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An Analysis of the Behavior of Simplified
Evolutionary Algorithms on Trap Functions

Siegfried Nijssen and Thomas Back

Abstract—Methods are developed to numerically analyze an Vector; denotes the best (or a representative) individual of the
evolutionary algorithm (EA) that applies mutation and selection population at generation A maximization task is assumed in
on a bit-string representation to find the optimum for a bimodal this paper

unitation function called a trap function. This research bridges Tvoicallv. this t f vsis i dto ch terize the b

part of the gap between the existing convergence velocity analysis Yp'ca y, this yp(_e oranalysis 1s usg oc .arac er'lze € be-
of strictly unimodal functions and global convergence results havior of EAs for unimodal prOblemS, i.e., their effectiveness as
assuming the limit of infinite time. As a main result of this analysis, local optimizers. This type of analysis is useful to understand
a new so-called (1 A)-EA is proposed, which generates offspring performance relative to other local optimization algorithms, to
using individual mutation rates p;. While a more traditional EA gain insight into the impact of parameter settings of the algo-

using only one mutation rate is not able to find the global optimum = . . .
of the trap function within an acceptable (nonexponential) time, rithm on convergence velocity, and to characterize the final stage

our numerical investigations provide evidence that the new algo- Of global qptimization, when the algorithm uI'Fimater converges
rithm overcomes these limitations. The analysis tools used for the to a solution. However, convergence velocity analysis has not

analysis, based on absorbing Markov chains and the calculation of yet been generalized to cover the multimodal case of objective

transition probabilities, are demonstrated to provide an intuitive functions with more than one optimum, which of course is the

and useful method for investigating the capabilities of EAs to . ¢ fi f tical licati fEA
bridge the gap between a local and a global optimum in bimodal Interesting case for practical applica |ons-o = S. .
search spaces. At the other extreme, convergence reliability analysis deals

Index Terms—Absorption time, convergence velocity, evolu- with the questipn of global convergence of an EA.’ meaning that
tionary algorithm, genetic algorithm, mutation, trap functions. the algorithm is guaranteed to find a global optimum. Global
convergence results are general in the sense that they do not
make strong assumptions about the objective function and typ-
. INTRODUCTION ically assume unlimited time

N THE past decade, theoretical research on evolutionary al-
gorithms (EAs) has received significant attention, driven by

the insight that their theoretical basis needs to be improved t0Here, P(t) denotes the population maintained by the EA at
facilitate most effective usage of these algorithms. Meanwhil&eneratioﬁ andp(A) is the probability of the evert. Some of
considerable progress has been made especially with respeggofirst global convergence results for EAs were presented for
the analysis o€onvergence velocigndconvergence reliability simple (1+1)-evolution strategies [15] and were subsequently
of EAs. refined for population-based strategies, as well as nonelitist

Convergence velocity analysis is a general approach, deri@htegies [17]. Concerning genetic algorithms, first proofs of
originally [15], [18] and refined subsequently for the analysigiopal convergence were presented again in the early 1990s
of evolution strategies (see [6] for a full picture; [1] for ang). The global convergence type of analysis benefits from the
overview). It has been transferred to EAs with bit-stringenerality of results (i.e., for all possible objective functions),
genotypes in the early 1990s [2], [14]. but it is practically not exploitable as no finite expected time

Convergence velocity is a local measure of progress of thesits are obtained.
algorithm from one iteration to the next, where progress is de-| order to bridge the gap between convergence velocity re-
fined either in terms of the expected quality gairfi.e., objec- syits and convergence reliability results, it is a natural but dif-
tive function value improvement) or in terms of the expecteghyt step to extend the convergence velocity analysis to mul-
change of distanc® to a global optimum: timodal objective functions and to analyze explicitly the time

- - o k- it takes the algorithm to converge to the global optimum rather

p=Bf (@)= f (@], D=E7" = E - [177 = Zral] than a local ogrl1e. Of course, thg results gre expepcted to depend
Here, #* denotes a global optimum point of the objectivén the starting conditions as well as the specific parameter set-

functionf: M — R, which is defined over a certain domaii, tings of the EA. _ o _
The natural extension from the existing work for unimodal

. . _ objective functions consists in bimodal problems, where just
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[10], [11] demonstrating the importance of “soft selection” to , = 700
bridge the gap between the local and global optimum. From
theoretical point of view, however, the first results on specific
bimodal test problems have only been published very recent b=74
[12], [16]. Approaching the analysis from different perspectives )
both papers focus on the advantage of crossover for reducing t
time to find the global optimum or to bridge the gap between th
local and global optimum.

Here, we explore another piece of the puzzle by analyzin
so-called trap functions, which have been designed as scalal
bimodal functions to challenge EAs. In contrast to the above 0 z=25 l
mentioned studies, the analysis concentrates on simplified E£ u
using only mutation and selection, such as the {EEA, the .

(1, \)-EA, and the (% ))-EA. This analysis continues earlierFig- 1. A basic trap functiorf(u).

work on a unimodal problem [2], [14], [5] and concludes with

the development of a new version of an EA, the X)-EA, bit. By flipping bits, the unitation value of a bitstring may be
which generates each offspring with a different mutation ratehanged. The following expression describes the probability
The resulting algorithm reduces the time to find the global ohat a bitstring of unitation value; is converted into a string
timum drastically by increasing the emphasis on exploratioaf valueu,, whenu, is higher thanu; (cf. [5])

such that the region of attraction of the local optimum can be min(ur, 1—z)

left at any stage during the search. ("2>"1)(u lug) = Z Uuq [ —uq

In Section I, the general tools for the theoretical analysis are 21T k) \k+ us —uy
introduced, the trap function is formalized, and the X}-EA
is defined as a generalization of the+(1)- and (1, \)-EA. S RN ()
Section Il presents the numerical evaluation of theoretic
results and a comparison to the experimentally observ
behavior of the EAs on the trap function. Our conclusions arY&lueS
an outline of further work are given in Section IV.

k=0

I .
anm these expressiongu2|u1) can be calculated for general

(u2>uy)

pm(uz2lur) = { -

pg:»ul)(l — ug|l — uy), otherwise.

if ;

(UQ|U1), U2 > U7, (6)

Il. EAS ON TRAP FUNCTIONS

A. Prerequisites In the second equation, the observation is used that the proba-
ility of decreasing the number of one-bits framto us corre-

| Eaﬁ?_ igdiv[i;lualhinfpur EAf Is rgprgsen;[ed b.y égjtstri%g 0Eponds to the probability of increasing the number of zero-bits
engthi: & € T € itness function Is a functioft 5 from [l — uy tol — uo. This is due to the equal probability for
that maps the bitstring to a real number. We restrict ourselves, 1 >ero and zero-to-one bit flips

to unitation functionswhich are functions that depend entirely These formulas allow us, in principle, to use any uni-

upon the number of ones in a bitstring and thus not on th‘?é[tion function as fitness function, instead of only a basic

position counting-ones function. In the following, we illustrate this by
applying the analysis to so-called trap functions.

l
F) = F @) = f (z ) | R
k=1

For any unitation functiorf with a domainD = {0, 1, ..., 1},
three subsets can be computed for a given valgeD:

B. Trap Functions

We will use two trap functions in our experiments. One is
a basic trap function as introduced in [7]. The other is a more
complex function that we will use to check the validity of the

I (u) = {u' €D ‘f(u') > f(u)} (2) results obtained for the basic function.
) ) A Basic Trap Function: The definition of a basic trap func-
1=(u) = {' € D ‘f(u') = fw} 3) tion s [7]
—(ay — St Foor ; 2 (z —u), if u<z
() = {u e D|f(w) < f(w) } (4) f=l7 -

For every unitation value (the number of ones in a bitstring)
there is a set of unitation values (and corresponding bitstrings)
that have lower, equal, and higher fithesses. We do not mentieig. 1 clarifies the meaning of the parameters.
the fitness function in our notation as this function is implicitly For analyzing our numerical results, it appears useful to com-
the same in all formulas. pute thel(u) sets of the trap function explicitly. Here, we will

In an EA, one bitstring can be transformed into anothahow how this can be done usingrresponding pointsA cor-
bitstring using an operator calledutation With probability responding point of a unitation valueis a different unitation
pm, this operator flips each of tHebits into its complementary value which has the sanf({u) value. For a basic trap function,

T (u — z), otherwise.
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there is at most one such point at the other side of the trap. Tt 4 = 700
corresponding point may be computed using
a b
;(Z—m):l_z(m—z) (8) ‘ /b=74
which yields the following expressions: fw) g
ulztl(ug):z—l-al_z(z—uz) 9)
al—=z
ug =to(uy) = z + 3 (z —uq). (10)
0 zl =25 2=75 l

For a given value and the resulting corresponding pointgw)
andus(u), the subsets become

It(u) ={uv € D|v/ <wui(u)Vu' >us(uw)}  (11)

I=(u) ={u € D/ >uy(u) A’ <up(u)}  (12)  This algorithm is a very simplified version of an EA. We use

_ " B this algorithm to introduce an extension of an ordinary EA: dif-
I7(u) = D\ (u) U I (u)). (13)  ferent fixed mutation rates; are used to generate children. It is
There are many possible choices for the parametérsandz. easily shown that this algorithm can be applied to simulate both
Given the number of bits we stick to the following guidelines: ordinary (1,A)- and (A)-EAs:

u

Fig. 2. A complex trap functiotf(u).

* 2R (1/4)[, ° (1,/\):p1 =p2 = - = DPx,
cb=1—-2z—1; e (1+A):useN = A+ 1, withpyy1 = 0andp; = py =
e 1.5b < a < 2b; a a multiple ofz. --- = py. One of the children thus has a mutation rate of

Forl anda, we prefer values which are a multiple of ten. These 2670, which means that the parent is copied.

values simplify some of the computations without affecting theWith p(u1 — uz), we will denote the probability that in one
generality. iteration of the algorithm the current unitation value of the se-

A Complex Trap Function:The basic trap function is char-lected parent changes from into u,. To obtain an expression
acterized by two optima that are bit-wise complements of eafd this probability, we use the following intermediate probabil-
other. In general, itis difficult for EAs to go from the suboptimalt/€s:

solution to the global optimum in this case. For the trap func- - .
tion, however, &it-flip operator—an operator which reverses all pm(uzfun) = N IZ: P (k) (15)
bits—is likely to solve the problem easily. To check the validity €I (w)
of our resylts, we V\_/iII aI;o ?nvgsti_gate a slightly more complex P (U5 1) = Z Do (|uy). (16)
trap function for which bit-flipping is not always a good solution kel (u1)
g (z21—u), if u<z These are combined as follows:
b A A
flu)= I—2 (u—z1), if 21 <u<z p(ur — uz) :H (pi(u2_|u1)+pi(uzz|ul))_n pi(uy ur).
=0 1=0
b(22 —21) 1 . (17)
l—2z 1= [— 29 (u=z) ), otherwise. The first term is the probability that all offspring are worse than

(14) or equal tous. From this, the probability is subtracted that all
This trap function is illustrated in Fig. 2. offspring are worse. The resulting probability is the probability
Note that forz, = I, the complex trap function reduces tathat at least one of the offspring has unitation value The
the basic trap function. As parameter fo, zo = | — z; has index goes through all offspring and their corresponding muta-
our interest, as one could expect that bit-flipping performs vetipn rate. It is here that the “multiple mutation rate” principle is

badly in that case. applied.
We will refer to the unitation value of the individual as
C. A(1:N)-EA the current state of the (1)-EA. The states can be ordered
We use the mutation operator to obtain the following searéigcording to theirf (u) values. A higher state is a state with a
algorithm. higher f(u) value. WithI*(u), we denote the set of all higher
states.
uw := uniformly chosen bitstring
repeat until maximum generation reached D. Measures
S = {ui, ..., u\}; u; is a mutated child of u, The state-transition probabilities according to (17) can be
generated with mutation rate Di. used to compute several quality measures of the evolutionary
w := individual with the highest fitness in process. The following measures are short-term performance

S. measures.
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Improvement probability for state TABLE |
PARAMETERS OF THEEMPLOYED TRAP FUNCTIONS
pre)= D pls—e). [ = a b
eI+ (s) 10 3 12 6
. . . o 2 5 20 14
This is the probability of mutating to a better individual and 58 1"0 88 39
gives a clue how likely it is to make an immediate enhancement 75 20 80 54
when one has an individual with a certain unitation value. 100 25 100 74
Convergence velocity for state
o(s) = Z (f(e) = £(s))p(s — e). If this number is very high, it is almost impossible for the algo-

rithm to find the optimum.

o o Number of evaluations until absorption for state
This is the enhancement one expects to obtain in one genera-

tion, given a certain individual. It is the weighted sum of all N(s)=T(s) x A

possible enhancements by the probability that such an enhance- ) )
ment occurs. The previous measure is only reasonable when one compares

Trap jump probability for state algqrithms that perform j[he same amount of work every gen-
eration. Of course, this is not always the case. Especially on

p(s) = Z p(s — e). computer architectures that evaluate offspring sequentially, it is
e€I+(s)NC(s) much fairer to take into account the number of offspring in order

] .. to compare the expected computation time.
Here,C depends o as follows:C(s) = {usa(s), ..., I} if Expected absorption time

eclt(s)

s < z;C(s) = {0, ..., ui(s)} otherwise. This measure can
only be used with the basic trap function; intuitively, it is the E(T) = Z p(s)T(s).
probability of going to a better individual at the other side of 5

the trap. Together with the improvement probability, this prob- N el ) )
ability provides an insight into the source of a likely enhancdiere.n(s) = (,)/2'; the previous measures give the expected

ment. A high jump probability indicates that we can easily leaR@Mputation time when one knows the starting individual. The

a local path. EA, however, determines its starting individual randomly using
Oscillating probability for states a uniform distribution. To determine the performance of the
complete algorithm, the expected absorption time has to be de-
p°(s) = Z p(s — e)p'(e)/p'(s). termined, thus averaging over all possible starting individuals.
e€I+(s)NC(s) With p(s) the probability of a uniformly chosen bitstring with

. o . . . unitation values is computed.
Intuitively, this is the probability of jumping back to the same Expected number of evaluations until absorption

side of the trap after two generations, given that we jumped to
the other side of the trap in the first generation. This probability E(N) = Z p(s)N(s) = E(T) x \.
gives a better insight into the usefulness of a high trap-jump-

probability. A mutation rate that makes trap jumping easy ma
or may not make it easy to jump back. In the first case, t
algorithm may be walking the two sides of the trap in turné
jumping from one side to the other each generation, while in

the second case one mutation rate is expected to allow one | - i
only. putational effort. To compare algorithm setups, we use the ex-

To determine long-term performance measures, seveP&CtedNUMbeE(N), which averages over the possible starting
generations have to follow each other. For this purpose iinglividuals. To show the influence of the starting individual, we
transition probabilities are stored in a transition matix Will lS0 report separate experiments on this.

. 1 i H _ +
The states are ordered such that for a plus strategy, the matri? Previous publications [2]-[5], [14], the™ (s) and¢(s)
is uppertriangular; furthermore, the states that contain tfasureswere used. We will also give results for these measures

optimum (the so-called set of absorbing stafe$ have the here. However, not all of the results can be explained intuitively.
highest indexes. With), we denote the submatrix that doedVe Will use the jump probability and oscillating probability to
not contain absorbing states [8]. This allows to define seveR{PVide argumented explanations.

measures.
Absorption time for state [Il. NUMERICAL RESULTS AND EXPERIMENTS

S

ing a similar argument as fa¥(s), it is fairer to take into
ccount the number of offspring.
Inthe sequel, we will mainly use the metrics that depend upon
number of evaluations. We believe this best reflects the com-

We arrange our experiments as follows. First, we analyze the
I(s) = Z N short-term measures of a basicHl)-EA. This allows for an
o easy comparison of our results with the results of earlier pub-
whereN = (I — Q)~!; using Markov chain analysis, it can belications. Next, we will exploit our observations on these basic
shown that this formula computes the expected number of geases to analyze the more complex algorithms introduced in this
erations to reach the global optimum from a certain individuarticle.
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Fig. 3. Probabilistic behavior of the {11)-EA for thel = 100 trap function. In (a) and (b), which show the improvement probability and the convergence
velocity, respectively, the value of,, is varied horizontally. The lines corresponduer) € {5, 20, 35, 50. 65, 80}. In (c), which shows the trap function (top
graph) and the jump probability (bottom graph), the unitation value is displayed horizontally. For several mutation rates, the probabilitytimsthoevnext
individual is better and on the other side of the trap (which is &t 25).

A. Short-Term Analysis of the Basic Trap Function figure also shows that a mutation rate significantly lower than 1

is better in the rang80 < «(#) < 91 in order to jump to the

Several trap functions are used in our experiments. A SUgther side of the trap.
mary of all functions can be found in Table |. The parameters areys Fig. 3(a) had been shown on a linear scale, it would appear
chosen carefully such that (u) = {u} forallu. This choice of that theu(z7) = 50 curve is symmetric. This can be explained
parameters will ease our analysis without affecting their gengjy considering this construction: a mutated string with mutation
ality. In the sequel, we refer to one of these functions by givir}gtepm can also be obtained by first flipping all the bits and by
the parametet. then mutating all bits with mutation rate- p,,,. As a bit-flipped

Fig. 3 displays the improvement probabilitigs(s) and con-  string with u(Z) = 50 results in a string with.(Z) = 50, the
vergence velocitieg(s) of a (14-1)-EA in several situations. result of mutating such a string wigh, must be the same as by
One coordinate, showing the mutation ratg, is drawn in a mutating withl — p,,,. The same argument also explains that the
logarithmic scale to show more details for lower mutation rategurves forp,,, = 0.2 andp,, = 0.8 in Fig. 3(c) cross each other
Furthermore, the trap jump probability is shown. in u(Z) = 50.

The graphs can be explained by looking at some of the chardn Fig. 3(c), the lines for high mutation rates show nonmono-
acteristics of the trap function that was used. First, we taket@nic behavior whem (%) > 50: every five unitation values, the
look at thep,, = 1 situation, which corresponds to turning arap jump probability decreases slightly before increasing again.
unitation valueu into I — u. An analysis of the function yields This can be explained by looking at corresponding values. In
[see upper Fig. 3(c)] that far(Z) < 8 and50 < u(Z) < 91, this particular trap function, it appears that four unitation values
such a flip does not result in an improved fithess value. Thisas the right-hand side of the trap share the same corresponding
reflected in Fig. 3(a): ab,, = 1, only the lines foru(Z) = 20 value at the left-hand side. The highest of these four values has
andu(Z) = 35 are 1. In Fig. 3(c) (below), the lines with highthe highest jump probability: in that case, more bits are flipped,
mutation rates are 1 in exactly the regions we indicated. Thich is more likely to occur (remember that we are looking at
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mutation rates that are more likely to flip bits than to maintain). EX kbt
After four unitation values, the corresponding value gets lower, i

omenna L.

E

which reduces the number of unitation values on the other side 5
of the trap that cause an enhancement. This consequently re= I
duces the probability of jumping.

For u(Z) = 20, the curve in Fig. 3(a) has two optima (at
approximately 0.01 and approximately 1.0). We saw that the
second optimum corresponds to flipping (almost) all bits, re-
sulting in a jump from one side of the trap to the other (better)
side. The first local optimum, therefore, corresponds to the mu-

A
A&

-
a Rug

a !‘!:. i
g pao0ES
ﬁguu =

po

tation rate that maximizes the local improvement probability pm
(which leads the genetic algorithm toward the local optimum 8 + 20 a 30 e 80 -
Z = 100). Most strikingly, the curves fou(Z) = 80 and 10 x 24 - 40 a 95
u(f) = 20 (with equal distances to a nearby local optimum) 15 26 o 60 s
overlap each other for low mutation rates and share their local (@
maximum atp,,, ~ 0.02. 1 : —ogEeveteseecsegececem
From the graph it can be deduced that the more closely the 08 | IO@‘i-" A“ ,ﬁ‘ /
unitation value approaches a local optimum, the lower the op- ) R ks S
timal mutation rate for local search becomes, until it reaches 0.6 g * 7
pm = 0.01 for u(). This is in harmony with the mutation rates oal F ’;' f s
derived in [3](1/(2(u(Z) + 1) — 1)) and [14](1/1). The intu- ‘ L i ks
ition of these schedules is as follows: when the local optimum 02 ¢ re A
is almost reached, it is most safe to flip one bit in each muta- 0 S & LA s )
tion. If the mutation rate must be constant throughout the whole 0 0.2 0.4 0.6 0.8 1
processl/l is the best choice, as most of the time is usually
spent in fine-tuning the solution. pm
Graphs similar to those in Fig. 3 for the other valued of 8 } 20 o 30 - 80
also display the mentioned phenomena. For example, also fol 1 s 24 w40 a 95 v
the other trap functions/l seems a reasonable mutation rate in 15 * 26 o 60 4
order to optimize local search. (b)

Fig. 3(b) is very similar to Fig. 3(a). As expected, the curvasg 4. oscillating probability for values af(#). Mutation ratep,,, is shown
for u(#) = 20 andu(%) = 80 do not overlap: as the slope ofon the ordinate axis. A (t1)-EA is applied to the = 100 trap function.

the curve is much higher at the left-hand side of the trap, tk Logarithmic scale. (b) Linear scale.
convergence velocity is also higher there.

Some interesting conclusions can be drawn from Fig. 4,  spring will be further away from 25; an offspring some-
which shows the oscillating probability for several unitation where in the middle of the right-hand side hill is most
values. We will give an analysis for each value. likely. A moderately high mutation here will result in a

1) u(Z) < 6: No better individual can be found on the other new offspring at the right-hand side of the trap, which ex-

side of the trap. No oscillating will appear for any muta- plains the dip in_ the graph ai(7) = 24. If the m!“a“"” )
tion rate. rate gets even higher, far jumps become more likely again.

2) 6 < u(Z) < 8: There are better individuals at the other 4) 25 < u(#) < 92: Similar arguments can be used as for
side of the trap. However, applying, = 1 will not give case 2. It appears here_that forlndlyldual_s clpse to the_trap
a better individual at the other side. If a jump to a better alow mujat|on rate §uf_'f|ces to obtain oscillating behavior.
individual is made for some high,, # 1 (which is very 5) 92 < u(&) < 100: Similar arguments can be used as for

unlikely), then itis very likely that a jump back is made in case 3.

the next generation (considgy, = 1 for this case). This  In Fig. 5, the effect of using multiple offspring is visualized.

is reflected in Fig. 4(b). The convergence velocity increases in all cases. The impact
3) 8 < w(®) < 25: A high mutation rate (for example of using additional offspring however decreases—approx-

pm = 1) will most likely result in a jump to the other sideimately—exponentially for every new offspring. This is in

of the trap. It is unlikely that a jump will be made backagreement with findings for (13)-evolution strategies that

again (reconsides,, = 1), so the oscillating probability convergence velocity i® ~ v2InA and thus grows only

is low in any case [Fig. 4(b)]. However, for individualslogarithmically with A [6].

close to the trap, oscillating is still possible for low mu- Fig. 5(b) shows two local maxima for allvalues. This is ex-

tation rates [Fig. 4(a)]: if a jump to the right-hand side oplained by the two means of improvement: staying on the same

the trap is made, the new individual will most likely stillside of the trap (for low probabilities) or going to the other side

be close to 25, such that a small mutation could result of «(Z) = 50 (for high probabilities). Indeed, Fig. 5(a) has only

a jump back. If the mutation rate gets higher, the first offene local maximum, as both large and small mutation rates will
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pm Fig. 6. Absorption times for a (t1)-EA on al = 10 trap function.
@
40 , : , : : , : , : results forl = 75 andl = 100 are provided, as our computation
1 T appeared not to be sufficiently precise with very large numbers.
35 The number of values df are insufficient to draw conclu-
30 sions with respect to the relation betwéeand the values qf’,

and E*(T). The expected absorption time seems to rise expo-
nentially—also taking into account that (T') is very large for

[ = 75 andl = 100—but we were not able to derive a straight-
forward formula. The optimal mutation rate fluctuates some-
where between 0.4 and 0.5. This fluctuation is probably caused
by small differences between the trap functions:ifer 10, for
example, 30% of the unitation values is at the left-hand side of
the trap, whereas fdr= 50, this is 20%.

convergence velocity
[\)
S

0 Bt e : : : : : What is more interesting is the relation betweemand the
0 01 02 03 04 05 06 07 08 09 1  values ofp}, andE*(T). From Table Il, it is clear that the op-
pm timal mutation rate is independent of the number of offspring.
(b) Furthermore, for a known valugj (T') for A = 1, values for

Fig.5. Convergence velocity of a{I\)-EA on the trap function for values of other numbers of offspring can very well be approximate_d USi_ng
pm. A € {1,2, 5,10, 30, 50, 70, 90, 110}. (a) After the trapu(Z) = 35. EX(T) = E¥(T)/A. As the expected number of evaluations is
(b) Before the trapu (&) = 20. defined asE(N) = E(T) x A, we can conclude that adding
offspring does not have any influence on the long-term perfor-

result in offspring at the right-hand side of the trap with mogpance when the mutation distribution is kept constant. We will
probability. therefore investigate the (2)-EA next.

Keeping in mind our previous discussion, it is instructive in For theX offspring, we will test the following mutation rates.
both graphs to see that the convergence velocity decreases for Linear:p; = (b, — b;)((s — 1)/(A — 1)) + b;. We will

very high mutation rates whek > 1. This may be caused by abbreviate this with ' bi by
the lack of variety in the pool of offspring for very high muta- * Exponential:p; = b,p'~!, wherep = (b;/b,)"/ 1.
tion rates. Withp,, = 0.5, the information in an individual is This will be abbreviated withé b; b,,.”

not exploited and the variety is maximal; with), = 1.0, there In all cases, we assume that there is one offspring with muta-
is only one possible offspring; the variety is clearly very smation ratep,, = 0, such that the (1X)-EA becomes an adapted

in that case. The figure provides a good indication that the ofi-+\')-EA, with A’ = X\ — 1. In the sequel, we will denote
timum is between 0.5 and 1.0, but more closg,to= 1.0. This this (1:\) EA with one mutation rate,, = 0 as a (:)')-EA

is an argument for using mutation rates little below 1.0. (Table 111).
We first check the correctness of the formulas we developed.
B. Long-Term Analysis of the Basic Trap Function In Fig. 7(a) and (b), experimental expected absorption times

When considering the long-term performance of EAs, the aBPd theoretical times are plotted for a:(10)-EA with/ = 20.
sorption time measure is important. Fig. 6 shows absorptiGly those ranges df, andb, are shown, which result in low
times for a basic (3 1)-EA. As can be seen here, the starting ifimes. The theory predicts the experimental results accu_rately
dividual (represented by the(z) axis) has no major influence @1d shows the same dependence on the parameters. Fig. 7(d)
on the absorption time. One could characterize one optimal nflisPlays a comparison of numbers. Here, the starting individual
tation ratep’, ~ 0.43 for the! = 10 function. Experiments IS fixed, such that uniform initialization is not taken into ac-

with other functions showed similar behavior. Table Il summ&0unt. The experimentally determined numbers (which were av-

rizes the results by only giving t_he optimal mUtatiQn rate andia mytation rate of 0.01 would yield an approximate absorption time of 8.39
the expected number of generations for that mutation rate. Na.0'7s generations.
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TABLE I
EXPECTED ABSORPTIONTIMES OF OPTIMAL MUTATION RATES FOR A(1 4 \)-EA

A=1 A=2 A=4 A=8
I | pn  EYT) P, E(T) P EN(T) P EY(T)
10 [ 043 571.181 0.43 285.486 0.43 142.596 0.43 71.1608
20 | 0.46 446697 0.46 223345 0.46 111669 0.43  55830.3
50 | 0.42 142763 x 10'? | 0.42 7.13815 x 10'! | 0.42 3.56908 x 10'! | 0.43 1.78454 x 10"!
TABLE Il be difficult to find such optimal mutation rates. It could there-

NOTATION OF EVOLUTIONARY ALGORITHMS fore be interesting to know how the algorithm behaves for mu-

tation rates that are only very rough approximations of the op-

Algorithm  parent as offspring equal mutation rates

L\ o ves timal rates. Table IV provides some insight into this. It shows
(1+\) yes :yes some good examples [e.g., (e 0.01 1) and (e 0.02 9)] of schemes
(1:)) no no for which a low number of offspring is not beneficial. Fig. 9
(1+)) yes no may provide an explanation for this. It displays the convergence

velocity for some of the algorithms in the table. Although the
linear algorithm provides a higher convergence velocity for var-
ioys unitation values, the exponential scheme is better on diffi-

eraged over 1000 experiments) clearly converge to their theoret: : L
erag P ) y "9 cult values, which are those where the velocity is low. To stress
ical values. The theory, therefore, seems reliable.

Animportant observation in Fig. 7(d) is that there are no Iocgflf’ the graph IS drfaw_n on a logarithmic scale. In particular, a
. . w(¥) = 1 individual is likely to be encountered. The exponen-
optima other than the global optimum. We checked several othef . : . .
t %I scheme performs best here, as it provides a wider variety of

setups and found this to be true for all test cases. This wo I : S
mean that any gradient descent algorithm could find the optinl{)%rv. mutation rates and thus enlarges the probability that the last

parameters fob, andb;. Under the assumption that there is one Is correctly flipped.
optimum, we used the following—simple—algorithm to dete
mine approximate optimal values fog andb; as follows:

- Using Table IV and the graphs of Fig. 7(b) and (c) and
Fig. 8, we can compare the linear and the exponential schemes.
The exponential mutation scheme performs surprisingly well.
For example, a (e 0.02 0.9)-{1L0)-EA performs significantly

e:= 1.0/, b =0.05, b, =0.6 better than many (43)-EAs. The surface of the exponential
repeat a fixed number of iterations scheme displayed in Fig. 7(c) is also clearly below that of a
while b, and b, changed during the last linear scheme and is less sensitive to the values objhend
assignment b; bounds.
compute E(T) for (b — €, by — €), (b, by — €), In comparison to constant mutation rates, the number of eval-
(br, by +€), (br, by —€), (bi, by), (by, by + €), uations of the new algorithm is clearly much smaller. From the
(bi+e by —e€), (bi+e by), (bi+e by +e) current results, however, a disadvantage of the new algorithm
set b and b, to the best of these values can also be extracted. Whereas with constant mutation rates, the
€:=¢/k addition of new offspring did not make the number of evalua-

tions worse (in case one applies optimal mutation rates), this is

i not always the case with multiple mutation rates.
Parameter defines the coarseness of the search. We:use

10. C. Long-Term Analysis of the Complex Trap Function
We use this algorithm in Fig. 8 to investigate the influence

of the A parameter. The optimal values faarandb,, for both . . . )
X . . whether the one-optimum assumption still holds for this func-
linear and exponential mutation rate schemes are shown, as,are A . . )
. . tion. As can be seen in Fig. 10 for a particular function, this
the number of evaluations for these parameter settingsn. assumption seems still valid (we checked this also for the de
When )\ = 2, the algorithms reduce to EAs with two muta-, P

tion rates; andb,,. Atfirst sight, thel /l mutation rate guideline tails which are invisible in the graph). Note that this figure is

is also applicable here: both in linear and exponential schem@lé),tted slightly different than Fig. 7(c), as here the complete

a mutation rate of approximatell/! should be present to ob- ranges fob, andb, are shown._WherQ IS hlgherthan_bu, E(T)

tain the best absorption time. When the number of offspring iﬁQr S""apPed valu_es ®f andb, is shown, Wh'.Ch may incorrectly

creases, the optimal lower bound decreases. This is reasonablé t_he Impression that there are two optima. )

it means that it is more advantageous to add some low mutatjorSiNd this assumption, we recompute the optimal upper and

rates than to add more high mutation rates. When consider'ﬁf?’er_bounc_is of multiple mutation rates, for several numbers of

the upper bound, it is interesting to recall Figs. 4 and 5. Als8fSPring (Fig. 11). Many resulits for the basic trap function are

there is a strong relation here between mutation rates that malgo applicable here: a small number of offspring is better, and

imize convergence velocity and minimize absorption time. two d!fferent mutation rates perform b(latter. than two identical
From the figure, we may conclude that a scheme with a |gRutation rates. However, there also major differences: the lower

number of offspring is preferable if one knows the optimal mu- zgthermore, some values which are too large are not plotted. This explains
tation rate. From a practical point of view, it could, howeverhe strange graph for very low mutation rates.

Considering absorption times again, we first have to check
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u(@) theory experiment

1 48.891 50.126

2 58.526 59.810

3 63.694 62.201
4 68.164 67.678
5 70.970 69.908
6 72.597 71.355
7 73.417 71.101
8 73.893 72.187
9 74.121 74.630

10 74.188 73.230

11 74.120 74.182
12 73.887 73.656
13 73.403 74239
(b)
14 72560 70.611
20 15  70.905 70.664
2
60
% 16 68.071 66.359
30
30 17 63.694 63.318
0.9
0.92 18 58.529 50.277
by 094
0.96 . 19 49200 50.478
1 0.05 0.025
0.1 0075 20 1.000 1.000

bl
() (d)

Fig. 7. Absorption times of a (210)-EA for given upper and lower bounds. The experimental values are obtained by averaging over 1000 experiments for each
coordinate. Thé = 20 function is used. (a) Experimental expected absorption time (linear scheme). (b) Theoretical expected absorption time (linear scheme). The
mimimum is ath,, = 0.04 andb, = 0.93 with a value of 56.0. (c) Theoretical expected absorption time (exponential scheme). The minimém4s 6t02 and

b, = 0.96 with a value of 26.94. (dY'(s) for several values of(Z) with b, = 0.01 andb,, = 1 (linear scheme).

bound of the exponential scheme increases instead of decreadiff;ulties as thezo, = 14 problem. As expected, the impact
and the exponential scheme performs worse for large numbefsising several mutation rates is not as large here as for other
of offspring (although much better than a constant mutation ratelues, but still considerable. We computed that for an approxi-
for A = 10, 76 932 evaluations are needed for the optimal comate optimal mutation rate of 0.385 still 61 053 evaluations are
stant mutation ratg;;, ~ 0.4, while ~2400 evaluations suffice needed when one mutation rate is used.
for the exponential scheme). For most values of,, it appears that the linear scheme per-
To explore this difference for high valuesbfurther, Fig. 12 forms slightly better, and, what is also important: the lower
shows the dependency of the optimal mutation rates on the lmund on the mutation rate is much more constant and allows
cation ofz,. Forz, = 6, the complex trap function almost re-for the application of a rule-of-thumb;/!.
duces to a normal counting ones problem. The optimal lower
and upper bounds are almost equal here: one mutation rate per-
forms best. The more the complex trap function turns into a
basic trap function, the further the optimal mutation rate bound-Using trap functions, the results presented here give an
aries are apart. The, = 15 function does not yield as muchidea how previously published EAs scale up to more complex

IV. CONCLUSIONS
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Fig. 8. Optimal upper and lower bounds for the mutation rates ®f-a §) EA, with the resulting number of evaluations.

TABLE IV

EXPECTED NUMBER OF EVALUATIONS FOR SEVERAL ALGORITHMS

=10 =20 I =50 (x10%1)
A 2 3 5 10 2 3 5 10 3 5 10
10.011 435 367 207 155 | 648 848 933 737 | 49 71 112 186
10.05 1 121 137 138 140 | 253 359 495 610 80 132 244
1011 91 111 129 148 | 294 428 612 830 | 266 399 661 1270
10.0209 | 150 184 151 136 | 299 398 533 596 | 37 55 87 154
10.0509 | 88 114 123 130 | 211 295 428 576 | 53 80 130 243
10.10.9 72 96 118 137 | 244 353 536 789 | 261 392 650 1260
e0011 |435 115 106 105 | 648 303 289 291 | 49 55 47 48
e0051 |121 91 88 92| 253 297 306 331 | 54 78 110 139
e0.11 91 94 95 101 | 294 401 483 545 | 266 398 633 956
e0.0209 | 150 84 8 94| 299 249 251 284 | 37 49 53 60
e0.0509| 8 77 80 90| 211 251 276 324 | 53 78 109 139
e0.109 | 72 81 8 98| 244 333 416 511 | 261 390 619 928

10 12 14 16
lambda

exponent ~

problems. More specifically, we have shown using numericah attracting local optimum, we investigated the possibility of

experiments that thé/l guideline for optimal mutation rates using mutation to perform exploration.

[2], [14] optimizes local search (exploitation), but is incapable For a trap function, we found that a mutation rate approxi-
of providing sufficient diversity in the search (exploration)mating 1, but not exactly equal to it, maximizes the probability
After having shown that an EA with one mutation rate and nihat a new hill is climbed every generation, and thus enhances
crossover has many difficulties finding an optimum if there isxploration. We used these observations to construct a new al-
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Fig. 9. Convergence velocity for several mutation schemes. Note that one scale is logarithniie= Zhegproblem was used.
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Fig. 10. Expected absorption times fofla+ 10)-EA with multiple mutation rates. The compléx= 20 trap function is used with, = 15. (a) Linear mutation
rates. (b) Exponential mutation rates.
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Fig. 11. Optimal upper and lower bounds of mutation rates, and the corresponding expected number of evaluatiohs=f@0tkemplex trap function with
zo, = 15.

gorithm which provides several mutation rates every generatidanction. On a basic counting ones problem, using additional
Using numerical experiments, we found that indeed two mutarutation rates only increases the number of evaluations.
tion ratesl /l and=1 solved the trap problem efficiently. The ex- In this paper, we focused on one particular function with two
periments confirmed that both exploration and exploitation cdmcal optima. We found that one high mutation rate is sufficient
be obtained by the mutation operator as long as there is vatiaobtain population diversity. Further investigations with more
tion in the available mutation rates. complex functions could provide better insight into how many
To get a better insight in the importance of the multiple mutigh mutation rates are necessary. For such functions, it would
tation rates, we applied the idea of multiple mutation rates @tso be interesting to compare the impact of high mutation rates
another trap function. This made clear that using several rateith the effect of a crossover operator.
is beneficial in many difficult situations, also if one does not The use of multiple mutation rates to obtain diversity may
know the optimal mutation rate. The height of the optimal uppeot only be advantageous in the static problem we investigated
bound however depends very much on the characteristics of tgrently; it could also be useful in dynamic problems. Using
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some of the measures in this paper, we plan to investigate thes] A. Rogers and A. Priigel-Bennett, “A solvable model of a hard opti-

applicability of such an EA on dynamic problems.

mization problem,” inTheoretical Aspects of Evolutionary Computing

ser. Natural Computing Series, L. Kallel , B. Naudts, and A. Rogers,

Eds.

Berlin, Germany: Springer—\Verlag, 2001, pp. 207-221.
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