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Figure 1: Overview of our algorithm. From a point cloud model, our algorithm extracts some perceptual feature points, according to which
the decomposition is implemented. Skeletal structure infers the topological information from the decomposed shape. Semantic graph shown
in the last column is generated with the assistance of decomposed shape and skeletons.

Abstract

Decomposition and segmentation of the objects represented by
point cloud data become increasingly important for purposes like
shape analysis and object recognition. In this paper, we propose
a perception based approach to segment point cloud into distinct
parts, and the decomposition is made possible of spatially close but
geodetically distant parts. Curvature is a critical factor for shape
representation, reflecting the convex and concave characteristics of
an object, which is obtained by cubic surface fitting in our approach.
To determine the number of patches, we calculate and select the
critical feature points based on perception information to represent
each patch. Taking the critical marker sets as a guide, each marker
is spread to a meaningful region by curvature-based decomposition,
and also further constraints are provided by the variation of nor-
mals. Then a skeleton extraction method is proposed and a label-
driven skeleton simplification process is implemented. Further, a
semantic graph is constructed according to the decomposed model
and the skeletal structure. We illustrate the framework and demon-
strate our approach on point cloud data to evaluate its function to
decompose object shape based on human perceptions. Meanwhile,
the result of decomposition is demonstrated with extracted skele-
tons. Performance of this algorithm is exhibited with experimental
results, which proves its robustness to noise.
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1 Introduction

Decomposing 3D objects into meaningful parts is a challenge but
fundamental to shape understanding, shape information process-
ing and shape analysis. The partition of a model into meaningful
parts is referred to as shape segmentation or decomposition, which
is an important area of ongoing research and remains an open re-
search problem [Chen et al. 2009]. The decomposition results for
3D geometry have wide range applications in different branches of
computer graphics and computer vision, including computer ani-
mation, modeling, shape analysis, classification, object recognition
and 3D model retrieval [Shlafman et al. 2002], [Katz and Tal 2003],
[Funkhouser et al. 2004].

One of the most popular representations for 3D shape is mesh
model. Most proposed segmentation methods take mesh model as
input, and rely on topological information of the model, i.e., edges
and faces. However, due to the difficulties of processing and ma-
nipulating large mesh connectivity information, many researchers
question the future utility of polygons as the fundamental graphics
primitive [Gross and Pfister 2007]. On the other hand, with the de-
velopment of modern 3D scanning systems, another representation
—raw point cloud data emerged, which can be used to acquire both
geometry and appearance of complex, real-world objects. However,
point cloud data, which only includes raw data point coordinates,
can not be processed by the existent mesh segmentation algorithm
(most mesh segmentation algorithms can not be applied directly).

In this paper, our work focus on the decomposition and understand-
ing of point cloud data. We may require shape decomposition or
segmentation to lead us a way to understand the shapes. The de-
composition is mainly based on human visual perception, which is



referred to as the basic capability of the human visual system to
derive relevant groupings and structures from 3D objects without
prior knowledge of its contents.

Our contributions of the paper are in five aspects. First, we present
a framework for shape decomposition with several steps includ-
ing perceptual feature points selection, curvature-based decomposi-
tions and etc. Second, we present a new method for critical feature
points extraction based on contour points and clustering, which can
be implemented automatically. Third, a skeleton extraction algo-
rithm is proposed based on the decomposition, and a label-driven
skeleton simplification process is presented to make more robust
shape skeleton. Fourth, a semantic graph is constructed from the
decomposed shape and skeletal structure. Finally, we analyze the
performance of our algorithm. The complete overview of our algo-
rithm is shown in Figure 1.

The outline of this paper is as follows. We briefly discuss respec-
tively the state-of-the-art segmentation method on the point cloud
data in section 2. Overview of our algorithm is illustrated in sec-
tion 3. We then proceed with the implementation details of point
cloud shape decomposition in Section 4. Further skeleton extrac-
tion and simplification are illustrated in section 5 and a semantic
graph is constructed to describe the shape. Experimental results are
illustrated, and we analyze the results of our approach as well in
Section 6. Based on the experiments, conclusions end Section 7.

2 Related Work

There has been a considerable research work relevant to 3D object
segmentation, most of which require that a surface model is pro-
vided explicitly via a triangle mesh [Yamauchi et al. 2005], [Liu
and Zhang 2004], [Page et al. 2003] or converting point cloud data
into a mesh [Joachim et al. 2003].

Based on different aims, segmentation methods can generally be
classified into two types: part-type segmentation and patch-type
segmentation [Shamir 2004]. Part-type segmentation tries to seg-
ment models into visually meaningful parts to human beings, and
patch-type segmentation must be topologically equivalent to a disk,
S0 as to not impose large distortion after parametrization onto 2D.

In addition, segmentation methods can be roughly categorized into
three types: Edge-based, region-based and hybrid segmentation
methods [Liu and Xiong 2008]. Edge-based methods attempt
to detect the discontinuities in the surface that form the closed
boundaries of different segments. Two approaches are classified
as bottom-up and top-down for region-based method. Top-down
methods start by assigning all the points to one group and fitting a
surface to it. For bottom-up approaches, a number of seed regions
or a seed point are chosen first, and then grow by adding neighbor
points based on some compatibility thresholds. The hybrid meth-
ods have been developed using the edge-based and region-based
information.

Recent advances in point cloud segmentation are typically Joachim
et al. [Joachim et al. 2003], Yamazaki et al. [ Yamazaki et al. 2006],
zou et al. [Zou and Ye 2007] and Richtsfeld [Richtsfeld and Vincze
2009]. Joachim et al. [Joachim et al. 2003] have done some pioneer
research on point cloud segmentation. They propose a mathematic
definition of features and translate it to discrete domain. After that
they improve their method to segment and match the noisy point
cloud, but it still requires delaunay triangulation of the noisy point
sample.

Yamazaki et al. [ Yamazaki et al. 2006] proposed a three-phase pro-
cess to segment point sets. The first phase is feature identification
which performs hierarchical segmentation by coarsening the input
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into super-nodes. The second phase is hierarchical segmentation
which bisects the set of super-nodes while ensuring that similar
super-nodes remain together. Then in the last stage it refined the
segmentation to ensure that all segments contain at least one signif-
icant feature. The method is effective to capture geometric features
in complex point sets. However, one of the disadvantages is the
computation time especially on the geodesic distance.

Based on the work in [ Yamazaki et al. 2006], Zou et al. [Zou and Ye
2007] proposed a hierarchical point cloud segmentation algorithm
based on multi-resolution represent of point cloud. This approach
constructed a simplified geometry by its BVH (Boundary Volume
Hierarchy). Then a fuzzy clustering segmentation algorithm is im-
plemented. Although this method can process large scale point
cloud rapidly, it also leads to coarse boundary.

Reniers and Telea [Reniers and Telea 2007] presented a framework
for segmenting 3D shapes into meaningful components using the
curve skeleton. This method is based on voxel-shapes, which can
not be applied to point cloud data.

Richtsfeld [Richtsfeld and Vincze 2009] segmented 3D object from
point cloud data in a hierarchical manner, which is based on ra-
dial reflection. The method begins from core extraction by comput-
ing smallest enclosing sphere of points. And after the core part is
found, all other segments of the point cloud are extracted by flood-
filling. Meanwhile, the segmentation results is improved by the nor-
mal vector. In addition, they have considered pose-invariant model
by generating a 3D mesh with power crust algorithm. The method
is only useful for the data which have core parts. Also the method in
[Ma et al. 2007] is effective in segmenting point cloud, but it shows
disadvantages in high complexity of the algorithm.

All the methods aforementioned all paid attentions to how to de-
compose the objects in point clouds, and they did not make fur-
ther work to understand and describe the shape. In this paper,
we propose a SDAU (Shape Decomposition And Understanding)
framework based on human perception, which is to aggregate the
points with similar attributes and construct the semantic graph of
3D objects to make more explicit shape information. For the de-
composition we proposed a boundary-based feature point extrac-
tion method, with curvature-based and variation of normal vector
constraints to decompose 3D objects into parts. The skeleton ex-
traction process is also implemented to represent the topological
information of shape.

3 Algorithm Overview

This section begins with a few notations and some terms with its
corresponding symbols in this paper. Then we outline our shape de-
composition and understanding framework (short for SDAU frame-
work).

Shape Decomposition can be described as follows: for a shape S
represented by point cloud, divide it into m parts (m is not less than
the number of critical points), i.e. S = [J]*, S;, SiNS; = 0. Here
a S; is called a patch of S.

Critical Feature Point Set. For every point p; € P, let S¢,, be the
contour points set and H,, be the convex hull of the set S,. Then
the critical point determined by the clustering of H, is denoted by
MS, = {Mi, M, ..., M, }.

Convexity Representation. Curvature C), for each point p;, and
the variance Vj,, of normal is another way to weigh the convexity
and concavity of shape S.

Decomposed Skeleton. The decomposed skeleton is represented
by DS1,DSs, ..., DSy, for corresponding decomposition patch
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51,85, s S

Semantic Graph. Represented by G =< V| E >, itis used to de-
scribe the topological relations of the shape. V = {Vi, V3, ..., V;,, }
denotes each part in decomposed shape and E is the connection
between each two parts.

Figure 1 provides an example to describe the shape decomposition
and understanding framework for point cloud data. The proposed
decomposition method is based on the curvature and variation of
normal vector which can be concluded from the first column to the
fourth column in Figure 1.

The whole process for the decomposition and understanding of
point cloud can be summarized in Figure 2. There are three steps in
decomposition stage: detecting the boundary of the raw data using
alpha shape to make it easier to locate the feature points; finding
the inflexion (convex and concave points) in the boundary; finally,
using region growing to obtain the optimal segmentation results.

The pipeline of decomposition can be illustrated as follows. At
first, the algorithm calculates the normal vector NV, and curvature
Cp for each point p. Then the contour points set S¢, and convex
hull H,, of S, are determined which will be used to find the feature
points representing distinct feature of the point model, and mean-
while the clustering of the points in H), is implemented to get the
unique critical points set S, (the user can also intervene to provide
guidance). Based on the feature points (accord with human percep-
tion), our algorithm automatically segments the point cloud into a
set of meaningful sub-parts by region growing based on minimal
rule and a constrained condition rely on the variation of normals.

Based on decomposition results, the skeletal points are extracted
and simplified, and also the semantic graph is generated. We can
see from the last three pictures in Figure 1.
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4 Shape decomposition

4.1 K Nearest Neighborhood Graph

Finding neighboring points for one given point is a crucial step
in our algorithm. And K-NN (k nearest neighbors) graph is used,
which means that k£ neighboring points for point p are selected from
the point cloud data P = {p; }i=1,2,...,» which have the minimum
Euclidean distance. In fact the distances between p and each point
in the whole data are calculated and sorted ascending, and then the
first k£ points are chosen as the k£ neighboring points (i.e. k near-
est neighbor graphs are able to connect regions on different scales,
since only the absolute neighborhood ranking is of interest). The
number of k is determined according to the point density, and it can
avoid degenerated cases that a point has no neighboring points. In
our approach, searching for the neighboring points is achieved by k-
d tree algorithm in order to organize the data. We have adopted the
ANN library (Approximate Nearest Neighbor) which supports data
structures and algorithms for both extract and approximate nearest
neighbor searching in arbitrarily high dimensions.

4.2 Concave and Convex Representation

As well as normal, normal curvature, principal direction and Gauss
curvature, curvature is one of the effective features for surface
which can be used as local differential geometry measurement.
Curvature plays an important role in object segmentation, since
concave point and convex points are feature points of objects which
could be estimated by curvature. There are various methods for es-
timating higher order information such as curvature from discrete
surface information. In our paper, the curvature of each point p is
estimated by cubic surface fitting, which will be used as a criterion
for region growing in segmentation process. Each point p in the
point cloud can be characterized by the Darboux frame at p, i.e.

AP = (p7n7617627k17k2)7 (1)
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Figure 3: Contour Points Calculation.

where n is the surface normal vector at p, and e1, ez are the prin-
cipal directions corresponding to the principle curvatures k1, ko
(k1) k=) respectively.

The unit normal vector n is given by n = FuXIv_ y(y v)isalo-
[Iru Xry| ’

cal parametrization of a surface in the neighborhood of p. The max-
imum and minimum principal curvatures k; and k2 can be com-
puted by the Weingarten curvature matrix.

Let Ay and A2 (A1 > A2) be the eigenvalues of Weingarten
matrix W, and vy, vo are the corresponding eigenvectors, then
k1 = A1, ka2 = X2. The Gaussian curvature K and mean curva-
ture H are defined as K = kikz, H = (k1 + k2)/2. In our pa-
per, the Gaussian curvature K is a criterion to weigh whether the
points reside on convex or concave parts. Generally, the convex
parts may have positive maximum curvature, and the concave parts
would have negative minima curvature.

4.3 Contour Points and Feature Points Determination

4.3.1 Contour Points

Further critical points are determined by the local curvature max-
imum which is often located on the boundary or contour, so it is
more essential to obtain the contour points.

Contour points of 3D objects from point cloud data can be deter-
mined by projecting the original points into its representative plane,
and then a boundary detection algorithm is used to extract accurate
set of contour points S¢p = {Cp1, Cpa, ..., Cpr }.

Let p be one point in original point cloud P, search for all its k
(k = 10 ~ 30) neighboring points (within distance 27) set @) =
q1, 92, ---,qk. Select any point g; from @, and we can compute a
circle center C' according to the two points p, ¢; and a radius r
(defined by user, for most of the data » = 1.0). In general, if point
p is a contour point then all its neighboring points are not within
the circle, i.e. the distance to C is larger than 7. We can obtain the
contour points from original point cloud data, the process is shown
in Figure 3.

4.3.2 Optimal Critical Feature Points

The convex hull H, of a set of points P in n dimensions is the inter-
section of all convex sets containing all points set P. For N points
P1, P2, ..., Pn, the convex hull H, is then given by the smallest con-
vex set that contains P.

Generally, the local curvature maxima is the convex points. This
process aims at finding the critical points robustly. For those points
Cp; in Se¢p, a set of points H), reside on the outer convex hull is
automatically calculated.

H, = ConvexHull(Scp) (2)

k
Where S, = |J Cpi. Hp, contains less points than Sc,, and pos-
i=1
sesses the local maxima characteristics, which is helpful for further
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Figure 4: Optimal Critical Points. (a) Points of Convex Hull (b)
Critical Points.

critical points selection.

For each point in H,, cluster together its k£ nearest neighboring
points within a given distance constrain Dy, which is determined
by the minimum distance multiplied by a multiplier. According
to each labeled cluster, those clusters whose points number is less
than a given threshold are filtered. Then in the remaining clusters
from each of which we select one point, and then final marker sets
M Sp are finally determined. Nevertheless, due to the weakness of
the k-nearest neighboring, some feature points can not be detected
accurately. In such cases, the user can intervene to provide further
guidance to obtain appropriate feature points which must satisty
human perception.

4.4 Region Decomposition Process

The Minima Rule is a theory that defines a framework for human
perception that might decompose an object into its constituent parts,
which has already been presented for segmentation of CAD models
and meshes [Page et al. 2003]. The rule provides boundaries along
lines of negative minima curvature.

4.4.1 Constraints Condition

The variance in the normal direction over the variance in the neigh-
borhood is used to weigh whether the region is smooth or not, which
can be represented as follows.

3)

My, + My, + M,

where M,, My, and M), are the eigenvalues of the covariance

N
matrix M, and M = 3 (p; — p)(pi — D)”
i=1

kp (Mxo < My, < My,)

If the point is on a smooth surface then the variance Vi, is very
small (almost 0). The distribution of k,, for different data are dis-
tinct and we show several experimental results for some selected
data. It is useful for further threshold selection and also has effect
on the segmentation results.

4.4.2 Region Growing

If the critical points are found, we can continue the decomposition
of point cloud. Here, our method is used to identify connected point
sets by growing the seed points using nearest neighboring cluster-
ing. The process is based on the minima rule and the constrains that
the points belong to one patch may have little variation of normal
vectors. Different parts will be disconnected at the mutation of the
local curvature. The algorithm is based on the following steps:
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Figure 5: Segmentation of Teapot Data. (a) Teapot Data (b) Fea-
ture Points (c) Segmentation Results.

Input point cloud data P and the corresponding feature points
set M .Sp.

Compute the curvature sets C'p, normal sets n,, for each point
in P, and the variance of normals k.

Define three critical threshold k;;, (variance of normals), dis-
tance threshold Dy, and k neighborhood number N.

Search the k nearest neighboring points for each p; in M.S,,
namely Npyp.

Sort the points in N, in the light of its curvature, and start
region growing from the point with maximum curvature.

The seed point and its neighboring points within Dy, are be-
long to one patch if vy, of points in Ny, are less than k¢p,.
If the point is unlabeled and its corresponding k,, is less than
k¢n, then it will belong to the same region with seed point.

On the conditions that the seed points and all its neighbor-
hood are labeled, but not all the points are labeled, then we
require to select another one with maximum curvature from
the remaining points in order to further region growing.

The point clouds are segmented into different components based on
these steps. Figure 5 displays the decomposition process of teapot.

5 Decomposition based Skeleton Extraction

Skeletons are beneficial for various applications, including match-
ing, retrieval, metamorphosis and computer animation [Katz and
Tal 2003]. Previous algorithms are based on medial surface extrac-
tion, level set diagrams or Reeb Graphs. The Morse theory was
originally developed to study the relationship between the shape of
a space and the critical points of smooth functions defined on the
space [Milnor 1963]. Recently, it has been applied in skeleton ex-
traction [Wu et al. 2003], inspired by which we propose a skeleton
extraction algorithm based on the shape decomposition results.

5.1 Skeletonization Algorithm

Our shape decomposition gives rise to a novel skeleton extraction
algorithm which can be summarized as follows:

(1) We construct a discrete function f that measures the centrality
of a point with the surface, which is defined as the average geodesic

distance.
f=> Gp.p)

peP

(6))

Here the core point O of the whole model is defined as the point
with the minimum average geodesic distance.

(6)

Umin = argmin(f)
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Figure 6: Illustration of Decomposed Skeleton. (a) Decomposed
shape S1,S2,Ss. (b) Shortest path connecting each critical point
of Si with the center point. (c) Detect the variation of the point
label. (d) Simplified skeleton.

(2) After determining the core point O of the object, we use Di-
jkstra’s shortest path algorithm to compute the distance between
two points. Then connect each critical point C; with O by the
shortest path which can be considered as the initial skeleton IS =
{151,155, ...,1S} consisted by surface points ;

(3) Taking the initial skeleton as input, we use a repulsive force to
push each point in I.S into the interior of the object. Thus the final
skeleton is generated;

(4) To make the skeleton more robust and to ensure that points on
the skeletal structure can provide a smooth connection between the
initial skeletal points, a simple smoothing strategy is implemented.
Start from the core point of the model vrin, if the angle between
v;Vi4+1 and v;41v;42 is larger than a threshold € then we will sub-
stitute v;4+1 with U;_H = (’Uz‘ + ’Ui+2)/2.

The repulsive force [Wu et al. 2003] can be calculated by

Y Flla —zll2) - (i — )

€V (z)

Wr(z) @)

Where F(r) = r~2, which represents the Newtonian potential
function. V(z) = {q1,q2,...,qr} is the k nearest neighboring
point set. Then we can assign the initial position by pushing p;
(a point in the initial skeleton) into the interior of the object toward
the reverse surface normal direction, then apply the shrinking pro-
cedure:

Pit1 = pi + normalize(Wp(p;)) * e (8)

where e is the distance defined by user. The iteration stops until
|[WEe(piy1)] > |Wr(ps)] &)

and the final position of p; is recorded.

Figure 7: Semantic Graph Generation.
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Figure 8: Decomposition process of Table.

5.2 Label-driven Skeleton Simplification

Let S1, S2, S3, ..., Sk be the k segmentation of model S, where
segment S; = {v1, v2, ..., U;m } Which may contain m points or ver-
tex. Figure 6(a) shows a decomposed shape which contains three
subparts S1, S2, and S3. For each segment S;, there is a critical
point C;. In Figure 6(b), two black points Cy and Cs are the crit-
ical points corresponding to S; and S3, and the red points O is the
central points.

The path connecting C'; and O could be labeled according to the de-
composition results (see in Figure 6(b)). Then a label-driven algo-
rithm is proposed to simplify the smooth skeleton. The joints of two
different parts are calculated directly from the structure of decom-
position since the label variance make it clear to distinguish each
other (see in Figure 6(c)). The simplified skeleton are composed by
directly connecting the critical points with the central points (see
in Figure 6(d)). It is essential that skeleton which depends on the
position of critical points and central points must reside on the cen-
tral position in the shape model. A simple way to achieve this is to
guarantee that there are transition points between central points and
all other critical points.

This algorithm is general, fully automatic, simple and fast. It is
thus beneficial for applications requiring automation as well as for
novice users of applications where user-intervention is acceptable
or desirable. Figure 10 demonstrates the extraction and simplifica-
tion of skeletons for static horse object.

5.3 Shape Understanding and Analysis

The skeleton of a shape could provide an intuitive and effective ab-
straction which facilitates shape understanding and manipulations.
In this section, we exploit the Semantic Graph by the decomposed
shape and skeleton structure. Semantic Graph, as a representation
of shape, can also describe the topology of objects more efficiently
and has wide applications in 3D model retrieval. The semantic
graph is unique and could capture the critical topology information
of the object.

Semantic Graph in our paper can be defined as G =< V, E >,
where V = {V1, Va, ..., Vi }, Vi is a node representing the decom-
posed subparts S;, E = {E1, Es, ..., Em—_1}, E; is the topology
relationship between two subparts if there is a joint that transited
from one labeled parts to another when connecting the skeleton
points. Then after decomposition, we regard each part as a node
( represented by the left one in Figure 7) and two nodes have an
edge if and only if they are adjacent. The adjacent relations can be
evaluated by the skeletal structure (the middle one in Figure7).

We have obtained the central points O in Eq.6 with minimum
geodesic distance. It will be the core point Vo of semantic graph if
the part it belongs to is the largest one in original point cloud. As-
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sume that all the node is given according to the decomposed results,
and then we start from Vo to determine the connection relationship
based on the path that skeletal points pass through. It is easier to
draw a clear semantic graph of each shape, according to which the
following work can be further implemented, e.g. shape-based 3D
retrieval, shape semantic analysis and etc.

6 Experiments Evaluation and Discussion

We now investigate the behavior of the algorithm through point
cloud data. Algorithms are programmed with VC++ and OpenGL
for rendering. All experiments are implemented on a PC with
INTEL® Core™ 2 CPU, and 2G memory.

To begin, the marker set M Sp is constructed from point cloud data
P. Markers in M Sp are acquired based on the contour points and
curvature extremum.

6.1 Data Set

In this paper, we employed data download from “AIM@SHAPE”
web site (http://shapes.aim-at-shape.net), and some data are from
the Princeton Segmentation Benchmark [Chen et al. 2009] which
provides 19 categories of meshes. Our method are evaluated on sev-
eral typical data sets to demonstrate the robustness of our method,
we first collect the point data and then progressively add some ran-
dom Gaussian noise to simulate the irregular data.

6.2 Feature Points Selection

The critical points for point cloud data are determined by contour
points (see in Figure 8(b)). We should select several feature points
which meet human perception, so we obtain the points on the con-
vex hull (see in Figure 8(c)) and then refine them by further cluster-
ing (i.e. k-nearest neighborhood clustering). The results are shown
in Figure 8(c) and Figure 8(d). The points in blue color in Fig-
ure 8(d) is the refined convex hull, and other points in different
colors represented different clusters. According to the clustering
results we choose one points from each cluster which will be con-
sidered as a seed point for further region growing.

6.3 Decomposition Results

In this section, we demonstrate the results of decomposition from
regular point cloud data and data with noisy points.

Decomposition on Regular Point Cloud Data

The decomposition results on regular point cloud data are displayed
in Figure 8, of which the selection of feature points are all based
on human perception.



Table 1: Data Sets and Results Analysis. kNN: k-nearest neighbor; Bou: boundary detection; Clu: clustering for further critical points
selection; Cri: final critical points determination; Seg: segmentation process. Here n is the original points number, Cy, is the number of

contour points, M is the number of final marker set.

Data Size Contour Points | Marker Set Run time(sec)

Dataset n Cp Mg ENN | Bou Clu Cri Seg
Ant 8176 428 9 0.015 | 3.594 | 0.031 | 0.016 | 4.609
Table 13579 562 4 0.047 | 6.1 0.06 | 0.015 | 12.172
Palm 11413 332 6 0.02 5.0 0.31 | 0.032 | 7.625
Tippy 9548 556 8 0.01 4.2 0.07 | 0.01 | 6.840
Horse 8078 356 8 0.015 | 3.906 | 0.025 | 0.016 | 4.750
Teapot 6678 184 4 0.016 | 3.328 | 0.063 | 0.001 | 3.437

(a) (d) (©)

(@

(e) ()

Figure 9: Decomposition results on Noisy Data. (a),(b),(d),(e) is
respectively the teapot model and palm model after adding gaus-
sian noise (c) and (f) is the decomposition results.

In Figure 8, we show the segmentation process of table data,
the critical points (Figure 8(d)) are obtained by convex hull (Fig-
ure 8(c)) and contour points (Figure 8(b)). According to the critical
points, table data is segmented into 4 regions in Figure 8(e) which
satisfies human perception.

Decomposition on Data with Noises

Missing data and noisy points are common during 3D shape ac-
quisition. In this section, to demonstrate the robustness to noisy
points, we collect some data by adding noisy points such as Fig-
ure 9(a) and Figure 9(d). For the teapot model, we have added
0.1% gaussian noise and 1% gaussian noise for palm model.

In Figure 9, we show the decomposition results on the data point
with noise. Figure 9(a) and Figure 9(b) is the teapot model af-
ter adding noise, Figure 9(a) shows the point distribution and Fig-
ure 9(b) demonstrates the mesh distribution. Figure 9(d) and Fig-
ure 9(e) also show noisy palm model. The results from Figure 9(c)
and Figure 9(f) suggest the potential applicability of our method to
the decomposition of irregular data when there is much more noise.
There is no need to denoise the raw data. We can conclude that our
method is effective and is robust to noise.

On the whole, our method is effective, practical and easy to im-
plement. The computational complexities of the different steps are
illustrated as follows:

e k-nearest neighboring computation: O(kn log(n));
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e Boundary detection: O(nlog(n));

e Clustering for final critical: O(n log(n));

e Critical points determination: O(log(n));

e Segmentation: O(n? log(n)).
In addition, Table 1 demonstrates the experimental data and the al-
gorithms running time, which shows good performance for several

objects. Compared with other methods, our method performs well
both on the running time and computational complexities.

(d

(©

Figure 10: Skeleton Extraction. (a) Initial surface point skeleton
(b)Central skeleton (c) Smooth skeleton (d) Simplified skeleton.

6.4 Skeletonization

Figure 10 demonstrate some decomposed shape skeleton. Most of
the obtained parts seem meaningful. We derive the skeletal hi-
erarchy and the joint positions automatically and, in may cases,
the skeletons actually resemble the real-world skeletal structure of
these shapes. The results also show that the skeleton of the object
can be a better shape descriptor, and the shape decomposition lays
solid foundation for the extraction and simplification of skeleton.

Skeletonization times encompass both the initial skeletonization,
smoothing the skeleton and simplification process. Skeletonization
times were trivial in all examples and almost all under 0.01 seconds.



6.5 Limitations

Our decomposition framework is designed for objects represented
by point cloud data. Our algorithm requires the detection of critical
points which is based on projected 2D information. It is applica-
ble for diverse data, and for few data it needs some user queries to
select feature points due to inappropriate projection. In addition, al-
though our decomposition results are better than other algorithm for
point cloud data, there are still limitations that it is still a challenge
to determine the smooth boundary for some complex data. In ad-
dition, our method can not deal with incomplete point clouds, e.g.
unilateral scanned data or large missing data, which will become as
the further research.

7 Conclusions and Future Work

In this work, an algorithm is proposed for decomposing a point
cloud model, representing an arbitrarily shaped object, into mean-
ingful components. Our method works on the point set directly
without triangulation or other preprocessing. The key steps in this
work are critical points identification and segmentation. The se-
lection of critical points is based on the human perception and an
assumption that those points with local curvature maxima are al-
most reside on the convex surface. Based on this, we proposed to
obtain them by several steps: contour points calculation (S, set),
convex hull for further constrains of Cp, clustering of the remain-
ing points in H, and then final critical points are generated. Based
on the critical points, the decomposition process continues with the
constrains that points belonging to one smooth surface may have
smaller variation of curvatures. Based on shape decomposition, a
novel skeleton extraction algorithm is implemented to obtain the
decomposed skeleton, and then the skeleton is refined to simplify
it by a label-driven method. The semantic graph of 3D object can
be obtained from the decomposition results and the skeletal struc-
ture. Experiments demonstrate the robustness and effectiveness of
the proposed decomposition method, which has been tested on dif-
ferent 3D models and has obtained good results from most of them.
Also the extracted skeleton and semantic graph of 3D object is very
useful in different applications.

Future work will concentrate on how to improve the boundary be-
tween clusters, since for some data the boundary between two dif-
ferent patches is not sufficiently smooth.
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