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Summary. In case of engine failure, skilled pilots can save a helicopter from crashing by
executing an emergency procedure known as autorotation. In autorotation, rather than relying
on the engine to drive the main rotor, the pilot has to control the helicopter such that poten-
tial energy from altitude is transferred to rotor speed. In fact, maintaininga sufficiently high
rotor speed is critical to retain sufficient control of the helicopter to land safely. In this paper,
we present the first autonomous controller to successfully pilot a remotely controlled (RC)
helicopter during an autorotation descent and landing.

1 Introduction

Autonomous helicopter flight represents a challenging control problem with high-
dimensional, asymmetric, nonlinear dynamics. Helicopters are widely regarded to
be significantly harder to control than fixed-wing aircraft.(See, e.g., [12, 18].) At
the same time, helicopters provide unique capabilities, such as in place hover and
low-speed flight, important for many applications.

Recently, there has been considerable progress in autonomous (RC) helicopter
flight. Examples range from basic upright hovering and forward flight [4, 10, 15, 16,
17] to inverted hovering [14], and even to extreme aerobaticmaneuvers [1, 6, 5].

All of this prior work pertains to helicopters operating with normal engine power.
By contrast, in this paper we consider autonomous helicopter flight when the engine
is not engaged. Indeed, even when the engine has failed, a skilled pilot can safely
descend and land a helicopter through autorotation.

Whereas during powered flight, the rotor drag is overcome by the engine power,
during autorotation the rotor drag is overcome by the airflowthrough the blades.
Effectively the potential energy of the helicopter (corresponding to its altitude) is
transferred to rotor speed. This rotor speed allows the pilot to control the helicopter
throughout its descent, and then slow down the helicopter before touching down.

Autorotation landings are a challenging maneuver and improperly executing an
autorotation maneuver often leads to severe damage or even complete loss of the



2 Pieter Abbeel, Adam Coates, Timothy Hunter, and Andrew Y. Ng

helicopter: If the main rotor speed becomes too low, it becomes impossible to reli-
ably control the helicopter, and the helicopter will typically crash. If the helicopter
touches the ground with substantial horizontal velocity, it will tip over. If the heli-
copter touches the ground with too low a main rotor speed thenthe main rotor blades
will flex sharply downward. This can result in one of the rotorblades striking the
tailboom, destroying both that rotor blade and the tailboom.

Moreover, in contrast with regular landings—where the pilotcould abort a land-
ing attempt and try again later— autorotation landings onlygive you a single shot
at the approach. One autorotation landing attempt with a poor controller suffices
to destroy a helicopter. This makes autorotation landings logistically a particularly
challenging research problem.

While engine failure is likely the better known reason to fly a helicopter in au-
torotation, autorotation is also crucial in case of tail-rotor failure. In case of tail-rotor
failure, if one keeps the engine running, the torque from theengine causes the heli-
copter to rotate (fast) around its vertical axis, which makes it very hard (if not impos-
sible) to fly the helicopter reliably. Switching off the engine removes the torque that
causes this rotation. Hence, in case of tail rotor failure, the pilot can still maintain
control of the helicopter by disengaging the engine and performing an autorotation
descent and landing.

In this paper, we present the first controller to successfully pilot a (RC) heli-
copter during an autorotation descent and landing. We startby collecting flight data
from our expert human pilot, which includes several autorotation descent and landing
demonstrations. Next we learn a dynamics model from the flight data.3 The dynam-
ics model we propose in this paper builds upon the dynamics model proposed in [2]:
we extend it for the autorotation setting. In particular, the model we present in this
paper explicitly incorporates a model for the rotor speed dynamics, a crucial aspect
of helicopter flight during autorotation.4 Then, since it can be very difficult to spec-
ify helicopter maneuvers by hand, we use the expert demonstrations to define the
autorotation task. (See also, e.g., [5], where demonstrations were used to enable
a helicopter to fly high performance helicopter aerobatics.) Once we have the task
specification and the dynamics model, we use differential dynamic programming (an
extension of the linear quadratic regulator to nonlinear systems, see, e.g., [8, 3]) to
find a feedback controller to perform the autonomous autorotations.

We extensively tested our autonomous autorotation controller on our helicopter.
Concretely, we had our helicopter perform a large number (25) of autorotations, each
of which resulted in a successful landing.

There is a significant body of work studying helicopter flightin autorotation (see,
e.g., [18, 11, 9]). However, prior work has only considered the analysis of autorota-
tion controllers and autorotation dynamics—often with the goal of pilot training. No

3 Note on terminology: we do not intend to make a distinction between “system identifica-
tion” and “learning a dynamics model.” For the purposes of this paper these can be consid-
ered equivalent.

4 In powered helicopter flight, the variation in rotor speed is relatively minor as the engine
tries to keep the rotor speed close to constant.



Autonomous Autorotation of an RC Helicopter 3

prior work has autonomously descended and landed a helicopter through autorota-
tion.

In Section 2 we describe our modeling approach. In Section 3 we describe our
control design and give details on how we use the demonstrations to define the con-
trol task. In Section 4 we describe our experimental results. Section 5 concludes the
paper.

Videos of our autonomous autorotations are available at:

http://heli.stanford.edu.

2 Modeling the Dynamics

Helicopters are well-known to have complex dynamics. For instance, to completely
capture the state of the “helicopter system” one would have to include the—typically
extremely complex—state of the air around the helicopter into the dynamics model.
(See, e.g., [12, 18].) However, various prior work has shownit is possible to build
a sufficiently accurate model for control by treating the helicopter as a rigid-body,
possibly including the blade-flapping dynamics and the mainrotor speed. (See, e.g.,
[13, 7, 6, 2, 1, 5].)

We model the helicopter with a thirteen dimensional state consisting of position,
orientation, velocity, angular rate and main rotor speed. The helicopter is controlled
via a 4-dimensional action space: the cyclic pitch controlsilon, ilat, which cause the
helicopter to pitch forward/backward or sideways; the tailrotor (rudder) controlirud,
which affects tail rotor thrust, and can be used to yaw (turn)the helicopter; the main
rotor collective pitch controlicol, which changes the main rotor thrust by changing
the pitch of the rotor blades.

Following [2], we first subtract out the effects of inertia and gravity, and then
learn a model from data to predict accelerations in a coordinate frame attached to
the helicopter. Doing so allows us to use a dynamics model with a relatively small
number of parameters to be estimated from flight data. We integrate the accelerations
over time to obtain position, velocity, orientation, angular rate and main rotor speed.

Concretely, our dynamics model uses the following parameterization to predict
accelerations:

u̇ = v ∗ r − w ∗ q − gu + C ′

u ∗ [u],

v̇ = w ∗ p − u ∗ r − gv + C ′

v ∗ [v],

ẇ = u ∗ q − v ∗ p − gw + C ′

w ∗ [1; w; icol ∗ Ω;
√

u2 + v2],

ṗ = C ′

p ∗ [1; p; ilat ∗ Ω],

q̇ = C ′

q ∗ [1; q; ilon ∗ Ω],

ṙ = C ′

r ∗ [1; r; irud ∗ Ω],

Ω̇ = C ′

Ω ∗ [1; Ω; icol; w;
√

u2 + v2; (i2
lat

+ i2
lon

)].
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The velocities (u, v, w) and angular rates (p, q, r) are expressed in the helicopter’s
reference frame. Heregu, gv, gw refer to the components of gravity in the helicopter’s
reference frame;Ω is the main-rotor speed. Similar to [2], we evaluate the model by
considering its simulation accuracy over several seconds.In Section 4 we document
this accuracy in detail for the rotor speed, which is particularly important for autoro-
tation.

We estimate the parameter vectorsC· from flight data using least squares. Note
that only the last equation in the dynamics model is specific to autorotation. Hence,
thanks to the non-linear parameterization, we can use powered flight data to estimate
the parameters appearing in the first six equations. This is an interesting practical
property of the proposed model: during autorotation it is dangerous to apply large
control inputs as is often done when collecting data with thepurpose of learning a
dynamics model—large control inputs would slow down the rotor speed and make
the helicopter hard (or even impossible) to control. The nonlinear parameterization
allows one to still use data with large control inputs to learn the model. In our expe-
rience this improves the accuracy of the learned model, especially so when the flight
data is noisy—as is often the case for (small-scale) helicopters where vibration tends
to pollute the sensor measurements, and the resulting stateestimates.

The ground is well known to affect helicopter dynamics whenever the helicopter
is within two rotorspans of the ground. In our experiments, we found it diffult to
accurately model the influence of the ground effect on the helicopter dynamics.5

However, the net effect relevant for control during an autorotation landing was suf-
ficiently well captured by adding a vertical offset relativeto the vertical position
predicted in the absence of ground effect. This vertical offset was easily estimated
from flight data and taken into account accordingly.

3 Control

Once we have an accurate dynamics model, two key challenges remain: (i) Formu-
lating the control problem in a format amenable to control design algorithms, and
(ii) Solving the resulting control problem.

For the case of optimal control (or reinforcement learning), we need to specify a
cost function that corresponds to the task at hand. For complex tasks, such as heli-
copter flight, it is often very challenging to hand-specify the task in the form of a cost
function. Concretely, for many helicopter maneuvers a fairly natural description of
the task requires one to specify a trajectory (a sequence of states and control inputs to
be visited over time). However, helicopter dynamics are very complex and this makes
it difficult (if not impossible) to hand-specify a trajectory that (even approximately)
obeys the dynamics. Similarly to [5], we leverage our expertpilot’s demonstrations
to find a good target trajectory.

Concretely, an autorotation maneuver is naturally split into three phases.

5 Close to the ground, one cannot safely exert the large control inputs standardly used to
collect flight data for system identification.
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1. Autorotation glide. The helicopter descends at a reasonable velocity while
maintaining a sufficiently high main rotor speed, which is critical for the he-
licopter to be able to successfully perform the flare.

2. Autorotation flare. Once the helicopter is at a certain altitude above the ground,
it transitions from the glide phase into the flare phase. The flare slows down the
helicopter and (ideally) brings it to zero-velocity about 50cm above the ground.

3. Autorotation landing. Once the helicopter has completed the flare, it lands by
using the remaining rotor speed to maintain a level orientation and slowly de-
scend until contacting the ground.

We recorded several autorotations from our expert pilot andsplit each of the
recorded trajectories into these three phases.

The glide is a steady state (rather than a trajectory) and we picked as our target
glide state a typical state (in particular velocity and rotor speed) from the glides our
expert performed.

The landing is simply characterized by a level orientation,a rotor speed, and a
very low downward velocity. Concretely, our target for the landing is for the heli-
copter to maintain zero velocity and level orientation. Since the helicopter’s engine
is disabled, the main rotor speed will gradually decrease during this in-place hover,
and the helicopter will slowly descend and land.

The flare is very challenging to specify—it does require a state trajectory. A
natural candidate for the flare trajectory would be the best expert demonstration, or
even an idealized version automatically estimated from theexpert’s many suboptimal
demonstrations (as proposed for helicopter aerobatics in [5]). We use an idealized
version of the best expert demonstration for our flare targettrajectory. (See Section 4
for details.)

Once we have the target state or trajectory for each phase in the autorotation, we
use differential dynamic programming (DDP), an extension of the linear quadratic
regulator (LQR) formalism for non-linear systems. We penalize quadratically for
deviations from the target state or trajectory. See, e.g., [3], for more details on linear
quadratic methods, [8] for more details on DDP, [1] for more details on DDP in the
context of autonomous helicopter flight.

4 Experimental Results

4.1 Experimental Setup

Figure 1 shows our helicopter platform: an XCell Tempest (length 54”, height 19”)
powered by a 0.91-size, two-stroke engine. We instrumentedour XCell Tempest
with a Microstrain 3DM-GX1 inertial unit, which measures three-axis acceleration,
angular rate and magnetic field. A ground-based four-camerasystem measures the
helicopter’s position.6 A (extended) Kalman filter uses both of these sets of mea-
surements to track the helicopter’s position, velocity, orientation and angular rate. In
6 Using ground-based vision is just one of many possible ways of solving the localization

problem. Of course, the presented control approach is independentof the particular sens-
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Fig. 1. Instrumented XCell Tempest during autonomous autorotation.

addition, our Tempest includes a custom tachometer, which uses a magnet attached
to the main rotor shaft and a Hall effect sensor to monitor therotational speed of
the main rotor. Our Tempest also includes a sonar unit, whichmeasures distance
from the ground. XBee Pro 2.4GHz wireless radios relay sensor information from
the helicopter to the ground-based flight computer.

4.2 Modeling and Simulation Results

First we had our (human) pilot perform autorotations and sweeps on each of the
four control inputs through their normal operating range. In particular, we collected
10 minutes of autorotation demonstrations and 10 minutes of(powered) frequency
sweeps for each of the control inputs. During the powered frequency sweeps, the
governor regulated the main rotor speed around 1700rpm. During autorotation the
control sweeps are small and gentle to avoid expending the rotational energy of the
rotor blades. Then we learned a model from the flight data as described in Section 2.7

Model accuracy for position and orientation for the family of models we use has
been validated in earlier work (see, e.g., [2]). Here we focus on the novel modeling
aspect: the rotor speed model. We simulated the rotor speed over time. The rotor
speed’s evolution over time depends on the velocity and control inputs, which we
provide to our simulator for this evaluation. Figure 2(a) shows both the simulated
rotor speed and the actual rotor speed for a typical autorotation descent. Our rotor
speed dynamics model accurately captures the true rotor speed dynamics throughout.

ing setup. One could conceivably localize the helicopter using, e.g., GPS, or any other
localization system that might be available.

7 The parameters we found for our helicopter were:Cu = −0.05; Cv =
−0.06; Cw = [−0.47;−1.42;−0.01;−0.15]; Cp = [−1.46;−5.74; 0.02]; Cq =
[−0.23;−5.32;−0.01]; Cr = [0.52;−5.43; 0.02]; CΩ =
[106.85;−0.23;−68.53; 22.79; 2.11;−6.10].
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Fig. 2. (a) Main rotor speed simulation. (b) Altitude during four autonomous autorotation
descents. (c) Main rotor speed during four autonomous autorotation descents. (See text for
details.)

An accurate rotor speed model is crucial for model-based control design. In partic-
ular, a controller which would bring the rotor speed too low,would make it hard (if
not impossible) to recover and the helicopter would crash into the ground.

4.3 Autonomous Flight Results

In our autonomous flight experiments, the helicopter startsin autonomous hover. We
then enable a forward flight controller for 2 seconds. This ensures the helicopter
has some forward speed. Then we disable the engine, we enablethe autorotation
controller and the helicopter begins its (unpowered) autorotation maneuver.8

During the first phase of the autorotation, the glide, our controller tries to main-
tain a state similar to the state (crudely) maintained by ourpilot during his demon-
strations. In particular, we set a target rotor speed of 1150rpm, a forward velocity
of 8m/s, a downward velocity of 5m/s, and a level orientation. Similar to our pilot’s
demonstration, once the helicopter is 9 meters above the ground, we switch to the
second phase.

During the second phase, the flare, our controller tries to follow an idealized
version of our pilot’s flare demonstrations. In particular,we chose our pilot’s best
demonstration, and slowed it down to ensure zero horizontalvelocity at the end of
the flare.9 Throughout the maneuver, we penalize for deviation from thetarget trajec-

8 The engine is not actually turned off. Instead, the throttle is reduced to idle,causing the
clutch attached to the main rotor to disengage. In this state the main rotor spins freely and
is no longer driven by the engine.

9 Indeed, in principle it might have seemed a natural choice to just use the slowest demon-
strated flare. However, there is a big discrepancy between sensing capabilities of our au-
tonomous helicopter and our expert pilot. In particular, our expert pilothas better accu-
racy in sensing the distance of the helicopter from the ground. On the otherhand, our
autonomous helicopter has better rotor speed sensing accuracy. As a consequence, the nat-
urally safest autorotation trajectories are different for our expert pilot and our autonomous
helicopter. Our expert pilot prefers the helicopter to have high velocity, and can then time
his controls just right relative to the ground to transfer (forward) velocity into rotor speed
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Fig. 3. (a) Main rotor speed during autonomous autorotation flights. (b) Altitude ofthe heli-
copter during autonomous autorotation flights. (c) Forward velocity of thehelicopter during
autonomous autorotation flights. (d) Pitch angle for the helicopter during autonomous autoro-
tation flights. (e) Main rotor speed in (closed-loop) simulation. (f) Altitude ofthe helicopter in
(closed-loop) simulation. (g) Forward velocity of the helicopter in (closed-loop) simulation.
(h) Pitch angle for the helicopter in (closed-loop) simulation. (See text fordetails.)
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tory’s velocity, angular rate, altitude, orientation and rotor speed. Once the helicopter
is 0.5 meters above the ground, we switch to the third phase.

During the third phase, the landing, our controller tries tohover the helicopter in
place. The helicopter will slowly lose rotor speed while doing so, and touch down.

We performed the maneuver twenty-five times to experimentally validate our
controller’s performance. Each of the autorotation landings successfully touched the
helicopter down gently, never causing any damage. Figure 3 (a-d) shows our au-
tonomous flight results. In particular, it shows the main rotor speed, the altitude, the
forward velocity and the pitch angle of our helicopter throughout each of the au-
tonomous autorotations we performed. Since the glide phasecan take an arbitrary
amount of time (depending on how long it takes to reach the altitude that triggers
the flare phase), the flights are time-aligned by setting timeto be zero at the start of
the flare phase. The plots start at the time we switch to power-off mode. The plots
show that our autorotation controller successfully holds the main rotor speed around
1150rpm during the glide. It consistently manages to descend at a reasonable veloc-
ity, and bring its velocity close to zero during the flare.

Figure 3 (e-h) shows our simulator’s predictions for our autorotation descents.
Our simulator’s predictions fairly closely match the flightresults.

Figures 4, 5 and 6 show mosaics of three of our autorotation maneuvers. To make
the mosaics, we subsampled videos of three of our autonomousautorotation flights
at 4Hz. Then we overlaid the images, ensuring the backgroundis correctly aligned.
Finally,for every frame we put the patch containing the helicopter in the first layer.

We posted videos of our autonomous autorotations at the url provided in the
introduction.

We also performed a completely separate set of flight tests focusing on the glide
phase to verify our controller’s capability of prolongedlymaintaining a sufficiently
high main rotor speed, while descending relatively slowly.Figure 2 (b) and (c) show
the main rotor speed and altitude throughout several long glides. Our controller suc-
cessfully maintains a sufficiently high main rotor speed throughout the glides: From
a nominal (power on) rotor speed of roughly 1700 RPM, the mainrotor is slowed to
a steady-state rate around our target for this case of 1200RPM—usually within just
30RPM.

5 Conclusion

Autorotation is a maneuver that allows one to safely bring down a helicopter in case
of engine failure and in case of tail-rotor failure. We first collect flight data from
an expert pilot. We use the flight data to (i) build an accuratedynamics model of
a helicopter in autorotation, and (ii) help us define the autorotation task. Then we

when pitching back during the flare. By contrast, our autonomous helicopter can more ac-
curately maintain rotor speed during the descent. Hence it does not needas much forward
velocity to ensure sufficient rotor speed in the flare and landing phase. As a consequence,
the safer approach for our autonomous helicopter is to execute a slowed-down version of
our expert’s autorotation.
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use tools from optimal control (in particular, differential dynamic programming) to
design a controller for autonomous autorotation. Our experiments present the first
successful autonomous autorotations of (RC) helicopters.
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Fig. 4. Mosaic of one of our autonomous autorotation flights as viewed from to the left of the
helicopter. (Sampled at 4Hz.)
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Fig. 5. Mosaic of one of our autonomous autorotation flights as viewed from in front of the
helicopter. (Sampled at 4Hz.)
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Fig. 6. Mosaic of one of our autonomous autorotation flights as viewed from to the right of
the helicopter. (Sampled at 4Hz.)


