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An Analysis of the Behavior of Simplified
Evolutionary Algorithms on Trap Functions

Siegfried Nijssen and Thomas Bäck

Abstract—Methods are developed to numerically analyze an
evolutionary algorithm (EA) that applies mutation and selection
on a bit-string representation to find the optimum for a bimodal
unitation function called a trap function. This research bridges
part of the gap between the existing convergence velocity analysis
of strictly unimodal functions and global convergence results
assuming the limit of infinite time. As a main result of this analysis,
a new so-called (1 : )-EA is proposed, which generates offspring
using individual mutation rates . While a more traditional EA
using only one mutation rate is not able to find the global optimum
of the trap function within an acceptable (nonexponential) time,
our numerical investigations provide evidence that the new algo-
rithm overcomes these limitations. The analysis tools used for the
analysis, based on absorbing Markov chains and the calculation of
transition probabilities, are demonstrated to provide an intuitive
and useful method for investigating the capabilities of EAs to
bridge the gap between a local and a global optimum in bimodal
search spaces.

Index Terms—Absorption time, convergence velocity, evolu-
tionary algorithm, genetic algorithm, mutation, trap functions.

I. INTRODUCTION

I N THE past decade, theoretical research on evolutionary al-
gorithms (EAs) has received significant attention, driven by

the insight that their theoretical basis needs to be improved to
facilitate most effective usage of these algorithms. Meanwhile,
considerable progress has been made especially with respect to
the analysis ofconvergence velocityandconvergence reliability
of EAs.

Convergence velocity analysis is a general approach, derived
originally [15], [18] and refined subsequently for the analysis
of evolution strategies (see [6] for a full picture; [1] for an
overview). It has been transferred to EAs with bit-string
genotypes in the early 1990s [2], [14].

Convergence velocity is a local measure of progress of the
algorithm from one iteration to the next, where progress is de-
fined either in terms of the expected quality gain(i.e., objec-
tive function value improvement) or in terms of the expected
change of distance to a global optimum:

Here, denotes a global optimum point of the objective
function , which is defined over a certain domain.
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Vector denotes the best (or a representative) individual of the
population at generation. A maximization task is assumed in
this paper.

Typically, this type of analysis is used to characterize the be-
havior of EAs for unimodal problems, i.e., their effectiveness as
local optimizers. This type of analysis is useful to understand
performance relative to other local optimization algorithms, to
gain insight into the impact of parameter settings of the algo-
rithm on convergence velocity, and to characterize the final stage
of global optimization, when the algorithm ultimately converges
to a solution. However, convergence velocity analysis has not
yet been generalized to cover the multimodal case of objective
functions with more than one optimum, which of course is the
interesting case for practical applications of EAs.

At the other extreme, convergence reliability analysis deals
with the question of global convergence of an EA, meaning that
the algorithm is guaranteed to find a global optimum. Global
convergence results are general in the sense that they do not
make strong assumptions about the objective function and typ-
ically assume unlimited time

Here, denotes the population maintained by the EA at
generation and is the probability of the event . Some of
the first global convergence results for EAs were presented for
simple (1 1)-evolution strategies [15] and were subsequently
refined for population-based strategies, as well as nonelitist
strategies [17]. Concerning genetic algorithms, first proofs of
global convergence were presented again in the early 1990s
[9]. The global convergence type of analysis benefits from the
generality of results (i.e., for all possible objective functions),
but it is practically not exploitable as no finite expected time
results are obtained.

In order to bridge the gap between convergence velocity re-
sults and convergence reliability results, it is a natural but dif-
ficult step to extend the convergence velocity analysis to mul-
timodal objective functions and to analyze explicitly the time
it takes the algorithm to converge to the global optimum rather
than a local one. Of course, the results are expected to depend
on the starting conditions as well as the specific parameter set-
tings of the EA.

The natural extension from the existing work for unimodal
objective functions consists in bimodal problems, where just
one local and a distinct global optimum exist in the search space
and the regions of attraction of these two optima can be scaled
such that it becomes harder or easier to find the global optimum.
For real-valued objective functions, this test case was defined
and experimentally investigated already more than 15 years ago

1089-778X/03$17.00 © 2003 IEEE



12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 1, FEBRUARY 2003

[10], [11] demonstrating the importance of “soft selection” to
bridge the gap between the local and global optimum. From a
theoretical point of view, however, the first results on specific
bimodal test problems have only been published very recently
[12], [16]. Approaching the analysis from different perspectives,
both papers focus on the advantage of crossover for reducing the
time to find the global optimum or to bridge the gap between the
local and global optimum.

Here, we explore another piece of the puzzle by analyzing
so-called trap functions, which have been designed as scalable
bimodal functions to challenge EAs. In contrast to the above-
mentioned studies, the analysis concentrates on simplified EAs
using only mutation and selection, such as the (11)-EA, the
(1, )-EA, and the (1 )-EA. This analysis continues earlier
work on a unimodal problem [2], [14], [5] and concludes with
the development of a new version of an EA, the (1 :)-EA,
which generates each offspring with a different mutation rate.
The resulting algorithm reduces the time to find the global op-
timum drastically by increasing the emphasis on exploration,
such that the region of attraction of the local optimum can be
left at any stage during the search.

In Section II, the general tools for the theoretical analysis are
introduced, the trap function is formalized, and the (1 :)-EA
is defined as a generalization of the (1)- and (1, )-EA.
Section III presents the numerical evaluation of theoretical
results and a comparison to the experimentally observed
behavior of the EAs on the trap function. Our conclusions and
an outline of further work are given in Section IV.

II. EAs ON TRAP FUNCTIONS

A. Prerequisites

Each individual in our EA is represented by a bitstring of
length : . The fitness function is a function
that maps the bitstring to a real number. We restrict ourselves
to unitation functions, which are functions that depend entirely
upon the number of ones in a bitstring and thus not on their
position

(1)

For any unitation function with a domain ,
three subsets can be computed for a given value :

(2)

(3)

(4)

For every unitation value (the number of ones in a bitstring)
there is a set of unitation values (and corresponding bitstrings)
that have lower, equal, and higher fitnesses. We do not mention
the fitness function in our notation as this function is implicitly
the same in all formulas.

In an EA, one bitstring can be transformed into another
bitstring using an operator calledmutation. With probability

, this operator flips each of thebits into its complementary

Fig. 1. A basic trap function̂f(u).

bit. By flipping bits, the unitation value of a bitstring may be
changed. The following expression describes the probability
that a bitstring of unitation value is converted into a string
of value , when is higher than (cf. [5])

(5)

From these expressions, can be calculated for general
values

if

otherwise.
(6)

In the second equation, the observation is used that the proba-
bility of decreasing the number of one-bits fromto corre-
sponds to the probability of increasing the number of zero-bits
from to . This is due to the equal probability for
one-to-zero and zero-to-one bit flips.

These formulas allow us, in principle, to use any uni-
tation function as fitness function, instead of only a basic
counting-ones function. In the following, we illustrate this by
applying the analysis to so-called trap functions.

B. Trap Functions

We will use two trap functions in our experiments. One is
a basic trap function as introduced in [7]. The other is a more
complex function that we will use to check the validity of the
results obtained for the basic function.

A Basic Trap Function:The definition of a basic trap func-
tion is [7]

if

otherwise.
(7)

Fig. 1 clarifies the meaning of the parameters.
For analyzing our numerical results, it appears useful to com-

pute the sets of the trap function explicitly. Here, we will
show how this can be done usingcorresponding points. A cor-
responding point of a unitation valueis a different unitation
value which has the same value. For a basic trap function,
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there is at most one such point at the other side of the trap. The
corresponding point may be computed using

(8)

which yields the following expressions:

(9)

(10)

For a given value and the resulting corresponding points
and , the subsets become

(11)

(12)

(13)

There are many possible choices for the parameters, , and .
Given the number of bits, we stick to the following guidelines:

• ;
• ;
• ; a multiple of .

For and , we prefer values which are a multiple of ten. These
values simplify some of the computations without affecting their
generality.

A Complex Trap Function:The basic trap function is char-
acterized by two optima that are bit-wise complements of each
other. In general, it is difficult for EAs to go from the suboptimal
solution to the global optimum in this case. For the trap func-
tion, however, abit-flip operator—an operator which reverses all
bits—is likely to solve the problem easily. To check the validity
of our results, we will also investigate a slightly more complex
trap function for which bit-flipping is not always a good solution

if

if

otherwise.

(14)
This trap function is illustrated in Fig. 2.

Note that for , the complex trap function reduces to
the basic trap function. As parameter for, has
our interest, as one could expect that bit-flipping performs very
badly in that case.

C. A (1 : )-EA

We use the mutation operator to obtain the following search
algorithm.

u := uniformly chosen bitstring

repeat until maximum generation reached

S := fu1; . . . ; u�g; ui is a mutated child of u,

generated with mutation rate pi.

u := individual with the highest fitness in

S.

Fig. 2. A complex trap function̂f(u).

This algorithm is a very simplified version of an EA. We use
this algorithm to introduce an extension of an ordinary EA: dif-
ferent fixed mutation rates are used to generate children. It is
easily shown that this algorithm can be applied to simulate both
ordinary (1, )- and (1 )-EAs:

• (1, ): ;
• (1 ): use , with and

. One of the children thus has a mutation rate of
zero, which means that the parent is copied.

With , we will denote the probability that in one
iteration of the algorithm the current unitation value of the se-
lected parent changes from into . To obtain an expression
for this probability, we use the following intermediate probabil-
ities:

(15)

(16)

These are combined as follows:

(17)
The first term is the probability that all offspring are worse than
or equal to . From this, the probability is subtracted that all
offspring are worse. The resulting probability is the probability
that at least one of the offspring has unitation value. The
index goes through all offspring and their corresponding muta-
tion rate. It is here that the “multiple mutation rate” principle is
applied.

We will refer to the unitation value of the individual as
the current state of the (1 :)-EA. The states can be ordered
according to their values. A higher state is a state with a
higher value. With , we denote the set of all higher
states.

D. Measures

The state-transition probabilities according to (17) can be
used to compute several quality measures of the evolutionary
process. The following measures are short-term performance
measures.
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Improvement probability for state

This is the probability of mutating to a better individual and
gives a clue how likely it is to make an immediate enhancement
when one has an individual with a certain unitation value.

Convergence velocity for state

This is the enhancement one expects to obtain in one genera-
tion, given a certain individual. It is the weighted sum of all
possible enhancements by the probability that such an enhance-
ment occurs.

Trap jump probability for state

Here, depends on as follows: if
; otherwise. This measure can

only be used with the basic trap function; intuitively, it is the
probability of going to a better individual at the other side of
the trap. Together with the improvement probability, this prob-
ability provides an insight into the source of a likely enhance-
ment. A high jump probability indicates that we can easily leave
a local path.

Oscillating probability for state

Intuitively, this is the probability of jumping back to the same
side of the trap after two generations, given that we jumped to
the other side of the trap in the first generation. This probability
gives a better insight into the usefulness of a high trap-jump-
probability. A mutation rate that makes trap jumping easy may
or may not make it easy to jump back. In the first case, the
algorithm may be walking the two sides of the trap in turns,
jumping from one side to the other each generation, while in
the second case one mutation rate is expected to allow one jump
only.

To determine long-term performance measures, several
generations have to follow each other. For this purpose the
transition probabilities are stored in a transition matrix.
The states are ordered such that for a plus strategy, the matrix
is uppertriangular; furthermore, the states that contain the
optimum (the so-called set of absorbing states) have the
highest indexes. With , we denote the submatrix that does
not contain absorbing states [8]. This allows to define several
measures.

Absorption time for state

where ; using Markov chain analysis, it can be
shown that this formula computes the expected number of gen-
erations to reach the global optimum from a certain individual.

TABLE I
PARAMETERS OF THEEMPLOYED TRAP FUNCTIONS

If this number is very high, it is almost impossible for the algo-
rithm to find the optimum.

Number of evaluations until absorption for state

The previous measure is only reasonable when one compares
algorithms that perform the same amount of work every gen-
eration. Of course, this is not always the case. Especially on
computer architectures that evaluate offspring sequentially, it is
much fairer to take into account the number of offspring in order
to compare the expected computation time.

Expected absorption time

Here, ; the previous measures give the expected
computation time when one knows the starting individual. The
EA, however, determines its starting individual randomly using
a uniform distribution. To determine the performance of the
complete algorithm, the expected absorption time has to be de-
termined, thus averaging over all possible starting individuals.
With the probability of a uniformly chosen bitstring with
unitation value is computed.

Expected number of evaluations until absorption

Using a similar argument as for , it is fairer to take into
account the number of offspring.

In the sequel, we will mainly use the metrics that depend upon
the number of evaluations. We believe this best reflects the com-
putational effort. To compare algorithm setups, we use the ex-
pected number , which averages over the possible starting
individuals. To show the influence of the starting individual, we
will also report separate experiments on this.

In previous publications [2]–[5], [14], the and
measures were used. We will also give results for these measures
here. However, not all of the results can be explained intuitively.
We will use the jump probability and oscillating probability to
provide argumented explanations.

III. N UMERICAL RESULTS AND EXPERIMENTS

We arrange our experiments as follows. First, we analyze the
short-term measures of a basic (11)-EA. This allows for an
easy comparison of our results with the results of earlier pub-
lications. Next, we will exploit our observations on these basic
cases to analyze the more complex algorithms introduced in this
article.
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(b) (c)

Fig. 3. Probabilistic behavior of the (1+1)-EA for the l = 100 trap function. In (a) and (b), which show the improvement probability and the convergence
velocity, respectively, the value ofp is varied horizontally. The lines correspond tou(~x) 2 f5; 20; 35; 50; 65; 80g. In (c), which shows the trap function (top
graph) and the jump probability (bottom graph), the unitation value is displayed horizontally. For several mutation rates, the probability is shownthat the next
individual is better and on the other side of the trap (which is atz = 25).

A. Short-Term Analysis of the Basic Trap Function

Several trap functions are used in our experiments. A sum-
mary of all functions can be found in Table I. The parameters are
chosen carefully such that for all . This choice of
parameters will ease our analysis without affecting their gener-
ality. In the sequel, we refer to one of these functions by giving
the parameter.

Fig. 3 displays the improvement probabilities and con-
vergence velocities of a (1 1)-EA in several situations.
One coordinate, showing the mutation rate, is drawn in a
logarithmic scale to show more details for lower mutation rates.
Furthermore, the trap jump probability is shown.

The graphs can be explained by looking at some of the char-
acteristics of the trap function that was used. First, we take a
look at the situation, which corresponds to turning a
unitation value into . An analysis of the function yields
[see upper Fig. 3(c)] that for and ,
such a flip does not result in an improved fitness value. This is
reflected in Fig. 3(a): at , only the lines for
and are 1. In Fig. 3(c) (below), the lines with high
mutation rates are 1 in exactly the regions we indicated. The

figure also shows that a mutation rate significantly lower than 1
is better in the range in order to jump to the
other side of the trap.

If Fig. 3(a) had been shown on a linear scale, it would appear
that the curve is symmetric. This can be explained
by considering this construction: a mutated string with mutation
rate can also be obtained by first flipping all the bits and by
then mutating all bits with mutation rate . As a bit-flipped
string with results in a string with , the
result of mutating such a string with must be the same as by
mutating with . The same argument also explains that the
curves for and in Fig. 3(c) cross each other
in .

In Fig. 3(c), the lines for high mutation rates show nonmono-
tonic behavior when : every five unitation values, the
trap jump probability decreases slightly before increasing again.
This can be explained by looking at corresponding values. In
this particular trap function, it appears that four unitation values
at the right-hand side of the trap share the same corresponding
value at the left-hand side. The highest of these four values has
the highest jump probability: in that case, more bits are flipped,
which is more likely to occur (remember that we are looking at



16 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 1, FEBRUARY 2003

mutation rates that are more likely to flip bits than to maintain).
After four unitation values, the corresponding value gets lower,
which reduces the number of unitation values on the other side
of the trap that cause an enhancement. This consequently re-
duces the probability of jumping.

For , the curve in Fig. 3(a) has two optima (at
approximately 0.01 and approximately 1.0). We saw that the
second optimum corresponds to flipping (almost) all bits, re-
sulting in a jump from one side of the trap to the other (better)
side. The first local optimum, therefore, corresponds to the mu-
tation rate that maximizes the local improvement probability
(which leads the genetic algorithm toward the local optimum

). Most strikingly, the curves for and
(with equal distances to a nearby local optimum)

overlap each other for low mutation rates and share their local
maximum at .

From the graph it can be deduced that the more closely the
unitation value approaches a local optimum, the lower the op-
timal mutation rate for local search becomes, until it reaches

for . This is in harmony with the mutation rates
derived in [3] and [14] . The intu-
ition of these schedules is as follows: when the local optimum
is almost reached, it is most safe to flip one bit in each muta-
tion. If the mutation rate must be constant throughout the whole
process, is the best choice, as most of the time is usually
spent in fine-tuning the solution.

Graphs similar to those in Fig. 3 for the other values of
also display the mentioned phenomena. For example, also for
the other trap functions seems a reasonable mutation rate in
order to optimize local search.

Fig. 3(b) is very similar to Fig. 3(a). As expected, the curves
for and do not overlap: as the slope of
the curve is much higher at the left-hand side of the trap, the
convergence velocity is also higher there.

Some interesting conclusions can be drawn from Fig. 4,
which shows the oscillating probability for several unitation
values. We will give an analysis for each value.

1) : No better individual can be found on the other
side of the trap. No oscillating will appear for any muta-
tion rate.

2) : There are better individuals at the other
side of the trap. However, applying will not give
a better individual at the other side. If a jump to a better
individual is made for some high (which is very
unlikely), then it is very likely that a jump back is made in
the next generation (consider for this case). This
is reflected in Fig. 4(b).

3) : A high mutation rate (for example
) will most likely result in a jump to the other side

of the trap. It is unlikely that a jump will be made back
again (reconsider ), so the oscillating probability
is low in any case [Fig. 4(b)]. However, for individuals
close to the trap, oscillating is still possible for low mu-
tation rates [Fig. 4(a)]: if a jump to the right-hand side of
the trap is made, the new individual will most likely still
be close to 25, such that a small mutation could result in
a jump back. If the mutation rate gets higher, the first off-

(a)

(b)

Fig. 4. Oscillating probability for values ofu(~x). Mutation ratep is shown
on the ordinate axis. A (1+1)-EA is applied to thel = 100 trap function.
(a) Logarithmic scale. (b) Linear scale.

spring will be further away from 25; an offspring some-
where in the middle of the right-hand side hill is most
likely. A moderately high mutation here will result in a
new offspring at the right-hand side of the trap, which ex-
plains the dip in the graph of . If the mutation
rate gets even higher, far jumps become more likely again.

4) : Similar arguments can be used as for
case 2. It appears here that for individuals close to the trap
a low mutation rate suffices to obtain oscillating behavior.

5) : Similar arguments can be used as for
case 3.

In Fig. 5, the effect of using multiple offspring is visualized.
The convergence velocity increases in all cases. The impact
of using additional offspring however decreases—approx-
imately—exponentially for every new offspring. This is in
agreement with findings for (1, )-evolution strategies that
convergence velocity is and thus grows only
logarithmically with [6].

Fig. 5(b) shows two local maxima for allvalues. This is ex-
plained by the two means of improvement: staying on the same
side of the trap (for low probabilities) or going to the other side
of (for high probabilities). Indeed, Fig. 5(a) has only
one local maximum, as both large and small mutation rates will
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(a)

(b)

Fig. 5. Convergence velocity of a (1+�)-EA on the trap function for values of
p , � 2 f1; 2; 5; 10; 30; 50; 70; 90; 110g. (a) After the trap:u(~x) = 35.
(b) Before the trap:u(~x) = 20:

result in offspring at the right-hand side of the trap with most
probability.

Keeping in mind our previous discussion, it is instructive in
both graphs to see that the convergence velocity decreases for
very high mutation rates when . This may be caused by
the lack of variety in the pool of offspring for very high muta-
tion rates. With , the information in an individual is
not exploited and the variety is maximal; with , there
is only one possible offspring; the variety is clearly very small
in that case. The figure provides a good indication that the op-
timum is between 0.5 and 1.0, but more close to . This
is an argument for using mutation rates little below 1.0.

B. Long-Term Analysis of the Basic Trap Function

When considering the long-term performance of EAs, the ab-
sorption time measure is important. Fig. 6 shows absorption
times for a basic (11)-EA. As can be seen here, the starting in-
dividual (represented by the axis) has no major influence
on the absorption time. One could characterize one optimal mu-
tation rate for the function. Experiments
with other functions showed similar behavior. Table II summa-
rizes the results by only giving the optimal mutation rate and
the expected number of generations for that mutation rate. No

Fig. 6. Absorption times for a (1+1)-EA on al = 10 trap function.

results for and are provided, as our computation
appeared not to be sufficiently precise with very large numbers.1

The number of values of are insufficient to draw conclu-
sions with respect to the relation betweenand the values of
and . The expected absorption time seems to rise expo-
nentially—also taking into account that is very large for

and —but we were not able to derive a straight-
forward formula. The optimal mutation rate fluctuates some-
where between 0.4 and 0.5. This fluctuation is probably caused
by small differences between the trap functions: for , for
example, 30% of the unitation values is at the left-hand side of
the trap, whereas for , this is 20%.

What is more interesting is the relation betweenand the
values of and . From Table II, it is clear that the op-
timal mutation rate is independent of the number of offspring.
Furthermore, for a known value for , values for
other numbers of offspring can very well be approximated using

. As the expected number of evaluations is
defined as , we can conclude that adding
offspring does not have any influence on the long-term perfor-
mance when the mutation distribution is kept constant. We will
therefore investigate the (1 :)-EA next.

For the offspring, we will test the following mutation rates.
• Linear: . We will

abbreviate this with “ .”
• Exponential: , where .

This will be abbreviated with “ .”
In all cases, we assume that there is one offspring with muta-
tion rate , such that the (1 :)-EA becomes an adapted
(1 )-EA, with . In the sequel, we will denote
this (1 : EA with one mutation rate as a (1 )-EA
(Table III).

We first check the correctness of the formulas we developed.
In Fig. 7(a) and (b), experimental expected absorption times
and theoretical times are plotted for a (110)-EA with .
Only those ranges of and are shown, which result in low
times. The theory predicts the experimental results accurately
and shows the same dependence on the parameters. Fig. 7(d)
displays a comparison of numbers. Here, the starting individual
is fixed, such that uniform initialization is not taken into ac-
count. The experimentally determined numbers (which were av-

1A mutation rate of 0.01 would yield an approximate absorption time of 8.39
� 10 generations.
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TABLE II
EXPECTEDABSORPTIONTIMES OF OPTIMAL MUTATION RATES FOR A(1 + �)-EA

TABLE III
NOTATION OF EVOLUTIONARY ALGORITHMS

eraged over 1000 experiments) clearly converge to their theoret-
ical values. The theory, therefore, seems reliable.

An important observation in Fig. 7(d) is that there are no local
optima other than the global optimum. We checked several other
setups and found this to be true for all test cases. This would
mean that any gradient descent algorithm could find the optimal
parameters for and . Under the assumption that there is one
optimum, we used the following—simple—algorithm to deter-
mine approximate optimal values for and as follows:

� := 1:0=�, bl = 0:05, bu = 0:6

repeat a fixed number of iterations
while bl and bu changed during the last

assignment
compute E(T ) for (bl � �; bu � �); (bl; bu � �);

(bl; bu + �); (bl; bu � �); (bl; bu); (bl; bu + �),
(bl + �; bu � �); (bl + �; bu); (bl + �; bu + �)

set bl and bu to the best of these values
� := �=�

Parameter defines the coarseness of the search. We use
.
We use this algorithm in Fig. 8 to investigate the influence

of the parameter. The optimal values for and for both
linear and exponential mutation rate schemes are shown, as are
the number of evaluations for these parameter settingsn.

When , the algorithms reduce to EAs with two muta-
tion rates and . At first sight, the mutation rate guideline
is also applicable here: both in linear and exponential schemes,
a mutation rate of approximately should be present to ob-
tain the best absorption time. When the number of offspring in-
creases, the optimal lower bound decreases. This is reasonable:
it means that it is more advantageous to add some low mutation
rates than to add more high mutation rates. When considering
the upper bound, it is interesting to recall Figs. 4 and 5. Also,
there is a strong relation here between mutation rates that max-
imize convergence velocity and minimize absorption time.

From the figure, we may conclude that a scheme with a low
number of offspring is preferable if one knows the optimal mu-
tation rate. From a practical point of view, it could, however,

be difficult to find such optimal mutation rates. It could there-
fore be interesting to know how the algorithm behaves for mu-
tation rates that are only very rough approximations of the op-
timal rates. Table IV provides some insight into this. It shows
some good examples [e.g., (e 0.01 1) and (e 0.02 9)] of schemes
for which a low number of offspring is not beneficial. Fig. 9
may provide an explanation for this. It displays the convergence
velocity for some of the algorithms in the table. Although the
linear algorithm provides a higher convergence velocity for var-
ious unitation values, the exponential scheme is better on diffi-
cult values, which are those where the velocity is low. To stress
this, the graph is drawn on a logarithmic scale. In particular, a

individual is likely to be encountered. The exponen-
tial scheme performs best here, as it provides a wider variety of
low mutation rates and thus enlarges the probability that the last
bit is correctly flipped.

Using Table IV and the graphs of Fig. 7(b) and (c) and
Fig. 8, we can compare the linear and the exponential schemes.
The exponential mutation scheme performs surprisingly well.
For example, a (e 0.02 0.9)-(110)-EA performs significantly
better than many (13)-EAs. The surface of the exponential
scheme displayed in Fig. 7(c) is also clearly below that of a
linear scheme and is less sensitive to the values of theand

bounds.
In comparison to constant mutation rates, the number of eval-

uations of the new algorithm is clearly much smaller. From the
current results, however, a disadvantage of the new algorithm
can also be extracted. Whereas with constant mutation rates, the
addition of new offspring did not make the number of evalua-
tions worse (in case one applies optimal mutation rates), this is
not always the case with multiple mutation rates.

C. Long-Term Analysis of the Complex Trap Function

Considering absorption times again, we first have to check
whether the one-optimum assumption still holds for this func-
tion. As can be seen in Fig. 10 for a particular function, this
assumption seems still valid (we checked this also for the de-
tails which are invisible in the graph). Note that this figure is
plotted slightly different than Fig. 7(c), as here the complete
ranges for and are shown. Where is higher than ,
for swapped values of and is shown, which may incorrectly
give the impression that there are two optima.2

Using this assumption, we recompute the optimal upper and
lower bounds of multiple mutation rates, for several numbers of
offspring (Fig. 11). Many results for the basic trap function are
also applicable here: a small number of offspring is better, and
two different mutation rates perform better than two identical
mutation rates. However, there also major differences: the lower

2Furthermore, some values which are too large are not plotted. This explains
the strange graph for very low mutation rates.
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Fig. 7. Absorption times of a (1�10)-EA for given upper and lower bounds. The experimental values are obtained by averaging over 1000 experiments for each
coordinate. Thel = 20 function is used. (a) Experimental expected absorption time (linear scheme). (b) Theoretical expected absorption time (linear scheme). The
mimimum is atb = 0:04 andb = 0:93 with a value of 56.0. (c) Theoretical expected absorption time (exponential scheme). The minimum is atb = 0:02 and
b = 0:96 with a value of 26.94. (d)T (s) for several values ofu(~x) with b = 0:01 andb = 1 (linear scheme).

bound of the exponential scheme increases instead of decreases,
and the exponential scheme performs worse for large numbers
of offspring (although much better than a constant mutation rate:
for , 76 932 evaluations are needed for the optimal con-
stant mutation rate , while evaluations suffice
for the exponential scheme).

To explore this difference for high values offurther, Fig. 12
shows the dependency of the optimal mutation rates on the lo-
cation of . For , the complex trap function almost re-
duces to a normal counting ones problem. The optimal lower
and upper bounds are almost equal here: one mutation rate per-
forms best. The more the complex trap function turns into a
basic trap function, the further the optimal mutation rate bound-
aries are apart. The function does not yield as much

difficulties as the problem. As expected, the impact
of using several mutation rates is not as large here as for other
values, but still considerable. We computed that for an approxi-
mate optimal mutation rate of 0.385 still 61 053 evaluations are
needed when one mutation rate is used.

For most values of , it appears that the linear scheme per-
forms slightly better, and, what is also important: the lower
bound on the mutation rate is much more constant and allows
for the application of a rule-of-thumb: .

IV. CONCLUSIONS

Using trap functions, the results presented here give an
idea how previously published EAs scale up to more complex
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Fig. 8. Optimal upper and lower bounds for the mutation rates of a (1� �) EA, with the resulting number of evaluations.

TABLE IV
EXPECTEDNUMBER OF EVALUATIONS FOR SEVERAL ALGORITHMS

problems. More specifically, we have shown using numerical
experiments that the guideline for optimal mutation rates
[2], [14] optimizes local search (exploitation), but is incapable
of providing sufficient diversity in the search (exploration).
After having shown that an EA with one mutation rate and no
crossover has many difficulties finding an optimum if there is

an attracting local optimum, we investigated the possibility of
using mutation to perform exploration.

For a trap function, we found that a mutation rate approxi-
mating 1, but not exactly equal to it, maximizes the probability
that a new hill is climbed every generation, and thus enhances
exploration. We used these observations to construct a new al-
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Fig. 9. Convergence velocity for several mutation schemes. Note that one scale is logarithmic. Thel = 20 problem was used.

(a) (b)

Fig. 10. Expected absorption times for a(1�10)-EA with multiple mutation rates. The complexl = 20 trap function is used withz = 15. (a) Linear mutation
rates. (b) Exponential mutation rates.

(a) (b) (c)

Fig. 11. Optimal upper and lower bounds of mutation rates, and the corresponding expected number of evaluations for thel = 20 complex trap function with
z = 15.

gorithm which provides several mutation rates every generation.
Using numerical experiments, we found that indeed two muta-
tion rates and 1 solved the trap problem efficiently. The ex-
periments confirmed that both exploration and exploitation can
be obtained by the mutation operator as long as there is varia-
tion in the available mutation rates.

To get a better insight in the importance of the multiple mu-
tation rates, we applied the idea of multiple mutation rates on
another trap function. This made clear that using several rates
is beneficial in many difficult situations, also if one does not
know the optimal mutation rate. The height of the optimal upper
bound however depends very much on the characteristics of the

function. On a basic counting ones problem, using additional
mutation rates only increases the number of evaluations.

In this paper, we focused on one particular function with two
local optima. We found that one high mutation rate is sufficient
to obtain population diversity. Further investigations with more
complex functions could provide better insight into how many
high mutation rates are necessary. For such functions, it would
also be interesting to compare the impact of high mutation rates
with the effect of a crossover operator.

The use of multiple mutation rates to obtain diversity may
not only be advantageous in the static problem we investigated
currently; it could also be useful in dynamic problems. Using
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(a) (b) (c)

Fig. 12. Optimal upper and lower bounds of mutation rates, and the corresponding expected number of evaluations, for thel = 20 complex trap function and
� = 10.

some of the measures in this paper, we plan to investigate the
applicability of such an EA on dynamic problems.
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