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Abstract

Using the general theory of Hopf bifurcation with symmetry we study here the example
where the group of symmetries is O(3), the rotations and reflections of a sphere. We make
some amendments to previously published lists of C-axial isotropy subgroups of O(3)× S1

and list the isotropy subgroups with four-dimensional fixed-point subspaces. We then study
the particular example where O(3)× S1 acts on the space V3 ⊕ V3 where V3 is the space of
spherical harmonics of degree three. We find that in this case there are six C-axial isotropy
subgroups of O(3)×S1. The equivariant Hopf theorem guarantees the existence of periodic
solutions with each of these symmetries inO(3)×S1 equivariant differential equations. Three
of the solutions are found to be standing waves and the other three are travelling waves. We
compute conditions for each of these solution branches to be stable and by restricting the
O(3)× S1 equivariant differential equations to four-dimensional invariant subspaces we are
able to find additional periodic and quasiperiodic solutions.

1 Introduction

Bifurcations from states with spherical symmetry occur in several physical and biological sys-
tems. For example, bifurcations to stationary patterns occur in Rayleigh–Bénard convection
in a spherical shell [3, 4, 25]. If the fluid within the spherical shell is subjected to a magnetic
field (and is electrically conducting) or concentration gradient in addition to the temperature
gradient then it is possible for a bifurcation to oscillating solutions to occur. Examples of such
oscillating convection can be found in [6, 19, 20]. Convection within a spherical shell has appli-
cations including continental drift driven by convection currents in the Earth’s mantle and also
convection within the Sun where the strong magnetic field has an influence on the convective
motion..

Another physical example of a bifurcation from a spherically symmetric state is the buckling
of a sphere or spherical shell under external uniform pressure. This has applications including
the evolution of a gas bubble in a liquid [18, 24].

Both stationary and Hopf bifurcation can occur in reaction–diffusion systems on a sphere,
as discussed in [27]. Stationary patterns resulting from reaction–diffusion systems on a sphere
are considered in [28] and a specific example of a reaction–diffusion system which undergoes a
Hopf bifurcation is discussed in [7, 8, 29].

Biological examples of bifurcations from states with spherical symmetry include a spherical
ball of cells developing into an asymmetric shape. It is possible for this ball of cells to be an
embryo as in [27] or a solid tumour as in [5].
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Using equivariant bifurcation theory it is possible to consider the behaviours of each of the
example systems above by using only the spherical symmetry of the system. In this paper we
will study the case of a Hopf bifurcation from a state with spherical, or O(3), symmetry without
any reference to the details of any particular system. We will use the general theory of Hopf
bifurcation in the presence of a group of symmetries Γ developed by Golubitsky and Stewart
[10] and Golubitsky et al [12]. This theory is often referred to as the equivariant singularity
theory. An overview of the results which we will require from the work of Golubitsky and
Stewart [10] and Golubitsky et al [12] is given in section 2 of this paper. These results allow
us to prove the existence of branches of periodic solutions of equivariant differential equations
with the symmetries of certain subgroups of the group Γ×S1. These subgroups are the C-axial
subgroups of Γ× S1—the isotropy subgroups with two-dimensional fixed-point subspaces.

For the case where Γ = O(3) and the representation of O(3) × S1 is on the direct product
Vℓ ⊕ Vℓ, where Vℓ is the space of spherical harmonics of degree ℓ on which O(3) acts absolutely
irreducibly, the C-axial subgroups were first listed by Golubitsky and Stewart in [10]. One error
in this list was corrected in Golubitsky et al [12, Chapter XVIII section 5], however a small
number of other errors remain. In section 3 of the present work we correct these errors and
present an amended list of the C-axial subgroups, giving reasons why the changes to Table
5.1 of [12, Chapter XVIII section 5] are required. We also compute the isotropy subgroups of
O(3)× S1 with four-dimensional fixed-point subspaces. It is possible, under certain conditions,
for solutions to equivariant differential equations with these symmetry groups to exist. Indeed,
if the isotropy subgroup is maximal then the existence of a solution with these symmetries is
guaranteed.

Remark 1.1. We should mention that although we use the equivariant singularity theory to study
the Hopf bifurcations with symmetry in this paper, this is not the only possible treatment. The
equivariant degree based method (see [2] and [17]) also allows such problems to be studied
without some of the assumptions required by the equivariant singularity theory.

The specific example of a Hopf bifurcation with O(3) symmetry where the representation
of O(3) × S1 is on the space V2 ⊕ V2 has been studied previously. Iooss and Rossi [16] found
five primary branches of periodic solutions using analytical methods and extensive calculations.
These findings were confirmed by Haaf et al [14], where they realised V2 as the set of symmetric
traceless 3 × 3 matrices and used equivariant group theoretic methods to find the five primary
solution branches. Both papers investigate the stability of the five solution branches and find
that it is necessary to consider fifth order terms in the normal form of the equivariant differential
equations to fully determine the stability of all five solution branches.

In sections 4 and 5 of this work we will consider the primary branches of periodic solutions
which are guaranteed to exist for the representation of O(3) × S1 on the space V3 ⊕ V3. We
compute the normal form of the equivariant differential equations for this representation to cubic
order and find that this is sufficient to determine the direction of branching and stability of each
of the primary solution branches. Finally in section 6 we investigate solutions of the equivariant
differential equations with less symmetry whose existence is not guaranteed by the equivariant
Hopf theorem. To find such solutions we study the dynamics in the restriction of the equivariant
differential equations to four-dimensional invariant subspaces.
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2 Background

In this section we state without proof the main results required for this work. This includes
some general theory of Hopf bifurcation with symmetry and background on the representations
and subgroups of O(3). Further details including proofs can be found in [10] and [12].

2.1 General theory of Hopf bifurcation with symmetry

Consider the system of ordinary differential equations

dz

dt
= f(z, λ), (1)

where z ∈ Rn, λ ∈ R is a bifurcation parameter and f : Rn ×R → Rn is a smooth vector field
which is equivariant under the action of a symmetry group Γ, i.e.

γf(z, λ) = f(γz, λ) ∀γ ∈ Γ. (2)

Suppose that there is a trivial equilibrium solution f(0, λ) ≡ 0 which is Γ-invariant and under-
goes a Hopf bifurcation at (z, λ) = (0, 0). Since points z on the same group orbit,

Γz = {γz : γ ∈ Γ}, (3)

have the same stability properties, at the Hopf bifurcation there will be multiple pairs of eigen-
values crossing the imaginary axis. Assume that (1) is already reduced to the centre subspace
so that z ∈ R2p ∼= Cp and the Jacobian (df)(0,0) has purely imaginary eigenvalues. For this to
occur, the imaginary eigenspace must be Γ-simple, which is the case when the representation
W of Γ is given by W ∼= V ⊕ V where V is an absolutely irreducible representation of Γ. In
suitable coordinates and rescaling time if necessary we then have that

J = (df)(0,0) =

[
0 Ip

−Ip 0

]
(4)

and the eigenvalues of (df)(0,λ) are σ(λ) ± iρ(λ), each of multiplicity p, where σ(0) = 0 and
ρ(0) = 1. We assume further that the eigenvalues cross the imaginary axis with nonzero speed,
i.e.

σ′(0) =
dσ

dλ

∣∣∣∣
λ=0

̸= 0. (5)

Near the Hopf bifurcation we expect to find branches of periodic solutions. The isotropy
subgroup of z ∈ Rn is defined as

Σz = {γ ∈ Γ : γz = z} ⊂ Γ. (6)

Let z(t) be a periodic solution of (1) with period 2π. A symmetry of z(t) is an element (γ, ψ) ∈
Γ× S1 such that

(γ, ψ) · z(t) := γz(t+ ψ) = z(t), ∀t.

Here S1 is the circle group of phase shifts acting on the space of 2π periodic functions. We say
that (γ, ψ) is a spatiotemporal symmetry. The isotropy subgroup of z(t) is then

Σz(t) = {(γ, ψ) ∈ Γ× S1 : γz(t+ ψ) = z(t)} ⊂ Γ× S1
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where the phase shift ψ ∈ S1 acts on z ∈ Cp by

ψ · z = eiψz. (7)

Hence symmetry groups of periodic orbits are isotropy subgroups of Γ × S1 in representations
of Γ on V ⊕ V . If Σ ⊂ Γ× S1 is an isotropy subgroup then the fixed-point subspace of Σ is

Fix(Σ) = {z ∈ Cp : σz = z, ∀σ ∈ Σ} (8)

and if dimFix(Σ) = 2 then we say that Σ is C-axial.

The following theorem guarantees the existence of periodic solutions of (1) with certain
symmetry groups.

Theorem 2.1 (Equivariant Hopf Theorem). Assume that system (1) satisfies the conditions
(4) and (5) stated above and let Σ be a C-axial subgroup of Γ× S1. Then there exists a unique
branch of small amplitude periodic solutions to (1) with period near 2π and symmetry group Σ.

For a proof of this theorem see [10] or [12, Chapter XVI section 4]. It is possible for
the condition dimFix(Σ) = 2 in this theorem to be weakened to Σ being a maximal isotropy
subgroup of Γ× S1:

Theorem 2.2 (Fiedler [9]). Assume that system (1) satisfies the conditions (4) and (5) stated
above and suppose that Σ is a maximal isotropy subgroup of Γ × S1. Then there exist small
amplitude periodic solutions to (1) with period near 2π, having Σ as their group of symmetries.

Recall that an isotropy subgroup Σ ⊂ Γ× S1 is maximal if there does not exist an isotropy
subgroup ∆ of Γ× S1 satisfying Σ ( ∆ ( Γ× S1.

Suppose that z(t) is any periodic solution of (1). To compute the stability of z(t) we use a
Birkhoff normal form of f(z, λ): by a suitable coordinate change, up to any given order k, the
vector field f can be made to commute with Γ× S1. Suppose that the vector field f in (1) is in
Birkhoff normal form. Then it is possible to perform a Liapunov-Schmidt reduction on (1) such
that the reduced equation g has the form

g(z, λ, τ) = f(z, λ)− (1 + τ)Jz (9)

where τ is the period-scaling parameter (see [12, Chapter XVI, Theorem 10.1]). Let z(t) be a
periodic solution of (1) with isotropy Σ and let (z0, λ0, τ0) be the corresponding solution to g = 0.
Then by [12, Chapter XVI Corollary 10.2], z(t) is orbitally stable if the n− dimΓ + dimΣ− 1
eigenvalues of (dg)(z0,λ0,τ0) which are not forced to be zero by the action of Γ×S1 have negative
real parts.

When dimFix(Σ) = 2, the assumption that f is in Birkhoff normal form implies that we
can apply the standard Hopf theorem to (1) restricted to Fix(Σ) × R. In this case exchange
of stability occurs at the bifurcation point so that if the trivial steady-state solution z = 0 is
stable subcritically, then a subcritical branch of periodic solutions with isotropy subgroups Σ is
unstable. Supercritical branches may be either stable or unstable depending on the signs of the
real parts of the eigenvalues on the complement of Fix(Σ).

The results above rely on the fact that the vector field f is in Birkhoff normal form. However,
there is no change of coordinates which puts f in Birkhoff normal form to all orders. When

4



studying the stability of the periodic solutions of (1) with C-axial symmetry we use the kth
order truncation of f which commutes with Γ × S1. In doing so we ignore higher order terms
which do not commute necessarily with S1 and that can change the dynamics and also possibly
the stability of the periodic solutions. Assume that

f(z, λ) = f̃(z, λ) + o(∥z∥k) (10)

where f̃ commutes with Γ × S1 but the perturbation o(∥z∥k) commutes only with Γ. Here
h(z) = o(∥z∥k) means that h(z)/∥z∥k → 0 as ∥z∥ → 0. There is a result which shows that,
provided k is large enough, the stability results above remain true for f of the form (10). In
order to state this result we require the following definition.

Definition 2.3. Suppose that dimFix(Σ) = 2. Then Σ has p-determined stability if all eigen-
values of

(dg̃)(z0,λ0,τ0) = (df̃)(z0,λ0) − (1 + τ0)J,

other than those forced to be zero by Σ, have the form

ξj = αja
mj + o(amj ),

where z(t) is a branch of periodic solutions to ż = f̃(z, λ) with symmetry Σ, a = ∥z(t)∥ and αj
is a C-valued function of the Taylor coefficients of terms of degree ≤ p in f̃ .

We say that f̃ is nondegenerate for Σ if all αj have non-zero real parts. Suppose that the
hypotheses of the equivariant Hopf theorem hold, and that the isotropy subgroup Σ ⊂ Γ × S1

has p-determined stability. Let k ≥ p and assume that f̃ is nondegenerate for Σ. Then for
λ sufficiently near 0, the stabilities of a periodic solution of (1) with isotropy subgroup Σ are
given by the same expressions in the coefficients of f as those that determine the stability of
a solution of the truncated Birkhoff normal form ż = f̃(z, λ) with isotropy subgroup Σ (see
[12, Chapter XVI Theorem 11.2]). Hence we can use the kth order Taylor series of f which
commutes with Γ × S1 to compute the stability of a periodic solution with isotropy subgroup
Σ whose existence is guaranteed by the equivariant Hopf theorem, as long as k ≥ p when Σ has
p-determined stability.

In this paper we will use the equivariant Hopf theorem to find branches of periodic solutions at
a Hopf bifurcation with O(3) symmetry. To do this we need to compute the isotropy subgroups
of O(3)× S1 for representations V ⊕ V , where V is an absolutely irreducible representation of
O(3). We now discuss the representations and subgroups of O(3).

2.2 Representations and Subgroups of O(3)

The orthogonal group O(3) consists of all 3×3 matrices A satisfying A−1 = AT . These matrices
have det(A) = ±1. Algebraically

O(3) = SO(3)× Zc2,

where SO(3) is the group of all rotations of the sphere, i.e. A ∈ O(3) with det(A) = 1, and
Zc2 = {−I, I}, where the element −I is inversion in the centre of the sphere. If a point on
the surface of the sphere is given in spherical polar coordinates by (θ, ϕ) then the action of the
element −I on this point is

(θ, ϕ) → (π − θ, π + ϕ) where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π.
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For each irreducible representation of SO(3) there are two irreducible representations of O(3),
where the element −I either acts as plus or minus the identity, giving rise to the plus and
minus representations of O(3) respectively. The group SO(3) has precisely one irreducible
representation in each odd dimension 2ℓ + 1 for ℓ ≥ 0, denoted by Vℓ, where Vℓ is the space of
spherical harmonics of degree ℓ. The spherical harmonics are functions of a point (θ, ϕ) on the
surface of a sphere and are given by

Y m
ℓ (θ, ϕ) = (−1)m

(
(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!

)1/2

Pm
ℓ (cos θ)eimϕ (11)

for −ℓ ≤ m ≤ ℓ and where

Pm
ℓ (x) =

(1− x2)m/2

2ℓ ℓ!

dℓ+m

dxℓ+m
(x2 − 1)ℓ

is the associated Legendre function. The spherical harmonics satisfy

Y −m
ℓ (θ, ϕ) = (−1)mY m

ℓ (θ, ϕ),

where the bar denotes complex conjugate.

The natural representation of O(3) on Vℓ is defined to be the plus representation, where
−I acts as the identity, if ℓ is even and the minus representation, where −I acts as minus the
identity, if ℓ is odd.

Throughout this paper we assume that the representation of O(3) is given by Vℓ⊕Vℓ so that
a Hopf bifurcation can occur. A vector x ∈ Vℓ ⊕ Vℓ can be written as

x =
ℓ∑

m=−ℓ

(
zmY

m
ℓ (θ, ϕ) + zmY m

ℓ (θ, ϕ)
)
.

The action of O(3) on x ∈ Vℓ ⊕ Vℓ is therefore determined by its action on

z = (z−ℓ, z−ℓ+1, . . . , zℓ) ∈ C2ℓ+1.

We next discuss briefly the subgroups of O(3). The conjugacy classes of subgroups of O(3)
fall into three classes:

Class I Subgroups of SO(3). These include the planar subgroups—O(2), SO(2), Dm for
m ≥ 2 and Zm for m ≥ 1—and the exceptional subgroups I, O and T of rotations of an
icosahedron, octahedron and tetrahedron respectively.

Class II Subgroups of O(3) which contain −I. These subgroups are of the form J ×Zc2, where
J is a subgroup of SO(3).

Class III Subgroups not in SO(3) and not containing −I. By [12, Chapter XIII section 9(a)]
these subgroups are O(2)−, O−, Dd

2m, D
z
m and Z−

2m.

Further details on these subgroups, including containment relations between the subgroups can
be found in [12, Chapter XIII].
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3 Isotropy subgroups of O(3)× S1

To use the equivariant Hopf theorem to find branches of periodic solutions near a Hopf bifurcation
with O(3) symmetry we need to compute the C-axial subgroups of O(3)×S1 for representations
Vℓ ⊕ Vℓ, where Vℓ is an irreducible representation of O(3). This was first done by Golubitsky
and Stewart in [10]. One error in this list was corrected in Golubitsky et al [12, Chapter XVIII
section 5], however we have found it necessary to make further amendments to their results. Here
we will outline the method used by Golubitsky et al [12] to compute the C-axial subgroups and
give the results of our computations, pointing out how and why they differ from the previously
accepted results.

In addition we use the same method to compute the isotropy subgroups, Σ of O(3) × S1

with four-dimensional fixed-point subspaces. If Σ is maximal then Theorem 2.2 guarantees the
existence of a branch of periodic solutions of (1) with Σ symmetry. If Σ is not maximal then
it may still possible for a solution to (1) with Σ symmetry to exist, depending on the values of
coefficients in the Taylor expansion of the vector field f .

3.1 Method for computing isotropy subgroups of O(3)× S1

Depending on the representation of O(3)× S1 there are two types of subgroup which could be
isotropy subgroups. Throughout this paper we take the action of ψ ∈ S1 on z ∈ C2ℓ+1 to be as
in (7). This means that for any subgroup of O(3)×S1 of the form K×S1 where K is a subgroup
of O(3), Fix(K × S1) = {0}. Hence the only isotropy subgroup of this type is O(3)× S1 which
is the isotropy subgroup of the stationary trivial solution z = 0 of (1).

Every other isotropy subgroup Σ of O(3)× S1 is a twisted subgroup

Hα = {(h, α(h)) : h ∈ H},

where H is a subgroup of O(3) and α : H → S1 is a homomorphism. Let K denote the group
of spatial symmetries of a solution z(t) of (1), i.e.

K = {γ ∈ O(3) : γz(t) = z(t) ∀t},

then K = Hα ∩ O(3) = ker(α) and hence K is a normal subgroup of H. In order to list the
twisted subgroups of O(3)×S1 we use the following steps of Golubitsky et al [12, Chapter XVI
section 7]

1. For each conjugacy class of subgroups of O(3) choose a representative H.

2. Find all normal subgroups K ⊂ H such that H/K ∼= S1,Zn or 1.

3. Choose one representative of each conjugacy class of K’s giving a list of pairs (H,K).

4. Find all possible homomorphisms α for each pair by listing the automorphisms of H/K
not including those that are induced by conjugation by elements γ ∈ NO(3)(H) = {γ ∈
O(3) : γHγ−1 = H}.

We should mention that an alternative method for computing the twisted subgroups Σ of
Γ×S1 with dimFix(Σ) = 2 was given by Golubitsky and Stewart in [13]. Although this method
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requires less computation, the reasons for some of the steps in the procedure are less intuitive
than the method of [12, Chapter XVI section 7] outlined above.

Carrying out the procedure outlined in the steps above gives a complete list of twisted
subgroups of O(3) × S1 up to conjugacy. To determine in which representations these twisted
subgroups can be isotropy subgroups we can first make use of Lemma 15.1 of [10]. This implies
that for a twisted subgroup Hα to be an isotropy subgroup of O(3) × S1, H must be a class
II subgroup of O(3). Furthermore for any value of ℓ, in the plus representation on Vℓ ⊕ Vℓ,
the element −I acts as the identity and therefore the element (−I, 0) ∈ O(3) × S1 must lie in
every isotropy subgroup. This means that H and K = ker(α) must both be class II subgroups
of O(3). In the minus representation, −I acts as minus the identity and since a time shift
symmetry ψ ∈ S1 acts as in (7) the time shift by ψ = π acts as −1. Hence (−I, π) ∈ O(3)× S1

acts as the identity and must therefore be contained in every isotropy subgroup. This means
that H must be a class II subgroup and K must be either a class I or class III subgroup of O(3).

Considering now only those twisted subgroups which can be isotropy subgroups by the above
remark, one can compute the formula for the dimension of the fixed point subspace of each
twisted subgroup. To do this one can use for example Proposition 8.3 of [12] and the formulae
for the dimensions of the fixed-point subspaces of the subgroups of O(3) given by Ihrig and
Golubitsky [15]. One can then use this information to compile a list of the values of ℓ for which
each of the twisted subgroups of O(3)×S1 have a two dimensional fixed-point subspace in each
representation on Vℓ ⊕ Vℓ. Full details of our computations of these subgroups can be found in
[26] and the resulting list of twisted subgroups with two-dimensional fixed-point subspaces is
given in [26, Table 4.2].

The next task is to determine which of the twisted subgroups Hα which have a two-
dimensional fixed-point subspace are in fact isotropy subgroups. By [10, Lemma 15.2] such
an Hα is an isotropy subgroup if Hα is a maximal in O(3)× S1, i.e. if there is no twisted sub-
group Lϕ such that Hα ( Lϕ ( O(3) × S1, or if whenever Hα ⊂ Lϕ, the fixed-point subspace
of Lϕ has dimension less than 2 (hence 0).

Remark 3.1. This is a special case of a result called the chain criterion (see [23, Appendix A])
which (for our purposes) says that any twisted subgroupHα ̸= O(3)×S1 is an isotropy subgroup
of O(3)× S1 if dimFix(Hα) > 0 and for each strictly larger group Lϕ,

dimFix(Lϕ) < dimFix(Hα). (12)

In order to compute the C-axial isotropy subgroups of O(3)×S1 we must now decide when
Hα ⊂ Lϕ. This occurs if and only if H ⊂ L and ϕ extends α. This implies that ker(α) ⊂ ker(ϕ).
In the majority cases it is easy to determine if one twisted subgroup lies inside another, however in
other cases it is not so obvious and this is where we have noticed some errors in the computations
of Golubitsky and Stewart [10] and Golubitsky et al [12].

3.2 C-axial isotropy subgroups

The results of our computations of theC-axial isotropy subgroups ofO(3)×S1 using the method
outlined above are given in Table 1.

The differences between Table 1 and the results of Golubitsky et al given in Table 5.1 of [12,
Chapter XVIII] are as follows:
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Table 1: The C-axial subgroups of O(3) × S1 for the representations Vℓ ⊕ Vℓ. The last two
columns give the values of ℓ for which the subgroups are isotropy subgroups. Here
H = J × Zc2.
J K α(H) Plus representation Minus representation

O(2) O(2)× Zc
2 1 Even ℓ

O(2) O(2) Z2 Even ℓ
O(2) SO(2)× Zc

2 Z2 Odd ℓ

O(2) O(2)− Z2 Odd ℓ
SO(2) Zn × Zc

2 S1 All ℓ
SO(2) Z−

2n S1 All ℓ
I I× Zc

2 1 6, 10, 12, 15, 16,
18, 20, 21, 22, 24,
25, 26, 27, 28, 31,
32, 33, 34, 35, 37,
38, 39, 41, 43, 44,
47, 49, 53, 59.

I I Z2 6, 10, 12, 15, 16,
18, 20, 21, 22, 24,
25, 26, 27, 28, 31,
32, 33, 34, 35, 37,
38, 39, 41, 43, 44,
47, 49, 53, 59.

O O× Zc
2 1 4, 6, 8, 9, 10,

13, 14, 15, 17,
19, 23.

O O Z2 4, 6, 8, 9, 10,
13, 14, 15, 17,
19, 23.

O T× Zc
2 Z2 3, 6, 7, 9, 10,

11, 12, 13, 14,
16, 17, 20.

O O− Z2 3, 6, 7, 9, 10,
11, 12, 13, 14,
16, 17, 20.

T D2 × Zc
2 Z3 2, 4, 5, 6, 7, 9.

T D2 Z6 2, 4, 5, 6, 7, 9.
D2n Dn × Zc

2 Z2 n ≤ ℓ < 3n, (n ≥ 3)

D2n Dd
2n Z2 n ≤ ℓ < 3n, (n ≥ 3)

D4 D2 × Zc
2 Z2 2, 4, 5.

D4 Dd
4 Z2 2, 4, 5.
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1. We have added the value ℓ = 15 to the lists of values where the triples (H,K,α(H)) =
(I × Zc2, I × Zc2,1) and (I × Zc2, I,Z2) are C-axial subgroups in the plus and minus repre-
sentations respectively. This is because the (unique) twisted subgroups given by both of
these triples are maximal and in the given representations the fixed-point subspace of the
twisted subgroups is two-dimensional.

2. In Table 5.1 of [12, Chapter XVIII] the penultimate row states that in the minus repre-
sentation the unique twisted subgroup given by the triple

(H,K,α(H)) = (Dn × Zc2,Dn,Z2)

is a C-axial subgroup when ℓ/2 < n ≤ ℓ. It is true that in the minus representation

dimFixVℓ⊕Vℓ(Dn × Zc2,Dn,Z2) = 2 when ℓ/2 < n ≤ ℓ and ℓ is odd,

however it is also true that in the minus representation

dimFixVℓ⊕Vℓ(D2n × Zc2,Dd
2n,Z2) = 2 dimFixVℓ(D

d
2n) (13)

= 2

[
ℓ+ n

2n

]
= 2 when ℓ/3 < n ≤ ℓ.

Since the twisted subgroup given by the triple (Dn × Zc2,Dn,Z2) lies inside the twisted
subgroup given by (D2n × Zc2,Dd

2n,Z2) and they both have two-dimensional fixed-point
subspaces when ℓ/2 < n ≤ ℓ, Lemma 15.2 of [10] implies that (Dn × Zc2,Dn,Z2) cannot
be a C-axial subgroup.

Moreover, the unique twisted subgroup given by (D2n×Zc2,Dd
2n,Z2) is a C-axial subgroup

for the values of ℓ given in Table 1 in the minus representation. Although this twisted
subgroup is contained in that given by the triples (D2np×Zc2,Dd

2np,Z2) for any odd value
of p, the larger groups have a zero-dimensional fixed-point subspace for all values of ℓ
where the twisted subgroup given by (D2n × Zc2,Dd

2n,Z2) has a two-dimensional fixed-
point subspace.

This twisted subgroup does not appear in any previous lists of the C-axial subgroups
of O(3) × S1 due to the fact that the authors of [10] and [12] falsely assume that the
twisted subgroup given by (D2n × Zc2,Dd

2n,Z2) is contained in the subgroup given by
(O(2) × Zc2,O(2)−,Z2). However, this is not true since Dd

2n is not a subgroup of O(2)−

for any n ≥ 2.

When n = 2, the twisted subgroup, Hα, given by (D4 × Zc2,Dd
4,Z2) has dimFix(Hα) = 2

when ℓ = 2, 3, 4 and 5. However, this subgroup lies inside that given by (O× Zc2,O−,Zc2)
and so, since this larger group has a two-dimensional fixed-point subspace when ℓ = 3, Hα

is only a C-axial subgroup when ℓ = 2, 4 and 5 by [10, Lemma 15.2].

3. In Table 5.1 of [12, Chapter XVIII] the final row states that in the plus representation the
triple (H,K,α(H)) = (D2n × Zc2,Dn × Zc2,Z2) gives a twisted subgroup, Hα, which is a
C-axial subgroup when ℓ/2 < n ≤ ℓ. 1 We extend this range of values to ℓ/3 < n ≤ ℓ
for n ≥ 3 for the following reason. In the plus representation Hα has a two-dimensional

1By comparing Table 14.1 of [10] and Table 5.1 of [12, Chapter XVIII] and the subsequent remarks it is clear
that there is a misprint in footnote [2] to Table 5.1 [12, Chapter XVIII] and it should say that the class II subgroup
is Dn/2 × Zc

2 and n is even.
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fixed-point subspace when ℓ/3 < n ≤ ℓ. In [10], [12] and [13] it is assumed that Hα is
contained in the twisted subgroup Lϕ given by (D4n×Zc2,D2n×Zc2,Z2). This would mean
that the range of values of ℓ where Hα gives a C-axial subgroup is reduced to ℓ/2 < n ≤ ℓ
since when ℓ/3 < n ≤ ℓ/2, dimFix(Lϕ) = 2. However, this containment relation does
not hold. Although D2n × Zc2 ⊂ D4n × Zc2, the homomorphism α does not extend to the
homomorphism ϕ. For example, the element (Rπ/n, π) where Rπ/n ∈ O(3) is a rotation
through an angle π/n and π ∈ S1 is the non-identity element in Z2 is contained in Hα,
but not Lϕ (in fact, the rotation Rπ/n ∈ ker(ϕ)). To specify a particular copy of the group
H = D2n × Zc2 we must specify the two perpendicular axes of rotation. There is only
one copy of the group L = D4n × Zc2 which contains H but then H = ker(ϕ) and hence
Hα * Lϕ.

The twisted subgroup given by (D2n × Zc2,Dn × Zc2,Z2) is contained in that given by
(D2np×Zc2,Dnp×Zc2,Z2), however the values of ℓ for which each of these twisted subgroups
have two-dimensional fixed-point subspaces do not overlap. Hence by [10, Lemma 15.2]
(D2n×Zc2,Dn×Zc2,Z2) gives a C-axial subgroup in the plus representation for ℓ/3 < n ≤ ℓ
when n ≥ 3.

When n = 2, the twisted subgroup, Hα, given by (D4×Zc2,D2×Zc2,Z2) has dimFix(Hα) =
2 when ℓ = 2, 3, 4 and 5. However, this subgroup lies inside that given by (O×Zc2,T×Zc2,Zc2)
and so, since this larger group has a two-dimensional fixed-point subspace when ℓ = 3, Hα

is only a C-axial subgroup when ℓ = 2, 4 and 5 by [10, Lemma 15.2].

The changes we have made as above to Table 5.1 of [12, Chapter XVIII] result in changes in Table
5.2 of [12, Chapter XVIII], which shows the C-axial subgroups for the natural representation of
O(3)× S1 on Vℓ⊕ Vℓ for ℓ = 1, . . . , 6. Table 2 shows the equivalent table after the amendments
in Table 1. Recall that branches of solutions to (1) occur in group orbits. Since solutions on the
same group orbit have conjugate isotropy subgroups we classify solution branches in terms of
their isotropy subgroup. Thus, the number of branches given by the equivariant Hopf theorem
stated in Table 2 refers to the number of non-conjugate C-axial isotropy subgroups.

3.3 Isotropy subgroups with four-dimensional fixed-point subspaces

Following the method outlined in section 3.1 we can compute that the twisted subgroups of
O(3) × S1 with four-dimensional fixed-point subspaces. Using the chain criterion as given in
Remark 3.1 we can see that such a twisted subgroup Hα is an isotropy subgroup if it is maximal
(i.e. not contained in an isotropy subgroup with a two-dimensional fixed-point subspace) or
if whenever Hα ⊂ Lϕ, dimFix(Lϕ) = 0 or 2. The isotropy subgroups with four dimensional
fixed-point subspaces are as listed in Table 3.

Remark 3.2. When the twist type, α(H), is not Z2 or 1 in Table 3 then the triple (H,K,α(H))
does not uniquely specify the twisted subgroup. There is more than one possible homomorphism
α : H → H/K and therefore (up to conjugacy) there is more than one twisted subgroup
corresponding to each triple (H,K,α(H)). In Table 3 these twisted subgroups are specified in
terms of the homomorphisms ψj : H → H/K. There are three cases to consider:

1. The homomorphisms ψj : Zmd → Zd are given by

ψj(r
k) = ψj(−rk) = 2πkj/d

for j = 1, 3, . . . , d− 1 where Zmd = ⟨r = R2π/md⟩.
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Table 2: The C-axial subgroups of O(3) × S1 for the natural representations on Vℓ ⊕ Vℓ for
ℓ = 1, . . . , 6. Here H = J × Zc2.

Number of branches given by
ℓ J K α(H) equivariant Hopf theorem

1 O(2) O(2)− Z2 2
SO(2) Z−

2n S1 [n = 1]

2 O(2) O(2)× Zc
2 1 5

SO(2) Zn × Zc
2 S1 [n = 1, 2]

T D2 × Zc
2 Z3

D4 D2 × Zc
2 Z2

3 O(2) O(2)− Z2 6
SO(2) Z−

2n S1 [1 ≤ n ≤ 3]
O O− Z2

D6 Dd
6 Z2

4 O(2) O(2)× Zc
2 1 10

SO(2) Zn × Zc
2 S1 [1 ≤ n ≤ 4]

O O× Zc
2 1

T D2 × Zc
2 Z3

D8 D4 × Zc
2 Z2

D6 D3 × Zc
2 Z2

D4 D2 × Zc
2 Z2

5 O(2) O(2)− Z2 11
SO(2) Z−

2n S1 [1 ≤ n ≤ 5]
T D2 Z6

D10 Dd
10 Z2

D8 Dd
8 Z2

D6 Dd
6 Z2

D4 Dd
4 Z2

6 O(2) O(2)× Zc
2 1 15

SO(2) Zn × Zc
2 S1 [1 ≤ n ≤ 6]

I I× Zc
2 1

O O× Zc
2 1

O T× Zc
2 Z2

T D2 × Zc
2 Z3

D12 D6 × Zc
2 Z2

D10 D5 × Zc
2 Z2

D8 D4 × Zc
2 Z2

D6 D3 × Zc
2 Z2

2. The homomorphisms ψj : Z(2d−1)m → Z2(2d−1) are given by

ψj(r
k) = 2πkj/(2d− 1)

ψj(−rk) = 2πkj/(2d− 1) + π.

for j = 1, 3, 4 . . . , 2d− 2 where Z(2d−1)m = ⟨r = R2π/m(2d−1)⟩.
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J K Values of ℓ Values of ℓ

plus representation minus representation

Dn Dn × Zc
2

{
n ≤ ℓ < 2n, ℓ even
2n ≤ ℓ < 3n, ℓ odd

–

Dn Dn –

{
n ≤ ℓ < 2n, ℓ even
2n ≤ ℓ < 3n, ℓ odd

Dn Zn × Zc
2

{
2n ≤ ℓ < 3n, ℓ even
n ≤ ℓ < 2n, ℓ odd

–

Dn Dz
n –

{
2n ≤ ℓ < 3n, ℓ even
n ≤ ℓ < 2n, ℓ odd

D2m Dm × Zc
2 3m ≤ ℓ < 5m –

D2m Dd
2m – 3m ≤ ℓ < 5m

Zmd
[∗] Zm × Zc

2

{
m ≤ ℓ < 3m d = 2, j = 1

[A] d ≥ 3
–

Z(2d−1)m
[∗] Zm –

{
2m ≤ ℓ < 4m d = 2, j = 1

[B] d ≥ 3

Z2md
[∗] Z−

2m –

{
m ≤ ℓ < 3m d = 1, j = 1

[C] d ≥ 2
T T× Zc

2 6, 9, 10, 13, 14, 17 –
T T – 6, 9, 10, 13, 14, 17
T D2 × Zc

2 8, 10, 11, 12, 13, 15 –
T D2 – 8, 10, 11, 12, 13, 15
O O× Zc

2 12, 16, 18, 20–22, –
25–27, 29, 31, 35

O O – 12, 16, 18, 20–22,
25–27, 29, 31, 35

O T× Zc
2 15, 18, 19, 21–26, –

28, 29, 32 –
O O− – 15, 18, 19, 21–26,

28, 29, 32
I I× Zc

2 30, 36, 40, 42, 45, 46,
48, 50, 51, 52, 54–58 –
61–65, 67–69, 71, 73,
74, 77, 79, 83, 89

I I 30, 36, 40, 42, 45, 46,
– 48, 50, 51, 52, 54–58

61–65, 67–69, 71, 73,
74, 77, 79, 83, 89

Table 3: The values of ℓ for which the twisted subgroups Hθ ⊂ O(3)× S1 given by the pairs
(H,K) have four-dimensional fixed-point subspaces in the representation on Vℓ ⊕ Vℓ
where Hθ can be an isotropy subgroup. Here H = J × Zc2.
[*] The homomorphisms ψj : H → H/K are given in Remark 3.2
[A]: max{mj,m(d− j)} ≤ ℓ < min{m(d+ j),m(2d− j)}
[B]: max{mj,m(2d− 1− j)} ≤ ℓ < min{m(2d− 1 + j),m(4d− 2− j)}
[C]: max{mj,m(2d− j)} ≤ ℓ < min{m(2d+ j),m(4d− j)}.
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3. The homomorphisms ψj : Z2md → Z2d are given by

ψj(r
k) = πkj/d

ψj(−rk) = πkj/d+ π.

for j = 1, 3, 5, 7 . . . , 2d− 1 where Z2md = ⟨r = Rπ/md⟩.

Remark 3.3. 1. We note that all twisted subgroups of O(3)×S1 with four-dimensional fixed-
point subspaces in the representation on Vℓ ⊕ Vℓ are isotropy subgroups in that represen-
tation.

2. The isotropy subgroups Σ ⊂ O(3)× S1 given by the pairs of subgroups (H,K)

(I× Zc2, I× Zc2), (I× Zc2, I), (O× Zc2,O× Zc2),
(O× Zc2,O), (O× Zc2,T× Zc2), (O× Zc2,O−),

(T× Zc2,D2 × Zc2), and (T× Zc2,D2)

are all maximal isotropy subgroups for representation on Vℓ ⊕ Vℓ for the values of ℓ given
in Table 3. Hence by Theorem 2.2 (1) is guaranteed to have a branch of periodic solutions
with symmetry Σ for these values of ℓ which bifurcates from the Hopf bifurcation at λ = 0.

In addition, of the isotropy subgroups in Table 3, those given by the pairs (H,K) above
are the only isotropy subgroups which can be maximal isotropy subgroups with four-
dimensional fixed-point subspaces. All other isotropy subgroups in Table 3 are contained
in a C-axial subgroup.

3. Suppose that Σ is an isotropy subgroup of O(3) × S1 with dimFix(Σ) = 4 for the repre-
sentation on Vℓ⊕Vℓ for some value of ℓ. Suppose that Σ is contained in a C-axial isotropy
subgroup. It is possible that (1) may admit solutions with Σ symmetry depending on the
values of the coefficients in the Taylor expansion of the vector field f .

In sections 4–6 of this paper we consider the case where the representation of O(3)× S1 is
V3 ⊕ V3. We can see from Tables 2 and 3 that there are 6 branches of periodic solutions given
by the equivariant Hopf theorem, all with C-axial symmetry.

4 The equivariant vector field and its maximal solutions when
ℓ = 3

Consider the system of ODEs
dz

dt
= f(z, λ), (14)

where z ∈ C7, λ ∈ R is a bifurcation parameter and f : C7 ×R → C7 is a smooth vector field
which is equivariant under the action of the group O(3) on V3 ⊕ V3. In this section we compute
explicitly the cubic order truncation of the Birkhoff normal form of the vector field f . This
truncation commutes with the action of O(3)× S1 for the representation V3 ⊕ V3. We found in
section 3 that in this representation the equivariant Hopf theorem guarantees the existence of
six branches of periodic solutions within this vector field. In this section we also give details of
these solutions.
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Let us denote the cubic order truncation of the Birkhoff normal form of f(z, λ) by F3(z, λ).
The mapping F3 must satisfy

γF3(z, λ) = F3(γz, λ) ∀γ ∈ O(3)× S1 (15)

where
z(t) = (z−3, z−2, z−1, z0, z1, z2, z3)

T ∈ C7,

is the vector of amplitudes of the spherical harmonics of degree 3. It is sufficient to impose
that (15) hold for a set of generating elements of O(3)× S1. If we choose these elements to be
θ′, an infinitesimal rotation in the θ direction, ϕ′, an infinitesimal rotation in the ϕ direction,
the inversion element −I and a time shift ψ then the generators act by multiplication by the
matrices

Mθ′ =



1 −
√

3
2θ

′ 0 0 0 0 0√
3
2θ

′ 1 −
√

5
2θ

′ 0 0 0 0

0
√

5
2θ

′ 1 −
√
3θ′ 0 0 0

0 0
√
3θ′ 1 −

√
3θ′ 0 0

0 0 0
√
3θ′ 1 −

√
5
2θ

′ 0

0 0 0 0
√

5
2θ

′ 1 −
√

3
2θ

′

0 0 0 0 0
√

3
2θ

′ 1


(16)

Mϕ′ = diag{e−3iϕ′ , e−2iϕ′ , e−iϕ′ , 1, eiϕ
′
, e2iϕ

′
, e3iϕ

′} (17)

Mψ = eiψI7 (18)

M−I = −I7 (19)

where diag{. . .} indicates a diagonal matrix with elements as listed and I7 is the 7× 7 identity
matrix. By imposing that (15) hold for this set of generators we find that the general form of a
cubic vector field which commutes with the action of O(3)× S1 as above is

F3(z, λ) = µz+A z|z|2 +B P(z)ẑ+ C Q(z) +D R(z) (20)

where µ, A, B, C, D are smooth complex-valued functions of λ and

|z|2 = |z−3|2 + |z−2|2 + |z−1|2 + |z0|2 + |z1|2 + |z2|2 + |z3|2

P(z) = z20 − 2z−1z1 + 2z−2z2 − 2z−3z3

ẑ = (−z̄3, z̄2,−z̄1, z̄0,−z̄−1, z̄−2,−z̄−3)
T

Q(z) = (Q−3, Q−2, Q−1, Q0, Q1, Q2, Q3)
T

R(z) = (R−3, R−2, R−1, R0, R1, R2, R3)
T.
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Here Qm(z̃) = Q−m(z), Rm(z̃) = R−m(z), with z̃ = (z3, z2, z1, z0, z−1, z−2, z−3) and

Q−3(z) = 5z−3( 5|z−3|2 + 5|z−2|2 − |z−1|2 − 4|z0|2 − 5|z1|2 − 5|z2|2 − 8|z3|2)
+ 5z̄3

(
2z20 − 3z1z−1 + 3z2z−2

)
+

√
15
(
2z2−1z̄1 + 5z2−2z̄−1

)
+ 5

√
2 (z0z−1z̄2 + z0z−2z̄1 + 3z−2z−1z̄0)

Q−2(z) = 5z−2( 5|z−3|2 + 3|z−1|2 − 3|z1|2 − 8|z2|2 − 5|z3|2) + 4
√
30z−1z0z̄1

+ 5z̄2 (5z1z−1 + 3z3z−3) + 10
√
15z−1z−3z̄−2 + 3

√
30z2−1z̄0

+ 5
√
2 (z1z−3z̄0 + z0z1z̄3 + 3z0z−3z̄−1)

Q−1(z) = z−1

(
−5|z−3|2 + 15|z−2|2 − 3|z−1|2 + 12|z0|2 − 16|z1|2 − 15|z2|2 − 25|z3|2

)
+ z̄1

(
24z20 + 25z2z−2 − 15z3z−3

)
+

√
15
(
4z1z−3z̄−1 + 2z21 z̄3 + 5z2−2z̄−3

)
+ 5

√
2 (z2z−3z̄0 + z0z2z̄3 + 3z0z−3z̄−2)

+ 2
√
30 (3z−2z0z̄−1 + 2z−2z1z̄0 + 2z1z0z̄2)

Q0(z) = z0
(
−20|z−3|2 + 12|z−1|2 − 12|z0|2 + 12|z1|2 − 20|z3|2

)
+ 4z̄0 (12z1z−1 + 5z3z−3) + 15

√
2 (z1z2z̄3 + z−2z−1z̄−3)

+ 5
√
2 (z1z−3z̄−2 + z2z−3z̄−1 + z3z−2z̄1 + z3z−1z̄2)

+
√
30
(
4z−2z1z̄−1 + 4z2z−1z̄1 + 3z21 z̄2 + 3z2−1z̄−2

)
R−3(z) = 3z−3( 3|z−3|2 + 3|z−2|2 + |z−1|2 − |z1|2 − 2|z2|2 − 3|z3|2) + 3z−2z2z̄3

+ 3
√
2 (z0z−2z̄1 + z−2z−1z̄0) +

√
15
(
z2−2z̄−1 + z1z−2z̄2

)
R−2(z) = z−2

(
9|z−3|2 + 4|z−2|2 + 7|z−1|2 − 2|z1|2 − 4|z2|2 − 6|z3|2

)
+ 3z−3z3z̄2

+ 3
√
2 (z0z−3z̄1 + z1z−3z̄0) + 5z−1z1z̄2 +

√
30
(
z2−1z̄0 + z−1z0z̄1

)
+

√
15 (z−3z2z̄1 + z2z−1z̄3 + 2z−1z−3z̄−2)

R−1(z) = z−1

(
3|z−3|2 + 7|z−2|2 + |z−1|2 + 6|z0|2 − |z1|2 − 2|z2|2 − 3|z3|2

)
+ 6z20 z̄1

+ 3
√
2 (z0z−3z̄−2 + z0z2z̄3) +

√
30 (2z−2z0z̄−1 + z−2z1z̄0 + z0z1z̄2)

+
√
15
(
z2−2z̄−3 + z−2z3z̄2

)
+ 5z−2z2z̄1

R0(z) = 6z0
(
|z−1|2 + |z1|2

)
+ 3

√
2 (z−3z1z̄−2 + z1z2z̄3 + z−2z−1z̄−3 + z−1z3z̄2)

+ 12z1z−1z̄0 +
√
30
(
z−2z1z̄−1 + z21 z̄2 + z2−1z̄−2 + z−1z2z̄1

)
Remark 4.1. Antoneli et al [1] compute that the number of cubic O(3)× S1 equivariant maps
for the representation on Vℓ ⊕ Vℓ is ℓ + 1. We have found four cubic equivariant maps for the
representation on V3 ⊕ V3 which is in agreement with this result.

As we have seen in section 3, the equivariant Hopf theorem guarantees the existence of six
branches of periodic solutions within this vector field. These solutions have the symmetries of
the six C-axial subgroups listed in Table 4. Using Table 3 we find that the isotropy subgroups
with four dimensional fixed-point subspaces for the natural representation on V3⊕V3 are the six
given in Table 4. For this specific representation of O(3)× S1 on V3 ⊕ V3 we compute also the
isotropy subgroups with fixed-point subspaces of dimensions larger than four using the chain
criterion. These isotropy subgroups are also listed in Table 4, along with one possible form
of their fixed-point subspaces. Figure 1 shows the partial ordering of the conjugacy classes of
isotropy subgroups for this representation.
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Table 4: The isotropy subgroups Σ of O(3) × S1 for the representation on V3 ⊕ V3. Here
H = J × Zc2.

Σ J K α(H) Fix(Σ) dimFix(Σ) N(Σ)/Σ

Õ(2) O(2) O(2)− Z2 {(0, 0, 0, w1, 0, 0, 0)} 2 S1

S̃O(2)1 SO(2) Z−
2 S1 {(0, 0, w1, 0, 0, 0, 0)} 2 S1

S̃O(2)2 SO(2) Z−
4 S1 {(0, w1, 0, 0, 0, 0, 0)} 2 S1

S̃O(2)3 SO(2) Z−
6 S1 {(w1, 0, 0, 0, 0, 0, 0)} 2 S1

Õ O O− Z2 {(0, w1, 0, 0, 0,−w1, 0)} 2 S1

D̃6 D6 Dd
6 Z2 {(w1, 0, 0, 0, 0, 0,−w1)} 2 S1

Z̃6 Z6 Z−
6 Z2 {(w1, 0, 0, 0, 0, 0, w2)} 4 O(2)× S1

Z̃4 Z4 Z−
4 Z2 {(0, w1, 0, 0, 0, w2, 0)} 4 O(2)× S1

D̃3 D3 Dz
3 Z2 {(w1, 0, 0, w2, 0, 0,−w1)} 4 D2 × S1

D̃2 D2 Dz
2 Z2 {(0, w1, 0, w2, 0, w1, 0)} 4 D2 × S1

Z̃1
3 Z3 1 Z6 {(0, w1, 0, 0, w2, 0, 0)} 4 SO(2)× S1

Z̃5 Z5 1 Z10 {(w1, 0, 0, 0, 0, w2, 0)} 4 SO(2)× S1

Z̃2
3 Z3 Z3 Z2 {(w1, 0, 0, w2, 0, 0, w3)} 6 O(2)× S1

Z̃1
2 Z2 Z2 Z2 {(0, w1, 0, w2, 0, w3, 0)} 6 O(2)× S1

Z̃2
2 Z2 Z−

2 Z2 {(w1, 0, w2, 0, w3, 0, w4)} 8 O(2)× S1

1̃ 1 1 Z2 V3 14 O(3)× S1

We use the notation of Golubitsky et al [12], whereby Σ = J̃ is an isotropy subgroup with
H = J ×Zc2 and α(H) a nontrivial subgroup of S1. A subscript or superscript is added in cases
of ambiguity. Notice also that since H is a class II subgroup of O(3) and K is a class I or III
subgroup for all isotropy subgroups in this representation, α(H) ̸= 1.

In Figure 2 we illustrate the six C-axial periodic solution branches. We draw the time-
dependent linear combination of spherical harmonics that is invariant under the symmetries of
one particular representative of each conjugacy class of C-axial subgroups.

The periodic solutions corresponding to the isotropy subgroups Õ(2), Õ and D̃6 are stand-

ing wave solutions and those corresponding to the isotropy subgroups S̃O(2)k, k = 1, 2, 3 are
rotating, or travelling, waves, in which the pattern rotates around the axis as indicated in Figure
2.

Notice that in Table 4 the final column lists the group N(Σ)/Σ for each isotropy subgroup
Σ, where

N(Σ) = {γ ∈ O(3)× S1 : γΣγ−1 = Σ}

is the normaliser of Σ inO(3)×S1 which leaves Fix(Σ) invariant. Since the vector field f is equiv-
ariant with respect to the action ofO(3)×S1, in the restriction to Fix(Σ), f restricts to aN(Σ)/Σ
equivariant equation. Considering the restriction of f to Fix(Σ) enables us to deduce informa-
tion about the possible existence and bifurcations of other periodic and quasiperiodic solutions
with submaximal symmetry, i.e. the symmetries of isotropy subgroups with dimFix(Σ) > 2. In
section 6 we investigate possible submaximal solutions in Fix(Σ) for the isotropy subgroups Σ
in Table 4 with dimFix(Σ) = 4.
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Figure 1: The partial ordering of conjugacy classes of isotropy subgroups of O(3)× S1 in the
representation on V3 ⊕ V3.

5 Stability of maximal solution branches when ℓ = 3

Recall that in section 3 we found that the equivariant Hopf theorem guarantees the existence of
six branches of periodic solutions in system (14). In section 4 we computed the Birkhoff normal
form of the equivariant vector field f to cubic order. We call this cubic truncation F3 and it is
given by (20). In this section we will use this and the isotypic decomposition of V3 for the action
of each of the C-axial subgroups to determine the branching direction and stability of each of
the six periodic solutions.

Recall from section 2 that in order to determine the stability of each of the six branches of
C-axial periodic solutions we must compute the eigenvalues of the matrix (dg)(z0,λ0,τ0) where g
is the reduced equation given by (9) and (z0, λ0, τ0) is the zero of g corresponding to the periodic
solution z(t) with C-axial symmetry and period 2π/(1+τ0). For our representation of O(3)×S1

the matrix J in (9) can be identified with i. We will see that each of the six C-axial subgroups
has 3-determined stability and hence the conditions for the solution branches to be stable are
given by the real parts of the eigenvalues of (dg̃)(z0,λ0,τ0) where

g̃(z, λ, τ) = F3(z, λ)− (1 + τ)iz (21)

In order to satisfy the conditions of the equivariant Hopf theorem we assume that µ(λ) ∈ C
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Figure 2: The six periodic solution branches with C-axial symmetry. (a), (e) and (f) illustrate
the evolution of the three standing waves over one period and (b), (c) and (d)
illustrate the travelling wave solutions showing the axis and direction of rotation.

in (20) satisfies µ(0) = i and Re(µ′(0)) ̸= 0. We will assume that

Re(µ(λ)) = λ+ higher order terms in λ,

so the trivial solution z = 0 is stable for λ < 0 and unstable for λ > 0. This means that for a
branch of solutions bifurcating from the trivial solution at λ = 0 to be stable it must bifurcate
supercritically. To determine the dependence of the direction of branching on the coefficients A,
B, C and D in F3, for each periodic solution we compute the branching equation by restricting
(21) to Fix(Σ) for each of the corresponding C-axial subgroups Σ. These branching equations
are given in Table 5. Note that we have defined

ν(λ) = µ(λ)− (1 + τ)i

and we denote by subscripts r and i the real and imaginary parts of the coefficients A, B, C
and D. Note also that since Re(µ(λ)) = λ to linear order in λ, we have Re(ν(λ)) = λ to linear
order also.

We now compute the eigenvalues of the 14× 14 matrix (dg̃)(z0,λ0,τ0) for each of the C-axial
solutions. In order to simplify this computation we use the isotypic decomposition of V3 for
the action of the C-axial subgroup Σ to block diagonalize the matrix. The isotypic components
for the actions of each of the C-axial subgroups are given in Table 6. In Table 7 we give the
eigenvalues of (dg̃)(z0,λ0,τ0) in each of the isotypic components listed in Table 6. Further details
on the computations of the isotypic components and eigenvalues can be found in [26].
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Table 5: Branching equations for each of the six bifurcating branches of periodic solutions. For
the branch to bifurcate supercritically we require that λ > 0.

Σ Branching equation Real part of branching equation

Õ(2) 0 = ν(λ) + (A+B − 12C)|w1|2 λ = −(Ar +Br − 12Cr)|w1|2

S̃O(2)1 0 = ν(λ) + (A− 3C +D)|w1|2 λ = −(Ar − 3Cr +Dr)|w1|2

S̃O(2)2 0 = ν(λ) + (A+ 4D)|w1|2 λ = −(Ar + 4Dr)|w1|2

S̃O(2)3 0 = ν(λ) + (A+ 25C + 9D)|w1|2 λ = −(Ar + 25Cr + 9Dr)|w1|2

Õ 0 = ν(λ) + (2A+ 2B − 40C)|w1|2 λ = −(2Ar + 2Br − 40Cr)|w1|2

D̃6 0 = ν(λ) + (2A+ 2B − 15C)|w1|2 λ = −(2Ar + 2Br − 15Cr)|w1|2

Table 6: Isotypic components for the actions of the C-axial subgroups Σ on V3.
Σ Isotypic components

Õ(2) W0 = {(0, 0, 0, u1, 0, 0, 0)} = Fix(Õ(2))
W1 = {(0, 0, u1, 0, u2, 0, 0)}
W2 = {(0, u1, 0, 0, 0, u2, 0)}
W3 = {(u1, 0, 0, 0, 0, 0, u2)}

S̃O(2)1 W0 = {(0, 0, u1, 0, 0, 0, 0)} = Fix(S̃O(2)1)
W1 = {(0, 0, 0, 0, 0, u1, 0)}
W2 = {(0, 0, 0, 0, 0, 0, u1)}
W3 = {(0, u1, 0, u2, 0, 0, 0)}
W4 = {(u1, 0, 0, 0, u2, 0, 0)}

S̃O(2)2 W0 = {(0, u1, 0, 0, 0, 0, 0)} = Fix(S̃O(2)2)
W1 = {(0, 0, 0, u1, 0, 0, 0)}
W2 = {(0, 0, 0, 0, u1, 0, 0)}
W3 = {(0, 0, 0, 0, 0, u1, 0)}
W4 = {(0, 0, 0, 0, 0, 0, u1)}
W5 = {(u1, 0, u2, 0, 0, 0, 0)}

S̃O(2)3 W0 = {(u1, 0, 0, 0, 0, 0, 0)} = Fix(S̃O(2)3)
W1 = {(0, u1, 0, 0, 0, 0, 0)}
W2 = {(0, 0, u1, 0, 0, 0, 0)}
W3 = {(0, 0, 0, u1, 0, 0, 0)}
W4 = {(0, 0, 0, 0, u1, 0, 0)}
W5 = {(0, 0, 0, 0, 0, u1, 0)}
W6 = {(0, 0, 0, 0, 0, 0, u1)}

Õ W0 = {(0, u1, 0, 0, 0,−u1, 0)} = Fix(Õ)

W1 = {(
√
3u1, u3,

√
5u2, 0,−

√
5u1, u3,−

√
3u2)}

W2 = {(
√
5u1, 0,

√
3u2, u3,

√
3u1, 0,

√
5u2)}

D̃6 W0 = {(u1, 0, 0, 0, 0, 0,−u1)} = Fix(D̃6)
W1 = {(0, 0, 0, u1, 0, 0, 0)}
W2 = {(0, 0, u1, 0, u2, 0, 0)}
W3 = {(0, u1, 0, 0, 0, u2, 0)}
W4 = {(u1, 0, 0, 0, 0, 0, u1)}

20



Table 7: The eigenvalues of (dg̃)(z0,λ0,τ0) for each branch of periodic solutions with C-axial
symmetry Σ by isotypic component.

Σ Isotypic Eigenvalues Multiplicity
component

Õ(2) W0 (2Ar + 2Br − 24Cr)|w1|2 = −2λ 1
0 1

W1 (−2Br + 48Cr + 12Dr)|w1|2 2
0 2

W2

[
−Br + 12Cr +

√
B2

r + 24BiCi − 144C2
i

]
|w1|2 2[

−Br + 12Cr −
√

B2
r + 24BiCi − 144C2

i

]
|w1|2 2

W3

[
−Br − 8Cr +

√
(Br − 10Cr)2 − 36Ci(Bi − Ci)

]
|w1|2 2[

−Br − 8Cr −
√

(Br − 10Cr)2 − 36Ci(Bi − Ci)
]
|w1|2 2

S̃O(2)1 W0 (2Ar − 6Cr + 2Dr)|w1|2 = −2λ 1
0 1

W1 ξ = (−12C − 3D)|w1|2 and ξ 1 of each

W2 ξ = (−22C − 4D)|w1|2 and ξ 1 of each

W3 ξ = (33Cr + 11Dr + 3iCi + iDi)|w1|2 and ξ 1 of each
0 2

W4 ξ± =
(
−C +D +B − 13

2
C −D ±

√
δ
)
|w1|2 and ξ± 1 of each

where δ =
(
−C +D +B − 13

2
C −D

)2
+(2C − 2D)

(
2B − 13C − 2D

)
+ 60|C|2

S̃O(2)2 W0 (2Ar + 8Dr)|w1|2 = −2λ 1
0 1

W1 ξ = −4D|w1|2 and ξ 1 of each

W2 ξ = (−15C − 6D)|w1|2 and ξ 1 of each

W3 ξ = (2B − 40C − 8D)|w1|2 and ξ 1 of each

W4 ξ = (−25C − 10D)|w1|2 and ξ 1 of each

W5 ξ = (40Cr + 8Dr + 10iCi + 2iDi)|w1|2 and ξ 1 of each
0 2

S̃O(2)3 W0 (2Ar + 50Cr + 18Dr)|w1|2 = −2λ 1
0 1

W1 0 2

W2 ξ = (−30C − 6D)|w1|2 and ξ 1 of each

W3 ξ = (−45C − 9D)|w1|2 and ξ 1 of each

W4 ξ = (−50C − 12D)|w1|2 and ξ 1 of each

W5 ξ = (−50C − 15D)|w1|2 and ξ 1 of each

W6 ξ = (2B − 65C − 18D)|w1|2 and ξ 1 of each

Continued on next page
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Table 7. – continued from previous page

Σ Isotypic Eigenvalues Multiplicity
component

Õ W0 (4Ar + 4Br − 80Cr)|w1|2 = −2λ 1
0 1

W1 (−4Br + 80Cr + 16Dr)|w1|2 3
0 3

W2

[
−2Br + 40Cr + 2

√
B2

r + 40BiCi − 400C2
i

]
|w1|2 3[

−2Br + 40Cr − 2
√

B2
r + 40BiCi − 400C2

i

]
|w1|2 3

D̃6 W0 (4Ar + 4Br − 30Cr)|w1|2 = −2λ 1
0 1

W1

[
−2Br − 25Cr +

√
4(Br − 10Cr)2 − 45Ci(4Bi + 5Ci)

]
|w1|2 1[

−2Br − 25Cr −
√

4(Br − 10Cr)2 − 45Ci(4Bi + 5Ci)
]
|w1|2 1

W2

[
−2Br − 15Cr +

√
(2Br − 15Cr)2 − 120BiCi

]
|w1|2 2[

−2Br − 15Cr −
√

(2Br − 15Cr)2 − 120BiCi

]
|w1|2 2

W3 (−4Br + 30Cr + 6Dr)|w1|2 2
0 2

W4 (−4Br + 130Cr + 36Dr)|w1|2 1
0 1

5.1 Conditions for stability of the solution branches

We now state a theorem which lists conditions in terms of the coefficients A, B, C and D for
each of the individual solution branches to be stable. This theorem is a direct consequence of
the results concerning stability of periodic solution branches outlined in section 2.1. The proof
can be deduced from the eigenvalues of (dg̃)(z0,λ0,τ0) for each of the six branches of periodic
solutions as given in Table 7.

Theorem 5.1. For each C-axial subgroup Σ listed in Table 4 let ∆0, . . . ,∆k be the functions of
the coefficients A, B, C and D given in Table 8. Then

1. For each Σ the corresponding branch of periodic solutions is supercritical if ∆0 < 0 and
subcritical if ∆0 > 0.

2. For each Σ the corresponding branch of periodic solutions is stable near λ = 0 if ∆j < 0
for all j. If ∆j > 0 for some j = 0, . . . , k then the branch of periodic solutions is unstable.

5.2 Remarks

From our analysis of the stability of the six branches of periodic solutions with maximal sym-
metry we make the following observations.

1. For each of the six solution branches the number of eigenvalues which are zero at cubic order
for generic values of the coefficients A, B, C and D is equal to the number of eigenvalues
which are forced to be zero by symmetry. In other words, each C-axial isotropy subgroup
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Table 8: Stability conditions for the six branches of periodic solutions. If ∆j < 0 for all j then
the branch of periodic solutions is stable near λ = 0.
(∗) δ =

(
−C +D +B − 13

2 C −D
)2

+ (2C − 2D)
(
2B − 13C − 2D

)
+ 60|C|2

Σ ∆0 ∆1, . . . ,∆k

Õ(2) Ar +Br − 12Cr −Br + 24Cr + 6Dr

−Br + 12Cr

Re(BC)− 6|C|2

−Br − 8Cr

|C|2 − Re(BC)

S̃O(2)1 Ar − 3Cr +Dr 2Br − 15Cr

− 4Cr −Dr

− 11Cr − 2Dr

3Cr +Dr∣∣∣Re(
√
δ)
∣∣∣− ∣∣Br − 15

2
Cr

∣∣(∗)
S̃O(2)2 Ar + 4Dr −Dr

− 5Cr − 2Dr

Br − 20Cr − 4Dr

5Cr +Dr

S̃O(2)3 Ar + 25Cr + 9Dr −5Cr −Dr

− 25Cr − 6Dr

2Br − 65Cr − 18Dr

− 10Cr − 3Dr

Õ Ar +Br − 20Cr −Br + 20Cr + 4Dr

−Br + 20Cr

Re(BC)− 10|C|2

D̃6 2Ar + 2Br − 15Cr −2Br − 25Cr

− 5|C|2 − 4Re(BC)

− 2Br − 15Cr

− Re(BC)

− 2Br + 15Cr + 3Dr

− 2Br + 65Cr + 18Dr

in this presentation has 3-determined stability. Iooss and Rossi [16] and Haaf et al [14]
found that this is not the case for the representation on V2 ⊕ V2. They find that in order
to determine the stability of two out of the five solution branches, fifth order terms in the
equivariant vector field must be considered. In the representation on V3⊕V3 the direction
of branching and stability of all six solution branches is fully determined by the functions
of the cubic order coefficients A, B, C and D given in Table 8. If any of these functions
∆j are equal to zero then there is a degeneracy and the stability or direction of branching
depends on the coefficients of higher order terms in the equivariant vector field f .

2. For each of the six solution branches it is possible to find a set of values for A, B, C and
D such that the solution is stable.

3. It is clear from Table 8 that the pairs of branches of periodic solutions with symmetries

(a) S̃O(2)1 and S̃O(2)2
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(b) S̃O(2)2 and S̃O(2)3

(c) S̃O(2)2 and Õ

(d) S̃O(2)3 and D̃6

cannot be simultaneously stable.

4. It is possible for all three standing wave solutions to be simultaneously stable, for example
when

Ar = −20 Br =
5

2
Bi = 5 Cr = −1

6
Ci =

3

2
Dr =

3

5

and Ai and Di take any values. Note that if the coefficients take these values then all
three travelling wave solutions are unstable.

5. It is possible for all six branches of periodic solutions to branch supercritically and be
unstable, for example when

Ar = −30 Br = 50 Bi = 50 Cr = 3 Ci = −150 Dr = −13

and Ai and Di take any values.

6 Solutions in higher dimensional fixed-point subspaces

In this final section we will investigate possible solutions of (14) in the restriction to Fix(Σ),
where Σ is an isotropy subgroup of O(3) × S1 in the natural representation on V3 ⊕ V3 with
dimFix(Σ) = 4. These isotropy subgroups are listed in Table 4 along with one possible form of
their fixed-point subspaces.

Consider (14) where f : C7 ×R → C7 is equivariant with respect to O(3)×S1 to all orders
i.e. f is the exact Birkhoff normal form, not just a truncated Taylor series. Then recall from
section 4 that f restricts to a N(Σ)/Σ equivariant system on Fix(Σ) for some action of N(Σ)/Σ.
For each isotropy subgroup Σ the group N(Σ)/Σ is given in Table 4. For the isotropy subgroups
with dimFix(Σ) = 4 the action of N(Σ)/Σ on Fix(Σ) is given in Table 9.

We now consider the restriction of f to Fix(Σ) for each isotropy subgroup Σ given in Table 9.
We will look for bifurcations of the maximal solution branches and identify additional periodic
and quasiperiodic solutions to (14).

6.1 Solutions in Fix(Z̃6) and Fix(Z̃4)

Calculations show that the restriction of f to Fix(Σ) for Σ = Z̃6 or Z̃4 yields equations that
have been studied before in the context of a Hopf bifurcation with O(2) symmetry. Provided
that none of the coefficients of the cubic terms in the Birkhoff normal form of this bifurcation
vanish (i.e. there are no degeneracies) then there are only two types of solutions which bifurcate
from a Hopf bifurcation with O(2) symmetry: standing waves and rotating or travelling waves.

In Fix(Z̃6) the standing waves are solutions with D̃6 symmetry and the rotating waves are

solutions with S̃O(2)3 symmetry. In Fix(Z̃4) the standing waves are solutions with Õ symmetry
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Table 9: The action of N(Σ)/Σ on Fix(Σ) for isotropy subgroups Σ with dimFix(Σ) = 4. For
each Σ, ψ ∈ S1 acts as ψ(w1, w2) =

(
eiψw1, e

iψw2

)
.

Σ N(Σ)/Σ Action

Z̃6 O(2)× S1 ϕ(w1, w2) =
(
e−3iϕw1, e

3iϕw2

)
ϕ ∈ SO(2)

κ(w1, w2) = (−w2,−w1) κ ∈ O(2)

Z̃4 O(2)× S1 ϕ(w1, w2) =
(
e−2iϕw1, e

2iϕw2

)
ϕ ∈ SO(2)

κ(w1, w2) = (−w2,−w1) κ ∈ O(2)

D̃3 D2 × S1 Rz
π(w1, w2) = (−w1, w2) Rz

π ∈ D2

Ry
π(w1, w2) = (w1, w2) Ry

π ∈ D2

D̃2 D2 × S1 Rz
π(w1, w2) = (w1, w2) Rz

π ∈ D2

Ry
π(w1, w2) = (−w1, w2) Ry

π ∈ D2

Z̃1
3 SO(2)× S1 ϕ(w1, w2) =

(
e−iϕw1, e

2iϕw2

)
ϕ ∈ SO(2)

Z̃5 SO(2)× S1 ϕ(w1, w2) =
(
e−3iϕw1, e

2iϕw2

)
ϕ ∈ SO(2)

and the rotating waves are solutions with S̃O(2)2 symmetry. Since generically these are the only
solutions which bifurcate, in the Hopf bifurcation with O(3) symmetry there are no solutions
with Z̃6 or Z̃4 symmetry.

If we allow degeneracies then it is possible for solutions with Z̃6 or Z̃4 symmetry to exist,
for example if 2Br − 65Cr − 18Dr = 0 then a solution with Z̃6 symmetry can exist and if
Br − 20Cr − 4Dr = 0 then a solution with Z̃4 symmetry can exist. For a classification of the
possible degeneracies in the O(2) Hopf bifurcation see [11].

6.2 Solutions in Fix(D̃3) and Fix(D̃2)

If we compute to cubic order the equations which are equivariant with respect to the actions of
D2 × S1 on Fix(D̃3) and Fix(D̃2) described in Table 9 then we find

ẇ1 = µ1w1 + α1w1|w1|2 + β1w1|w2|2 + γ1w
2
2w1 (22)

ẇ2 = µ2w2 + α2w2|w2|2 + β2w2|w1|2 + γ2w
2
1w2. (23)

In the case where µ1 = µ2, these equations also occur in the context of a Hopf bifurcation on a
rotating rhombic lattice in the restriction to certain four-dimensional subspaces. See for example
[21, 22]. In the restriction of (20) to Fix(D̃3) or Fix(D̃2) we have µ1 = µ2 = µ, β2 = 2β1 = 2β,

γ2 = 2γ1 = 2γ and in Fix(D̃3),

α1 = 2A+ 2B − 15C

α2 = A+B − 12C =
1

5
(2α1 + β + γ)

β = A− 20C (24)

γ = B − 10C
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and in Fix(D̃2),

α1 = 2A+ 2B − 40C

α2 = A+B − 12C =
1

10
(3α1 + 4β + 4γ)

β = A (25)

γ = B.

In either case there are three branches of standing wave solutions, with symmetries Õ(2), Õ and

D̃6, which bifurcate from the Hopf bifurcation with O(3) symmetry. Depending on the values

of the coefficients α1, β and γ in Fix(Σ) for Σ = D̃3 or D̃2 it is possible to find solutions to
(22)–(23) with Σ symmetry.

Here we will consider the equations in Fix(D̃2), where the values of the coefficients are given

by (25). Since the equations in Fix(D̃3) have the same form, a similar analysis yields similar
results.

In Fix(D̃2) the three standing wave solutions are w1 = 0, with Õ(2) symmetry, w2 = 0,

with Õ symmetry and w1 =
√

3
10w2, with D̃6 symmetry. This is because alternative forms of

Fix(D̃6) and Fix(Õ) which lie inside Fix(D̃2) are

Fix(D̃6) =

{(
0,

√
3

10
w2, 0, w2, 0,

√
3

10
w2, 0

)}
(26)

Fix(Õ) = {(0, w1, 0, 0, 0, w1, 0)} . (27)

We now consider the points where the stability of the solution branches within Fix(D̃2)
change.

For the periodic solution with Õ(2) symmetry, Fix(D̃2) is contained in the direct sum of the
isotypic components W0 and W2. Using the eigenvalues in these components we see that this
branch of solutions undergoes a stationary bifurcation if Re(BC) = 6|C|2. It is also possible for
this solution branch to undergo a Hopf bifurcation at −Br + 12Cr = 0 if 6|C|2 − Re(BC) > 0
there.

A similar analysis for the Õ symmetric branch shows that it undergoes a stationary bi-
furcation if Re(BC) = 10|C|2. This solution branch can also undergo a Hopf bifurcation at
−Br + 20Cr = 0 if 10|C|2 − Re(BC) > 0 there.

Finally, the periodic solution with D̃6 undergoes a stationary bifurcation when Re(BC) =
0. It also has a zero eigenvalue at −2Br − 15Cr = 0 which represents a Hopf bifurcation if
Re(BC) > 0 there.

The bifurcations of these solution branches allow for the possibility of periodic and quasiperi-
odic solutions with D̃2 symmetry. Using the numerical continuation package AUTO, it is possible
to demonstrate the existence of these branches of periodic and quasiperiodic solutions with D̃2

symmetry for some particular values of the coefficients A, B and C.
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6.2.1 Example

Suppose that when λ = 1

A = −3 + i, B = 1 + 3i, C = Cr +
3

40
i

and we vary the value of Cr. Then

α = α1 = 2A+ 2B − 40C = αr + 5i, β = A = −3 + i, γ = B = 1 + 3i,

where αr = −4− 40Cr. For these values

1. The Õ(2) symmetric branch of solutions bifurcates supercritically when αr <
8
3 and un-

dergoes a stationary bifurcation at αr =
1
3

(√
559− 22

)
.

2. The Õ symmetric branch of solutions bifurcates supercritically when αr < 0 and undergoes
a stationary bifurcation at αr =

√
31− 6.

3. The D̃6 symmetric branch of solutions bifurcates supercritically when αr <
20
3 and under-

goes a stationary bifurcation at αr = 5 and a Hopf bifurcation at αr =
4
3 .

Using AUTO we find that there is a branch of periodic solutions connecting the Õ(2) and D̃6

symmetric branches and a branch of periodic solutions connecting the Õ and D̃6 symmetric
branches. These bifurcate at the stationary bifurcations and have D̃2 symmetry. Neither of
these solutions is stable. In addition there is a branch of stable quasiperiodic solutions which
bifurcates from the solution with D̃6 symmetry at the Hopf bifurcation. This solution branch
also has D̃2 symmetry. These branches of solutions can be seen in Figure 3.

As αr → αc ≈ 2.17806 the quasiperiodic solution spends an increasing amount of time near

the unstable branch of solutions connecting the Õ(2) and D̃6 symmetric branches. At αr = αc
the system undergoes a global bifurcation to a homoclinic orbit.

6.3 Solutions in Fix(Z̃1
3) and Fix(Z̃5)

If we compute to cubic order the equations which are equivariant with respect to the actions of
SO(2) × S1 on Fix(Z̃1

3) and Fix(Z̃5) described in Table 9 then we find (with some rescaling of
w1)

ẇ1 = µ1w1 + α1w1|w1|2 + βw1|w2|2 (28)

ẇ2 = µ2w2 + α2w2|w2|2 + βw2|w1|2. (29)

These equations describe the interaction of two Hopf bifurcations with SO(2) symmetry at 1 : 1
resonance, but with different SO(2) actions. In the case where µ1 = µ2, similarly to (22)–(23),
these equations also occur in the context of a Hopf bifurcation on a rotating rhombic lattice in
the restriction to other four-dimensional subspaces [21, 22].

In the restriction of (20) to Fix(Z̃1
3) or Fix(Z̃5) we have µ1 = µ2 = µ and in Fix(Z̃1

3),

α1 = A+ 4D

α2 = A− 3C +D (30)

β = A− 15C − 2D
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Figure 3: AUTO generated diagram of the three standing wave solutions with Õ(2), Õ and

D̃6 symmetry in Fix(D̃2). The diagram shows the bifurcations of these solution

branches and the bifurcating branches of solutions with D̃2 symmetry. P denotes a
pitchfork bifurcation, T a transcritical bifurcation and H a Hopf bifurcation. Stable
solutions are denoted by solid lines and unstable solutions by dashed lines. The

unstable solutions with D̃2 symmetry are periodic and the stable solution with D̃2

symmetry is quasiperiodic.

and in Fix(Z̃5),

α1 = A+ 25C + 9D

α2 = A+ 4D (31)

β = A− 25C − 6D.

In either case there are two ‘pure mode’ travelling wave solutions (the maximal solution branches)
and branches of ‘mixed mode’ solutions (submaximal solutions) which exist for some values of
the coefficients α1, α2 and β. The pure mode solutions correspond to w1 = 0 and w2 = 0. These
solution branches undergo Hopf bifurcations when βr = (α2)r and βr = (α1)r respectively.
At these bifurcations it is possible for a quasiperiodic branch of mixed mode solutions with
submaximal symmetry to be created.

Remark 6.1. In Fix(Z̃1
3) the travelling wave solution with w1 = 0 has S̃O(2)1 symmetry and

when w2 = 0 the corresponding solution has S̃O(2)2 symmetry. The branch of mixed mode

solutions (where it exists) has Z̃1
3 symmetry.

Similarly in Fix(Z̃5) the travelling wave solution with w1 = 0 has S̃O(2)2 symmetry and

when w2 = 0 the corresponding solution has S̃O(2)3 symmetry. The quasiperiodic branch of

mixed mode solutions (where it exists) has Z̃5 symmetry.
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It is possible for the quasiperiodic submaximal solutions to be stable within Fix(Σ) for
Σ = Z̃1

3 or Z̃5. For example, suppose that the pure mode solutions bifurcate supercritically at
the Hopf bifurcation with O(3) symmetry. Then (α1)r < 0 and (α2)r < 0. Suppose further that
(α2)r < (α1)r. By letting w1 = Reiϕ and w2 = Seiψ and separating the phase and amplitude
equations we find that the ‘mixed mode’ solution is given by

R2 =
λ((α2)r − βr)

β2r − (α1)r(α2)r
S2 =

λ((α1)r − βr)

β2r − (α1)r(α2)r

and exists when R2 > 0 and S2 > 0. It can be found that when

(α1)r < βr and β2r < (α1)r(α2)r

the quasiperiodic mixed mode solution exists and is stable within Fix(Σ).

7 Conclusions

In this paper we have made changes to the previously published list of isotropy subgroups of
O(3) × S1. In section 3 we presented an amended table of these isotropy subgroup, Table 1,
and justified the changes to Table 5.1 of [12, Chapter XVIII §5] that this represents. The most
important changes relate to twisted subgroups Hα where H is a dihedral subgroup of O(3). We
have also computed the isotropy subgroups with four-dimensional fixed-point subspaces in each
representation of O(3)× S1 on Vℓ ⊕ Vℓ.

In section 4 a study of the specific example of the Hopf bifurcation where the representation
of O(3)×S1 is the natural representation on V3⊕V3 revealed six branches of periodic solutions
whose existence is guaranteed by the equivariant Hopf Theorem. Of these solution branches
three are standing waves and the other three are travelling waves. In contrast to the previously
studied case for the representation on V2 ⊕ V2 [14, 16], we found in section 5 that generically
the cubic order terms in the Birkhoff normal form of the equivariant differential equations are
sufficient to determine fully the stability of each of the six solution branches.

In section 6 we studied the dynamics of the equivariant differential equations (20) in the
restriction to each of the invariant subspaces given by Fix(Σ) where Σ is an isotropy subgroup
in Table 4 with dimFix(Σ) = 4. We were able to determine that, depending on the values of the
coefficients A, B, C and D in the equivariant differential equations, it is possible for solutions
with submaximal symmetry to exist for Σ = D̃3, D̃2, Z̃1

3 and Z̃5. We found both periodic and
quasiperiodic solutions and we have also shown that it is possible for some of the quasiperiodic
solutions to be stable.

The final sections of this paper are concerned with the case where ℓ = 3. It would be
interesting to investigate the dynamics which are possible in general in other representations
however, the computations required for the analysis of the stability of solution branches and
existence of submaximal solutions use the Taylor expansion of the equivariant vector field. This
can only be computed by choosing a particular value of ℓ. Values of ℓ greater than 3 could be
considered, but as the number of dimensions increases, so does the number of coefficients in the
equivariant vector field. This makes computations analogous to those in the final sections of
this paper increasingly impractical with increasing ℓ.

29



Acknowledgements The author wishes to thank the referees of a previous version of this
article whose helpful comments have greatly improved its clarity and readability. The author
also wishes to thank Paul Matthews and Stephen Cox for their guidance and support throughout
this work. This work formed part of the authors PhD thesis which was funded by the EPSRC.

References

[1] Antoneli F, Dias A P S and Matthews P C 2008 Invariants, equivariants and characters in
symmetric bifurcation theory Proc. Roy. Soc. Edinburgh A 138 477–512

[2] Balanov Z, Krawcewicz W and Steinlein H 2006 Applied Equivariant Degree AIMS Series
on Differential Equations and Dynamical Systems 1

[3] Busse F H 1975 Patterns of convection in spherical shells J. Fluid Mech. 72 67–85

[4] Busse F H and Riahi N 1982 Patterns of convection in spherical shells, Part 2 J. Fluid
Mech. 123 283–301

[5] Byrne H M and Matthews P C 2002 Asymmetric growth of models of avascular solid
tumours: exploiting symmetries IMA J. Math. Appl. Med. Biol. 19 1–29

[6] Cross M C and Hohenberg P C 1993 Pattern formation outside of equilibrium Rev. Mod.
Phys. 65 851–1112

[7] Dolnik M, Rovinsky A B, Zhabotinsky A M and Epstein I R 1999 Standing waves in a
two-dimensional reaction–diffusion model with the short-wave instability J. Phys. Chem. A
103 38–45

[8] Dolnik M, Zhabotinsky A M, Rovinsky A B and Epstein I R 2000 Spatio-temporal patterns
in a reaction-diffusion system with wave instability Chem. Eng. Sci. 55 223–31

[9] Fiedler B 1988 Global bifurcation of periodic solutions with symmetry Lecture Notes in
Math. 1309 (Berlin: Springer)

[10] Golubitsky M and Stewart I 1985 Hopf bifurcation in the presence of symmetry Arch.
Ration. Mech. Anal. 87 107-65

[11] Golubitsky M and Roberts M 1987 A classification of degenerate Hopf bifurcations with
O(2) symmetry J. Diff. Eqns. 69 216–64

[12] Golubitsky M, Stewart I and Schaeffer D 1988 Singularities and Groups in Bifurcation
Theory vol II Appl. Math. Sci. 69 (New York: Springer)

[13] Golubitsky M and Stewart I 1993 An algebraic criterion for symmetric Hopf bifurcation
Proc. R. Soc. London A 440 727-32

[14] Haaf H, Roberts M and Stewart I 1993 A Hopf bifurcation with spherical symmetry Z.
Angew. Math. Phys. 43 793-826

[15] Ihrig E and Golubitsky M 1984 Pattern selection with O(3) symmetry Physica D 13 1–13

30



[16] Iooss G and Rossi M 1989 Hopf bifurcation in the presence of spherical symmetry: Analyt-
ical results J. Math. Anal. 20 511–32

[17] Ize J and Vignoli A 2003 Equivariant Degree TheoryDe Gruyter Series in Nonlinear Analysis
and Applications 8 (Walter de Gruyter & Co.)

[18] Knightly G H and Sather D 1980 Buckled states of a spherical shell under uniform external
pressure Arch. Ration. Mech. Anal. 72 315–80

[19] Knobloch E and Proctor M R E 1981 Nonlinear periodic convection in double–diffusive
systems J. Fluid Mech. 108 291–316

[20] Knobloch E 1986 Oscillatory convection in binary mixtures Phys. Rev. A 34 1538–49

[21] Knobloch E and Silber M 1993 Oscillatory convection in a rotating layer Physica D 63
213–32

[22] Knobloch E 1998 Rotating convection: Recent developments Int. J. Eng. Sci. 36 1421–50

[23] Michel L 1980 Symmetry defects and broken symmetry Rev. Mod. Phys. 52 617–51

[24] Montaldi J, Roberts M and Stewart I 1988 Periodic solutions near equilibria of symmetric
Hamiltonian systems Phil. Trans. R. Soc. Lond. A 325 237–93

[25] Schubert G, Glatzheimer G A and Travis B 1993 Steady, three-dimensional, internally
heated convection Phys. Fluids 5 1928–31

[26] Sigrist R 2010 Bifurcations with spherical symmetry Ph.D. thesis, University of Nottingham

[27] Turing A M 1952 The chemical basis of morphogenesis Phil. Trans. R. Soc. B 237 37–72

[28] Varea C, Aragon J L and Barrio R A 1999 Turing patterns on a sphere Phys. Rev. E 80
4588–92

[29] Zhabotinsky A M, Dolnik M and Epstein I R 1995 Pattern formation arising from wave
instability in a simple reaction–diffusion system J. Chem. Phys. 103 10306–14

31


