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Summary. In case of engine failure, skilled pilots can save a helicopter from crgdhin
executing an emergency procedure known as autorotation. In adtonotather than relying
on the engine to drive the main rotor, the pilot has to control the helicoptér that poten-
tial energy from altitude is transferred to rotor speed. In fact, maintaiaisgfficiently high
rotor speed is critical to retain sufficient control of the helicopter to lafelysdn this paper,
we present the first autonomous controller to successfully pilot a réynoaetrolled (RC)
helicopter during an autorotation descent and landing.

1 Introduction

Autonomous helicopter flight represents a challenging robmiroblem with high-
dimensional, asymmetric, nonlinear dynamics. Helicaptme widely regarded to
be significantly harder to control than fixed-wing aircrgee, e.g., [12, 18].) At
the same time, helicopters provide unique capabilitieshss in place hover and
low-speed flight, important for many applications.

Recently, there has been considerable progress in autaso(®L) helicopter
flight. Examples range from basic upright hovering and fodi¥ight [4, 10, 15, 16,
17] to inverted hovering [14], and even to extreme aerobmtioeuvers [1, 6, 5].

All of this prior work pertains to helicopters operating itormal engine power.
By contrast, in this paper we consider autonomous helicdligdt when the engine
is not engaged. Indeed, even when the engine has failed|ledsgilot can safely
descend and land a helicopter through autorotation.

Whereas during powered flight, the rotor drag is overcome b\etigine power,
during autorotation the rotor drag is overcome by the airftbvough the blades.
Effectively the potential energy of the helicopter (copmsding to its altitude) is
transferred to rotor speed. This rotor speed allows the fmloontrol the helicopter
throughout its descent, and then slow down the helicopteré¢ouching down.

Autorotation landings are a challenging maneuver and ipgnlg executing an
autorotation maneuver often leads to severe damage or eveplete loss of the
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helicopter: If the main rotor speed becomes too low, it bezpimpossible to reli-
ably control the helicopter, and the helicopter will typigacrash. If the helicopter
touches the ground with substantial horizontal velocttwyill tip over. If the heli-
copter touches the ground with too low a main rotor speedttiemain rotor blades
will flex sharply downward. This can result in one of the robdades striking the
tailboom, destroying both that rotor blade and the tailboom

Moreover, in contrast with regular landings—where the pitmtld abort a land-
ing attempt and try again later— autorotation landings @i you a single shot
at the approach. One autorotation landing attempt with a poaotroller suffices
to destroy a helicopter. This makes autorotation landingsstically a particularly
challenging research problem.

While engine failure is likely the better known reason to flyedidopter in au-
torotation, autorotation is also crucial in case of tatbrdailure. In case of tail-rotor
failure, if one keeps the engine running, the torque fromethgine causes the heli-
copter to rotate (fast) around its vertical axis, which nsakeery hard (if not impos-
sible) to fly the helicopter reliably. Switching off the engiremoves the torque that
causes this rotation. Hence, in case of tail rotor failune, gilot can still maintain
control of the helicopter by disengaging the engine andgperihg an autorotation
descent and landing.

In this paper, we present the first controller to successfuilot a (RC) heli-
copter during an autorotation descent and landing. We Isyacbllecting flight data
from our expert human pilot, which includes several autatioh descent and landing
demonstrations. Next we learn a dynamics model from thetftigta® The dynam-
ics model we propose in this paper builds upon the dynamiackeiproposed in [2]:
we extend it for the autorotation setting. In particulag thodel we present in this
paper explicitly incorporates a model for the rotor speedadyics, a crucial aspect
of helicopter flight during autorotatichThen, since it can be very difficult to spec-
ify helicopter maneuvers by hand, we use the expert denaiimsis to define the
autorotation task. (See also, e.g., [5], where demonstratiwere used to enable
a helicopter to fly high performance helicopter aerobgtiemce we have the task
specification and the dynamics model, we use differentinbdyic programming (an
extension of the linear quadratic regulator to nonlineatesys, see, e.g., [8, 3]) to
find a feedback controller to perform the autonomous auationts.

We extensively tested our autonomous autorotation cdetroh our helicopter.
Concretely, we had our helicopter perform a large number@Rautorotations, each
of which resulted in a successful landing.

There is a significant body of work studying helicopter flighautorotation (see,
e.g., [18, 11, 9]). However, prior work has only considetasl analysis of autorota-
tion controllers and autorotation dynamics—often with tbalgf pilot training. No

3 Note on terminology: we do not intend to make a distinction between “systemtifida-
tion” and “learning a dynamics model.” For the purposes of this papeetban be consid-
ered equivalent.

4 1n powered helicopter flight, the variation in rotor speed is relatively misaha engine
tries to keep the rotor speed close to constant.
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prior work has autonomously descended and landed a heictipbugh autorota-
tion.

In Section 2 we describe our modeling approach. In Sectiore 3@scribe our
control design and give details on how we use the demormtisatd define the con-
trol task. In Section 4 we describe our experimental res8kstion 5 concludes the
paper.

Videos of our autonomous autorotations are available at:

http://heli.stanford. edu.

2 Modeling the Dynamics

Helicopters are well-known to have complex dynamics. Fetance, to completely
capture the state of the “helicopter system” one would havediude the—typically
extremely complex—state of the air around the helicopter hé dynamics model.
(See, e.g., [12, 18].) However, various prior work has shavis possible to build
a sufficiently accurate model for control by treating theidugter as a rigid-body,
possibly including the blade-flapping dynamics and the matior speed. (See, e.g.,
[13,7,6,2,1,5].)

We model the helicopter with a thirteen dimensional statesisting of position,
orientation, velocity, angular rate and main rotor spedut fielicopter is controlled
via a 4-dimensional action space: the cyclic pitch contig|s 1., which cause the
helicopter to pitch forward/backward or sideways; thertatibr (rudder) control,.q,
which affects tail rotor thrust, and can be used to yaw (tthia)helicopter; the main
rotor collective pitch control.,;, which changes the main rotor thrust by changing
the pitch of the rotor blades.

Following [2], we first subtract out the effects of inertiadagravity, and then
learn a model from data to predict accelerations in a coatdiframe attached to
the helicopter. Doing so allows us to use a dynamics modél avitelatively small
number of parameters to be estimated from flight data. Wegriate the accelerations
over time to obtain position, velocity, orientation, argulate and main rotor speed.

Concretely, our dynamics model uses the following pararizetiion to predict
accelerations:

UW=v*r—w*q— gy + C. *[ul,
V=wxp—u*r— g, +Cl x[v],
W=uxq—v*xp—gy+ClL*[l; w; dco*2; Vu+v?],
p=0Cp*[l; p; g * 02,

G=Cyx[l; ¢ iion * 12,

7P =CLx[l; 75 fdpua* 2,

R =Co*[l; 2 icot; w; VU240 (il + )]
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The velocities ¢, v, w) and angular rate(q, r) are expressed in the helicopter’s
reference frame. Herg,, g, g, refer to the components of gravity in the helicopter’s
reference frames? is the main-rotor speed. Similar to [2], we evaluate the rhbge
considering its simulation accuracy over several secdndsection 4 we document
this accuracy in detail for the rotor speed, which is patéidy important for autoro-
tation.

We estimate the parameter vectérsfrom flight data using least squares. Note
that only the last equation in the dynamics model is spea@fmutorotation. Hence,
thanks to the non-linear parameterization, we can use malfiéght data to estimate
the parameters appearing in the first six equations. Thig isteresting practical
property of the proposed model: during autorotation it ingéous to apply large
control inputs as is often done when collecting data withghgpose of learning a
dynamics model—large control inputs would slow down the refmeed and make
the helicopter hard (or even impossible) to control. Thelinear parameterization
allows one to still use data with large control inputs to tetire model. In our expe-
rience this improves the accuracy of the learned modelcédfheso when the flight
data is noisy—as is often the case for (small-scale) helepthere vibration tends
to pollute the sensor measurements, and the resultingesttiteates.

The ground is well known to affect helicopter dynamics whemehe helicopter
is within two rotorspans of the ground. In our experiments, faund it diffult to
accurately model the influence of the ground effect on thetler dynamics.
However, the net effect relevant for control during an aniiation landing was suf-
ficiently well captured by adding a vertical offset relatitcethe vertical position
predicted in the absence of ground effect. This verticadeifivas easily estimated
from flight data and taken into account accordingly.

3 Control

Once we have an accurate dynamics model, two key challeegasim: (i) Formu-
lating the control problem in a format amenable to contrdigie algorithms, and
(ii) Solving the resulting control problem.

For the case of optimal control (or reinforcement learnimg) need to specify a
cost function that corresponds to the task at hand. For aantpkks, such as heli-
copter flight, it is often very challenging to hand-specifg task in the form of a cost
function. Concretely, for many helicopter maneuvers dyfaiatural description of
the task requires one to specify a trajectory (a sequendatessand control inputs to
be visited over time). However, helicopter dynamics arg eemplex and this makes
it difficult (if not impossible) to hand-specify a trajecyothat (even approximately)
obeys the dynamics. Similarly to [5], we leverage our expéat’s demonstrations
to find a good target trajectory.

Concretely, an autorotation maneuver is naturally spld three phases.

5 Close to the ground, one cannot safely exert the large control inputdastily used to
collect flight data for system identification.
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1. Autorotation glide. The helicopter descends at a reasonable velocity while
maintaining a sufficiently high main rotor speed, which igical for the he-
licopter to be able to successfully perform the flare.

2. Autorotation flare. Once the helicopter is at a certain altitude above the ground
it transitions from the glide phase into the flare phase. Tdre $lows down the
helicopter and (ideally) brings it to zero-velocity abo0GtE above the ground.

3. Autorotation landing. Once the helicopter has completed the flare, it lands by
using the remaining rotor speed to maintain a level oriériaand slowly de-
scend until contacting the ground.

We recorded several autorotations from our expert pilot spld each of the
recorded trajectories into these three phases.

The glide is a steady state (rather than a trajectory) andiekeg as our target
glide state a typical state (in particular velocity and ratpeed) from the glides our
expert performed.

The landing is simply characterized by a level orientatemotor speed, and a
very low downward velocity. Concretely, our target for tlaading is for the heli-
copter to maintain zero velocity and level orientation.c®itthe helicopter’s engine
is disabled, the main rotor speed will gradually decreasaduhis in-place hover,
and the helicopter will slowly descend and land.

The flare is very challenging to specify—it does require aestedjectory. A
natural candidate for the flare trajectory would be the begéd demonstration, or
even an idealized version automatically estimated fronekpert’s many suboptimal
demonstrations (as proposed for helicopter aerobaticS])n\\Ve use an idealized
version of the best expert demonstration for our flare targgtctory. (See Section 4
for details.)

Once we have the target state or trajectory for each phabke iatorotation, we
use differential dynamic programming (DDP), an extensibthe linear quadratic
regulator (LQR) formalism for non-linear systems. We peabuadratically for
deviations from the target state or trajectory. See, €3§).f¢r more details on linear
quadratic methods, [8] for more details on DDP, [1] for moegails on DDP in the
context of autonomous helicopter flight.

4 Experimental Results

4.1 Experimental Setup

Figure 1 shows our helicopter platform: an XCell Tempesidta 54", height 19”)
powered by a 0.91-size, two-stroke engine. We instrumeatgdXCell Tempest
with a Microstrain 3DM-GX1 inertial unit, which measuresdh-axis acceleration,
angular rate and magnetic field. A ground-based four-casystem measures the
helicopter’s positioff. A (extended) Kalman filter uses both of these sets of mea-
surements to track the helicopter’s position, velocitigatation and angular rate. In

5 Using ground-based vision is just one of many possible ways of solviadptialization
problem. Of course, the presented control approach is indepeofitive particular sens-
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Fig. 1. Instrumented XCell Tempest during autonomous autorotation.

addition, our Tempest includes a custom tachometer, wtsels a magnet attached
to the main rotor shaft and a Hall effect sensor to monitorrtitational speed of
the main rotor. Our Tempest also includes a sonar unit, whielasures distance
from the ground. XBee Pro 2.4GHz wireless radios relay seim$ormation from
the helicopter to the ground-based flight computer.

4.2 Modeling and Simulation Results

First we had our (human) pilot perform autorotations andepseon each of the
four control inputs through their normal operating rangepéarticular, we collected
10 minutes of autorotation demonstrations and 10 minutépafiered) frequency
sweeps for each of the control inputs. During the powereduieacy sweeps, the
governor regulated the main rotor speed around 1700rprin@autorotation the
control sweeps are small and gentle to avoid expending tagignal energy of the
rotor blades. Then we learned a model from the flight data saritheed in Section 2.
Model accuracy for position and orientation for the famifynmodels we use has
been validated in earlier work (see, e.g., [2]). Here we $oon the novel modeling
aspect: the rotor speed model. We simulated the rotor spesrdtime. The rotor
speed’s evolution over time depends on the velocity andrabimtputs, which we
provide to our simulator for this evaluation. Figure 2(apwk both the simulated
rotor speed and the actual rotor speed for a typical autiwatdescent. Our rotor
speed dynamics model accurately captures the true rotedstymamics throughout.

ing setup. One could conceivably localize the helicopter using, e.g., GP&y other
localization system that might be available.

"The parameters we found for our helicopter wer®, = —0.05 C, =
—0.06; C, = [—0.47;-1.42; -0.01;—-0.15]; C, = [—1.46;—5.74;0.02]; C, =
[—0.23; —5.32; —0.01]; C, = [0.52; —5.43;0.02]; Ca =

[106.85; —0.23; —68.53; 22.79; 2.11; —6.10].
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Fig. 2. (a) Main rotor speed simulation. (b) Altitude during four autonomous atation
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An accurate rotor speed model is crucial for model-basetrabdesign. In partic-
ular, a controller which would bring the rotor speed too lewguld make it hard (if
not impossible) to recover and the helicopter would crasitime ground.

4.3 Autonomous Flight Results

In our autonomous flight experiments, the helicopter starggitonomous hover. We
then enable a forward flight controller for 2 seconds. Thisuees the helicopter
has some forward speed. Then we disable the engine, we ehabiitorotation
controller and the helicopter begins its (unpowered) aédion maneuvet.

During the first phase of the autorotation, the glide, ourticlier tries to main-
tain a state similar to the state (crudely) maintained bymlat during his demon-
strations. In particular, we set a target rotor speed of ddiQa forward velocity
of 8m/s, a downward velocity of 5m/s, and a level orientat®imilar to our pilot’s
demonstration, once the helicopter is 9 meters above thendrave switch to the
second phase.

During the second phase, the flare, our controller tries liovioan idealized
version of our pilot’s flare demonstrations. In particulae chose our pilot’s best
demonstration, and slowed it down to ensure zero horizaefakity at the end of
the flare? Throughout the maneuver, we penalize for deviation frontalget trajec-

8 The engine is not actually turned off. Instead, the throttle is reduced todallesing the
clutch attached to the main rotor to disengage. In this state the main rotor sgghsdnd
is no longer driven by the engine.

9 Indeed, in principle it might have seemed a natural choice to just usdotiest demon-
strated flare. However, there is a big discrepancy between sensiabilit&gs of our au-
tonomous helicopter and our expert pilot. In particular, our expert péat better accu-
racy in sensing the distance of the helicopter from the ground. On the loéimet, our
autonomous helicopter has better rotor speed sensing accuracyoAsegjaence, the nat-
urally safest autorotation trajectories are different for our expert pild our autonomous
helicopter. Our expert pilot prefers the helicopter to have high velogity,can then time
his controls just right relative to the ground to transfer (forward) viglanto rotor speed
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Fig. 3. (a) Main rotor speed during autonomous autorotation flights. (b) Altitudbeheli-

copter during autonomous autorotation flights. (c) Forward velocity ohtlieopter during
autonomous autorotation flights. (d) Pitch angle for the helicopter durittmpamous autoro-
tation flights. (e) Main rotor speed in (closed-loop) simulation. (f) Altitudéhefhelicopter in
(closed-loop) simulation. (g) Forward velocity of the helicopter in (cleeg) simulation.
(h) Pitch angle for the helicopter in (closed-loop) simulation. (See texddtails.)
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tory’s velocity, angular rate, altitude, orientation antbr speed. Once the helicopter
is 0.5 meters above the ground, we switch to the third phase.

During the third phase, the landing, our controller triebdwer the helicopter in
place. The helicopter will slowly lose rotor speed whileripso, and touch down.

We performed the maneuver twenty-five times to experimbntellidate our
controller's performance. Each of the autorotation lagdisuccessfully touched the
helicopter down gently, never causing any damage. Figur® hows our au-
tonomous flight results. In particular, it shows the mairapeed, the altitude, the
forward velocity and the pitch angle of our helicopter thgbaut each of the au-
tonomous autorotations we performed. Since the glide pbasdake an arbitrary
amount of time (depending on how long it takes to reach thiudé that triggers
the flare phase), the flights are time-aligned by setting torime zero at the start of
the flare phase. The plots start at the time we switch to poffenode. The plots
show that our autorotation controller successfully holasrhain rotor speed around
1150rpm during the glide. It consistently manages to debeta reasonable veloc-
ity, and bring its velocity close to zero during the flare.

Figure 3 (e-h) shows our simulator’s predictions for ouroanitation descents.
Our simulator’s predictions fairly closely match the flighsults.

Figures 4, 5 and 6 show mosaics of three of our autorotatioremaers. To make
the mosaics, we subsampled videos of three of our autonomdosotation flights
at 4Hz. Then we overlaid the images, ensuring the backgrauodrrectly aligned.
Finally,for every frame we put the patch containing thedwgter in the first layer.

We posted videos of our autonomous autorotations at theraviiged in the
introduction.

We also performed a completely separate set of flight testssfog on the glide
phase to verify our controller’s capability of prolongedhaintaining a sufficiently
high main rotor speed, while descending relatively slowlgure 2 (b) and (c) show
the main rotor speed and altitude throughout several loidggl Our controller suc-
cessfully maintains a sufficiently high main rotor speedtighout the glides: From
a nominal (power on) rotor speed of roughly 1700 RPM, the matior is slowed to
a steady-state rate around our target for this case of 1208RIBually within just
30RPM.

5 Conclusion

Autorotation is a maneuver that allows one to safely bringrda helicopter in case
of engine failure and in case of tail-rotor failure. We firsilect flight data from

an expert pilot. We use the flight data to (i) build an accudyteamics model of
a helicopter in autorotation, and (ii) help us define the ani&tion task. Then we

when pitching back during the flare. By contrast, our autonomous héticopn more ac-
curately maintain rotor speed during the descent. Hence it does noaieerdch forward

velocity to ensure sufficient rotor speed in the flare and landing phasa.cdnsequence,
the safer approach for our autonomous helicopter is to execute a stwedversion of

our expert’s autorotation.
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use tools from optimal control (in particular, differedtilynamic programming) to
design a controller for autonomous autorotation. Our drpamts present the first
successful autonomous autorotations of (RC) helicopters.
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Fig. 4. Mosaic of one of our autonomous autorotation flights as viewed from to theflihe
helicopter. (Sampled at 4Hz.)
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Fig. 5. Mosaic of one of our autonomous autorotation flights as viewed from it fsbthe
helicopter. (Sampled at 4Hz.)
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Fig. 6. Mosaic of one of our autonomous autorotation flights as viewed from toighe of
the helicopter. (Sampled at 4Hz.)



