
Proving Termination of Normalization Functions for
Conditional Expressions

Lawrence C Paulson

Computer Laboratory

University of Cambridge

3 June 1985

Boyer and Moore have discussed a recursive function that puts con-

ditional expressions into normal form [1]. It is difficult to prove that

this function terminates on all inputs. Three termination proofs are

compared: (1) using a measure function, (2) in domain theory using

LCF, (3) showing that its recursion relation, defined by the pattern

of recursive calls, is well-founded. The last two proofs are essentially

the same though conducted in markedly different logical frameworks.

An obviously total variant of the normalize function is presented as the

‘computational meaning’ of those two proofs.

A related function makes nested recursive calls. The three termi-

nation proofs become more complex: termination and correctness must

be proved simultaneously. The recursion relation approach seems flexi-

ble enough to handle subtle termination proofs where previously domain

theory seemed essential.

1980 Math Classification: 68E10 (computer software correctness)

Keywords: Boyer/Moore Theorem Prover, LCF, total correctness, well-founded

relations.

Contents

1 A normalization function 2

2 A proof using a measure function 3

3 A proof in the Logic of Computable Functions 3

4 Proving the recursion relation is well-founded 5

5 An obviously total normalize function 6

6 A normalize function with nested recursion 7

7 The LCF proof revisited 8

8 The recursion relation proof revisited 10

9 Conclusions 12

1

1 A normalization function

Boyer and Moore have published a machine-assisted proof of the correctness of a

tautology checker for propositional logic [1]. Propositions are represented as condi-

tional expressions (henceforth expressions). An expression is either an atom At(a)

for some symbol a, or else has the form If (x, y, z) where x, y, z are themselves

expressions. An atom represents a propositional letter, while If (x, y, z) is equal to

y if x is true, and equal to z otherwise.

The tautology checker includes a function for putting expressions into normal

form. An expression is in normal form if it has no tested Ifs: subexpressions of the

form If (If (u, v, w), y, z). Replacing this by If (u, If (v, y, z), If (w, y, z)) preserves the

value of the entire expression and removes one tested If. However new tested Ifs are

created whenever v or w begin with If.

The following program, written in Standard ML [6], defines the data structure

exp and the normalize function norm. If its argument is a tested If then norm

replaces it as above and calls itself recursively. For any other argument norm makes

recursive calls on the subexpressions. The ML code should fill in the details:

type rec exp = data At of string | If of exp × exp × exp;

fun norm(At(a)) = At(a) |
norm(If (At(a), y, z)) = If (At(a), norm(y), norm(z)) |
norm(If (If (u, v, w), y, z)) = norm(If (u, If (v, y, z), If (w, y, z)));

It is far from obvious that norm terminates. In the If-If case it calls itself with

a larger expression than it was given. One way of proving termination is to find

a well-founded relation under which the argument ‘goes down’ in every recursive

call [1, 5]. Classically, a relation ≺ is well-founded if and only if it has no infinite

descending chains · · · ≺ x2 ≺ x1 ≺ x0. The less-than relation < on the set N of

natural numbers is well-founded. Less-than is not well-founded on certain other sets:

for the integers, · · · < −2 < −1 < 0, and for the rationals, · · · < .01 < .1 < 1.

A common way of defining a well-founded relation on a set A uses a measure

function f : A → N, defining a′ ≺ a ⇐⇒ f(a′) < f(a). Then ≺ is the inverse

image of < under f . The lexicographic combination of two well-founded relations

≺A and ≺B defines a well-founded relation ≺ on pairs 〈a, b〉. Here 〈a′, b′〉 ≺ 〈a, b〉 if

and only if a′ ≺A a or a′ = a and b′ ≺B b.

2

2 A proof using a measure function

In Boyer and Moore’s logic all functions are total. Their theorem prover only accepts

a recursive definition if it can show that the function terminates on all arguments.

For this purpose it uses well-founded relations consisting of lexicographic combina-

tions of inverse images. Boyer and Moore present a well-founded relation for norm

involving two measures on expressions. Boyer has also sent me a simpler proof,

credited to R. Shostak, using a single measure function:

fun m(At(a)) = 1 |
m(If (x, y, z)) = m(x) +m(x)×m(y) +m(x)×m(z).

To show that this measure goes down in each of norm’s recursive calls is a tedious

exercise of expanding and collecting terms. It is important to check the easy If-At

case, because a clever measure that goes down in the hard If-If case may not go

down in the easy case. Note that m(x) is positive for all x.

Let U = m(u), V = m(v), etc. The If-At case terminates because Y < 1+Y +Z

and Z < 1 + Y + Z. For the If-If case the recursive call has measure

m(If (u, If (v, y, z), If (w, y, z)))

= U + U(V + V Y + V Z) + U(W +WY +WZ)

= U + UV + UV Y + UV Z + UW + UWY + UWZ

and the original argument has measure

m(If (If (u, v, w), y, z))

= U + UV + UW + (U + UV + UW)Y + (U + UV + UW)Z

= U + UV + UW + UY + UV Y + UWY + UZ + UV Z + UWZ .

Cancelling common terms, this case terminates because UY + UZ > 0.

3 A proof in the Logic of Computable Functions

Jacek LeszczyÃlowski [4] has proved the termination of norm using the theorem prover

Edinburgh LCF [3]. LCF’s logic, a formalization of domain theory, allows reasoning

about partial functions. LeszczyÃlowski’s proof uses a lemma that the termination of

norm in particular cases implies termination in other cases.

Each domain contains an ‘undefined’ element ⊥, representing the result of a

divergent computation. There is a weak equality predicate ≡ such that x ≡ y iff x

and y are both undefined, or both defined and equal. Since quantifiers often range

over defined values only, let ∀D x. P (x) abbreviate ∀x. x 6≡ ⊥ ⇒ P (x). The statement

3

‘norm is total’ is expressed as ∀D x.norm(x) 6≡ ⊥. The domain of expressions is flat

to avoid having infinite expressions [9]. The constructor functions At and If are

total:

∀D a.At(a) 6≡ ⊥ ∀D xyz. If (x, y, z) 6≡ ⊥
Structural induction for expressions is

∀D a. P (At(a)) ∀D xyz. P (x) ∧ P (y) ∧ P (z)⇒ P (If (x, y, z))

∀D x. P (x)

This rule is often stated with the additional premise P (⊥). Then the conclusion is

∀x. P (x).

The function norm is expressed as three equations in LCF:

∀D a. norm(At(a)) ≡ At(a)

∀D ayz. norm(If (At(a), y, z)) ≡ If (At(a), norm(y), norm(z))

∀D uvwyz. norm(If (If (u, v, w), y, z)) ≡ norm(If (u, If (v, y, z), If (w, y, z)))

The termination proof involves a lemma that if norm(y) and norm(z) terminate,

then norm(If (x, y, z)) terminates.

Lemma. ∀D xyz. norm(y) 6≡ ⊥ ∧ norm(z) 6≡ ⊥ ⇒ norm(If (x, y, z)) 6≡ ⊥
Proof. By structural induction on x. The At case reduces to showing

∀D ayz. norm(y) 6≡ ⊥ ∧ norm(z) 6≡ ⊥ ⇒ If (At(a), norm(y), norm(z)) 6≡ ⊥

which follows because If and At are total.

The If case reduces to showing

norm(y) 6≡ ⊥ ∧ norm(z) 6≡ ⊥ ⇒ norm(If (u, If (v, y, z), If (w, y, z))) 6≡ ⊥

assuming that u, v, w, y, z are all defined and with induction hypotheses for u, v,

and w:

∀D yz. norm(y) 6≡ ⊥ ∧ norm(z) 6≡ ⊥ ⇒ norm(If (u, y, z)) 6≡ ⊥
∀D yz. norm(y) 6≡ ⊥ ∧ norm(z) 6≡ ⊥ ⇒ norm(If (v, y, z)) 6≡ ⊥
∀D yz. norm(y) 6≡ ⊥ ∧ norm(z) 6≡ ⊥ ⇒ norm(If (w, y, z)) 6≡ ⊥

Assume norm(y) 6≡ ⊥ and norm(z) 6≡ ⊥. The induction hypotheses for v and w

imply

norm(If (v, y, z)) 6≡ ⊥ and norm(If (w, y, z)) 6≡ ⊥ .

Instantiate the induction hypothesis for u with y → If (v, y, z) and z → If (w, y, z),

proving

norm(If (u, If (v, y, z), If (w, y, z))) 6≡ ⊥ .

Q.E.D.

Termination of norm on all inputs follows by induction in ∀D x.norm(x) 6≡ ⊥.

4

4 Proving the recursion relation is well-founded

The first termination proof defines a well-founded relation using a measure function,

and shows that norm’s recursive calls obey that relation. A dual approach is to

define a relation ≺ in terms of norm’s recursive calls, then show that ≺ is well-

founded. Define x ≺ y to be true whenever evaluating norm(x) requires a recursive

call norm(y), and to be false otherwise. (It should be false whenever possible, since

additional relationships between elements could prevent ≺ from being well-founded.)

I call ≺ the recursion relation of norm.

Case analysis of norm defines its recursion relation:

x ≺ At(a) ⇐⇒ false

x ≺ If (At(a), y, z) ⇐⇒ x = y ∨ x = z

x ≺ If (If (u, v, w), y, z)⇐⇒ x = If (u, If (v, y, z), If (w, y, z))

To show the termination of norm it suffices to show that the relation ≺ is well-

founded. This proof will have a remarkable similarity to the LCF proof, which was

conducted in domain theory. This section uses a simple mathematical framework

with no partial elements. It uses constructive mathematics because this paper is an

outgrowth of my study of well-founded relations [10] in Martin-Löf’s Constructive

Type Theory [8].

Showing that a relation is well-founded requires showing the soundness of its rule

of well-founded induction for an arbitrary predicate P :

∀x. (∀x′. x′ ≺ x⇒ P (x′))⇒ P (x)

∀x. P (x)

In constructive reasoning, showing that ≺ has no infinite descending chains is insuf-

ficient to verify the rule. The rule is verified directly, proving its conclusion from its

premise. For the rest of this section assume the induction step:

∀x. (∀x′. x′ ≺ x⇒ P (x′))⇒ P (x) (1)

Termination follows from proving ∀x.P (x); a lemma is helpful.

Lemma. ∀xyz. P (y) ∧ P (z)⇒ P (If (x, y, z))

Proof. By structural induction on x. The At case is

∀ayz. P (y) ∧ P (z)⇒ P (If (At(a), y, z)) ,

which follows from (1) and the definition of ≺. Recall that If (At(a), y, z) has only

two predecessors, y and z.

5

The If case is ∀yz. P (y) ∧ P (z) ⇒ P (If (If (u, v, w), y, z)) under the induction

hypotheses

∀yz. P (y) ∧ P (z)⇒ P (If (u, y, z))

∀yz. P (y) ∧ P (z)⇒ P (If (v, y, z))

∀yz. P (y) ∧ P (z)⇒ P (If (w, y, z)) .

By (1) it is enough to show

P (y) ∧ P (z)⇒ P (If (u, If (v, y, z), If (w, y, z))) .

Assume P (y) and P (z). The induction hypotheses for v and w imply P (If (v, y, z))

and P (If (w, y, z)). Instantiate the induction hypothesis for u with y → If (v, y, z)

and z → If (w, y, z), proving P (If (u, If (v, y, z), If (w, y, z))). Q.E.D.

Now ∀x.P (x) follows immediately by induction on x.

The previous proof can be translated into this one by replacing norm(x) 6≡ ⊥ by

P (x). Each unfolding of norm becomes an appeal to the induction step (1). Perhaps

domains and partial objects are not essential even for difficult proofs of termination.

As a sample proof in his higher-order theory of constructions, Thierry Coquand

has proved the termination of normalization [2] (pages 46–48). He defines a predicate

N(x) to mean ‘x can be put into normal form,’ and proves ∀x.N(x). Translated

from his formalism, the axioms are

N(At(a))

N(y) ∧ N(z)⇒ N(If (At(a), y, z))

N(If (u, If (v, y, z), If (w, y, z)))⇒ N(If (If (u, v, w), y, z))

The connection between N(x) and norm(x) 6≡ ⊥ is obvious. Coquand builds a proof

object resembling my Constructive Type theory one, using a similar Lemma.

5 An obviously total normalize function

Constructive Type Theory provides a formal interpretation of propositions as types.

One consequence is that every proof by induction involves constructing a proof

object by recursion. My Type Theory proof that ≺ is well-founded suggests another

way of writing the normalize function:

fun normif (At(a), y, z) = If (At(a), y, z) |
normif (If (u, v, w), y, z) = normif (u, normif (v, y, z), normif (w, y, z));

fun norm1(At(a)) = At(a) |
norm1(If (x, y, z)) = normif (x, norm1(y), norm1(z));

6

The function normif is obviously total because it is structural recursive in its

first argument, a sort of ‘higher type’ recursion. Although normif makes nested

recursive calls in its second and third arguments, these have no effect on termination.

(Ackermann’s function is another example where termination is obvious despite

nested recursive calls.) Note the similarity between normif’s recursive calls and the

appeals to the induction hypotheses in the proof of the lemma.

Proving in LCF that ∀D x. norm(x) ≡ norm1(x) constitutes yet another termi-

nation proof for norm. Our familiar lemma now takes the form

∀D xyz. norm(If (x, y, z)) ≡ normif (x, norm(y), norm(z)) ,

with essentially the same proof as before.

There is a pleasing concreteness about the first termination proof. But the mea-

sure function offers little intuition. The second and third proofs convey something

of what norm is actually doing, for they give us the function normif.

6 A normalize function with nested recursion

If we modify the If-If case of norm to make nested recursive calls, proving termina-

tion becomes trickier still. Call the new function norm2:

fun norm2(At(a)) = At(a) |
norm2(If (At(a), y, z)) = If (At(a), norm2(y), norm2(z)) |
norm2(If (If (u, v, w), y, z)) =

norm2(If (u, norm2(If (v, y, z)), norm2(If (w, y, z))));

I sent this function as a challenge to Boyer and Moore. The version of the

theorem prover described in their book [1] cannot handle this nested recursion. It

could not admit norm2 as a function unless, for some measure m2(x), it could prove

m2(If (u, norm2(If (v, y, z)), norm2(If (w, y, z)))) < m2(If (If (u, v, w), y, z)) .

Yet this very statement involves norm2.

Moore informs me that the theorem prover has since been extended. A nested

recursive function definition can be admitted by showing that it is equivalent to some

already accepted definition. In this case replace norm2 by norm in the recursion

equations and show that the new equations hold. Thus they have at least one

solution: norm. Then show that some measure decreases for each recursive call of

norm in the new equations. Thus the solution is unique: by well-founded induction

on the measure, norm(x) = norm2(x) for all x. Reasoning about norm is possible

7

because it is already known to be a total function. Moore describes this principle of

definition in his paper on the termination of Takeuchi’s function [7].

Moore’s proof of norm2 has several stages:

• norm(norm(x)) = norm(x) is proved by induction on the measure m(x). The

result is used in the At case of the next stage.

• ∀yz. norm(If (x, norm(y), norm(z))) = norm(If (x, y, z)) is proved, like the

Lemma, by structural induction on x. The theorem prover does not allow

quantified induction schemes, but any instance of one can be specified.

• Therefore norm is a solution to the equations for norm2.

• A function to count the number of tested Ifs in an expression is defined. This

differs from the function IF.DEPTH of the original proof [1], which counts the

nesting of tested Ifs.

• norm(x) is indeed normal: it contains no tested Ifs. Proved by induction on

m(x).

• The measure for proving uniqueness is the lexicographic combination of the

number of tested Ifs and the size of an expression.

7 The LCF proof revisited

In domain theory the termination of norm2 can be proved without any mention of

norm. Termination and partial correctness must be proved simultaneously. Showing

termination of the If-If case requires showing that the nested calls yield normal

expressions.

Define the predicate ISN (x) to hold whenever x is in normal form. ISN is a

recursive predicate but the recursion is trivially well-founded:

ISN (⊥) ⇐⇒ false

∀D a. ISN (At(a)) ⇐⇒ true

∀D ayz. ISN (If (At(a), y, z)) ⇐⇒ ISN (y) ∧ ISN (z)

∀D uvwyz. ISN (If (If (u, v, w), y, z)) ⇐⇒ false

The element ⊥ is not in normal form under this definition; ∀D x.ISN (norm2(x))

states that norm2 is a total function whose result is always normal. This is not a com-

plete statement of correctness; it mentions no relationship between x and norm2(x).

8

The proof resembles that of section 3, replacing each occurrence of norm(x) 6≡ ⊥
by ISN (norm2(x)).

Fact. If the argument of norm2 is normal then so is its result:

∀x.ISN (x)⇒ ISN (norm2(x)) (2)

Proof. By structural induction on x. The ⊥ and At cases are easy. For If consider

two cases. Since If (If (u, v, w), y, z) is not normal the result holds vacuously. The

If (At(a), y, z) case is

ISN (If (At(a), y, z))⇒ ISN (norm2(If (At(a), y, z)))

which simplifies to

ISN (y) ∧ ISN (z)⇒ ISN (norm2(y)) ∧ ISN (norm2(z))

which follows from the induction hypotheses.

Now we have the usual

Lemma. ∀D xyz. ISN (norm2(y)) ∧ ISN (norm2(z))⇒ ISN (norm2(If (x, y, z)))

Proof. By structural induction on x. The At case reduces to the clearly true

∀D ayz. ISN (norm2(y)) ∧ ISN (norm2(z))⇒ ISN (If (At(a), norm2(y), norm2(z)))

The If case reduces to showing, under induction hypotheses,

ISN (norm2(y)) ∧ ISN (norm2(z))⇒ ISN (norm2(If (u, If (v, y, z), If (w, y, z)))) .

Assume ISN (norm2(y)) and ISN (norm2(z)). The induction hypotheses for v and

w imply ISN (norm2(If (v, y, z))) and ISN (norm2(If (w, y, z))). Now comes a clear

departure from the section 3 proof: inserting an extra call to norm2. The Fact (2)

gives

ISN (norm2(norm2(If (v, y, z)))) and ISN (norm2(norm2(If (w, y, z)))) .

Instantiate the induction hypothesis for u with y → norm2(If (v, y, z)) and z →
norm2(If (w, y, z)). Q. E. D.

Again the overall proof for norm2 is an easy induction using the Lemma. Proving

∀D x.ISN (norm2(x)) rather than ∀D x.norm2(x) 6≡ ⊥ is a classic example of strength-

ening the goal in order to strengthen the induction hypotheses. The Lemma is essen-

tially the inductive step. Its proof requires the Fact (2). Proving ∀D x.norm2(x) 6≡ ⊥
would require a Lemma of the form

∀D xyz. norm2(y) 6≡ ⊥ ∧ norm2(z) 6≡ ⊥ ⇒ norm2(If (x, y, z)) 6≡ ⊥

9

and a Fact of the form ∀x.x 6≡ ⊥ ⇒ norm2(x) 6≡ ⊥. We are going in circles! It

would suffice to prove a weaker version of the Fact:

∀x.norm2(x) 6≡ ⊥ ⇒ norm2(norm2(x)) 6≡ ⊥ .

An attempted proof of this resembles that of (2) except that the If-If case is no

longer trivial.

8 The recursion relation proof revisited

The recursion relation proof of section 4 can similarly be adapted to norm2. I

continue to use the predicate ISN for reasoning about normal expressions, though

in this section there is no element ⊥. The recursion relation ≺2 is defined like ≺,

except that the If-If case has three recursive calls instead of one. The outer call

involves the results of the inner calls, expressed as existentially quantified variables.

The results are assumed to be in normal form:

x ≺2 At(a) ⇐⇒ false

x ≺2 If (At(a), y, z) ⇐⇒ x = y ∨ x = z

x ≺2 If (If (u, v, w), y, z)⇐⇒


x = If (v, y, z) ∨
x = If (w, y, z) ∨
∃v′w′.ISN (v′) ∧ ISN (w′) ∧ x = If (u, v′, w′)


It will be necessary to show inductively that the equations for norm2 produce normal

expressions. First let us show that ≺2 is well-founded. Assume the induction step

for an arbitrary P :

∀x. (∀x′. x′ ≺2 x⇒ P (x′))⇒ P (x) (3)

Fact. The induction step (3) implies P (x) for all x in normal form.

∀x.ISN (x)⇒ P (x) (4)

Proof. By structural induction on x. The At case is easy. Since If (If (u, v, w), y, z)

is not normal, this case is vacuous. The If (At(a), y, z) case is

ISN (If (At(a), y, z))⇒ P (If (At(a), y, z))

which simplifies, using the induction step, to

ISN (y) ∧ ISN (z)⇒ P (y) ∧ P (z)

which follows from the induction hypotheses.

10

The Lemma is stated just like in section 4:

Lemma. ∀xyz. P (y) ∧ P (z)⇒ P (If (x, y, z))

Proof. By structural induction on x. The At case is proved as before. The If case

is

∀yz. P (y) ∧ P (z)⇒ P (If (If (u, v, w), y, z)) .

By (3) it is enough to show that P (y) and P (z) imply each of

P (If (v, y, z))

P (If (w, y, z))

∀v′w′.ISN (v′) ∧ ISN (w′) ⇒ P (If (u, v′, w′))

The induction hypotheses for v and w imply P (If (v, y, z)) and P (If (w, y, z)). It

suffices to show P (If (u, v′, w′)) for arbitrary normal expressions v′ and w′. The

Fact (4) implies P (v′) and P (w′). Instantiate the induction hypothesis for u with

y → v′ and z → w′. Q.E.D.

The translation from the domain theory proof replaces ISN (norm2(x)) by P (x).

The connection between the proofs is weaker that it was for norm. Domain theory

allows explicit mention of norm2’s recursive calls when instantiating u’s induction

hypothesis; the recursion relation hides the calls via quantifiers.

The justification of norm2 still requires simultaneous proofs that it terminates

yielding a normal expression. The proof is by well-founded induction on ≺2:

• Given At(a) it makes no recursive calls and returns an atom, which is always

normal.

• Given If (At(a), y, z) it makes recursive calls on the predecessors y and z. By

induction hypotheses these calls return normal expressions so the final result

is normal.

• Given If (If (u, v, w), y, z) it makes recursive calls on predecessors If (v, y, z)

and If (w, y, z). By induction hypotheses these return normal expressions v′

and w′. So If (u, v′, w′) is a predecessor, justifying the final recursive call. By

induction hypothesis this returns a normal expression.

This reasoning about the various cases of norm2 can be formalized in my setting

of well-founded recursion operators in Constructive Type Theory [10]. A function

application has type
∑
y∈exp ISN (y). It returns a pair of results: a normal expression

y and a proof object of type ISN (y). Each recursive call on an argument z must be

justified by exhibiting a proof object of type z ≺2 x. This is passed as an additional

argument. In the If-If case, the outer call passes a proof object for If (u, v′, w′) ≺2

11

If (If (u, v, w), y, z), constructed from proof objects ISN (u′) and ISN (v′) from the

inner calls.

After performing this elaborate construction of a well-founded recursion, the

equations for norm2 can be proved as usual in the approach [10].

9 Conclusions

Domain theory allows reasoning about recursion in a most flexible way, but at a

heavy cost of complexity. The ideas can be difficult to grasp and introduce the-

oretical and practical obstacles. LCF is the only major theorem proving project

that uses domain theory; even LCF users sometimes prefer to do without domains.

The recursion relation proofs of norm and norm2 suggest that domains are not es-

sential for reasoning about many programs. Domain theory still has a vital role to

play: there is no alternative for reasoning about compilers and continuously running

processes.

Constructive Type Theory is concerned with terminating computations. Domain

theory cannot be patched onto it; partial functions are completely antithetical to its

view of computation. Using recursion relations it can express termination proofs of

norm and norm2, thereby deriving the function normif.

It is especially hard to prove the termination of functions involving nested recur-

sion, since the termination of an outer recursive call may depend on a property of the

results of the inner calls. The example norm2 shows that this can be done without

domains. Manna and Waldinger have studied a much more interesting nested recur-

sive function, UNIFY, which performs unification [5]. They define a well-founded

relation involving the structure of the expressions being unified and the number of

distinct variables in those expressions. Under this relation, UNIFY’s outer recursive

call can be justified only if its inner call returns a most-general, idempotent unifier

of its arguments.

I formalized their work using the theorem prover Cambridge LCF, proving the

total correctness of UNIFY [12]. The proof used a predicate BEST UNIFY TRY in a

role analogous to that of ISN in the proof of norm2: to allow the simultaneous proof

of termination and correctness. It appears possible to verify UNIFY in Constructive

Type Theory. Manna and Waldinger’s well-founded relation is appropriate; there

is no need to consider the recursion relation. UNIFY would return a substitution

paired with a proof that this substitution had the necessary properties.

Acknowledgements. Robert Boyer and J Moore answered several queries about

norm and generously hosted my visit to the University of Texas at Austin. Michael

12

J. C. Gordon read drafts of this paper.

Appendix: the Cambridge LCF proof

Here is a sequence of commands that causes Cambridge LCF to prove the termina-

tion norm in domain theory. It is simpler than LeszczyÃlowski’s Edinburgh LCF proof

[4] because LCF has developed since then. No special ML code need be written:

the data structure exp is defined automatically, and the standard rewriting tactic is

powerful enough to handle both theorems. I performed this proof in half an hour at

the terminal. I also proved the equivalence of norm and norm1, and verified norm2.

These proofs are similar and not presented here.

Note that the ML used in Cambridge LCF is not Standard ML. An effort is

underway to bring this ML up to date with the Standard.

This table gives LCF’s printed representation of each logical connective:

! ∀ universal quantifier

? ∃ existential quantifier

/\ ∧ conjunction

\/ ∨ disjunction

==> ⇒ implication

<=> ⇐⇒ biconditional

~ ¬ negation

UU ⊥ undefined element of domain

== ≡ equivalence (weak equality)

<< ⊆ partial ordering on domain

The theory exp is declared, with a type operator of the same name. If τ is a

type, then τexp is the type of expressions whose atoms have type τ . In LCF, *, **,

. . . are type variables. The struct axm command defines expressions as a recursive

type with strict constructors ATOM and IF. The constructor functions are curried :

we must write IF x y z instead of If (x, y, z).

new_theory ‘exp‘;;

new_type 1 ‘exp‘;;

struct_axm (":* exp", ‘strict‘,

[‘ATOM‘, ["a:*"]; ‘IF‘, ["x: * exp"; "y: * exp"; "z: * exp"]]);;

The function symbol norm is declared, and a new axiom asserts its definition.

The quantifier ∀D is not built in: we must write !a.~ a==UU ==> instead of ∀D a.

13

new_constant (‘NORM‘, ": (* exp) -> (* exp)");;

let NORM_CLAUSES =

new_closed_axiom (‘NORM_CLAUSES‘,

"(!a.~ a==UU : * ==> NORM(ATOM(a)) == ATOM(a)) /\

(! a y z.~ a==UU:* /\ ~ y==UU /\ ~ z==UU ==>

NORM (IF (ATOM a) y z) == IF (ATOM a) (NORM y) (NORM z)) /\

(!u v w y z.~ u==UU /\ ~ v==UU /\ ~ w==UU /\ ~ y==UU /\ ~ z==UU ==>

NORM (IF (IF u v w) y z) ==

NORM (IF u (IF v y z) (IF w y z)) : * exp)");;

An axiom, previously created by struct axm, is bound to the ML identifier

EXP DEFINED. The structural induction tactic is instantiated to handle expressions

and bound to the ML identifier EXP TAC.

let EXP_DEFINED = axiom ‘exp‘ ‘DEFINED‘;;

let EXP_TAC = STRUCT_TAC ‘exp‘ [];;

The Lemma is proved by induction followed by rewriting via the equations for

norm and the totality of the constructors At and If. I have tweaked the statement

of the Lemma to circumvent an annoyance involving admissibility of induction [3].

let NORM_LEMMA =

prove_thm (‘NORM_LEMMA‘,

"!x y z. ~ y==UU /\ ~ z==UU /\ ~ NORM(y)==UU /\ ~ NORM(z)==UU ==>

~ x==UU ==> ~ NORM(IF x y z)==UU : * exp",

EXP_TAC "x" THEN

ASM_REWRITE_TAC [NORM_CLAUSES; EXP_DEFINED]);;

The proof that norm is total resembles the proof of the Lemma.

let NORM_TOTAL =

prove_thm (‘NORM_TOTAL‘,

"!x. ~ x==UU ==> ~ NORM x ==UU : * exp",

EXP_TAC "x" THEN

ASM_REWRITE_TAC [NORM_CLAUSES; EXP_DEFINED; NORM_LEMMA]);;

14

References

[1] R. Boyer and J Moore, A Computational Logic (Academic Press, 1979).

[2] T. Coquand, Une Théorie des Constructions, Thèse de 3ème cycle (in French),

University of Paris VII (1985).

[3] M. J. C. Gordon, R. Milner, and C. Wadsworth, Edinburgh LCF: A Mechanised

Logic of Computation (Springer, 1979).

[4] J. LeszczyÃlowski, An experiment with ‘Edinburgh LCF,’ in: W. Bibel and R.

Kowalski, editors, Fifth Conference on Automated Deduction, Springer LNCS

87 (1980), pages 170–181.

[5] Z. Manna, R. Waldinger, Deductive synthesis of the unification algorithm, Sci-

ence of Computer Programming 1 (1981), pages 5–48.

[6] R. Milner, A proposal for Standard ML, ACM Symposium on Lisp and Func-

tional Programming (1984), pages 184–197.

[7] J S. Moore, A mechanical proof of the termination of Takeuchi’s function,

Information Processing Letters 9 (1979), pages 176–181.

[8] B. Nordström and J. Smith, Propositions and specifications of programs in

Martin-Löf’s type theory, BIT 24 (1984), pages 288–301.

[9] L. C. Paulson, Deriving structural induction in LCF, in: G. Kahn, D. B. Mac-

Queen, G. Plotkin, editors, International Symposium on Semantics of Data

Types (Springer, 1984), pages 197–214.

[10] L. C. Paulson, Constructing recursion operators in Intuitionistic Type Theory,

Report 57, Computer Lab., University of Cambridge (1984).

[11] L. C. Paulson, Lessons learned from LCF: A Survey of Natural Deduction

Proofs, Computer Journal 28 (1985), 474–479.

[12] L. C. Paulson, Verifying the unification algorithm in LCF, Science of Computer

Programming 5 (1985), pages 143–170.

15

