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Abstract This paper proposes a deep bidirectional long short-term memory approach in
modeling the long contextual, nonlinear mapping between audio and visual streams for
video-realistic talking head. In training stage, an audio-visual stereo database is firstly
recorded as a subject talking to a camera. The audio streams are converted into acoustic
feature, i.e. Mel-Frequency Cepstrum Coefficients (MFCCs), and their textual labels are
also extracted. The visual streams, in particular, the lower face region, are compactly rep-
resented by active appearance model (AAM) parameters by which the shape and texture
variations can be jointly modeled. Given pairs of the audio and visual parameter sequence,
a DBLSTM model is trained to learn the sequence mapping from audio to visual space. For
any unseen speech audio, whether it is original recorded or synthesized by text-to-speech
(TTS), the trained DBLSTM model can predict a convincing AAM parameter trajectory for
the lower face animation. To further improve the realism of the proposed talking head, the
trajectory tiling method is adopted to use the DBLSTM predicted AAM trajectory as a guide
to select a smooth real sample image sequence from the recorded database. We then stitch
the selected lower face image sequence back to a background face video of the same sub-
ject, resulting in a video-realistic talking head. Experimental results show that the proposed
DBLSTM approach outperforms the existing HMM-based approach in both objective and
subjective evaluations.
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1 Introduction

Immersive interaction between human and machines has been a popular research area for
several decades. Among various ways of interaction, human-machine speech communica-
tion is one of the most immersive ways because speech is the primary natural commu-
nication means between humans. Speech production and perception are both bimodal in
nature. That means, visual speech, i.e., speech-evoked facial movements, plays an indis-
pensable role in speech communication. Therefore, human-machine speech commutation
will become more immersive if a vivid talking head is present. Microsoft has recently
shown a prototype of talking agent towards human-machine face-to-face interaction [40].
A lively, lip-sync talking head is able to attract the attention of a user, making the human-
machine interface more engaging. On the other hand, talking heads are even able to make
inter-person tele-communication more interesting and enjoyable. Microsoft has released
Avatar Kinect [13], which is an Xbox 360 chatroom-type service that allows you and
your friends to talk to each other using personalized talking avatars. Talking heads can
be useful in many applications, e.g., reading emails, news or eBooks, playing characters
in computer games, acting as an intelligent voice agent or a computer assisted language
tutor, etc.

We aim to achieve an immersive photo-real talking head where the animation looks video
realistic. In other words, we desire our talking head to look as much as possible as if it
were a camera recording of a human face, and not that of a cartoon character. Achieving a
photo-real talking head is quite challenging. As we know, the human face has an extremely
complex geometric form [30] and the speech-originated facial movements are the result of
a complicated interaction between a number of anatomical layers that include bone, mus-
cle, fat and skin. Consequently, we are extremely sensitive to the slightest artifacts in an
animated talking face and even the most subtle changes can lead to unrealistic appearance.

In this paper, we propose a long short-term memory recurrent neural network (LSTM-
RNN) approach for video-realistic talking head. Recently, deep neural network (DNN)
based approaches have shown superior performance in many tasks, such as speech recogni-
tion [15], speech synthesis [49], natural language processing [4] and computer vision [22].
There are two mainstream neural net structures: feed forward and recurrent. Specifically,
recurrent neural networks (RNN) with purpose-build long short-term memory (LSTM) cells
can incorporate long range context from the input sequence [17]. They have shown strong
trajectory modeling ability in speech recognition [12] and synthesis [10] tasks. Therefore,
in this paper, we propose to use LSTM-RNNs to learn a direct mapping between the input
speech/text and the output facial movements.

First, the audio/visual parallel training data from a subject are converted into sequences
of input and output feature vectors, respectively. The input feature vector can be contex-
tual labels or acoustic representations of speech. Like [47], we adopt the active appearance
model (AAM) to model the lower face of the subject and take the low dimensional visual
appearance parameters as the output features. After that, an LSTM-RNN is trained to learn
the regression model between the input and output sequences by minimizing the genera-
tion errors. In the synthesis stage, the LSTM-RNN is used to predict the AAM parameter
sequence from a given input sequence. The generated AAM trajectory is then used as a
guide to select, from the original training database, an optimal sequence of facial images.
The face images of low faces are then stitched back to a background face video of the
subject, resulting in video-realistic performance. Experiments on the LIPS 2008/2009 stan-
dard audio-visual corpus [35] show that the proposed LSTM-RNN approach significantly
outperforms the state-of-the-art HMM-based approach.
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2 Related work

Various talking head approaches have been proposed during the last decades. Broadly speak-
ing, a talking head can be driven by text or speech, which depends largely on the application
at hand. A text-driven talking head usually consists of a text-to-speech (TTS) module and
a text-to-face-animation module. The facial animation is finally synchronized with the syn-
thetic speech. Speech-driven talking head seems more straightforward: an input acoustic
feature sequence is directly mapped to an output visual feature sequence that is used to drive
a face model. AT&T Bell labs developed a text-driven talking head for interactive services
[7]. Microsoft released a text-driven avatar in Engkoo online dictionary for language learn-
ing [41]. We proposed a real-time speech-driven talking avatar based on real-time phoneme
recognition and motion trajectory generation through dynamic visemes [24].

According to the underlying face model, talking heads can be classified into model-based
[1, 2, 19, 20, 26, 34, 43] and video-based [3, 7, 9, 25, 39, 46]. The model-based approaches
usually animate the face using a deformable model while the video-based approaches con-
catenate short facial video clips from a prerecorded video dataset. Both approaches have
merits and demerits. Model-based approaches are flexible because the face can be deformed
in any reasonable ways, but they generally lack video-realism due to the complexity of
real surfaces, textures and motions. In contrast, video-based approaches usually can achieve
(near-) video realism performance because of the static nature of the texture, but they often
lack flexibility as the facial animations are only confined to the limited samples in the video
database.

Both text- and speech-driven taking heads desire an input to visual feature conversion or
mapping algorithm. The conversion is not trivial because of the coarticulation, which causes
a given phoneme to be pronounced differently depending on the surrounding phonemes.
This phenomenon leads to an essential problem in talking head animation, namely lip
synchronization or lip-sync for short. Lip-sync can be regarded as a regression or a classifi-
cation task. Regression approaches try to directly map input features into continuous visual
parameters, e.g., using linear regression and time-delayed neural network [28]. Classifi-
cation approaches usually consider a phonetic representation, rather from acoustic speech
recognition or text analysis module of a TTS engine, and generate visual parameters using
mapping rules or concatenation of model parameters. The regression methods can gener-
ate continuous trajectories, but the facial motion is not accurate enough to provide useful
visual information [18, 28]. Early classification approaches define a direct mapping from
phonemes to basic mouth units, known as visemes, and mouth animation is achieved by
simply morphing key images of these visemes [8]. The performance achieved is far from
natural because coarticulation is not fully considered. Current main-stream classification
methods usually learn an audio-to-visual mapping from a database in a statistical way, and
thus the animation becomes more natural.

Hidden Markov models (HMMs) have shown tremendous success in modeling speech.
Thus they have been recently investigated in talking head animation or visual speech syn-
thesis [33, 45]. In an HMM-based talking head, audio and visual speech are jointly modeled
by HMMs and audio/visual speech parameter trajectories are synthesized using the trajec-
tory HMM algorithm under the maximum likelihood criterion [23]. One obvious drawback
of the HMM-based talking head is its blurring animation due to the maximum likelihood-
based statistical modeling. So there are some hybrid approaches that use the HMM predicted
trajectory to guide the sample selection process [37, 39], which combines the advantages
of both the video-based concatenation and the HMM-based modeling approaches. For
both HMM-based parametric and HMM-guided hybrid approaches, the statistically trained
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HMMs are crucial because the HMM-predicted visual trajectories determine how well the
visual appearance can be rendered. Although HMM can model sequential data efficiently,
there are still some well-known limitations [48], such as the wrong model assumptions out
of necessity, e.g., Gaussian mixture model (GMM) and its diagonal covariance, and the
greedy, hence suboptimal, search derived decision-tree based contextual state clustering.

Motivated by the deep neural network (DNN)’s superior performance in automatic
speech recognition and other tasks, neural network approaches have been recently explored
in a highly related task, i.e., speech synthesis [21, 31, 49]. There are several advantages of
the deep NN-based synthesis approaches: it can model long-span, high dimensional and the
correlation of input features; it is able to learn non-linear mapping between input and output
with a deep-layered, hierarchical, feed-forward and recurrent structure; it has the discrimi-
native and predictive capability in generation sense, with appropriate cost function(s), e.g.
generation error. Recently, recurrent neural networks (RNNs) [42] and their bidirectional
variant, bidirectional RNNs (BRNNs) [27], become popular because they are able to incor-
porate contextual information that is essential for sequential data modeling. Conventional
RNNs cannot well model the long-span relations in sequential data because of the vanish-
ing gradient problem [16]. Hochreiter et al. [17] found that the LSTM architecture, which
uses purpose-built memory cells to store information, is better at exploiting long range con-
text. Combining BRNNs with LSTM gives BLSTM, which can access long-range context
in both directions.

Hence in this paper, we propose to use LSTM-RNNs as a regression model to learn a
direct mapping from input audio/text to the output visual parameters. This avoids the prob-
lematic decision tree clustering in HMM-based approaches. The decision tree subdivides
the model space by a hard division based on one feature at a time, fragmenting the data
and failing to exploit interactions between linguistic context features [48]. Similar to the
HMM trajectory guided sample selection approach [37], to achieve video-realism, the visual
parameter trajectory is further used as guidance in a video sample selection procedure. The
proposed LSTM-RNN approach can first give a convincing estimation of the visual tra-
jectory given any unseen acoustic input, and then tiles the predicted trajectories with real
image samples. Therefore the animated talking head achieves both lip synchronization and
video-realistic and experiments have shown its superior performance as compared with the
HMM-based approach.

3 System overview

Figure 1 shows the diagram of the proposed photo-real talking head that is composed of
a training stage and a synthesis stage. First of all, this framework requires an audio/visual
database of a subject talking to a camera with frontal view as the training data. In this study,
we employ the LIPS 2008/2009 Visual Speech Synthesis Challenge data [35] to build our
talking head system. Please note that this is a language independent framework and it can
be easily extended to another subject speaking a different language.

In the training stage, the input text and audio are converted into a sequence of input fea-
tures I. As mentioned above, the input features can be contextual labels, acoustic features or
the combination of them, each corresponding to text-driven, speech-driven and text/speech-
driven talking head, respectively. The lower face image sequence is transformed into a
sequence of output features O and this step is realized by active appearance model (AAM)
of face. A small set of video data is sufficient to build a high-quality talking head with our
proposed method. In our approach, the footage of the video for training is about 17 minutes.



Multimed Tools Appl

A/V

Database

Input Feature 

Extraction

Output Feature 

Extraction 

Input

Feature

Extraction

Prediction
Trajectory 

Tiling

Face 

images

Text & 

Audio

Deep Neural Network

Training

I

O

I

NN

Model

Text & 

Audio Image

Stitching
Ô
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Fig. 1 System overview of the proposed talking head

Given the input I and the output O, we train a deep neural network, e.g., LSTM-RNN, to
learn the regression model by minimizing the prediction error of O.

In the synthesis stage, for any input speech and text, we first extract the input sequence
I and then predict the visual AAM parameters Ô using the well-trained deep neural net-
work. After that, we use the predicted visual parameter sequence Ô as a guidance to select
the most-likely image sequence from the database. Finally, we stitch the selected image
sequence to a pre-defined background whole-face image sequence, resulting in lip-synced
video-realistic talking head animation.

4 Feature representation

4.1 Input feature I

The input of a desired talking head system can be any arbitrary text along with natural
audio recordings or TTS-synthesized speech. For speech recordings, the phoneme/state time
alignment can be obtained by conducting forced alignment using a trained phoneme recog-
nizer. For TTS synthesized speech, the phoneme/state sequence and time offset are just a
by-product of the synthesis process. Specifically, the input feature can be contextual labels
L, acoustic feature A or the combination of them.

For contextual labels L, we convert the phoneme/state sequence and their time offset into
a label sequence, denoting as L = (l1, . . . , lt , . . . , lT ), where T is the number of frames
in the sequence. The format of the frame-level label lt uses the one-hot representation, i.e.,
one vector for each frame, shown as follows:

[0, . . . , 0, . . . , 1
︸ ︷︷ ︸

K

, 1, . . . , 0, . . . , 0
︸ ︷︷ ︸

K

, 0, 0, 1, . . . , 0
︸ ︷︷ ︸

K

, 0, 1, 0
︸ ︷︷ ︸

3

,

where K denotes the number of phonemes in the given language. We use triphone plus
the information of three states to identify lt . The first 3 K-element sub-vectors denote the
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identities of the left, current and right phonemes in the triphone, respectively, and the last
3 elements represent the phoneme state which can be obtained from forced alignment of a
natural speech recording or a TTS system. The reason why state information is included in
the labels is to improve the distinguishability. If not included, the contextual label of the
current phoneme will keep constant in its duration which will lead to lack of expressiveness
of the lip movements.

Please note that the contextual label can be easily extended to contain richer information,
like positions in syllables, words, stress, part-of-speech, etc. Due to the limitation of the
training data, in our experiment we only consider phoneme and state level labels.

For acoustic feature A, we use standard Mel-frequency cepstral coefficients (MFCCs)
and their delta and delta-delta coefficients. The dimensionality of A is 39 in our work.

4.2 Output feature O

Most of the speech-originated facial movements are constrained to the lower part of a human
face. Hence the output of our talking head is a visual stream which is a sequence of lower
face images strongly correlated to the underlying speech. As a raw face image is hard to
model directly due to the high dimensionality, we use active appearance model (AAM) for
visual feature extraction. AAM is a joint statistical model compactly representing both the
shape and the texture variations and the correlation between them [5].

Since the head movements, raised by natural speaking, may hinder the face modeling, we
perform head pose normalization among all the face images before AAM modeling. With
the help of an effective 3D model-based head pose tracking algorithm [38], the head pose
in each image frame is normalized to a fully frontal view and further aligned.

The shape of the j -th lower face, sj , can be represented by the concatenation of the x

and y coordinates of N facial feature points:

sj = (xj1, xj2, . . . , xjN , yj1, yj2, . . . , yjN ), (1)

where j = 1, 2, . . . , J and J is the total number of the face images. In this work, we use
a set of 48 typical facial feature points, as shown in Figure 2a. The mean shape is simply
defined by

s0 =
∑J

j=1
sj /J. (2)

Applying principal component analysis (PCA) to all J shapes, sj can be given approxi-
mately by:

sj = s0 +
∑Nshape

i=1
aji s̃i = s0 + ajPs , (3)

where Ps = [s̃1, s̃2, . . . , s̃i , . . . , s̃�Nshape
denotes the eigenvectors corresponding to the Nshape

largest eigenvalues and aj = [aj1, aj2, . . . , aji , . . . , ajNshape is the j -th shape parameter
vector.

We define the inner triangulation structure by applying Delaunay Triangulation on the
mean shape s0. For an arbitrary shape, we can establish a unique transformation between
this shape and the mean shape. Then the texture of the j -th face image, tj , can be defined
by a vector concatenating the RGB value of every pixel that lies inside the mean shape s0:

tj = (rj1, rj2, . . . , rjU , gj1, gj2, . . . , gjU , bj1, bj2, . . . , bjU ), (4)

where j = 1, 2, . . . , J and U is the total number of pixels in the lower face region.
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Fig. 2 Facial feature points and the texture of a lower face

As the dimensionality of the texture vector is too high to use PCA directly, we apply
EMPCA to all J textures [32]. As a result, the j -th texture tj can be given approximately
by:

tj = t0 +
∑Ntexture

i=1
bji t̃i = t0 + bjPt , (5)

where t0 is the mean texture, Pt contains the orthonormal eigenvectors corresponding to the
Ntexture largest eigenvalues, and bj is the j -th texture parameter vector.

We simplify each elements’ distributions of all the shape and texture parameters into
normal distributions. The corresponding means and standard deviations are a

i1
0 , b

i2
0 and σai1 ,

σbi2 (i1 and i2 are the indices of arbitrary elements). If an arbitrary shape parameter a
i1
k

and a texture parameter b
i2
k are in conformity with the training data, they should meet the

following conditions:
∥

∥

∥a
i1
k − a

i1
0

∥

∥

∥ ≤ 3σai1 , i1 = 1, 2, . . . , Nshape, (6)
∥

∥

∥b
i2
k − b

i2
0

∥

∥

∥ ≤ 3σbi2 , i2 = 1, 2, . . . , Ntexture. (7)

The above shape and texture models can only control the shape and texture separately. In
order to recover the correlation between the shape and the texture, aj and bj are combined
in another round of PCA as follows:

(aj ,bj ) =
∑Nappearance

i=1
oji õi = ojPo, (8)

assuming that Pos and Pot are formed by extracting the first Nshape and the last Ntexture
values from each component in Po. Simply combining the above equations gives rise to:

sj = s0 + ojPosPs = s0 + ojQs , (9)

tj = t0 + ojPotPt = t0 + ojQt . (10)

Now, we can reconstruct the shape and texture of the j -th lower face image by only
one appearance parameter vector oj . Figure 3 shows some original lower-face images and
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Original
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Fig. 3 Some original lower-face images and their reconstructed ones from the AAM

their reconstructed ones from the AAM. We can see that the reconstructed images are quite
similar to the original ones. Subsequently, the lower face sequence with T frames can be
represented by the output feature sequence O = (o1, . . . , ot , . . . , oT ).

5 LSTM-RNN based talking head

Motivated by its superior performance in many tasks, we propose to use LSTM-RNN for
audio-to-visual mapping. In this section, we first briefly review the basics about RNN and
RNN with LSTM cells. After that, the LSTM-RNN based talking head will be introduced.

5.1 RNN

Allowing cyclical connections in a feed-forward neural network, we obtain recurrent neural
networks (RNNs) [42]. Different from the feed-forward ones, RNNs are able to incorpo-
rate contextual information from previous input vectors, which allows them to remember
past inputs and persist in the network’s internal state. This property makes them an attrac-
tive choice for sequence-to-sequence learning. For a given input vector sequence x =
(x1, x2 . . . , xT ), the forward pass of RNNs is as follows:

ht = H(Wxhxt + Whhht−1 + bh), (11)

yt = Whyht + by, (12)

where t = 1, . . . , T , and T is the length of the sequence; h = (h1, . . . , hT ) is the hidden
state vector sequence computed from x; y = (y1, . . . , yT ) is the output vector sequence;
W is the weight matrices, where Wxh, Whh and Why are the input-hidden, hidden-hidden
and hidden-output weight matrices, respectively. bh and by are the hidden and output bias
vectors, respectively andH denotes the nonlinear activation function for hidden nodes.

For our talking head system, because of the speech coarticulation phenomenon, we desire
the model to have access to both past and future context. But conventional RNNs can only
access the past context and they ignore the future context. So the bidirectional recurrent
neural networks (BRNNs), as shown in Fig. 4, are used to relieve this problem. BRNNs
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Fig. 4 Bidirectional recurrent neural networks (BRNNs)

compute both forward state sequence
−→
h and backward state sequence

←−
h , as formulated

below:

−→
h t = H(W

x
−→
h

xt + W−→
h

−→
h

−→
h t−1 + b−→

h
), (13)

←−
h t = H(W

x
←−
h

xt + W←−
h

←−
h

←−
h t−1 + b←−

h
), (14)

yt = W−→
h y

−→
h t + W←−

h y

←−
h t + by. (15)

5.2 LSTM-RNN

Conventional RNNs can access only a limited range of context because of the vanishing
gradient problem. Long short-term memory (LSTM) [17] uses purpose-built memory cells,
as shown in Fig. 5, to store information which is designed to overcome this limitation. In
sequence-to-sequence mapping tasks, LSTM has been shown capable of bridging very long
time lags between input and output sequences by enforcing constant error flow. For LSTM,
the recurrent hidden layer functionH is implemented as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi), (16)

ft = σ(Wxf xt + Whf ht−1 + Wcict−1 + bf ), (17)

at = τ(Wxcxt + Whcht−1 + bc), (18)

ct = ftct1 + it at , (19)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo), (20)

ht = ot θ(ct ), (21)

where σ is the sigmoid function; i, f , o, a and c are input gate, forget gate, output gate, cell
input activation and cell memory, respectively. τ and θ are the cell input and output non-
linear activation functions, in which tanh is generally chosen. The multiplicative gates allow
LSTM memory cells to store and access information over long periods of time, thereby
avoiding the vanishing gradient problem.

Combining BRNNs with LSTM gives rise to BLSTM, which can access long-range
context in both directions. Motivated by the success of deep neural network architectures,
we propose to use deep BLSTM-RNNs (DBLSTM-RNNs) to establish the audio-to-visual
mapping in our talking head system. Deep BLSTM-RNN is created by stacking multiple
BLSTM hidden layers.
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Fig. 5 Long short-term memory
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5.3 Deep BLSTM-RNNs based talking head

The extracted input sequence I and output feature sequence O are two time varying parallel
sequences. After resampling, we can easily make the two sequences at the same frame
rate. In particular, at the t-th frame, the input of the network is the t-th input vector it and
the output is the t-th output feature vector ot . As described in [11], the basic idea of this
bidirectional structure is to present each sequence forwards and backwards to two separate
recurrent hidden layers, both of which are connected to the same output layer. This provides
the network with complete, symmetrical, past and future context for every point in the input
sequence. Please note that in Fig. 6, more hidden layers can be added in to construct a deep
BLSTM-RNN.

In the training stage, we have multiple sequence pairs of I and O. As we represent both
sequences as continuous numerical vectors, the network is treated as a regression model
minimizing the sum of squared errors (SSE) of predicting Ô from I. In the test (or synthesis)
stage, given any arbitrary text along with natural or synthesized speech, we firstly convert
them into a sequence of input features, then feed into the trained network, and the output of
the network is the predicted visual AAM feature sequence. Please note that the maximum
likelihood parameter generation (MLPG) algorithm has not been used in the parameter gen-
eration process because the DBLSTM approach can generate smooth trajectories without
the smoothing step. This has also been shown in a previous TTS work [10]. After recon-
structing the AAM feature vectors to RGB images, we can get the video realistic image
sequence of the lower face. Finally, we stitch the lower face to a background face and render
the facial animation of the talking head.

Learning deep BLSTM network can be regarded as optimizing a differentiable error
function:

E(w) =
∑Mtrain

k=1
Ek(w), (22)

where Mtrain represents the number of sequences in the training data and w denotes the
network inter-node weights. In our task, the training criterion is to minimize the SSE
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Fig. 6 DBLSTM-RNNs in our talking head system

between the predicted visual features Ô = (ô1, ô2, . . . , ôT ) and the ground truth O =
(o1, o2, . . . , oT ). For a particular input sequence k, the error function takes the form:

Ek(w) =
∑Tk

t=1
Ekt = 1

2

∑Tk

t=1

∥

∥

∥ ôk
t − ok

t

∥

∥

∥

2
, (23)

where Tk is the total number of frames in the k-th sequence. In every iteration, we calculate
the error gradient with the following equation:

�w(r) = m�w(r − 1) − α
∂E(w(r))

∂w(r)
, (24)

where 0 ≤ α ≤ 1 is the learning rate, 0 ≤ m ≤ 1 is the momentum parameter, and w(r)

represents the vector of weights after r-th iteration of update. The convergence condition is
that the validation error has no obvious change after R iterations.

We use back-propagation through time (BPTT) algorithm to train the network. In the
BLSTM hidden layer, BPTT is applied to both forward and backward hidden nodes and
back-propagates layer by layer. Take the error function derivatives with respect to the output
of the network as an example. For ôk

t = (ôk
t1, . . . , ô

k
tj , . . . , ô

k
tNappearance

) in the k-th Ô, because
the activation function used in the output layer is an identity function, we have

ôk
tj =

∑

h

wohz
k
ht , (25)

where o is the index of the an output node, zk
ht is the activation of a node in the hidden layer

connected to the node o, and woh is the weight associated with this connection. By applying
the chain rule for partial derivatives, we can obtain

∂Ekt

∂woh

=
∑Nappearance

j=1

∂Ekt

∂ôk
tj

∂ôk
tj

∂woh

, (26)
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and according to (23) and (25), we can derive

∂Ekt

∂woh

=
∑Nappearance

j=1
(ôk

tj − ok
tj )z

k
ht , (27)

∂Ek

∂woh

=
∑T

t=1

∂Ekt

∂woh

. (28)

6 Trajectory tiling for video-realistic talking head

Given any arbitrary text along with natural or synthesized speech, we can generate the
corresponding lower face image sequence reconstructed from the AAM using the above
mentioned DBLSTM-RNN talking head system. Although the predicted image sequence
is smooth and robust to the coarticulation phenomenon, it still suffers from the blur prob-
lem that may be caused by dimensionality reduction in AAM, statistical modeling and
trajectory generation. To solve the blur problem, inspired by a previous work [39], we use
a trajectory tiling approach to achieve a video-realistic talking head. Specifically, we use
the predicted AAM visual parameter sequence Ô as a guidance to select the most likely
image sequence from the database. After that, we stitch the selected image sequence to a
pre-defined background sequence, and finally we can generate a lip-synced video-realistic
talking head.

6.1 Cost function

Motivated by the unit selection in concatenative speech synthesis, the cost function is
defined as the weighted sum of the target and concatenation costs:

C(Ô, R̂) =
∑T

i=1
wtCt (ôi , r̂i ) +

∑T

i=2
wcCc(r̂i−1, r̂i ), (29)

where Ô = (ô1, . . . , ôi , . . . , ôT ) and R̂ = (r̂1, . . . , r̂i , . . . , r̂T ) are predicted output
sequence and selected real image sequence, respectively, and wt and wc are target weight
and concatenation weight, respectively.

The selected image sequence should be similar to the trajectory as much as possible
because the procedure of selection is guided by the trajectory. Hence the target cost between
an image sample r̂i and predicted visual feature ôi is defined by the Euclidean distance:

Ct(ôi , r̂i ) = ∥

∥ôi − oi

∥

∥ , (30)

where oi is the ground truth AAM visual feature vector corresponding to r̂i .
As the coarticulation phenomenon, we must take the smoothness of the concatenation

between adjoining selected images into consideration. We use cosine distance to measure
the concatenation cost between two image samples r̂i and r̂j :

cos(r̂i , r̂j ) = oi · oj

‖oi‖
∥

∥oj

∥

∥

. (31)

Assuming that the corresponding samples of r̂i and r̂j in the sample library are rp and
rq , i.e., r̂i = rp, and r̂j = rq , where, p and q are the sample indices in video recording.
Hence, rp and rp+1, rq and rq−1 are consecutive frames in the original recording. The next
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wodnhiw

Frame

Image Candidates

Reconstructed Face Images

Fig. 7 Illustration for trajectory tiling in video-realistic talking head. In this example, the word ‘window’ is
spoken by the speaker. The reconstructed face images are generated by the predicted AAM visual features.
They serve as the guidance to select the optimal image sequence from the image candidates (K=10 at each
time)

image of rp is rp+1 and the former image of rq is rq−1. We define the concatenation cost
between r̂i and r̂j as:

Cc(r̂i , r̂j ) = Cc(rp, rq) = 1 − 1

2

[

cos(rp, rq−1) + cos(rp+1, rq)
]

. (32)

Because cos(rp, rp) = cos(rq, rq) = 1,

Cc(rp, rp+1) = Cc(rq−1, rq) = 0, (33)

Sample

Mask

Lower

Face Image

Background

Image/Sequence

Stitched

Image/Sequence

+

Fig. 8 Illustration of the image stitching process
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Table 1 Network topologies tested in our experiments

Hidden layer F, B, BB, BF, FB, FF, BBB, BBF, BFB

BFF, FBB, FBF, FFB and FFF

Node 64, 128, 256 and 512

which means that the concatenation cost encourages the selection of consecutive frames in
the original recording. In other words, this selection algorithm prefers to select real video
segments because of zero concatenation cost.

We select the image sequence that makes the cost function reach the minimum value.
Because there are thousands of images in the training data, we use Viterbi search to find the
optimal image sequence. This is done by two pruning steps. Firstly, for every target frame
in the trajectory, K-nearest samples are selected as candidates according to the target cost.
K is set to 40 in our study. Secondly, the best image sequence is chosen by Viterbi search
in terms of concatenation cost. This pruning procedure is depicted in Fig. 7 and K is set to
10 here to simply illustrate this procedure.

6.2 Image stitching

We use the same strategy in [6] to stitch the lower face images back onto the full face
images. Local deformations are required in order to stitch the shape of the mouth and jaw
line correctly to avoid the artifacts possibly caused when the stitches are across the jaw line.
After local deformation around the jaw line, we use Poisson image editing technique [29]

Table 2 The objective experimental results for networks with different hidden layers and numbers of nodes
for the text-driven talking head

Node 64 128 256 512

TP RMSE CORR RMSE CORR RMSE CORR RMSE CORR

B 70.499 0.543 70.227 0.546 71.177 0.535 71.309 0.532

F 76.087 0.418 75.864 0.421 76.666 0.403 75.954 0.418

BB 68.952 0.569 69.297 0.563 69.873 0.552 71.121 0.535

BF 69.222 0.567 69.580 0.563 70.610 0.541 70.706 0.543

FB 67.899 0.584 67.926 0.583 67.641 0.586 68.194 0.580

FF 75.841 0.424 76.073 0.417 75.679 0.426 75.453 0.430

BBB 68.232 0.578 68.506 0.574 68.882 0.569 70.596 0.544

BBF 68.135 0.580 69.012 0.567 68.882 0.569 69.947 0.552

BFB 68.075 0.582 67.672 0.586 68.580 0.573 69.441 0.560

BFF 69.174 0.564 69.478 0.560 70.896 0.538 70.598 0.542

FBB 67.144 0.593 66.971 0.597 67.133 0.593 67.760 0.584

FBF 67.433 0.589 67.241 0.591 67.117 0.594 67.947 0.582

FFB 67.503 0.589 67.668 0.585 67.762 0.583 67.464 0.589

FFF 75.788 0.424 75.847 0.422 75.655 0.427 76.249 0.413
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to blend the lower face images onto the full face images automatically. The editing region
is specified by a mouth replacement mask, as shown in Fig. 8. We randomly selected a
consecutive video segment as the background. Because the selected lower face images are
smooth and realistic in terms of the pre-defined cost function, we can finally generate a
natural and smooth talking head, as shown in Fig. 8.

7 Experiments

7.1 Experimental setup

Our experiments were carried out on the standard LIPS 2008/2009 Visual Speech Synthe-
sis Challenge data [35]. The database contains 278 audio-video files with English sentences
spoken by a native female speaker in a neutral style. The full contextual labels are gener-
ated with a phoneme dictionary which has 50 phonemes. The frame rate of the video files
is 50 fps and all together 61,028 face images with pixel resolution 288 × 360 are collected.
We randomly divided the database into 3 disjoint parts: 80 % for training, 10 % for vali-
dation and 10 % for testing. We randomly selected 20,000 images from the training set for
lower face AAM modeling. We chose top 76 shape and 100 texture principal components
containing about 85.7 % cumulative energy contents, respectively. The final dimension of
the output appearance vector (ôt ) is 91. We find that the use of more principal components
will not lead to further performance improvement. In the neural network training, we set
the learning rate and the momentum to 1e-6 and 0.9, respectively and the weights were
initialized with a Gaussian random distribution.

Table 3 The objective experimental results for networks with different hidden layers and numbers of nodes
for the speech-driven talking head

Node 64 128 256 512

TP RMSE CORR RMSE CORR RMSE CORR RMSE CORR

B 71.104 0.524 70.535 0.531 70.094 0.540 69.402 0.556

F 82.319 0.257 80.969 0.303 81.701 0.279 82.412 0.256

BB 69.477 0.557 68.603 0.572 68.534 0.574 69.356 0.554

BF 69.602 0.553 70.653 0.535 70.046 0.545 69.288 0.562

FB 71.227 0.524 71.622 0.516 69.997 0.548 71.213 0.522

FF 78.821 0.360 79.201 0.351 79.259 0.348 78.422 0.373

BBB 68.324 0.576 68.573 0.568 68.587 0.569 69.494 0.556

BBF 68.026 0.577 68.959 0.569 68.572 0.570 68.484 0.572

BFB 69.458 0.556 68.192 0.577 68.574 0.572 69.694 0.559

BFF 70.945 0.528 69.082 0.557 69.448 0.554 69.784 0.552

FBB 69.337 0.560 69.684 0.553 69.144 0.555 69.205 0.556

FBF 70.680 0.531 69.902 0.545 70.967 0.525 69.432 0.558

FFB 71.939 0.512 72.154 0.507 70.732 0.524 68.690 0.571

FFF 80.047 0.320 79.726 0.330 79.288 0.345 79.384 0.346
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7.2 Objective evaluation

We conducted objective evaluations by directly comparing the predicted visual AAM fea-
tures with the ground truth AAM parameters. Two objective metrics are used, defined as
follows:

RMSE =
∑Mtest

k=1

∑Tk

t=1

√

∥

∥ ôk
t − ok

t

∥

∥
2
/Nappearance

∑Mtest
k=1 Tk

, (34)

CORR =
∑Mtest

k=1

∑Tk

t=1corr(ôk
t , o

k
t )

∑Mtest
k=1 Tk

, (35)

where Mtest represents the number of sequences in the test data, Tk is the length of the
kth sequence in the test data and ok

t is the t th frame of the output feature in the kth out-
put sequence. corr(ôk

t , o
k
t ) denotes the correlation coefficient. Note that lower RMSE and

higher CORR correspond to better performance.
The input features can be contextual labels, acoustic features or the combination of them.

For the three kinds of feature inputs, we tested the performance of network topologies with
different hidden layers (F–feed forward, B–BLSTM) and numbers of nodes, as described
in Table 1. The results are summarized in Tables 2, 3 and 4, respectively. Please note that
we have tested topologies with more than three layers. While the training data used in our
study is quite limited, we found that the increase of the network layers does no help to the
performance gain but leads to over-fitting. Moreover, the training time of the networks is
increased dramatically.

Table 4 The objective experimental results for networks with different hidden layers and numbers of nodes
for text-and-speech-driven talking head

Node 64 128 256 512

TP RMSE CORR RMSE CORR RMSE CORR RMSE CORR

B 69.204 0.564 69.939 0.553 71.086 0.534 71.510 0.528

F 75.724 0.432 76.032 0.423 75.948 0.425 76.328 0.423

BB 69.388 0.560 69.360 0.564 69.385 0.562 71.448 0.528

BF 69.817 0.555 69.659 0.557 69.194 0.571 70.472 0.547

FB 66.904 0.599 66.474 0.602 68.116 0.581 67.724 0.588

FF 75.138 0.442 75.143 0.442 74.383 0.450 75.128 0.444

BBB 67.607 0.589 68.093 0.582 68.853 0.573 71.659 0.523

BBF 67.867 0.587 67.458 0.592 69.360 0.565 69.181 0.568

BFB 67.760 0.585 66.993 0.597 67.490 0.593 69.368 0.566

BFF 69.272 0.564 69.068 0.568 68.824 0.577 69.698 0.558

FBB 66.761 0.598 66.261 0.608 66.950 0.595 67.377 0.590

FBF 66.733 0.599 66.242 0.608 66.667 0.602 67.057 0.598

FFB 66.722 0.601 66.890 0.596 66.454 0.602 66.907 0.595

FFF 74.949 0.449 75.126 0.443 75.777 0.428 75.720 0.432
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Table 5 Comparison between DBLSTM-RNN-based and HMM-based talking heads

Comparison RMSE CORR

HMM 71.414 0.496

DBLSTM 67.144 0.593

Results show that, in most cases, the 3-hidden-layer structures outperform the 1- and 2-
hidden-layer structures and the structures with a BLSTM layer apparently outperform those
without one. The best results are marked with bold font in these three tables. For text-driven
talking head, in terms of the two objective metrics, FBB, FBF and FFB show superior per-
formance. The best text-driven performance (RMSE=66.971, CORR=0.597) is achieved by
FBB-128, a network with two BLSTM layers sitting on top of one feed-forward layer. For
speech-driven talking head, BBF and BFB usually give good results and the best network
topology is BBF with 64 nodes per layer. We notice that text-driven shows slightly better
performance as compared with speech-driven. A possible explanation is that the same utter-
ance spoken by the same person at various times may be more or less different, while the
corresponding text is definitely the same, i.e., the input features in the text-driven system
are more stable than that in the speech-driven system. When the input is the combination
of text and speech (text-and-speech-driven), further performance gain is achieved and the
best topology is FBF with 128 nodes per layer (RMSE=66.242, CORR=0.608). We believe
that, although the improvement is limited, the complimentary information from the two
modalities help to achieve this. Please note that, for a sanity check, we have tried unidi-
rectional LSTM-RNNs. In general, the performance of unidirectional LSTM-RNN is not
as good as the bidirectional one. Some recent studies, e.g., [10], have also shown that
the bidirectional structure is essential for the success of sequential modeling of speech
data.

7.3 DBLSTM-RNNs vs. HMM

We also compared our DBLSTM-RNN approach with the state-of-the-art HMM-based
approach [37]. In the HMM-based system, five-state, left-to-right HMM triphone models
were used, where each state was modeled by a single Gaussian with diagonal covariance.
The HMMs were first trained in the maximum likelihood (ML) sense and then refined
by the minimum generation error (MGE) training. We chose the best topology of text-
driven talking head, i.e., FBB128, to compare with the HMM-based one. The results for
the FBB128 deep BLSTM-RNN and the HMM are shown in Table 5. We can clearly see
that the deep BLSTM-RNNs approach outperforms the HMM approach by a large margin

45.5%

DBLSTM-RNNs

27.5%

HMM

27.0%

Neutral

Fig. 9 The percentage preference of the deep BLSTM-RNNS-based and HMM-based video-realistic talking
heads
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50.6%

Original

24.4%

DBLSTM-RNNs

25.0%

Neutral

Fig. 10 The percentage preference of the deep BLSTM-RNNS-based and original talking heads

in terms of the two objective metrics. Please note that the computational cost of training
DBLSTM-RNN-based talking head is much higher than that of HMM-based one.

7.4 Subjective evaluation

A collection of 10 utterances was chosen from the test set for subjective evaluation of the tra-
jectory tiling approaches. According to the trajectory tiling method described in Section 6,
text-driven talking head animation videos were generated for both FBB128 and HMM. For
each test utterance, the two talking head videos were placed side-by-side randomly and
played with original speech. A group of 20 subjects were asked to perform an A/B pref-
erence test according to the naturalness. The percentage preference is shown in Fig. 9.
We can clearly see that the DBLSTM-RNN-based talking head is significantly preferred
as compared with the HMM-based one. Most subjects prefer the DBLSTM-RNN-based
talking head because its lip movement is more smooth and accurate than the HMM-based
one. Using the same evaluation method, we also compared the DBLSTM-RNN-based talk-
ing head with the original video. The percentage preference is shown in Fig. 10. Results
show that about half the votes are given to the origninal vidoes and another half of the
votes go to Neutral and BLSTM-RNN. This means, the synthesized videos look quite real-
sitic and some of them cannnot be distinguished with the original ones. Feedback from
subjects shows that the syntheiszed mouth movments look quite smooth and synchronized
with speech very well, but in some synthesized vidoes, the mouth openning is smaller as
compared with the orignial ones. This is mainly because the generated trajectory is kind
of over-smoothed. We believe that a post-filtering method, e.g. global variance (GV) [36],
can alleviate this problem. Some video clips of the synthesized taking head can be found
from [14].

8 Conclusions

In this paper, we propose a long short-term memory recurrent neural network (LSTM-
RNN) approach for video-realistic talking head. At the very beginning, an audio/visual
database of a subject talking to a camera with frontal view is required as the training data.
The audio/visual stereo data are converted into two parallel temporal sequences, i.e., input
sequences and output sequences. Then we use DBLSTM-RNNs to model the temporal and
long-range dependencies of these two sequences. The trained DBLSTM-RNNs is used to
generate the output parameter sequence from a given input sequence as a guide to select,
from the original training database, an optimal sequence of facial images. The face images
of low faces are finally stitched back to a background face video of the subject, resulting in
video-realistic performance. Our study shows that proposed LSTM-RNN approach signif-
icantly outperforms the state-of-the-art HMM-based approach. In future work, we plan to
add emotion to this framework to make the talking head more lifelike. A recent study has
shown that stack bottleneck DNN features [44] provide another promising way to address
the contextual information. We plan to compare the DBLSTM-RNN approach with the stack
bottleneck approach in the future work.
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