

Utility computing infrastructures such as Amazons Elas-
tic Computing Clouds (E2C)[1], may be used by such users.
Such infrastructures provide mechanisms only for users to
create virtual computers. If these computers run a suitable
middleware, jobs can be executed on them. These virtual
computers are easily initiated and managed, allowing the
creation of clusters of virtual computers running operating
systems and software previously provided by the users. The
creation of these machine pools is performed programmat-
ically using a supplied API, while the allocation and man-
agement of the physical resources are hidden from the user.
The user needs only to state which operating system image
should be used.

By using virtual machines with the necessary operating
system and software, a computational cluster can be easily
created. Another benefit is the easy service subscription,
where each user only needs to sign a simple contract and
pay for the processing time used.

The on-demand launch of virtual machines can be used to
provide computing cycles for the resolution of bag-of-tasks
problems. After launching the virtual machines with the
remote tasks’ execution software, these machines can con-
tribute by solving some of the tasks. In the case of bag-of-
tasks problems, where no communication happens between
tasks, the orchestration between the participant computers
is straightforward.

The middleware launching virtual computers only has to
predict the number of necessary computers and create them
on the remote infrastructure. This value depends on the
time necessary to complete the job and the minimum time
unit charged. For the allocated budget, the user will want
to obtain the best possible speedups. For instance, if the
tasks are much shorter than the minimum time unit charged
(usually one hour), and are allocated as many computers
as there are tasks, the ratio between processing time and
charged time will be low: only one small fraction of the
time used the virtual computers while running was actually
used to solve the problem. By allocating a large number of
computers one gets the maximum possible speedup, but it
may not be financial feasible.

The definition of the number of participant computers is
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Figure 1: Evaluation of cost and speedups

problematic if the time each task takes to be completed is
not precisely known and if processing time is charged in units
much larger than the time each task takes to complete. In
this paper we present an heuristic algorithm that dynami-
cally allocates resources for computation, guaranteeing that
the user pays close to an initially predefined amount, while
maximizing the speedups.

If, in order to solve a job composed of 300 tasks (each one
taking about 5 minutes to complete) 300 computers are al-
located, then the speedup will be maximal but the charged
time will also be high. If one hour is the minimum charge
time unit, for a total processing time of 25 hours, the user
will be charged 300 hours. In Fig. 1 we show for this exam-
ple the charged time and speedups for different numbers of
allocated remote computers.

In the example presented in Fig. 1 we can easily conclude
that while paying the minimum possible (25 hours), the best
speedup is accomplished with 25 computers; in this case ev-
ery computer spent one hour solving tasks. Using fewer
computers, the speedups are lower but without any actual
decrease in the charged time. If more computers are allo-
cated, the cost increases proportionally to the speedup.

Domestic users or even scientists with low resources should
prefer to execute their jobs with substantial speedups within
constrained budgets, instead of paying for the maximum
speedup possible.

The definition of the necessary number of hosts is trivial
if the time each tasks takes to complete is known before
starting the job. If the processing time is known, with small
runtime adjustments it is possible to obtain good speedups
while paying the minimum amount possible. If the time to
complete each task is not previously known, the definition of
how many hosts should participate should be made during
runtime. In this case after the completion of each task, its
execution time should be used to calculate the necessary
number of hosts.

A user estimation for task executing times may be used,
but most of user estimations are incorrect [10] and the less
knowledgeable the user is, the more prone to error his esti-
mates are [8]. If the provided estimates are below the real
time, a runtime adjustment should be made, if the estima-
tion are high more hosts than the necessary are allocated.

Furthermore, the automation of task running time predic-
tion removes this burden from the user. The user no longer
needs to try to discover the average running time for the
tasks.

In the next section we present other distributed computing
infrastructures and why their requirements and scheduling
strategies do not apply to our target environment. The fol-
lowing sections present the model of our resources and target

applications and the proposed heuristic algorithm. Finally,
we evaluate our algorithm against real traces and present
some conclusions.

2. RELATED WORK
The scheduling of computational resources is a fundamen-

tal problem in order to optimize program execution and us-
age of necessary infrastructures. Scheduling algorithms and
heuristics ensure that a given request is handled with a spec-
ified quality of service, and that underlying resources usage
is optimized.

Typically, MPI [9] applications require a fixed predeter-
mined number of host to cooperate in order to solve a prob-
lem, thus simplifying the scheduling algorithms. The pro-
cessors allocated to each process can be used exclusively or
shared with other requests. In gang scheduling, only one ap-
plication is executing on each allocated computer, while in
co-scheduling different applications execute simultaneously
on a computational node. Some hybrid techniques such as
presented by Bouteiller [3] try to conciliate the best of the
these approaches.

The access to grid infrastructures usually requires the user
to define the characteristics of the application to execute.
These characteristics must state how many processors (or
hosts) are necessary, their architecture, the operating sys-
tem and the maximum duration of each task. In order to
reduce the timespan of parallel applications, grid schedulers
employ heuristics that try to take into account the expected
task duration and the speed and availability of the selected
hosts [4]. In the case of workflow applications, besides host
selection heuristics, tasks are also ordered in order to reduce
job’s total timespan [7].

In the case of bag-of-tasks problems, the number of con-
current processes is not previously known and may vary.
Current cycle-sharing systems, such as BOINC [2], use a
greedy approach to allocate remote computers: all available
computers are used to solve part of the problem. Some im-
provements have been made, such as in CCOF [14], in order
to add some resource efficiency to remote host selection al-
gorithms.

Due to their nature (independence and restartability),
bag-of-tasks jobs can be scheduled to Grids and executed
at idle hosts. For instance, Transparent Allocation Strat-
egy [11] allows the allocation of processing power using re-
quests parameterized with the number o processors (p), and
duration (tr). Smaller p and tr allow a better fit of the re-
quests, while larger tr accommodates a wider range of tasks.
The cluster resource manager tries to satisfy the request, but
when processors are necessary to other jobs, such tasks are
killed. As a solution to the difficulty of determining p and
tr, another strategy is proposed. This Explicit Allocation
Strategy [13] presents an adaptive heuristic allowing, during
runtime, the definition of both p and tr for each request,
using information gathered by space-shared resource sched-
uler. This heuristic takes into account free slots available
on the cluster and estimated task duration time to generate
the first request. If the tasks included in such request are
successfully executed, the execution time of the longest task
will be used in subsequent requests; if the requested time is
not enough, the estimated task runtime will be multiplied
by an integer factor. Even though some estimation is per-
formed w.r.t. task execution time, this solution tries neither
to obtain average task processing times, nor to reduce the



unused idle time by the requests.
Existing utility computing infrastructures, (e.g. Amazon

EC2 [1], Enomalism [6], or Eucalyptus [5]) provide means
for the management of pools of computers, by deployment
and execution of virtual machines. Such machines are cre-
ated from disk images containing an operating system and
necessary applications. Images are provided by the users,
employing an API to launch and terminate the various in-
stances of the machines.

In available utility computing infrastructures, resource al-
location and scheduling problems are hidden at a lower level.
When a user creates a virtual machine, the middleware is
responsible for assigning a physical computer that can de-
liver the contracted quality of service. There is no need to
know the total execution time for each virtual machine be-
forehand, as it is only used, after termination, to calculate
the amount to charge. Furthermore, in commercial infras-
tructures, the charged time unit is large, usually one hour,
which requires guarantees that machines are idle a minimum
amount of time.

Taking these characteristics into account, current schedul-
ing algorithms do not solve the problem of optimizing the
number of hosts to allocate. Available solutions either re-
quire information about the execution time of all tasks, or
employ solely a fixed number of computers, or take a greedy
approach.

3. RESOURCE / APPLICATION MODEL
Recently, hardware vendors started offering solutions to

create truly on-demand providers of utility computing re-
sources. Such providers own pools of computers and offer
computing power in the form of virtual machines through
simple launching mechanisms. Users first register their vir-
tual machines’ images, with suitable operating systems and
software, and then launch them. These new computing in-
frastructures also provide means to allow virtual machines
within the same pool to discover each other and communi-
cate among them. Moreover, the creation of machines is also
possible from a running virtual machine.

Load distribution between available physical computers
is not user’s responsibility. The virtual machine manage-
ment software handles the creation of virtual machines and
schedules them to suitable computers in order to guaran-
tee a minimum of quality of service (e.g., virtual machine
processing speed).

Users need not reserve processing time slots. As with
any other utility provider, accounting of chargeable time is
performed after termination of the virtual machines using
some predefined time unit (e.g., one hour per instance). The
user will then pay for the time used.

We propose an heuristic we propose suitable for bag-of-
tasks applications, where no communication occurs between
tasks and where there is no need for all tasks to run simul-
taneously. Furthermore, tasks should be short lived, with
execution times smaller than the charging time unit. The
number of tasks should be high, on the order of hundreds,
requiring several concurrent computers to process them all
within an acceptable time frame.

An heuristic to determine the optimal number of hosts
to solve a bag-of-tasks becomes required when task execu-
tion times are neither constant nor known in advance. This
category of problems includes some scientific simulations,
data analysis, or even the parallel rendering of large images,
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Figure 2: Image rendering tasks executing time

where each task renders a small view-port of the final image,
or a signal frame int the rendering of movies.

As an example, in Fig. 2 we present the processing time
of each of the 256 tasks necessary to concurrently render a
512x512 pixel image containing 2587 objects, using POV-
Ray [12], measured on a 3.2GHz Pentium 4 PC.

From Fig. 2 we can conclude that it is not possible to
predict how long will the next task take to execute. Peri-
odically some tasks take about 25 seconds to complete, but
this behavior depends on the image being rendered; other
images or a different problem may exhibit a different pat-
tern that a generic system is incapable to predict. Another
unpredictable characteristic of jobs is the amplitude of the
variation of task executing time. In the presented example
this amplitude is about 9 minutes, while on other problems
this variation may be on the order of just seconds.

In this example, the solid line represents the average dura-
tion of the tasks that were executed up to that moment. The
average time increases slowly and only when executing the
last tasks, does the average time reach its final value. The
opposite can also happen if the first tasks are much slower
that the average. This variations on temporal distribution
of task completion times should be handled by an heuristic.

4. HEURISTIC
The proposed heuristic allows the definition of the num-

ber of machines to allocate on a pool of computers in order
to ensure that the charged time fits in a predefined budget,
while obtaining the maximum speedup possible with the al-
located machines.

If a users wants to pay the minimum possible, each ma-
chine should execute and solve tasks during the whole of
the minimum charging unit (one hour, for instance). If too
many machines are created, each machine will have some
idle time that will be charged anyway; if too few machines
are allocated the job timespan will increase, with no extra
savings

In order to define how many machines are needed, it is
necessary to know how long a task will take to be executed.
Only after knowing the average time to run a few tasks it is
possible to calculate an estimate of the number of necessary
computers, while taking into account the charging time-unit
and how much the user is willing to pay.

Initially, one host is allocated and starts executing ran-
domly selected tasks; whenever a task finishes, the time it
took to be executed is used to calculate task average process-
ing time. After allocating more hosts, the processing time
of solved tasks is also used to calculate task average process-
ing time. With every finished task, the calculated average



1 remainingTasks --
2 finishedTasks ++
3 totalProcessingTime += concludedTask.processingTime
4 tasksAverageTime = totalProcessingTime/finishedTasks
5
6 possibleTasks = 0
7 for each runningComputer:
8 possibleTasks += runningComputer.possibleTasks()
9 necessaryComputers = round((remainingTasks-possibleTasks)* tasksAverageTime/hostProcessingTime)

10
11 if (necessaryComputers>=0):
12 if (creationRatio == 1.0):
13 computersToCreate = necessaryComputers
14 else:
15 computersToCreate = int(necessaryComputers*creationRatio)+1
16 for i in range(computersToCreate):
17 allocateNewComputer()
18 creationRatio = creationRatio+(1-creationRatio)*increaseRatio

a)
1 for each runningComputer:
2 runningTasksProcessingTime += runningComputer.currentTask.processingTime
3 runningTasksAverageTime = runningTasksProcessingTime/runningComputers
4 for each finishedTask:
5 finishedTasksProcessingTime += finishedTask.processingTime
6 finishedTasksAverageTime = finishedTasksProcessingTime/finishedTasks
7 if runningTasksAverageTime > finishedTasksAverageTime:
8 tasksAverageTime =
9 (runningTasksAverageTime + finishedTasksAverageTime)/(finishedTasks + runningComputers)

b)

Figure 3: Heuristic pseudocode: a) executed when a task concludes, b) executed periodically (partial)

processing time is used to predict the number of necessary
hosts to conclude the job with minimum time charging.

In Fig. 3.a) we present the pseudocode of the heuristic
that calculates the necessary number of remote hosts, in
order to increase speedups while guaranteeing that charged
time on the utility computing infrastructure is close to the
previously defined budget. This is executed whenever a task
is concluded and the result returned.

Lines 1-4 calculate the average time that was necessary to
process the finished tasks. This value will later be used to
find the number of necessary hosts. In the following lines of
code (lines 6-8), for each host it is predicted how many tasks
it will be able to process until the end of the hostProcess-

ingTime interval. Both the remaining time each host still
has and task average time are used in this prediction.

If the user wants to pay the minimum amount possible,
every host should be processing tasks for the most of the
time, so hostProcessingTime should have the same value
as the infrastructure charged unit (e.g. 60 minutes). For
instance, if the user is willing to pay twice the minimum,
every host can be idle half of the time, processing tasks
during 30 minutes (if the charged time unit was 60 minutes).

The number of possibly processed tasks (possibleTasks)
is then used to find how many tasks can not be executed by
the current hosts. The average time previously calculated
and the difference remainingTasks-possibleTasks are used
to infer the number of additional necessary hosts, which will
be corrected with the creationRatio factor, as will be de-
scribed in the following paragraphs. The described process
is applied whenever a task processing is finished and its re-
sult returned.

In the example in Fig. 2, if the tasks were executed in
the presented order, our heuristic could never produce good

results. The average time to process the tasks increases and
only close to the last tasks the final average is obtained.
In this case, near the end of the job, new hosts would be
allocated, because the previously allocated hosts were not
sufficient. The number of allocated hosts would be higher
than the necessary and the job would take longer than re-
quired to conclude. To solve this problem it is necessary to
guarantee that a close to final average value is obtained right
from the first completed tasks. By randomly selecting the
tasks, the average tasks processing time will converge more
rapidly.

Even with a random task selection, if the processing times
of the first tasks are higher than the final average processing
time, too many hosts will be initially allocated. To solve this
second problem the creationRatio factor is used. Initially
this value is lower than 1.0, so that the number of initially al-
located computers is lower than the calculated value. Later,
as new tasks are solved and the average time converges to
the final value, creationRatio may also converge to 1.0.

After receiving each processed task result, the value of
creationRatio is updated, as shown in Fig. 3.a), line 18,
creationRatio will increase and converge to 1. The influ-
ence of the initial creationRatio and increaseRatio will
be evaluated in the next section.

If the first processed task takes too long to terminate,
it takes a long time before new hosts are allocated to the
computation. To solve this problem, periodically, the aver-
age processing time of the executing tasks is calculated, as
shown on Fig. 3.b). If this value is higher than the average
execution time of the previously finished tasks (lines 4-6),
the tasksAverageTime is updated (lines 7-9), the number of
necessary hosts is calculated and the necessary hosts created
as shown on lines 6-9 and 11-17 in Fig. 3.a).
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Figure 4: Tasks processing time distribution: a) im-
age rendering, b) normal

All this code is executed locally on the computer respon-
sible for the coordination of all virtual machines. As this
machine has all the information regarding every virtual com-
puter creation times and all running tasks, no communica-
tion is necessary.

In order to guarantee that the time each host is running is
close to the minimum charging unit, to reduce wasted time,
every host is terminated just before reaching the minimum
charge time, usually one hour. In Fig. 3.a) line 8, the number
of tasks each host is expected to execute can be calculated
because it is well known for how long the virtual machine is
supposed to execute.

5. EVALUATION
In order to evaluate the proposed heuristic we used two

different jobs: i) traces of an image rendering, and ii) a set
of tasks whose processing times have a normal distribution,
as presented in Fig. 4.

The times presented on Fig. 4.a) are the measurement of
the real partitioned image rendering, described in Section 3,
Fig. 2. In this evaluation, for each experiment, we tested our
heuristic against 200 different combinations of these values.
In the case of the normal distribution (example on Fig. 4.b),
each test was also performed against 200 different task exe-
cution time populations, each with a mean time of 150 sec-
onds, a deviation of 30 seconds and 256 elements.

The tests were performed using a discrete-event simulator
with the heuristic implemented in Python. Figures 5 and 6
present the measured timespan and the number of allocated
hosts for different initial creationRatio and increaseRatio

values.
In these graphics we can observe that our heuristic, with

suitable selection of creationRatio and increaseRatio, de-
livers a good prediction on the number of hosts to allocate,
at most our results differ by 12% from the optimal number
of hosts to allocate (dashed line).

With a creationRatio of 1.0, where the deviation of the
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Figure 5: Parallel image rendering

timespan and the number of allocated computers is high, it
is highly probable that the number of allocated hosts exceeds
the user’s budget. This is due to the fact that during job
execution, any variation on the calculated average time may
increase the number of allocated hosts. A lower than 1.0
creationRatio is necessary in order to reduce the influence
of these variations, which incorrectly increase the number of
necessary hosts.

A too low initial creationRatio does not yield good re-
sults either. Only after too many completed tasks, enough
hosts are allocated to speed the computation. With a ini-
tial creationRatio of 0.0 it is possible to observe the in-
fluence of the increaseRatio: a higher increaseRatio re-
duces the timespan, but increases the number of allocated
hosts and the deviation of both the timespan and allocated
hosts. With higher initial creationRatio these observations
are not so evident due to the reduced number of allocated
host.

In order to evaluate the precision of our heuristic, it is
necessary to compare the number of allocated hosts with
the obtained speedups. In Fig. 7 we present, for two differ-
ent combinations of creationRatio and increaseRation,
the number of allocated hosts and the speedup obtained for
each execution. In the conservative behavior, both the cre-

ationRatio and increaseRation used where 0.5; in the ag-
gressive behavior, these values where 0.75.

In both scenarios, even though the number of allocated
hosts and the speedups do not coincide, they are close. For
instance, executions that used 13 hosts had speedups be-
tween 11 and 12. This difference is due to the delay there is
between the start of the first task and the final computation
of the number of necessary hosts.

The main difference between both behaviors does not lie
on the ratio between allocated hosts and speedups, but on
the total number of allocated hosts. This difference is only
noticeable in the image rendering example. With the conser-
vative behavior, the interval of the number of allocated hosts
is narrow, while with the aggressive behavior more hosts may
be allocated. With an aggressive selection of creationRa-

tio and increaseRation, it is possible that the number of
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Figure 6: Parallel normal distribution job
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Figure 7: Speedup comparison

allocated host is close to twice the minimum number of hosts
that would deliver a optimal cost per precessing time. The
minimum number of allocated hosts and speedups are the
same for both behaviors.

Varying the values of creationRatio and increase Ra-

tio between 0.5 and 0.75, the user can obtain different al-
located hosts (and charged values) variations, but always
obtaining speedups close to optimal.

6. CONCLUSIONS
In this paper we presented a heuristic that efficiently de-

fines the number of hosts to allocate on a utility computing
infrastructure in order to solve bag-of-tasks problems. In
the target environment, hosts may be allocated on demand,
the user will later be charged for the time each host was
used and jobs are composed of tasks whose execution times
are not known before their execution.

The results show that our heuristic determines the num-
ber of necessary hosts to guarantee that the charged time
is close to desired value. The number of allocated hosts are
close to the optimal value that would be found if task du-
ration were previously known. The speedups accomplished
are close to the number of allocated hosts. The presented
heuristic can provide both a conservative as well as a more
aggressive behavior. Varying both the creationRatio and
the increaseRatio it is possible to lower the charged time
(with higher timespan) or lower the job timespan with an

increase in payment.
If the user has a guess on the tasks processing time, this

information can be used to initially launch several comput-
ers. The number of computers to launch should be corrected
with the creationRatio, in order to avoid the allocation of
too much machines.
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