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Abstract

Although Web prefetching is regarded as an effective
method to improve client access performance, the asso-
ciated overhead prevents it from being widely deployed.
Specifically, a major weakness in existing Web servers is
that prefetching activities are scheduled independently of
dynamically changing server workloads. Without proper
control and coordination between the two kinds of activi-
ties, prefetching can negatively affect the Web services and
degrade Web access performance. In this paper, we first de-
velop an open queuing model to characterize detailed trans-
actions in Web servers. Using this model, we analyze server
resource utilization and average response time with differ-
ent request arrival rates when prefetching is involved under
different kinds of Web services. Guided by this model, we
then design a responsive and adaptive prefetching scheme
that dynamically adjusts the prefetching aggressiveness in
Web servers. Our scheme not only prevents the Web servers
from being overloaded, but it can also minimize the aver-
age server response time. We have effectively implemented
this scheme on an Apache Web server. Our measurement-
based performance evaluation shows our model can accu-
rately predict the utilization of Web server resources and the
correspondent average response time.

1 Introduction

With the popularity of the World Wide Web, latency per-
ceived by the clients becomes an important factor of the
quality of Web services. Web prefetching can effec-
tively reduce the server response time, since idle server re-
sources can be utilized for Web prefetching activities. Web
prefetching techniques have been proposed for different
kinds of Web services. For static Web objects, a prefetch-
ing scheme pre-loads those objects to be accessed possibly
in the near future [16]. For dynamically generated Web ob-
jects, server response time can be reduced by pre-generating
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Web objects based on client access information [20]. For a
search engine Web site, performance can be improved by
pre-loading most related searching results [13]. For a CDN
provider, pushing related objects to the proper CDN servers
can achieve better performance than passively pulling [6].
An ideal prefetching scheme should have no negative ef-
fects on existing activities in the Web server while the re-
duction of client perceived server processing time can be
maximized.

The potential effectiveness of Web prefetching has been
widely investigated, and associated overheads have also
been noticed. Possible network traffic overhead is ana-
lyzed in [9, 23]. It has been shown that if prefetched ob-
jects could be transferred at low rates, the network condition
would be improved over that without prefetching. In order
to avoid network overhead, a partial prefetch scheme [15]
and prefetching between proxies and dial-up clients [10] are
presented. Recently, researchers propose to utilize the un-
used network bandwidth for prefetching with marginal ef-
fects on existing traffic [16, 22], which makes Web prefetch-
ing more practical. The space overhead of building predic-
tor trees can also been reduced by considering the specific
access patterns [5]. The use of a threshold to adjust the ag-
gressiveness of prefetching is analyzed in [11]. In contrast
to the above cited studies, we look into the performance im-
pact of prefetching and associated overhead in Web servers.

With the increase in types and amount of Web services,
the server can easily become a bottleneck in Internet. A ma-
jor concern about a wide deployment of Web prefetching is
related to the associated overhead that may negatively affect
the performance of the Web servers and the response time.
In this study, we focus on evaluating existing techniques
and providing new solutions to address a major weakness
of these techniques — prefetching activities are scheduled
independently of the dynamic server workloads. Therefore,
if prefetching activities are not properly controlled and co-
ordinated with Web servers, Web access performance can
be significantly hurt.

Our research focus on Web servers in this paper is moti-
vated by the structure of current Internet services that heav-
ily rely on HTTP based on TCP protocols. Before an HTTP
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request is sent to the Web server, a TCP connection must
be first established though a three-way handshake mecha-
nism. Once the TCP connection is established successfully,
a client can send a series of HTTP requests to a Web server
while the server uses the same connection to transfer the
requested data to the client. The client-perceived response
time comes from three parts: (1) the time to establish the
TCP connections; (2) the time for Web servers to process
requests; and (3) the time to send the response via the net-
work. The last two parts account for the major delay. We
further believe the Web server processing time is crucial to
ensure the quality of Web services for the following two
reasons:

e TCP connection time does not change much when the
load on the server changes.

As pointed out in [18], when the server is lightly
loaded, the connection time can be ignored since
the processing time is the major part. In fact, Web
prefetching is always applied only when the idle re-
sources are available. In our experiments, the average
connection time is never larger than 10% of the av-
erage client-perceived response time. In order to re-
duce the connection overhead, KeepAlive directive
is widely used in HTTP 1.0 and 1.1. In our experi-
ments, we construct the requests with the directive fol-
lowing the format of HTTP 1.0.

e Prefetching requests will not increase the transmission
time of regular requests.

This is because (1) prefetching used for dynamic con-
tent does not consume additional network resources;
and (2) a new TCP/IP protocol has been proposed [22]
to avoid network resource competition between back-
ground traffic and existing traffic.

The effectiveness of designing and implementing an ef-
ficient control and coordination mechanism in Web servers
mainly relies on insightful understanding and accurately
characterizing the dynamic behaviors of Web servers. In
this paper, we develop an open queuing model to character-
ize detailed transactions in Web servers. Using this model,
we analyze server resource utilization and average response
time with different request arrival rates when prefetching is
involved with different kinds of Web services. Guided by
this model, we design a responsive and adaptive prefetch-
ing scheme that dynamically adjusts the prefetching ag-
gressiveness in Web servers. Our scheme not only pre-
vents Web servers from being overloaded, it can also min-
imize the average server response time. We have effec-
tively implemented this scheme on an Apache Web server.
Our measurement-based performance evaluation shows our
model can accurately predict the utilization of Web server
resources and correspondent average response time.

2 Prefetching Performance Analysis
2.1 BCMP Queuing Networks

If the customers of a queuing network model have differ-
ent service demands, it is regarded as a model of multiple

class customers. Developed by Baskett et al. [4], the BCMP
queuing networks allow different classes of customers, each
with different service requirements and service time distri-
butions other than exponential. Open, closed, and mixed
networks are allowed. The queuing networks we have de-
veloped for prefetching in Web servers are based on an open
model, which consists of K devices and C different classes
of customers. The network state is denoted by a vector
it = (71,741, ..., k), Where component 77; is a vector that
represents the number of customers of each class at device
i, which is 7i; = (n4,1,M4,2, ...,ni,c). An open network al-
lows customers to enter or leave the network while a closed
network always has a constant number of customers in the
network.

2.2 Prefetching Background

Prefetching Procedure

In order to evaluate prefetching effects on Web servers, we
use a typical Web prefetching procedure: when the Web
server receives a request from a client, it will make predic-
tions based on the access history for the client and piggy-
back the results with the response. When the client receives
the response, it sends requests for predicted objects if they
are not cached in its browser. In order to fully exploit the po-
tential effects of prefetching, some researchers suggest the
client send messages to the Web server to notify of its sta-
tus even if a hit happens. In our implementation, we cache
the prediction results and use them when hits on the associ-
ated prefetched data happen. Our experiments indicate this
method can significantly reduce the number of messages re-
ceived by the server with marginal loss of hit ratios.

Prediction Structure

We use the Prediction by Partial Matching (PPM) method
[7] to build the prediction tree, which is widely used in Web
prefetching. The PPM model structure is represented by a
set of trees, each of which is rooted by the first accessed
URL of a sequence of Web URL accesses. Two parameters
determine the tree structure. The parameter m is the number
of previous accesses from the same client used to predict
future accesses and the parameter [ is the number of next
accesses the PPM tree trying to predict. When the trees are
used to make predictions, the last m accesses are matched
from the roots of the trees. Every node in the tree structure
has its access probability, which is defined as the ratio be-
tween its access frequency and the frequency of its parent
node. A threshold is set in the prefetching algorithm to
select those nodes that have higher access probabilities than
the predefined value. In our experiments, we always use the
previous 2 accesses (m = 2) to predict the next immediate
access (I = 1), which is commonly used in practical systems.

2.3 Queuing Networks for Web Services

In our analysis, we consider the situation where only a sin-
gle Web server exists. The results can be easily extended
to multiple servers. A typical Web server is connected to a
LAN, which is connected to a router that connects the site
to the ISP and then to the Internet. The queuing networking
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model is shown in Figure 1. It is an open queuing network
model with a queue for each of the three components: the
network interface card (NIC), the CPU and the disk.

Web server

Figure 1. The queuing network model for Web
services.

A typical Web service completes with several operation
steps. For example, the Apache server [1] has the following
procedure to process incoming requests:

1. Translating URI to the local filename,

Checking ID authorization,

Checking access authorization,

Access checking other than authorization,
Determining MIME type of the requested object,
Sending a response back to the client, and

7. Logging the request.

SANNANE

Different steps rely on different devices. For example, the
first five steps mainly use the CPU while the sixth step nor-
mally needs the NIC, the CPU and the disk. With the im-
provement of Web techniques, a Web server provides vari-
ous kinds of services to clients. Different kinds of requests
have different resource requirements.

Parameter | Meaning

K number of devices

C number of request classes

Ar class r request arrival rate

D;,, service demand of class r requests at device ¢
Ui, utilization of device ¢ by class r requests

U; utilization of device ¢ by all requests

R; response time of class r requests at device ¢
R, class r average response time

R average response time for all requests

Table 1. Input parameters for Web service
models

When prefetching is applied for a specific class of Web
requests, some requests can be prefetched while the rest are
still explicitly requested by clients. Prefetching may change
the resource requirements. Static object prefetching has a
limit on the size of prefetched pages to avoid the overhead
of wrong predictions. Dynamic content prefetching utilizes
idle CPU cycles to pre-compute the results that may be re-
quested by clients, but the results are not required to be
transferred to clients until they are requested explicitly. Due

to the variance of surfing behaviors in the Web, it is natu-
ral to model a Web site as an open network with multiple
classes of requests.

In our analysis, we use a BCMP queuing network model
to estimate the capacity of the Web server and the average
server response time. In this section, we give the analysis in
a general situation, where the number of devices and num-
ber of request classes are not limited. The parameters used
in our analysis are shown in Table 1.

2.4 Capacity of A Web Server

The capacity of a Web server is measured by its system
throughput that is a function of resource utilization. Here,
we model the resource utilization of each device to set up
system service thresholds.

Resource Utilization Without Prefetching
We can calculate the utilization of each device by summing
the utilizations of each class of requests as follows:

c C
U; = Z Ui,r = Z )‘TD'L',T-
r=1 r=1

If a steady state solution exists, the maximum utilization of
each device must be less than 100%, i.e.:

c
max; Z)‘TD’?T <1.

r=1
It guarantees that no device will receive more service re-
quests than it can handle.

Resource Utilization With Prefetching
When prefetching is applied in the Web server, for a given
class of requests, two kinds of requests will be received by
the server: regular requests are explicitly sent by clients
and prefetch requests are automatically delivered by the
browser with the prefetching function after it receives the
prediction results from the server.

In order to accurately calculate resource utilization, we
divide the class of requests into two parts when prefetching
is applied to a specific class of requests.

e )\T: regular request arrival rate of class r after prefetch-
ing is applied,

e )\P: prefetch request arrival rate of class r,

e D7 . average service demand of regular requests of
class r requests at device %, and

e D? : average service demand of prefetch requests of
class r requests at device 4.

In consequence, additional C' new classes of requests
will be received by the Web server while the correspondent
C original classes of requests may have different resource
requirements from those without prefetching. In order to
achieve a steady state, the maximum resource utilization in
each device demanded by both regular and prefetch requests
must be less thanéOO%, Le.:

max; Z(/\:nyr + /\QDf’r)} <1

r=1
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2.5 Average Response Time

Average Response Time Without Prefetching

In order to compute the average server response time of all
classes of requests, we need to calculate the average server
response time for each class of requests. For class r re-
quests, we have:

DZ T
B = Z Bir = 21 1-U;
For all classes of requests, the average server processing

time is:
C
> g Br X Ay

Yot Ar
Average Response Time with Prefetching
Since the prediction is based on history information, not all
prefetched files are useful. The effectiveness depends on
the accuracy of prediction and the prefetch hit ratios, which
are determined by the prefetching threshold. Here are addi-
tional parameters we have defined:

R=

e P.: the prefetch hit ratio of class r customer, i.e. the
percentage of all requests prefetched before they are
requested explicitly by clients, which is determined by
the prefetching threshold;

e A,: the accuracy of prefetching of class r customer,
i.e. the ratio between the accessed prefetched files and
all prefetched files, which is also determined by the
prefetching threshold;

e R7: regular requests of class r response time; and
o RP: prefetch requests of class r response time.

The regular request rate and the prefetch request rate for
class r customer can be calculated by:

A=A x (1= P), Ag:%.

The average response time for the two kinds of requests are:

:g}z 21

The server response time of prefetch requests may not be
perceived by clients, since plenty of time is available for
prefetching requests to finish [10]. Thus, we assume all
prefetch requests are completed before the clients require
them explicitly. We define client-perceived average server
response time R j;ent as the ratio between the total server
response time of regular requests and the number of re-
quests when no prefetching is applied. In order to minimize
the client-perceived average server response time, we want
to minimize the average response time for all requests ex-
pressed as follows:

S A xR _ YO, (1=P) x A x Ry
YIREPY Yt Ar

k P

Rclient =

2.1)

Dl’l‘
SIS s

2.6 Summary of the Model

A Web server with multiple kinds of services makes the
analysis complicated. BCMP queuing model provides an
approximation tool to estimate the device utilizations and
response time when multiple classes of requests exist. It
also facilitates to account the effects of prefetching on Web
servers. By estimating the server resource utilizations, we
can control the prefetching aggressiveness and deduce the
average server response time.

3 Adaptive Prefetching Algorithm

The analysis in the above section shows that the average
response time for all requests, R, is determined by the ar-
rival rates of different requests A, = 1,...,C, and the
prefetching threshold that determines the prefetching hit ra-
tio P.,r =1, ...,C and accuracy A,,r =1,...,C.
This model guides us to develop an adaptive prefetch-
ing algorithm for the following objective: for given A,,r =
,..-,C, we minimize R by adjusting the prefetching
thresholds denoted as 7T'.

3.1 Basic Idea of the Algorithm

In order to minimize the response time by selecting optimal
prefetching thresholds, we need to compute the response
time of each class of requests with a set of prefetching
thresholds, which is composed of the response time of the
class of requests in each device. Although different kinds
of requests (e.g. dynamic, static) are divided into classes,
the service demands of the requests in a class span in a
large range. For example, the sizes of static requests have a
heavy tail distribution [3, 8]. The average service demand in
one class may not be accurate to represent that of the whole
requests in this class. We further divide the requests into
several groups based on the size of the service demands to
improve the accuracy when we estimate the whole service
demands of the class.

° /\_;: the class r requests in different groups, and

° l:: the percentage of class r requests in different group
requests.

In order to account for the service demands of the requests
in each group for each class, we build a table named Group
Demand to collect the information of the request distribu-
tion in different groups for all classes of requests and corre-
spondent service demands. Furthermore, we build another
table named 7, A and P to record the relationships among
prefetching thresholds, prefetching accuracies and prefetch-
ing hit ratios for different groups of requests for all classes,
respectively.

The procedure of computing average response time of
one device (device ¢) consists of five steps. The input pa-
rameters are all classes of request arrival rates of both reg-
ular and prefetch requests and the output is the average re-
sponse time of the device for each group of requests of all
classes.

Step 1: Estimating \,.,7 =1,...,C.
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In order to estimate server response time, we need to know
the request arrival rates and the service demands of each
class of requests. When prefetching is used, we are not able
to observe the request arrival rates directly since a part of
requests have been prefetched. However, from the previ-
ous analysis, for a specific class of requests using prefetch-
ing with a given prefetching threshold, we can compute the
request arrival rates without prefetching by the following
equation:
T P, T
Ar = (/\r+)‘£)/(1_PT+A_)
T

Step 2: Estimating )\_;,r =1,..,C.

The service demands of each class of requests can be com-
puted by analyzing the server logs or monitoring the server
utilization in real time. The estimation accuracy can be
improved by dividing all requests in a class into different
groups. From the table Group Demand, we know the distri-

bution of class r Tequests in predefined groups l
have )\T = Ar *l

Step 3: Estimating A2 and )\T r=1,...,C.

As we have pointed out, prefetch requests may have dif-
ferent service demands and we need to characterize the re-
quest streams including regular and prefetch requests. In
our scheme, we also compute the prediction accuracy and
hit ratio for each group of requests in a given class. If we
know the request arrival rate at each group without prefetch-
ing, we can calculate each group request rate of prefetch and

Now we

regular requests, which are represented by )\p and )\T In this
step, multiple prefetching thresholds are used.

Step 4: Estimating U;.

The total service demands (service utilization) of one class
of requests using prefetching can be approximated by mul-
tiplying the service demand of each group of requests (de-

fined as 15;) with the request rate of them as follows:
Uir = A2+ XY % D,.
The device utilization U; is equal to summing the utilization
of all kinds of requests on device i.
and R?

Step 5: EstimatingR imT =1,...,C.

We can compute the deV1ce average response time for each
class of requests as follows:

R 7 - b
R;{”T - 1 —l’[r]i’ f,r - 1 —l’;]z"

where the Rz-": »and Rf, » represent the device ¢ response time
for class r regular and prefetch requests at each group.

Furthermore, the average response time of a Web server
for every class of request can be computed by summing all
response time of the individual devices. The server average
response time for all classes of requests can be calculated
by equation 2.1. By repeating the above procedure for all
selected thresholds for every class of requests, the optimal
thresholds are the set that achieve the minimal server re-
sponse time for all requests.

3.2 Workload

The workload used in our experiments is from the World-
Cup 98 Web site, which is available from the Internet Traf-
fic Archives [12]. It was one of the busiest Web sites in
1998 and represents a popular Web site trace available in the
public domain [2]. During the collection period, there were
33 different HTTP servers at four geographic locations, al-
though not all of them were in use for the entire collection
period. During this 92 day period (April 26th - July 26th,
1998), 1,352,804,107 requests were received by the Web
site. We have conducted our experiments on more than 10
days’ traces and all results are consistent. We select the 46th
day, one of the busiest days during this period, in our pre-
sentation. During that day, a total of 252,753 clients sent
50,395,084 requests for 8,265 data objects on the servers.
A total of 187 GBytes were transferred from the servers to
all clients. In order to simplify the presentation in the rest
of the paper, we only use a single class of requests in our
experiments and evaluations.

3.3 Accounting for the Heavy Tail Distribution in
Service Demands

A heavy-tailed distribution has been observed in Web traffic
[3, 8]. A random variable that follows a heavy-tailed distri-
bution varies in a large range of sizes, with many occur-
rences as small mixed with a small amount of occurrences
as large. In the Web environment, a large percentage of
HTTP requests are for small objects and a small percentage
of requests are for objects that are several magnitudes larger
than the small objects.

As pointed out in [8, 14], average results for the whole
population of requests would have little statistical meaning
due to the large size variability of objects. The accuracy of
service demand estimation can be improved by dividing the
requests into a number of groups by the object sizes.

In our experiments, we also define the maximal size
of objects to be prefetched, which should also be consid-
ered when categorizing the requests. For the WorldCup 98
traces, we divide all requests into 4 groups by their sizes.

[ Group | Size KB [ Percent | Avg. KB | CPU | NIC
1 [0, 5) 84.6% 1.1 04ms | 0.09 ms
2 [5, 20) 11.9% 10.8 0.8ms | 0.89 ms
3 [20, 100) 3.4% 33.6 1.7ms | 2.78 ms
4 [100, c0) | 0.83% 1149.7 | 442ms | 953 ms

Table 2. Characterizations of Different Group
(Table Group Demand)

In order to measure the service demands for every group,
we measure the CPU, NIC and disk utilizations by changing
request arrival rate with different parallel connections. The
CPU and disk utilizations are taken from the Linux /proc
file system and the the NIC utilization is taken by using
tcpdump. In our experiments, we find the disk utilization
is marginal and we do not count it in our following analy-
sis. The service demands are measured by using a PIII 500
MHz computer with 128 MByte memory and a 100 Mbps
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Ethernet card as the Web server. The size ranges for dif-
ferent groups and the service demands are shown in Table
2. In our experiments, when a single connection is used to
send and receive requests, the requests in every group have
higher service demands. With a large number of parallel
connections (larger than 10), the service demands are de-
creased. Considering a busy server connected by a lot of
clients, we use service demands at multiple parallel con-
nections (10 connections in our measurement) as service
demands for the requests in each group.

3.4 Relationships among Thresholds, Accuracies

and Hit Ratios
Group 1 Group 2 Overall
T | Au(%) Pi(%) | A2(%) Px(%) | A(%) P(%)
0.01 32 93 21 85 30 89
0.05 44 82 35 71 43 78
0.15 54 49 49 44 54 47
0.25 57 24 51 25 56 24
0.35 62 14 57 13 61 13
0.45 53 5.9 49 6.7 52 5.8
0.55 49 2.1 47 3.0 49 2.2

Table 3. Relationships Among Threshold, Ac-
curacy, and Hit Ratio (Table T, A, and P).

As we discussed in the previous section, in order to es-
timate the prefetch effects, we first need to build a table
to collect the accuracies and hit ratios for all possibly used
thresholds. In most prefetching algorithms, in order to re-
duce the overhead of wrong prefetching requests, the max-
imal size of the prefetched objects is defined. In this ex-
ample, the upper bound size of the prefetched objects is 20
KBytes, so only the Web objects in group 1 and 2 can be
prefetched. Table 3 shows the results from traces of day 46.
For those thresholds larger than 0.6, the hit ratios are less
than 1% and have very limited influence on the response
time. We only focus on prefetching thresholds from 0.01 -
0.55.

3.5 Prefetching Performance Evaluation

Request Arrival Rate Estimation

In order to evaluate the CPU utilization when prefetching
is applied, we need to know both the regular and prefetch
request arrival rates, which can be calculated by using Ta-
ble 3. The estimated values for a specific request arrival
rate (A = 100) are shown in Figure 2. It clearly shows that
the regular request arrival rates can be effectively reduced
by setting low prefetching thresholds, while the prefetch re-
quest arrival rates are increased very fast. For example, if
the threshold is set to 0.01, the regular request rate is re-
duced to 10 requests/seconds and the prefetch request rate
is close to 300 requests/second. Compared with the request
arrival rate without prefetching (100 requests/second), the
load on the server is increased significantly.

Server Capacity
As we pointed in the previous section, the server capacity
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Figure 2. The request distributions for each
group when different thresholds are used.

is determined by the bottleneck device, which is the CPU
in our experiments. In order to estimate the CPU utiliza-
tion, we need to know the request arrival rates in all groups
and the service demands of each group of requests. The es-
timated server CPU utilization for a specific request arrival
rate (100 requests/second) is shown in Table 4. As expected,
when a low threshold is set, the CPU utilization is increased
with the increment of request arrival rates. However, the
CPU utilization is increased at a slower pace than the re-
quest rate due to a large percentage of small-sized requests.
For example, if the threshold is set to 0.01, the request ar-
rival rate is increased from 100 to 305, while the CPU uti-
lization is increased from 5.4% to 15.5%.

[ Group | 001 | 005 [ 015 | 025 ] 035 [ NP

1 251.77 | 172.86 | 119.92 | 99.92 | 91.86 | 84.6
2 49.96 27.59 17.35 | 1476 | 13.06 | 11.9
3 3.4 3.4 3.4 34 3.4 3.4
4 0.083 0.083 0.083 | 0.083 | 0.083 | 0.083

Sum 305.2 203.9 140.8 | 118.2 | 108.4 | 100
Dcpy | 1551 103.4 73.0 62.7 579 54.0
Ucpy | 155% | 103% | 73% | 63% | 5.8% | 5.4%

Table 4. CPU Utilization Comparison among
Different Thresholds

Response Time

Once we have the device utilizations, we can use the ser-
vice demands to estimate the average response time of each
device.

If we assume all prefetched files can be fully down-
loaded before the clients explicitly request them, the server
processing times of prefetch requests are not perceived by
clients. Since only a part of requests (regular requests) are
explicitly sent out by clients, the client-perceived server
response time can be reduced after prefetching is de-
ployed. For example, when the request arrival rate is
100 requests/second and the threshold is 0.01, the request
rate explicitly sent by the clients is decreased to 11.2 re-
quests/second.

The response time with variable request arrival rates are
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Figure 3. CPU response time comparisons
among different thresholds.

shown in Figure 3. It is clear that low thresholds should be
used when the server’s load is light while high thresholds
should be set for heavy server’s loads. It is also interesting
to observe that prefetching can bring marginal benefits if the
request rate is larger than 1000 requests/second. However,
most Web servers are utilized far below the maximal ca-
pacities needed to accommodate the bursty request streams.
Thus, prefetching can be an effective way in most cases in
practice. In our experiments, the response time is normally
below 3 ms, which limits the performance improvement of
prefetching. If we consider dynamic content with response
time of hundreds of milliseconds, prefetching can signifi-
cantly reduce the response time perceived by clients.

4 Prototype and Results
4.1 Implementation

We have implemented the proposed prefetching methods on
Apache 2.0.40 [1]. The Web server will make predictions
for all requests. When it prepares to serve the responses,
prediction results will be added in the header and sent back
to the clients. When persistent connections are used, a con-
nection can receive both types of requests from the same
client. Two kinds of headers have been added in the re-
quest: Regular and Prefetch, which are included in
regular requests and prefetch requests, respectively. When
more than one previous URLSs are used to make predictions,
the clients also include previous access information with the
header. In order to make it compatible with the currently
deployed protocols, every request without the additional
headers is considered as a regular request. A new header
Prediction in the server’s response header is added to
convey the prediction results.

Periodically, the Web server checks if the threshold is
suitable for the current average request arrival rate. A
counter is used to record the number of requests received in
the last period. When the predefined time slice is reached, a
maintenance procedure is called. First, it estimates the av-
erage request rate in the last period. Then it checks if the
current threshold is suitable and selects an optimal one for
the current load level. When the request rate is lower than a

predefined value, the minimal prefetch threshold value is set
safely. For the WorldCup 98 traces, we repeat the procedure
every 10 seconds.

4.2 Experiment Settings

[ webclient] | wcbc‘]icm‘ [ wcbc‘]icm‘
[webmaster] [ webclient | [ webclient | [ webclient |

T T T T

Router WL ===

LAN B

Web Server

Figure 4. The experimental environment.

The clients are simulated by an enhanced WebStone 2.5
[21]. In our enhanced WebStone 2.5, every client process
has a URL list recording the requested URLs and the time
to send the request, which is extracted from the real Web
server traces. In the current implementation of WebStone,
the maximum number of webclient processes is set to
1024, due to the limitation of the number of sockets for a
process to open simultaneously. In order to make it scalable,
we assign every webclient process several real clients, rep-
resented by several URL lists. In this way, we can simulate
more than 1024 clients by using a relatively small number
of processes on a limited number of machines.

The experimental environment is shown by Figure 4,
where simulated clients and the Web server are located
in two different 100 Mbps Ethernet LANs connected by
a router. On the client side, a number of clients, which
are represented by processes (webclient) distributed on a
number of computers, send requests to the server. The
webmaster is running on another computer to manage
the webclient processes and collect the results from all we-
bclients. A number of httpd processes are created in the
server to process incoming requests.

In our experiments, 100 to 1000 webclients, each in
charge of 15 real clients, are equally distributed on 5 com-
puters with Intel 2.26 GHz P4 CPU and 1 GByte memory.
The Web server uses a computer with Intel 500 MHz PIII
CPU with 128 MBytes memory and a 100 Mbps Ethernet
card. The Apache Web server uses the worker module to
support threads for high performance and uses default pa-
rameters in Apache httpd. conf to set the initial number
of server processes and maximum number of simultaneous
client connections. All machines run the Linux operating
system with kernel 2.4.18.

All webclient processes read client traces extracted from
traces of day 46 from the WorldCup 98 Web server site. We
use a 10-minute section in the trace of day 46. During the
10 minutes, 15,304 clients visited WorldCup 98 Web site.
Since the cache status has influential effects on hit ratios, in
order to make the results more accurate, before we start our
experiments, we use a previous hour period trace to warm
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Figure 5. The left figure shows server throughputs (represented by X) and request arrival rates \ of
no prefetching scheme and a prefetching scheme with threshold 0.05. The middle figure gives the
comparisons of resource utilizations Ucpyy and Uy o between the estimated values from the model
analysis and measured ones in our experiments when prefetching is used with threshold 0.05. The
right figure gives the comparisons of client-perceived server response times R ;-

up the browser caches. The server uses 300,000 requests in
the day 46 trace as the training data to build the predictor.

4.3 Performance Comparisons

The effectiveness of our adaptive prefetching model is eval-
uated by two metrics.

e The accuracy of estimating server’s capacity. An accu-
rate estimation is important to prevent the Web server
from being overloaded.

e The accuracy of estimating server’s response time.
This value is essential to select the optimal threshold
to adjust the aggressiveness of Web prefetching.

As an example, we select a commonly used threshold
0.05 to present the related results in this paper.

Server Throughput
By adjusting the number of clients, a request stream with a
variable request rate is used to test the performance of the
Web server. Starting from 1,500 clients, an additional 1,500
clients will be added every minute, which results in a total
of 15,000 clients at the end of in the 10 minute test. The left
figure of Figure 5 presents the request arrival rates A and
correspondent server throughputs (represented by X)) for no
prefetching and prefetching with threshold 0.05 schemes.
In both schemes, the server’s throughput is always equal
to the request arrival rate until the server’s capacity is
reached. For the prefetching scheme with threshold 0.05,
the server can process up to 2000 requests per second while
it can only process up to 1500 requests per second in no
prefetching scheme. There are two reasons: a) the average
service demand per request in the prefetching is lower than
that without prefetching. b) the ratio of small sized requests
in total requests is increased when prefetching is used.

Server Capacity
The server resource utilizations for different server through-
puts are shown in the middle figure in Figure 5, which

presents the results for a system with prefetching with
threshold 0.05. The two lines are estimated CPU and NIC
utilizations while the points are the measured values in our
experiments. For both devices, our measured results are
within 5% from the predicted values. With the increase of
the server throughput, the CPU utilization is not increased
strictly proportionally. When the throughput is approaching
the server’s capacity, the CPU utilization is increased at a
lower pace. As pointed in [8, 14], the service demands can
be higher due to the burstiness in Web request rates. When
the request arrival rate is close to the server’s capacity, the
effects of burstiness on the service demands is reduced.

Average Response Time

The server’s response time is the sum of all device response
times. In our experiments, the CPU is the bottleneck and
the NIC response time is proportional to the server through-
put. In the right figure in Figure 5, we present the average
CPU response time comparisons between the experimental
results and the values predicted by our model. It shows the
comparison of the average client-perceived CPU response
time between the no prefetching scheme and the prefetching
scheme with threshold 0.05. The x-axis is the request arrival
rate when prefetching is not used. The two lines are esti-
mated average client-perceived CPU response time for no
prefetching scheme and prefetching scheme with threshold
0.05. The points are the calculated values from our exper-
imental results. Prefetching with fixed thresholds 0.05 can
reduce the response time for light loads (e.g., less than 800
requests/second), while prefetching increases the response
time for heavy loads. Our predicted results are accurate,
which can be used to optimize the prefetching aggressive-
ness.

5 Conclusion

In this paper, we analyze the effects of Web prefetching on
Web server’s average response time. Although prefetching
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is well known for its potential to improve Web latency, our
study shows it can also increase the Web server response
time without a proper control. We have made the following
contributions in this study:

e We have developed an open queuing network model to
characterize the interactions between prefetching and
Web server workloads. The model is validated and
proved to be accurate by trace-driven simulations and
Web server measurements.

e Based on our analysis, we propose an adaptive
prefetching scheme to prevent Web servers from be-
ing negatively influenced by prefetching. By monitor-
ing the request arrival rate, the Web servers can adjust
the threshold adaptively and periodically to maximize
performance.

e We have also effectively implemented our prefetching
scheme on an Apache server. The measurement results
show that our methods are accurate and responsive,
and demonstrates that if prefetching is used properly,
the response time perceived by clients can be signifi-
cantly improved.

We are currently testing our adaptive prefetching scheme
embedded in the Apache server in a real-world Internet en-
vironment, where diverse types of Web accesses are con-
ducted, including dynamic and multimedia contents.
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