
UMEÅ UNIVERSITY MEDICAL DISSERTATIONS 
New series No. 1009 

 
 
 
 
 
 
 

Adaptive signal processing of 
surface electromyogram signals 

 
 
 

Nils Östlund 
 
 
 
 
 
 
 
 
 

 
 
 
Department of Radiation Sciences, Umeå University, Sweden 

Department of Biomedical Engineering and Informatics, 
University Hospital, Umeå, Sweden 

Umeå 2006 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Nils Östlund 2006 
 

ISSN 0346-6612 
ISBN 91-7264-033-2 

 
Printed by Print & Media, 

Umeå University, Sweden, 2006 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

“The important thing in science is not so much to obtain new 
facts as to discover new ways of thinking about them” 

 
William Bragg (1862-1942) 

 
 
 
 
 

 
 



 

 
 



Abstract 
 
Electromyography is the study of muscle function through the electrical 
signals from the muscles. In surface electromyography the electrical signal is 
detected on the skin. The signal arises from ion exchanges across the muscle 
fibres’ membranes. The ion exchange in a motor unit, which is the smallest 
unit of excitation, produces a waveform that is called an action potential 
(AP). When a sustained contraction is performed the motor units involved 
in the contraction will repeatedly produce APs, which result in AP trains. A 
surface electromyogram (EMG) signal consists of the superposition of many 
AP trains generated by a large number of active motor units. The aim of this 
dissertation was to introduce and evaluate new methods for analysis of 
surface EMG signals. 

An important aspect is to consider where to place the electrodes during 
the recording so that the electrodes are not located over the zone where the 
neuromuscular junctions are located. A method that could estimate the 
location of this zone was presented in one study. 

The mean frequency of the EMG signal is often used to estimate muscle 
fatigue. For signals with low signal-to-noise ratio it is important to limit the 
integration intervals in the mean frequency calculations. Therefore, a 
method that improved the maximum frequency estimation was introduced 
and evaluated in comparison with existing methods. 

The main methodological work in this dissertation was concentrated on 
finding single motor unit AP trains from EMG signals recorded with several 
channels. In two studies single motor unit AP trains were enhanced by using 
filters that maximised the kurtosis of the output. The first of these studies 
used a spatial filter, and in the second study the technique was expanded to 
include filtration in time. The introduction of time filtration resulted in 
improved performance, and when the method was evaluated in comparison 
with other methods that use spatial and/or temporal filtration, it gave the 
best performance among them. In the last study of this dissertation this 
technique was used to compare AP firing rates and conduction velocities in 
fibromyalgia patients as compared with a control group of healthy subjects. 

In conclusion, this dissertation has resulted in new methods that improve 
the analysis of EMG signals, and as a consequence the methods can simplify 
physiological research projects.  
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Abbreviations 
 
AP action potential 
BSS blind source separation 
CV conduction velocity 
CWT continuous wavelet 

transform 
ECG electrocardiogram 
EMG electromyogram 
FN false negative 
FP false positive 
IB2 inverse binomial of 

order two 
ICA independent component 

analysis 
IMNF instantaneous mean 

frequency 
IR inverse rectangle 
IZ innervation zone 
JADE joint approximate 

diagonalisation of 
eigenmatrices 

LDD longitudinal double 
differential 

LSD longitudinal single 
differential 

MKF maximum kurtosis filter 
MNF mean frequency 

MU motor unit 
MUAP motor unit action 

potential 
NDD normal double 

differential 
NMJ neuromuscular junction 
PCA principal component 

analysis 
PSD power spectral density 
RBTM running block threshold 

method 
RMS root-mean-square 
ROC receiver operating 

characteristic 
TCM threshold crossing 

method 
TFR time-frequency 

representation 
TN True negative 
TP True positve 
SNR signal-to-noise ratio 
STFT short-time Fourier 

transform 
WLPD weighted low-pass 

differential 
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Introduction 
 
Electromyography is the study of muscle function through the electrical 
signals from the muscles. In surface electromyography the electrical signal, 
the electromyogram (EMG†) signal, is detected on the skin. The signal arises 
from ion exchanges across the muscle fibres’ membranes. The EMG signal, 
when recorded with electrodes on the skin, is a very complex signal due to 
the summation of signals from many muscle fibres. Surface 
electromyography is mainly used in the fields of ergonomics, biomechanics, 
sport sciences, and rehabilitation (Hermens et al., 1997; Merletti and Parker, 
2004), where it is often used to estimate muscle force, timing of different 
muscles, or muscle fatigue. 

Surface EMG recordings are unfortunately influenced by many 
parameters that are of no direct interest, for example the electrode-skin 
impedance. It would be desirable that the methods, which are used for the 
analysis of the EMG signals, could adapt to the recording situation and 
make the measurements less dependent on these parameters. This 
dissertation is a step in that direction. In signal processing literature the term 
adaptive filter often refers to a technique in which the filter coefficients are 
updated with a correction term that has been estimated from an error signal. 
In this thesis the word adaptive has a wider meaning and refers to the fact 
that the methods are adapted to the recorded data.  

 
Basic anatomy and physiology 
The primary function of muscles is to change chemical energy into 
mechanical energy. When the word muscle is used in this thesis it refers to a 
skeletal muscle. However, there are also two other types of muscles: cardiac 
and smooth muscles.  

The skeletal muscle cells are often referred to as muscle fibres. The 
muscle fibres contain several myofibrils, which can change their lengths by 
sliding filaments (Tortora and Grabowski, 2003). A muscle is able to 

 
† In this thesis EMG refers to surface EMG, unless otherwise specified. 
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produce movement due to the myofibrils’ ability to change their length. A 
muscle fibre is activated when the neurotransmitter acetylcholine is released 
in the synapse between the neuron and the muscle fibre, called the 
neuromuscular junction (NMJ). The release of acetylcholine results in a flow 
of ions (most importantly Na+) through the cell membrane (sarcolemma). 
The change of potential over the sarcolemma is called an action potential 
(AP). The NMJ is often located in the middle of the muscle fibre so the AP 
is spread in both directions along the muscle fibre. The speed of the 
propagation of the AP is called conduction velocity (CV). When the AP 
propagates it results in the release of Ca2+ from the sarcoplasmic reticulum. 
The Ca2+, in turn, triggers the sliding of the filaments in the myofibrils.  

Somatic motor neurons are usually connected to many muscle fibres, and 
each neuron together with the muscle fibres it innervates is called a motor 
unit (MU). An MU normally consists of 10 to 3000 muscle fibres (Tortora 
and Grabowski, 2003) that contract at the same time. Muscles that require 
fine precision have few muscle fibres per MU and muscles where the force is 
more important have many muscle fibres per MU. 

An AP results in a twitch contraction that lasts about 20 to 200 
milliseconds. In order to produce a more constant force the MU is 
repeatedly activated resulting in an AP train. The timing of the repeated APs 
seems to be random. In this way it is assured that different MUs are not 
activated precisely at the same time. The stochastic behaviour is therefore a 
way to obtain a smoother movement.  

 
Electromyography 
A definition of electromyography that is often used today is the introduction 
sentence from Muscles Alive by Basmajian and DeLuca (1985):  
 

“Electromyography is the study of muscle function through the inquiry of the 

electrical signal the muscles emanate”.  

 
This definition will be used in this thesis and the recorded electrical 

signal is referred to as the EMG signal. In 1792 Luiggi Galvani discovered 
that muscles and electricity have a connection, but in the years to come 
research on muscle electricity was rare. Gasser and Erlanger were the first to 
visualise APs for which, together with the interpretation of the AP, they were 
rewarded with the Nobel Prize in 1944 (Basmajian and DeLuca, 1985).  

The introduction of the concentric needle electrode by Adrian and 
Bronk (1929) was the start of the development of the clinical aspects of 
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Figure 1. Schematic description showing the EMG signal as a summation of 
motor unit action potential trains. For simplicity the muscle consists of very few 
muscle fibres and only two MUs. The image of the muscle fibres are courtesy of 
3DScience.com. 

electromyography. The needle EMG is still by far the most common 
technique for diagnostic applications.  
 
Signal acquisition 
In surface EMG, the signal is recorded with electrodes on the surface of the 
skin. The tissue located between the electrodes and the source of the signal 
will act as a volume conductor. Currents are conducted through the tissue, 
but due to the properties of the biological tissue, the amplitude of the signal 
will be reduced, especially for higher frequencies. The tissue is therefore 
acting as a low-pass filter (Lindström and Magnusson, 1977). Nevertheless, 
the surface-recorded potential from an MU is still called an AP even if it is 
heavily filtered. However, due to the fact that the surface electrodes record 
signals from a large part of the muscle, the surface EMG is an interference 
signal consisting of a large number of AP trains (see Fig. 1).  
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Noise sources 
Unfortunately, the recorded EMG signal does not only consist of a 
summation of APs from active MUs, but also of noise that derives from 
different sources. Stretching and relaxing the skin produce motion artefacts 
(de Talhouet and Webster, 1996). The motion artefacts are typically low-
frequency noise with its main energy below 20 Hz. Other sources of noise 
are interference from the electrode-skin interface, power-line interference, 
cross talk (muscle activity from other muscles), electrical activity from the 
heart, amplifier noise, and external sources (Clancy et al., 2002; Huigen et 
al., 2002).  

 
Electrode configurations 
In surface EMG a recording of a linear combination of signals from different 
electrodes is often used. By far the most common linear combination is a 
bipolar configuration (differential recording). The linear combinations can 
be seen as spatial filters defined by their filter masks showing the weights and 
their spatial locations. For example, the laplace or normal double differential 
(NDD) filter can be defined with the following filter mask: 

 
−⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

0 1 0

1 4 1 .

0 1 0

NDDA
 

(1) 
 
 

The spatial filters are almost always designed as a spatial high-pass filter in 
order to limit the electrodes’ uptake area, reduce noise, and enhance single 
APs (see Fig. 2).  
 
Models 
EMG models are well suited and often indispensable for testing and 
comparing different methods (Merletti and Parker, 2004). EMG recorded 
with ordinary bipolar electrodes resembles coloured noise and is often 
modelled as such. A popular shape of the power spectral density (PSD) is the 
shape proposed by Shwedyk et al. (1977). Stulen and DeLuca (1981) 
parameterised that shape with the following PSD: 

 
(2) ( ) ( )

=
+ +

4 2
2

22 2 2 2
1 2

( ) ,
cf f

PSD f
f f f f  

where f1 and f2 are the cut-off frequencies. 
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Figure 2. An MU located close to the skin surface generates a spatially 
steep potential (B) and a deeper MU generates a spatial potential that is 
more flat (A). Both potentials contribute to the total potential (C), but the 
potential recorded as the difference between two closely located 
electrodes (ΔU) is almost only affected by the MU that is closer to the skin. 
This figure is a modified figure from Grönlund (2005) with permission. 

When methods that enhance single APs are to be evaluated, more 
advanced models are needed. Four models (RRDsim, Anvolcon, SiMyo, and 
EMG-Sim) are freely available from the project “Surface EMG for Non-
Invasive Assessment of Muscles” (Hermens et al., 1999). These models allow 
the EMG signals to be simulated as the superposition of single MU action 
potentials (MUAPs).  

Another model, introduced by Farina and Merletti (2001b), describes 
the volume conductor as a transfer function. Farina and Merletti suggested 
using the mathematical model of the source as described by Rosenfalck 
(1969). The source signal is assumed to travel along a muscle fibre. The 
source signal is then filtered using a transfer function consisting of different 
parts that mimic the influence of the muscle, the fat layer, the skin layer (see 
equation (3)), and the recording electrode (equation not shown).  
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The above equation (4) was incorrectly written in the paper by Farina and 
Merletti (2001b) and is given correctly here. By summing simulated 
repeatedly activated source signals, which are located in different parts of the 
muscle and therefore filtered with different transfer functions, a simulated 
surface EMG signal can be created. This model simulates the volume 
conductor as flat layers, but in a later article (Farina et al., 2004) the model 
was extended to a cylindrical volume conductor.  
 
Statistics 
 
Moments and cumulants 
If the random variable X has a density function f(x), then the expectation of 
the function g(X) is: 

 
E( ( )) ( ) ( ) .g X g x f x dx

∞

−∞

= ∫ (5) 
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In particular  
 

( )
( ) moment of order 

central moment of order , 

where  is the mean (first moment)

( ) moment-generating function.

r

r

tX

g X X r

g(X) = X - u r

u

g X e

= ⇒

⇒

= ⇒

 
 
 
 
 

The power series representation of the moment-generating function 
contains the moments of the distribution. The logarithm of the moment-
generating function is called the cumulant-generating function and the nth 
coefficient in the power series of this function is κn/n!, where κn is the 
cumulant of order n. The reason for using cumulants instead of moments is 
that calculations become simpler. The first three cumulants are identical to 
the first three central moments. The third cumulant (or central moment) is 
often expressed in normalised form as κ3/κ2

3/2 and called skewness. Skewness 
is used as a measure of asymmetry of the probability distribution. The 
normalised fourth order central moment and the fourth order normalised 
cumulant are both called kurtosis. Due to the normalisation, skewness and 
kurtosis are dimension-free (not depending on the units of measurements). 
The definition of kurtosis from the central moments is called kurtosis proper 
and is calculated as μ4/μ2

2, where μr denotes the rth central moment. The 
definition from cumulants, called kurtosis excess, is κ4/κ2

2 = μ4/μ2

2-3. As 
seen in the equation the difference between kurtosis proper and kurtosis 
excess is only the term -3. For example, the normal distribution has a 
kurtosis excess of 0 and a kurtosis proper of 3. In this thesis when the word 
kurtosis is solely used it refers to kurtosis excess. Kurtosis is often used as a 
measure of the peakedness of a distribution (outlier-prone), but it can also be 
used to find a bimodal distribution (distribution with two separated peaks) 
(Darlington, 1970).  

 
Sensitivity, specificity and predictivity 
If we have a test with only two possible results (dichotomous test) it is 
possible to draw a two by two table as seen in Figure 3. 
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Figure 3. Definition of true positives, false positives, true negatives, and false 
negatives. 

With help from the table in Figure 3, which defines TP, FP, FN, and TN, it 
is possible to define the sensitivity, which is the percentage of all positive 
cases we find, as: 
 

 =sensitivity TP/(TP+FN). 
 
The percentage of all negative cases we find is called specificity and is 
defined as: 
 

 specificity=TN/(TN+FP).
 

To make the list more complete we can also define: 
 
 positive predictivity=TP/(TP+FP)

negative predictivity=TN/(TN+FN)

TP+TN
accuracy= .

TP+TN+FP+FN
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The FP is sometimes referred to as Type I error and the FN as Type II 
error. 

Since it is possible to calculate many different statistics, and they are to 
some extent dependent on each other, it has been increasingly popular to 
draw receiver operating characteristic curves (ROCs). The name originates 
from the application with radio signals. An ROC is drawn as the true 
positive rate (sensitivity) as a function of false positive rate (1-specificity) and 
then the area below the curve is often calculated.  

The sensitivity and specificity are probably the most common statistics 
calculated from dichotomous tests. However, for detection algorithms (as 
those presented in this thesis) it is hard to define true negatives and therefore 
the specificity can not be calculated. It has been proposed to use the 
sensitivity along with the positive predictivity for detection algorithms 
(Farina et al., 2001a).  

 
Power spectral estimation 
The Fourier transform uses a combination of complex sinusoids of different 
frequencies to characterise the frequency content of the signal. Because the 
sinusoids are localized in frequency but not in time the method can only be 
applied to stationary signals; that is when the frequency contents do not 
change with time. For many signals found in real life this property does not 
hold, which is the case for EMG signals. When there is a requirement for 
resolution in both time and frequency, a time-frequency representation 
(TFR) is needed.  

 
Short-time Fourier transform 

A way to get the Fourier transform time-dependent is to use a short 
window on the signal x(t). This is exactly what is done in the short-time 
Fourier transform (STFT):  

 
2*( , ) ( ) ( ) ,j fSTFT f t t x e dπ τγ τ τ −= −∫ (6) τ

 
where γ(t) is the window function and  stands for the complex conjugate. 
The choice of window function and length determines the time and 
frequency resolution. There is a trade-off between time and frequency 
resolution. If there is a need for a better time resolution the frequency 
resolution will be worse and vice versa. The sampled STFT with a Gaussian 
window is also known as the Gabor transform and the squared magnitude of 
the STFT is called spectogram. 

*
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Wavelets 

Figure 4. The sampling of the time-frequency plane for different transforms.

Because wavelets are very efficient in representing non-stationary signals and 
images, it has become an important research area. To analyse a signal with 
wavelets an elementary function is used. It is called the mother wavelet and 
is localized both in frequency and in time. The mother wavelet is then scaled 
and time-shifted and applied to the signal. An important difference between 
the STFT and the wavelet transform is the sampling of the time-frequency 
plane. For the STFT the frequency and time resolution is constant, but for 
the wavelet transform frequency resolution is better for low frequencies than 
for higher frequencies and vice versa for the time resolution, see Figure 4. 
 
Continuous wavelet transform 
For a signal x(t), the continuous wavelet transform (CWT) is expressed as: 

 
( )*

,( , ) ( ) ,a bCWT a b x t t dtψ= ∫ (7) 
 

where  
 

(8) 
 

( ),

1
a b

t b
t

aa
ψ ψ −⎛ ⎞= ⎜ ⎟

⎝ ⎠

is the scaled and time-shifted mother wavelet. A popular wavelet for 
calculating CWTs is the Morlet wavelet (Vetterli and Kovačević, 1995), 
which is defined as: 

 
(9) 

 

2
02 /21

( ) .
2

j f t tt e eπψ
π

− −=
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Figure 5. The real part of a Morlet wavelet.

The real part of the Morlet wavelet can be seen in Figure 5. The figure 
clearly shows that the Morlet wavelet is a Gaussian-shaped sine wave.  

If the signal x(t) needs to be reconstructed the mother wavelet must meet 
the following admissibility condition: 

 
(10) 

 

2
( )

,
f

C df
fψ

Ψ
= < ∞∫

 
where Ψ(f ) is the Fourier transform of the mother wavelet ψ(t). The signal 
x(t) can then be reconstructed by: 

 
(11) 

 
( ), 2

1
( ) ( , ) .a b

dadb
x t CWT a b t

C aψ

ψ= ∫∫
The CWT is actually a time-scale representation instead of a TFR. For a 

wavelet localized around the frequency f0 the frequency can be calculated as 
f = f0 / a, and the CWT(a,b) can be a function of time and frequency by: 

 
(12) 

 
0

0

,
( , ) | , .f

a b t
f

f
CWT a b TFR t

f= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

An important property of the CWT is that the energy in the time 
domain is equal to the weighted energy in the time-frequency domain. 

 
(13) 

 

2 2

2

1
( ) ( , ) .

dadb
x t dt CWT a b

C aψ

=∫ ∫∫

As in the STFT the squared magnitude of the transform is often used. For 
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the CWT it is called scalogram. Calculating a true CWT is not possible to 
do numerically. However, in practice a wavelet transform where a frequency 
spectrum is calculated for every time sample is considered to be a CWT. 
 
Bilinear distributions 
The normalised squared magnitude of the Fourier transform is known as the 
periodogram or the power spectrum. The power spectrum can also, with 
help from the Wiener-Khinchin theorem, be expressed as the Fourier 
transform of the auto-correlation function of the signal. The basic idea for 
all bilinear distributions is to make the auto-correlation function time-
dependent to receive a time-dependent power spectrum. All time-frequency 
bilinear distributions can be written as (Cohen, 1995):  

 
2*( , ) ( , ) .

2 2
j t j f j uC f t x u x u e dud dθ π τ θτ τ φ θ τ τ θ− − +⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫∫∫ (14) 
 

The function φ(θ,τ) is called the kernel function and defines the different 
bilinear distributions. A drawback with all bilinear distributions is that the 
bilinear representation introduces cross-term interference. An important 
research area has been to reduce the interference and still keep the important 
properties of the transform. Some of the important properties are the high 
resolution, time-shift and frequency modulation invariance, and the energy 
conservation.  
 
Spectral moments 
Spectral changes have been used to monitor manifestations of muscle fatigue 
(Basmajian and DeLuca, 1985). A common spectral change indicator is the 
mean frequency (MNF), which is the first spectral moment, but higher order 
spectral moments have also been considered (Merletti et al., 1995; Karlsson 
2000). For non-stationary signals the instantaneous MNF (IMNF) and 
higher order instantaneous spectral moments (ISMr) should be used instead. 

 

0

0

( , )

( ) ,

( , )

f TFR f t df

IMNF t

TFR f t df

∞

∞

⋅
=
∫

∫
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The spectral moments of order three and four are usually expressed in 
normalised form and are known as the spectral skewness and spectral 
kurtosis indices (Merletti et al., 1995). 
 
Component analysis 
When new variables are calculated as linear combinations of the original 
variables, the term component analysis is sometimes used. The new variables 
are chosen to better reflect the data, and in some cases those variables can be 
used to reduce the dimension of the data. When the aim is to find one or a 
few linear combinations that are interesting the term projection pursuit was 
introduced by Friedman and Tukey (1974). Projection pursuit uses an index 
of ”interestingness” that should be maximised (Jones and Sibson, 1987). 
Although any index could be chosen, it has been argued that the Gaussian 
distribution, in the context of finding clusters or outliers in the data, is the 
most uninteresting distribution and therefore the projections obtained with 
projection pursuit are often highly non-Gaussian (Jones and Sibson, 1987), 
see Figure 6.  
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Figure 6. In the left figure the samples of two recorded channels (x1 och x2) 
are plotted. From these channels two linear combinations are computed: yVAR, 
which is the combination that maximises the variance (first principal 
component) and yKUR, which is the linear combination that maximises the 
kurtosis of the output. As seen from the figures on the right the non-gaussian 
signal yKUR contains the firing instances of an MU. 



Principal Component analysis 
In principal component analysis (PCA), the new variables are chosen so that 
the variance of every new variable is maximised with the constraint that it is 
uncorrelated with the other variables. This procedure gives the possibility to 
reduce the dimension of the data and still keep as much as possible of the 
information in a least-square sense. In practice PCA is calculated as 
eigenvectors of the covariance matrix (the covariance matrix is diagonalised). 
 
Independent Component analysis 
In blind source separation (BSS), which is the problem of finding sources by 
using their mixtures, the independent component analysis (ICA) is now 
often used. ICA uses the central limit theorem “backwards”. The central 
limit theorem states that the summation of a large number of independent 
variables tends towards a normally distributed variable regardless of the 
distribution of the original variables. To find the source signals the “non-
gaussianity” is thus maximised. In this context the calculation is very similar 
to projection pursuit. However, in ICA the number of sources is often 
known, while projection pursuit is used for exploratory analysis of 
multivariate data.  Maximising the “non-gaussianity” can be achieved in 
many different ways, for example the joint approximate diagonalisation of 
eigen-matrices (JADE) algorithm (Cardoso and Souloumiac, 1993) 
diagonalises fourth-order cumulant matrices and therefore maximises the 
kurtosis of the new variables. The drawbacks when using JADE for BSS are 
that it requires much computational power and that kurtosis is too sensitive 
for outliers. A popular algorithm to perform ICA is the FastICA algorithm 
(Hyvärinen, 1999), which maximises an approximation of negentropy (using 
contrast functions). There are also other algorithms, for example MILCA 
(based on mutual information), Kernel ICA (uses contrast functions), and 
RADICAL (uses an entropy estimator).  

 
Electromyography techniques 
When recording surface EMG it is important to place the electrodes 
correctly with respect to the innervation zone (IZ). The IZ is the zone that 
contains the NMJs. Therefore, an easy and reliable method to locate the IZ 
is needed. 

The MNF of the EMG signal is often used as an EMG spectral change 
indicator and, as such, is used to characterise muscle fatigue. However, the 
MNF estimate is not reliable when the amplitude of the EMG signal is low. 

Techniques for receiving information on single MUs by using 
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multichannel surface EMG have received great interest in the last few years 
(Rau and Disselhorst-Klug, 1997a; Roeleveld and Stegeman, 2002; Merletti, 
Farina and Gazzoni, 2003). The use of surface EMG electrode arrays or 
grids with small electrodes and small inter-electrode distances, together with 
spatial filtering techniques (Reucher et al., 1987; Rau and Disselhorst-Klug, 
1997a) enables single MUAPs to be obtained. The spatial filter technique is 
often used in order to limit the number of MUAPs contributing to the 
surface EMG signal. The traditional filters are a priori determined and will 
therefore have varying effects because the different subjects and different 
recording situations will markedly affect the characteristics of the recorded 
surface EMG signal. The MUAP shapes obtained with such high spatial 
resolution surface EMG are not comparable with MUAP shapes obtained 
with needle EMG. Nevertheless, rough changes in the surface recorded 
MUAP are evident for some diseases (Rau et al., 1997b). The high spatial 
resolution EMG could be used for CV estimation (Farina et al., 2001c; 
Houtman et al., 2003; Schulte et al., 2003. Grönlund et al., 2005), motor 
unit characterisation (Roeleveld et al., 1997) and for estimating the firing 
rate of MUAP trains (Chauvet et al., 2003). 

 
Aims 
The general aim of this dissertation was to introduce and evaluate new 
methods for the analysis of surface EMG signals. The methods were 
intended to be used in physiological studies, where the variables are 
compared at group level. 
 
Specific aims 
The specific aims were to introduce and evaluate new methods for: 
• finding the innervation zone using surface EMG signals 

(addressed in paper I) 
• improved mean frequency estimation of surface EMG 

signals (addressed in paper II) 
• finding single motor unit action potential trains and 

showing an application of the method by studying the 
motor unit firing rate of fibromyalgia patients (addressed in 
papers III, IV and V) 
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Materials and methods 
 
Although examples of in vivo measurements were used, papers I to IV were 
in vitro studies. Paper V was an in vivo study.  

All EMG signals, except for paper II, were recorded with a modified 
ActiveOne (Biosemi, Amsterdam, Netherlands) with a 13x10 grid of 
electrodes with electrode diameter 1.5 mm and with an inter-electrode 
distance of 5 mm. All data were recorded with a common reference 
(unipolar recordings), converted from a range of ± 66 mV with 16-bit 
resolution. The sampling frequency was 2048 Hz and the anti-aliasing filter 
was a 5th order Bessel filter with -3 dB gain at 512 Hz. 
 
Simulations 
To compare different methods in papers I, III and IV, EMG signals were 
simulated with a slightly modified version of the model presented by Farina 
and Merletti (2001b). Parameter values were mainly taken from (Farina and 
Merletti, 2001b) and (Gazzoni et al., 2004). In paper II the Shwedyk model 
(equation (2)) was used. 
 
Experimental procedures 
All papers, except paper V, used simulated data to evaluate the methods. All 
methodological papers (except paper II) follow the same general outline – 
simulate data, compare and evaluate different methods, and then show 
examples using real data. Paper II followed the same outline with the 
exception that it did not contain any real data. 
 
Subjects 
In paper V EMG recordings were obtained from the trapezius muscle from 
29 fibromyalgia patiens and 30 controls. In papers I and III EMG recordings 
from biceps brachii on healthy subjects were used (twelve subjects in paper I 
and two subjects in paper III). In paper IV EMG signals from a patient who 
had been exposed to radiation due to cancer were used for showing a 
possible application of the method. All participating subjects gave their 
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informed consent before participating in any of the studies. 
 

Location of innervation zone 
During recording and in some analyses of surface EMG it is important to 
know where the IZ is located. Different recommendations on where to place 
surface EMG electrodes, for example from the SENIAM project (Hermens 
et al., 1999), are a way to ensure that electrodes are not placed over the IZ. 
Nevertheless, it would be preferable to know the location of the IZ during 
multichannel EMG recordings. A technique that is to be used in a recording 
system must be fast and easy to interpret. The only automatic method 
available was the lowest root-mean-square (RMS) method (Rainoldi et al., 
2004), which used the channel with the lowest RMS as the estimate of the 
location of the IZ. This technique can be unstable in some cases. Therefore, 
a modified optical flow technique was used to estimate the location of the 
IZ. An optical flow field is a vector field that describes the movement 
between two images. For an introduction to optical flow please see paper II 
or (Sonka et al., 1998). A multichannel surface EMG can be seen as sampled 
images describing the potential distribution on the skin. From these images 
the optical flow fields can be calculated. However, a problem arises because 
the EMG images do not fulfil the basic assumption in optical flow. This 
assumption is that the intensities between successive images are not changed 
but only translated. Because of noise and superposition of APs this 
assumption is invalid. Therefore the median field during a short time 
interval is used, see paper I for details. 

 
Estimation of mean frequency 
Analysis of the frequency spectra, using the mean frequency, is often used to 
characterise muscle fatigue. If the frequencies change with time the 
instantaneous mean frequency (IMNF) is preferable. It can be calculated as: 

 
(17) 

 
( ) = ⋅∫ ∫( , ) ( , ) ,

H H

L L

f f

f f

IMNF t f TFR f t df TFR f t df

where fL is the lowest frequency and fH is the highest frequency in the 
bandwidth of the calculated TFR. Especially when the signal-to-noise 
ratio (SNR) is low the choice of this bandwidth can affect the result. It 
would be preferable if the integration limits where automatically chosen in 
an optimal way. A technique to find the maximum frequency of the EMG-
spectra and use that frequency as the integration limit was proposed by 
Knaflitz and Bonato (1999). Knaflitz and Bonato used the threshold crossing 
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method (TCM) that previously had been used to find the maximum 
frequency of Doppler signals (D'Alessio, 1985). The TCM was theoretically 
extended in paper II to include TFRs and gamma distributed frequency bins.  

The maximum frequency of the TCM is found when at least r out of m 
frequency bins exceed a given threshold (starting from the high frequency 
end of the spectrum). Given the specificity, the threshold can be calculated. 
When a signal consists of white Gaussian noise with unit variance, the 
coefficients of a non-negative bilinear TFR are approximately chi-square 
distributed (Pitton, 2000). Thus, the distribution of the spectral bins can be 
described with a gamma distribution with the scale parameter λ = ½ and the 
shape parameter α equal to half the number of degrees of freedom. The 
threshold of the TCM from a gamma distribution can be calculated as:  

 

( )α λ−= −1 1 | ,h eT G P (18) ,
 

where Pe can be calculated (given the specificity PS) from: 
 

 
(19) 

 
 
G is the cumulative gamma distribution function, 
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In a TFR the frequency bins are not independent because there is a 

redundancy in the representation. The problem was solved by using 
frequency bins located with an offset (that corresponded to the dependency 
in the representation) from each other. The offset can be calculated from 
autocorrelations of noise spectra or by calculating the dependency. See 
(Najmi and Sadowsky, 1997) for an example of how this dependency can be 
calculated. 
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A proposed method, the running block threshold method (RBTM) (see 
paper II), is somewhat similar to the TCM, but uses a sum of n frequency 
bins in order to set the maximum frequency (fmax(t)). 
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where R is an offset that takes the redundancy of the representation into 
consideration. 

Another existing method to calculate the maximum frequency is the 
hybrid method. The hybrid method finds the maximum frequency as the 
intersection between a straight line and the integrated power spectrum (Mo 
et al., 1988). The line, which starts at the high frequency end of the 
integrated power spectrum, has a slope that is dependent on the noise power 
density. For details see paper II. 
 
Adaptive filtration 
As mentioned in the introduction section, the term adaptive filter in this 
thesis has a wider meaning then normally used in signal processing literature. 
Here the term implies that the methods are adapted to the recorded data.  

Spatial filtration is a linear combination of signals from different 
electrodes:  

 
,i i

i

=∑y xa (23) 
 

where ai is the filter coefficient and xi is the signal at position i in the filter 
kernel. 

To obtain a filter that adapts to the recorded data and does not use 
predefined filter coefficients some criteria have to be used for the output 
function y. Since the purpose of the filter is to enhance single MUAP trains 
it would be desirable to use a criterion which gives clearly visible peaks. One 
criterion which is sensitive for outliers is the kurtosis of the signal. Therefore 
this criterion was used in the adaptive filter to enhance MUAP peaks in the 
output of the filter. The JADE algorithm was used to calculate the output 
with the maximum kurtosis. An introduction to how the JADE algorithm 
works can be found in the appendix and in (Cardoso and Souloumiac, 1993; 
Cardoso, 1999).  
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If a time filter is introduced along with the spatial filter we can write the 
filter equation as: 

 
( ),i i i

i

= ∗∑y h xa (24) 
 

where hi is the time filter for the signal at position i in the filter kernel and ∗  
stands for convolution. This equation can be rewritten to obtain a linear 
combination: 
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With this linear combination it is possible to adaptively choose both the 
spatial and temporal filter coefficients at the same time. If a large 
multichannel system (larger than the spatial size of the filter) is used, the 
coefficients can be varied for different positions of the electrode grid, see 
Figure 7. 

The technique for finding the filter coefficients by maximising the 
kurtosis was used for a spatial filter in paper III and for a spatio-temporal 
filter in paper IV. In paper V the method in paper IV was used to obtain 
MU firing rates of fibromyalgia patients and healthy controls. 

Note that even if the JADE algorithm is used for the adaptive filter this is 
not a real ICA application. The theoretical approach is different and in an 
ICA application the aim is to find independent sources from their linear 
mixtures by estimating the inverse of the mixing matrix. Different sources in 
an ICA application are thus found from the spatial information as different 
linear combinations of the same channels. The adaptive filter that was 
proposed in this dissertation finds different sources by using different spatial 
locations, see Figure 7. Furthermore, the proposed adaptive filter can use 
both the spatial and the temporal information of the data – ordinary ICA 
only uses the spatial information. 
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Spatial and spatio-temporal filters 

Figure 7. Schematic description of how the filters are applied to a multichannel 
system. The filter outputs have arbitrary units.  
a) At the left the filter coefficients for the NDD filter are shown. The output of 
this filter when applied to simulated EMG signals is shown in the middle. At the 
right the new location of the filter would then produce another output and so on.  
b) At the left the coefficients (a1 to a9) are shown for an adaptive spatial filter 
calculated in a local neighbourhood. The output of this filter when applied to the 
same simulated EMG signals as in a) is also shown. At the right the new location 
of the filter would give new coefficients (a1’ to a9’) that would produce another 
output and so on.  
c) Applying an adaptive spatio-temporal filter (with five time lags) to the same 
simulated EMG signals as in a) and b) gives the filter output shown. The 
coefficients (w1 to w9 and w1’ to w9’) are convoluted with the signals.

In paper III the adaptive spatial filter was compared with other spatial filters, 
and in paper IV the adaptive spatio-temporal filter was compared with other 
filters that used spatial and/or time information. The spatial filters, for which 
results were shown in paper IV and in this summary, are the longitudinal 
single differential (LSD), longitudinal double differential (LDD), normal 
double differential (NDD), inverse rectangle (IR), and the inverse binomial 
of order two (IB2) filters. The coefficients for the NDD filter are shown in 
equation (1) and the other filters’ coefficients are shown below:  
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Two methods that used the time information were the weighted low-pass 

differential (WLPD) filter (Xu and Xiao, 2000) and a method that used the 
marginal distribution of a CWT from an LDD-filtered signal. The CWT 
was calculated with a second-order Hermite-Rodriguez function as the 
mother wavelet (Farina et al., 2000). The definition of the WLPD filter can 
be seen below:  

 
(26) 
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where x is an LSD-filtered signal and v is a windowing function of length K.  
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Results 
 
The four methodological papers (papers I-IV) all introduced methods that 
had better performance than the existing methods that were included in the 
comparisons. 
 
Location of innervation zone 
Simulations showed that the optical-flow-based method had an error about 
half the inter-electrode distance, which was 5 mm. The lowest RMS method 
had about the same magnitude of the errors as long as the SNR was high, see 
Figure 8. 

Figure 8. Mean and standard deviation of the absolute localization error of the 
IZs (from simulations). 
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Figure 9. Optical flow obtained from half a second of a multichannel EMG 
recording, where the electrode device was placed on the biceps brachii. The IZ 
was approximately located at the position from where the arrows seem to 
originate. 

However, for experimental signals the difference between the methods 
was larger. On the experimental data the optical-flow-based method gave 
estimates with absolute errors 2.4 ± 3.4 mm (mean ± standard deviation) as 
compared with data obtained from an expert group. For the lowest RMS 
method the absolute errors were 13.6 ± 11.0 mm. In Figure 9 an example of 
a calculated optical flow field can be seen.  

 
Mean frequency estimation 
The detection probability (sensitivity) is defined as the probability of 
detecting frequency bins that contain information from the signal. This 
detection probability can be calculated for the proposed method (RBTM) 
and for the TCM and can be seen in Figure 10. Here it is obvious that the 
RBTM gave better detection probability for all local SNRs. 

The errors for IMNF estimations when different methods were used for 
finding the integration limit in the IMNF calculations can be seen in Figure 
11. See paper II for more detailed results. 
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Figure 10. The detection probability at 99.999% specificity for the threshold 
crossing method (TCM) and the running block threshold method (RBTM) for 
different local signal-to-noise ratios (SNRL). 

Figure 11. IMNFs from simulated data were calculated using different methods 
to estimate the maximum frequency. The RMS of the residual error of the 
estimated IMNF is shown for different SNRs. No integration limit refers to the 
condition in which the IMNF estimations were calculated on the whole 
calculated frequency range (up to 700 Hz). 
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Adaptive filtration 
Results obtained with simulated data from the maximum kurtosis filter 
(MKF) as compared with other filters can be seen in Figure 12. The MKF 
performed better than the other filters, and both the sensitivity and positive 
predictivity increased with increasing time length of the filter.  

More detailed results can be seen in papers III and IV. The MKF was 
also used in paper V to obtain single MUAP trains. In that study firing rates 
obtained from fibromyalgia patients were compared with firing rates from 
healthy controls, see Figure 13. In paper V results from CV estimations from 
the fibromyalgia patients and the healthy controls can also be seen.  

 

Figure 12. The sensitivity and positive predictivity of different filters. The 
numbers within the parentheses correspond to the number of time lags in the 
filter. The results from the MKF filter with different numbers of time lags were 
connected with a line to visualise the trend.
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Figure 13. Mean firing rate of MUs (with 95% confidence intervals) of the 
trapezius muscle for a fibromyalgia group and a control group during isometric 
shoulder elevation with different loads (weights). The difference between the 
groups is also shown. The numbers in the graph indicate the number of subjects 
with valid data and for which the statistics were calculated. 
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Discussion 
 
This dissertation focused on methods for analysis of surface EMG. The 
evaluations of the methods are based on simulated EMG signals. The in vitro 
evaluations are necessary because there is no “golden standard” or other easy 
way to obtain the true answer to the variables that the methods try to obtain. 
The use of models has a positive side – it is easy to investigate how the 
methods are affected by different parameters. However, using models also 
has some negative effects because the models are crude approximations and 
can never completely mimic a “true” EMG. Furthermore, it is hard to 
estimate what kind of errors that are introduced in the comparison between 
methods that are due to the model. Therefore, the absolute numbers 
obtained in the comparison between different methods must be interpreted 
carefully. Nevertheless, the order of precedence is not sensitive to errors in 
the model, and using another model or other parameters would likely result 
in the same conclusions.  

As mentioned in the aim the methods are intended to be used at group 
level and not to evaluate single subjects. The measured variables have a large 
physiological variation and the methods only collect information from a part 
of the muscle. This is especially clear when the firing rate of a single MUAP 
train is estimated. The MUAP train obtained with the adaptive filter is only 
one among many possible MUAP trains. If another MUAP train was 
obtained the estimated firing rate would have been different. Fortunately, at 
group level, this effect averages out and the distribution of the variables can 
be compared. 
 
Location of innervation zone 
In our opinion, the method that was based on optical flow and was used to 
obtain the location of the IZ could be interpreted rapidly if the field was 
visualised with arrows. The method was also easy to automate. Therefore, we 
believe it would be suitable for use in recording systems for multichannel 
EMG.  
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Although we did not specifically attempt to detect muscle fibre 
orientation, one experimental recording in paper I indicated that this may be 
another application for the method. 
 
Mean frequency estimation 
The calculation of the detection probability is a good way of comparing 
different methods’ abilities to locate the maximum frequency. However, the 
method that best locates the maximum frequency is not necessarily the best 
method to use when the integration intervals for IMNF calculations are to 
be determined. Therefore, the simulations were important. The RMS errors 
of the IMNF estimates did not only depend on the integration intervals and 
the noise. The filter implementations and the TFR estimation also 
introduced errors in the IMNF estimates. Fortunately, those errors were the 
same for all methods that were compared.  

The results showed that it is important to limit the integration interval 
for IMNF estimates when the SNR is low. 

 
Adaptive filtration 
Traditional spatial filters are designed as spatial high-pass filters to enhance 
the signals located close to the electrodes and to reduce the influence from 
signals located far from the electrodes. This technique works well under 
“ideal” conditions. However, since no measuring situation (impedance, 
volume conductor, etc.) is identical to another, it is not possible to design a 
fixed spatial filter that works perfectly for all situations. An adaptive filtering 
technique, although perhaps not necessarily best for every situation, may 
adjust itself to the recorded signals and may give good results regardless of 
whether the recording situation is “ideal” or not.  

The intent of the introduced adaptive filter was to obtain a signal with 
clearly visible peaks. Therefore, the kurtosis of the signal was maximised, 
because a signal with high kurtosis has many small values and a few deviant 
values.  

The filtered signals that are obtained with an adaptive filter have 
distorted MUAP shapes, but since the firing times of the MUs are detected it 
is possible to extract MUAP shapes from the monopolar recording by 
averaging (Disselhorst-Klug et al., 1999; Zwarts and Stegeman, 2003). If the 
averaging technique is used it is important to ensure that a large majority of 
the detected firings originate from the same MU. This could be verified by 
using the MUAP shapes and their amplitude distribution over the skin.  
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The introduction of the time filtration together with the spatial filtration 
was a way to increase the information of the signal available to the 
algorithm. This resulted in a higher sensitivity as well as a higher positive 
predictivity.  

Maximisation of the kurtosis of the signal may not be the best criterion 
for use in an adaptive filter. It would be interesting to compare different 
criteria in order to further enhance the performance. A risk with the kurtosis 
criterion is that it could, in theory, favour MUs with low firing rates. That is 
because a signal with few firings has a higher kurtosis than a signal with 
many firings. However, this should be more of a theoretical drawback, since 
in practice the active MU that is closest to the electrodes is probably chosen.  

Using sensitivity and positive predictivity as a measure of performance 
could be problematic in some cases, because they are to some extent 
dependent on each other. It would have been preferable to draw an ROC, 
but this was not possible because the specificity could not be calculated.  

 
Future methods and applications 
The experimental signal in paper IV and the study described in paper V 
showed that it is possible to obtain MUAP trains without using invasive 
techniques. Paper V also showed that the signal processing methods were 
only a part of multichannel electromyography. There is still a need for even 
better and more reliable equipment, collecting procedures, and signal 
processing methods. Nevertheless, multichannel electromyography today is 
well suited for many research projects. 

I believe surface electromyography would benefit most from new types of 
electrodes. Unfortunately, developing new types of electrodes is not an easy 
task. There are, of course, also improvements to be made with signal 
processing methods. Personally, I think it would be interesting to study 
different criteria to be used in the adaptive filter that was developed in this 
dissertation. 

The adaptive spatio-temporal technique has been applied to 
multichannel electrocardiogram (ECG) signals to make a robust heartbeat 
detector (Ragnarsson et al., 2005). The idea to use this technique to obtain a 
foetal ECG was also investigated (Östlund et al., 2005). Obtaining the foetal 
ECG using the spatio-temporal dependence was independently proposed by 
Stögbauer et al. (2004) from the ICA perspective.  
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Conclusions 
This dissertation has resulted in new methods that improve the analysis of 
EMG signals. As a consequence, the methods can simplify physiological 
research projects. The innovative methods can inspire other researchers 
within the EMG field and lead to new and improved methods. The adaptive 
multichannel filtering technique has resulted in a spin-off effect as a robust 
heartbeat detector. 
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Appendix 
 
Introduction to the JADE algorithm 
The JADE algorithm are designed to solve an ICA problem, i.e., find the n 
sources X by using linear mixtures Y=AX. The algorithm works in four steps.  
• Estimate a whitening matrix W and calculate Z = WY to make the 

components uncorrelated and of unit variance. This is performed 
with ordinary PCA.  

• Calculate the fourth order cumulants of Z. All second order 
cumulants can be described by the n x n covariance matrix, but for 
fourth order cumulants we need n2 such n x n matrices. If the ICA 
model holds, only the n most significant cumulant matrices need to 
be computed. 

• Since the data are whitened we can diagonalise the cumulant matrices 
by computing an orthonormal transformation V. This is performed 
by a Jacobi technique by minimising the off-diagonals by successive 
Givens rotations. The rotations are not applied to the data itself but 
to the calculated cumulant matrices. 

• Estimate the sources X by computing VTZ (T stands for transpose). 
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