
0278-0062 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMI.2015.2425144, IEEE Transactions on Medical Imaging

1

Multiple LREK Active Contours

for Knee Meniscus Ultrasound Image Segmentation
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Abstract—Quantification of knee meniscus degeneration and
displacement in an ultrasound image requires simultaneous
segmentation of femoral condyle, meniscus, and tibial plateau in
order to determine the area and the position of the meniscus. In
this paper, we present an active contour for image segmentation
that uses scalable local regional information on expandable kernel
(LREK). It includes using a strategy to adapt the size of a local
window in order to avoid being confined locally in a homoge-
neous region during the segmentation process. We also provide
a multiple active contours framework called multiple LREK
(MLREK) to deal with multiple object segmentation without
merging and overlapping between the neighbouring contours
in the shared boundaries of separate regions. We compare its
performance to other existing active contour models and show an
improvement offered by our model. We then investigate the choice
of various parameters in the proposed framework in response
to the segmentation outcome. Dice coefficient and Hausdorff
distance measures over a set of real knee meniscus ultrasound
images indicate a potential application of MLREK for assessment
of knee meniscus degeneration and displacement.

Index Terms—Knee joint, meniscus, ultrasound, image seg-
mentation, active contour, level set, multiregion segmentation.

I. INTRODUCTION

O
STEOARTHRITIS (OA) is the most common form of

arthritis where the knee is the most studied joint [1].

Knee OA is recognized as a disease involving entire joint struc-

ture, including bone, cartilage, meniscus, ligament, synovium,

and synovial fluid where visualization of these structures is

necessary for a complete assessment [2]. X-rays, which are

useful to depict bony structures, have been used to provide

an indirect measurement of knee cartilage thickness through

the distance between femur and tibia [3]. It is known that the

joint space is also shared by meniscus where its degeneration

and displacement contribute to knee OA progression as well

[4]-[6]. However, x-rays lack depiction of soft tissue. On the
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other hand, magnetic resonance imaging (MRI) allows entire

joint structure assessment and has been used as a reliable and

sensitive knee OA diagnostic tool [18] where a variety of

approaches in segmenting bone, cartilage, and meniscus are

using this imagery [7]-[14]. Nonetheless, high cost, high time

consumption, and low availability of the equipment limit its

routine clinical use [19].

Although the nature of sound prevents penetration into the

deep articular structure and subchondral bone, ultrasound has

shown its ability in visualizing more OA appearance features

than x-rays [15], such as cartilage loss [16], meniscal tears

[17], ligament damage [18], and synovial proliferation [18].

Ultrasound, which is more affordable and widely accessible

than MRI, can be used as an excellent alternative to help diag-

nose the presence of knee OA disease [19]. In order to quantify

knee meniscus degeneration and displacement, it is necessary

to segment various parts of knee joints in an ultrasound image.

While boundary delineation of only meniscus determines its

area deformation, detection of meniscus displacement requires

information on the relative position of the meniscus in relation

to the femoral condyle and the tibial plateau. The goal in the

knee meniscus ultrasound image segmentation is to simultane-

ously capture multiple objects, including the femoral condyle,

the meniscus, and the tibial plateau of the knee joint. The

segmentation algorithm should include the objects separately

without merging and overlapping between adjacent contours

in the shared boundaries of disjointed objects. It should also

be insensitive to various shapes of the objects as well as to

speckle noise which varies the contrast of the object.

Active contours have been extensively used in addressing

medical image segmentation problems. In general, they can

be categorized into global and local active contour models.

To locate an object’s boundary, the global models take into

account entire image intensity [20], [21], whereas the local

models use either local edge pixels [22] or local intensity

pixels [23], [24]. The sensitivity of global models to initial

conditions may not be desirable in the case of capturing the

multiple objects due to its tendency to capture entire image

structures where various positions of an initial contour just

evolves into a similar final position [20], [21]. The sensitivity

of the local models to initial conditions constrains the initial

contour to reside in close vicinity of the object [22], [23],

on the other hand, allows segmentation of obtaining different

objects of interest by placing different positions of the initial

contour, thus allowing separation of a particular object from

the rest of the image structures. As speckling causes faulty

edge points, it often prevents the edge-based models from

evolving into the real boundary. The robustness of the local
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regional model against noises is likely to provide a desirable

outcome as it employs intensity instead of edge pixels [23].

There exist several newly proposed active contours using

local regional descriptor such as localizing region-based active

contour (LRAC) [23], local regional descriptor for active

contour evolutions (LRD) [24], and active contour using local

regional information on extendable search lines (LRES) [25].

LRAC, LRD, and LRES re-formulate the regional statistics

to sample local intensity only within fixed-radius balls, fixed-

scale square windows, and extendable search lines along the

evolving contour, respectively. In LRAC, an appropriate scale

needs to be manually set, depending on the distance between

the position of the initial contour and the location of the

object. If the initial contour is placed too far from the nearest

boundary and the scale is too small, the contour may not

completely penetrate the boundary or any concave parts. To

deal with the local minima problem, LRD adds the balloon

force and introduces two novel segmenter functions. However,

both schemes require that the initial contour be placed entirely

inside the object of interest only. LRES employs extendable

search lines that are perpendicular to the contour front to

reach the concave-shaped boundary. The area of long, thin

search lines is not scalable to an image area. Also, insufficient

statistics inside the lines may navigate the contour wrongly.

In order to avoid being confined locally in a homogeneous

region during the segmentation process, we use a strategy

inside the variational level set method to adapt the size of

a local window. It uses intensity values of the pixels on a set

of scalable kernels along the evolving contour to direct the

contour’s front towards the object’s boundary within an image

domain. The support of each kernel is defined one at a time

in each of the points along the contour. During the level set

evolution, the scale of this local neighbourhood varies for each

contour point and is dependent on the distance of this point

to the nearest boundary. The estimation of the kernel size is

influenced by the local image intensity and not performed on

the whole image, but only on the zero level of the contour.

This paper presents multiple active contours using scalable

local regional information on expandable kernel (MLREK) for

knee meniscus ultrasound image segmentation. We start by

describing an active contour with the variable scale kernel to

navigate the contour towards the object boundary within the

image domain. We then provide the multiple level set formu-

lation to the proposed framework to deal with simultaneous

multiple object segmentation without merging and overlapping

between adjacent contours. Next, we compare different active

contour models in terms of segmentation results, speed, and

convergence properties. We also investigate various parameters

in the proposed method and their effects on the segmentation

results. Finally, we present the application of MLREK for the

knee meniscus ultrasound image segmentation as an initial step

to measure the degeneration and displacement.

II. MULTIPLE LREK ACTIVE CONTOURS

A. Scalable Local Regional Information

Let I denote an input image defined on an image spatial

domain Ω. The evolving contour at time t, C(t) ⊂ Ω is to be

embedded as the zero level set of a function φ(x) : Ω → ℜ,

where ℜ is a set of real numbers.

C(t) = {x ∈ Ω : φ(x, t) = 0} with C0 = φ(x, 0) (1)

where C0 is the initial contour.

The region inside, outside, and around the contour are rep-

resented by the regularized Heaviside function Hǫ, (1−Hǫ),
and the smoothed Dirac delta function δǫ = H ′

ǫ, respectively.

Hǫ and δǫ are computed by (2) and (3) with ǫ = 1 as in [20],

respectively.

Hǫ(φ) =
1

2

(

1 +
2

π
arctan

(

φ

ǫ

))

(2)

δǫ(φ) =
1

π

(

ǫ

π2 + φ2

)

. (3)

We define a scalable local regional (SLR) information as

an image’s weighted intensity average within an expandable

kernel. The kernel is used to mask the local intensity region.

We choose the kernel function as the uniform kernel, Ku(d) =
c, where d = ‖x− y‖ is L2-norm distance between the kernel

center point x which is on the contour pixels and other pixels

y within the kernel support and c is a positive constant. The

contour line divides each kernel into two regions that are inside

and outside the contour to measure the intensity profiles I(x)
at image pixel x on both regions.

The SLR energy function, as given in (4), considers pixel

contributions within the distance, d, from the contour and

ignores any spatial intensity variation outside the distance,

d. This local version of the Chan-Vese energy [20] obtains

its optimum point when the contour has arrived at the point

where the intensity profile within the kernel at each contour

point I(x) is approximated by their local means µin and µout,

obtained using equations in (5) and (6), respectively.

ESLR(φ) =

∫

Ω

K(‖x− y‖)

(

|I(x)− µin|
2
Hǫ(φ(x))

+ |I(x) − µout|
2
(1−Hǫ(φ(x)))

)

dx (4)

where

µin =

∫

Ω
K(‖x− y‖)Hǫ(φ(x))I(x)dx
∫

Ω
K(‖x− y‖)Hǫ(φ(x))dx

(5)

µout =

∫

Ω
K(‖x− y‖)(1−Hǫ(φ(x)))I(x)dx
∫

Ω
K(‖x− y‖)(1−Hǫ(φ(x)))dx

(6)

are means intensities of inner and outer areas of the expandable

kernel, respectively.

An LREK contour’s energy function formulated using the

level set function is given in (7). In the first term of (7),

multiplication of the ESLR with δǫ ensures no sudden develop-

ment of new contours while keeping it topologically flexible.

To regulate the contour’s elasticity, the second term of (7)

computes the arc length of the zero level set.

E(φ) = −

∫

Ω

(

δǫ(φ(y))ESLR(φ(x))

−νδǫ(φ(y))|∇φ(y)|

)

dy. (7)
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Using the standard gradient descent method, the minimiza-

tion of E(φ) in (7) with respect to φ can be performed by

solving the gradient flow equation ∂φ
∂t

= −∂E
∂φ

. The derivation

of ∂E
∂φ

is obtained using the Gateau derivative, which is

detailed more in the Appendix. It is accomplished by replacing

φ with φ+ξψ, where ψ denotes a tiny change perpendicular to

φ weighted with a small number ξ. The corresponding gradient

flow equation is expressed in (8) which is composed of the

SLR force that behaves as an attractor to move the center

of each kernel which is the contour and the contour’s length

regulation term serving to smoothen the contour, respectively.

∂φ

∂t
= δǫ(φ(y))

(

FSLR(φ(x)) + νdiv

(

∇φ(y)

|∇φ(y)|

))

(8)

FSLR(φ(x)) =

∫

Ω

δǫ(φ(x))K(‖x − y‖) (9)

×
(

|I(x) − µin|
2 − |I(x) − µout|

2
)

dx.

We devise a strategy to prevent the contour from being

trapped in local minima. Let each kernel be of scale dk,

k = 1, 2, . . . ,m defined at the contour points k, where m

is the number of pixels on the contour. The number of kernels

thus depends on the number of pixels on the contour in

each iteration. The scale of each kernel is initially set to

dk = dinitial pixels and adaptable throughout the evolution

process which is enabled by gradually adding ∆d pixels to

d for each point along the contour. This scale adaptation

relies on the comparison of the absolute difference of µin and

µout to a threshold value thres. This is to indicate whether

the kernel is still in the homogeneous area of the object or

the background or has reached the boundary of the object.

thres = [L× τ ] represents a small percentage of the intensity

value range of the given image where τ ⊆ [0, 1] and L = 255
for 8-bit grayscale images. This value should be kept near

zero to indicate that µin is different from µout. If the kernel

lies entirely in the homogeneous area, it means their absolute

difference is less than the threshold where µin is about the

same as µout. In this case, the support of the kernel is gradually

expanded for each contour point. This process is iterated until

the kernel has reached the nearest boundary covering both

the object and background areas. Once it has found a non-

homogeneous region or crosses some parts of the boundary,

µin is significantly different from µout in which the absolute

difference is larger than the threshold. It implies that the kernel

has found its optimum scale, thus the SLR force determines

the motion of the contour line to meet the boundary.

According to (9), the SLR force will navigate the contour in

either inward or outward direction influenced by the difference

between I(x) and µin or µout. If the value of I(x) is closer

to µin than µout, the negative sign of the SLR force will drive

the contour outward. If I(x) is about the same value as µout

and far different from µin, the positive sign of the SLR force

will push the contour front inward. The contour converges at

the boundary when the value of I(x) is about the same either

with µin or µout. In other words, the SLR force gives zero

value and will not induce motion force any longer.

B. Multiple Level Set Formulation

Several multiphase level set frameworks deal with multiple

region segmentation using global regional descriptor [26],

[27]. The framework in [26] assigns n-level set functions

to represent 2n regions. It does not need an additional con-

straint as the junctions between multiple contours represent

the regions to be segmented. If the number of the regions

is not a power of two, it produces empty regions as a

particular region is weighted twice. The framework in [27]

represents each object’s region with one level set function

and allows the coupled contours to compete with each other

and move according to the strongest force. If no competing

region exists, an additional term is used to grow the contour

towards the vacuum area with a constant speed. Inspired by

this assumption, LRAC [23] formulates its multiple level set

scheme using its local regional descriptor by letting interacting

contours compete at their interfaces to avoid overlaps. The

coupled level set method in [28] handles junctions between

several curves of level set using an additional constraint. In

addition to the length and area terms, they place a third term,
∫

λ
2

(
∑n

i=1
H(φi(x)) − 1

)2
dx into their energy function. In

their gradient flow equation, the term λ
(
∑n

j=1
H(φj(x))−1

)

is used to avoid the growth of overlap or vacuum regions

between the neighbouring curves, where λ is a Lagrange

multiplier and 1 ≤ i < j ≤ n. As this term forces the junctions

to vanish, the adjacent curves thus share the border.

We start to re-formulate the previous energy function into an

n-active contours framework to allow simultaneous multiple

region segmentation. We see that the formulation in Section

II-A is for the case of n = 1 represented by only one level set

function. To segment object regions with n > 1, we can use

two or more level set functions φ1, . . . , φn. Then, n-level set

functions (φi)
n
i=1

are used to embed multiple contours where

each of the level set functions represents one object’s region.

Thus, the previous single level sets energy functions in (7)

can be converted into multiple level sets formulae as follows,

considering the number of regions, n, is known.

E(φ1, . . . , φn) = −

∫

Ω

n
∑

i=1

(

δǫ(φi(y))ESLR(φi(x))

−νδǫ(φi(y))|∇φi(y)|

)

dy. (10)

To prevent multiple level set functions from overlapping

with one another, an additional constraint is needed to regulate

the zero level contour. To segment multiple objects with shared

boundaries, we are inspired by the strategy in [28] and it

is modified to be utilized with the scalable local regional

information. Therefore, we place an additional constraint as

the third term in the total energy function. We write the

multiple level set formulation of MLREK’s energy using a

vector value notation Φ = (φ1, . . . , φn) as given in (11).

By minimizing the MLREK energy function in (11) with

respect to Φ, we obtain the gradient equation flow in (12) for

φi; i = 1, . . . , n. The corresponding gradient flow equation

evolving every level set function φi is defined in (13). In equa-

tion (12), the first term is the SLR force, the second term is the

contour smoothing force, and the third term is the area term of
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E(Φ) = −

∫

Ω



δǫ(Φ(y))ESLR(Φ(x)) − νδǫ(Φ(y))|∇Φ(y)| −
n
∑

p6=i

Hǫ(Φ(y))Hǫ(Φp(y))



 dy (11)

∂φi

∂t
= δǫ(φi(y))

(

FSLR(φi(x)) + νdiv

(

∇φi(y)

|∇φi(y)|

)

+
n
∑

p6=i

Hǫ(φp(y))

)

. (12)

the regularized Heaviside functions. The third term is used to

prevent the neighbouring contours from creating overlapping

regions. When updating the contour φi, other contours (φp)
n
p6=i

are represented by their area terms
∑n

p6=iHǫ(φp(y)) where

Hǫ(φ) is computed according to equation (2). This strategy

thus avoids the evolving contours from surpassing each other

in the shared boundaries of disjointed regions.

∂φ1

∂t
= δǫ(φ1(y))

(

FSLR(φ1(x)) + νdiv

(

∇φ1(y)

|∇φ1(y)|

)

+

n
∑

p6=1

Hǫ(φp(y))

)

...
∂φn

∂t
= δǫ(φn(y))

(

FSLR(φn(x)) + νdiv

(

∇φn(y)

|∇φn(y)|

)

+

n
∑

p6=n

Hǫ(φp(y))

)

. (13)

C. Evolution Process

The evolution process of MLREK begins by setting number

of iterations l, multiple positions of initial contour C0, initial

scale of the kernel dinitial, its additional scale ∆d, and thresh-

old value thres. Each of the contours Ci is embedded in the

zero level set function φi; i = 1, . . . , n where n represents

the number of the contours and the object’s region. For

i = 1, . . . , n, the value of di, ∆di, and thresi can be different

and is not necessarily set to be similar for each function φi.

As the energy is minimized by an iterative process, the zero

level of contours φi is updated at each time step j = 1, . . . , l.
For every contour point k = 1, . . . ,m, we set dk = dinitial.

We compute µin and µout using equations in (5) and (6),

respectively. Then, we check the condition |µin−µout| < thres
where |.| denotes absolute value. If the condition is true, we

set dk = dk + ∆d, proceed to update µin and µout, and

return to check the condition. It will be repeated until the

condition is not met, and then we can proceed to compute

FSLR. All of these processes are iteratively repeated for every

kernel on the contour point. Then, the contour φi is navigated

towards the boundary using (9). Its smoothness is enforced by

the second term of (12). Meanwhile, other contours (φp)
n
p6=i

are described by their area terms
∑n

p6=iHǫ(φp(y)). Another

contour’s evolution starts by re-initializing dk to dinitial and

repeating the whole process. Then, all contours are evolved by

one iteration and will be reiterated until the contours converge

to the boundary or a maximum number of iterations is reached.

The entire evolution process is illustrated in Algorithm 1.

Algorithm 1 MLREK’s evolution process

Set l, di, ∆di, thresi, and φi for i = 1, . . . , n;

m is number of points in φ;

for j ← 1, l do ⊲ Loop until l iteration numbers

for i← 1, n do ⊲ Loop for n contours

for k ← 1,m do ⊲ Loop for m contour points

Set dk = dinitial ⊲ Set initial kernel’s scale

Compute µin and µout according to (5) and (6)

while |µin − µout| < thres do

Set dk = dk +∆d ⊲ Expand the kernel

Update µin and µout

end while

Compute FSLR according to (9)

end for

Evolve φi according to (12)

end for

end for

III. DATA ACQUISITION

We utilized the Philips ClearVue 550 ultrasound system with

a 2D, 12 MHz (L12-4) broadband linear array transducer. The

high frequency transducer is desirable to capture superficial

periarticular and intraarticular structures [29]. In order to

observe the medial meniscus, the medial side of the anterior

view of the knee joint of the subject was scanned in vivo with

the supine position and the knee flexed 90◦. 19 asymptomatic

subjects (15 males and 4 females, age range: 18-55 years,

mean age: 31.20 ± 14.41) were recruited with an informed

consent. The acquisition was performed by a professional

sonographer in Ultrasound Room, Department of Biomedical

Imaging, University of Malaya Medical Center, Kuala Lumpur,

Malaysia. The study was approved by the University of Malaya

Medical Ethics Committee (MECID No. 20147-396).

IV. RESULTS AND DISCUSSION

We conducted several experiments in order to evaluate the

performance of the proposed method. First, we compared

it to other active contour models in terms of segmentation

results, speed, and convergence properties. Second, we studied

the response in the segmentation results by varying several

parameters in the proposed method. We investigated the effects

of threshold value selection in response to segmentation results

as well as convergence properties. We followed this with

a demonstration on how the presented multiple level set

framework can avoid merging and overlapping between the

neighbouring contours. We then showed that different choices
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of scale parameters can be assigned for each zero level contour

in multiple region segmentation and the accuracy improvement

that can be achieved. Third, we examined its application for

the knee meniscus ultrasound image segmentation.

We illustrated the segmentation performance with Dice sim-

ilarity coefficient (DSC) and Hausdorff distance (HD) metrics.

To measure area similarity between the pixel region within a

segmented contour (A) and within a reference contour (B),
DSC ∈ [0, 1] is defined as the ratio between twice of the

common pixel region of the segmented and reference contours

and the sum of individual regions, i.e.,

DSC(A,B) =
2|A ∩B|

|A|+ |B|
, (14)

If DSC indicates the value of 1, it implies that A and B

have the same location and size (or area). To compare the

difference in shapes rather than the relative locations and sizes

of the contour pair, HD in (15) measures the furthest pixel

distance of the point of X from any point of Y .

HD(X,Y ) = max
(

max
x∈X

min
y∈Y
‖x− y‖,max

y∈Y
min
x∈X
‖x− y‖

)

,

(15)

where X and Y are two sets of points extracted from the

boundaries of A and B, respectively.

A. Comparison With Other Active Contour Models

In this subsection, we compared the performance of LREK

to other active contour models in segmenting knee meniscus

ultrasound images. From existing global regional, edge-based,

and local regional active contour models, we picked a region-

scalable fitting model (RSF) [21], geodesic active contour

(GAC) [22], and LRAC and LRES, respectively. As depicted in

Fig. 1, the meniscus located in the upper-middle of the femoral

condyle and tibial plateau has a shape with deep concavity. The

initial contour is placed similarly for all of the tested methods

as in Fig. 1 (a). Fig. 1 (b)-(f) depict the final contours of

RSF, GAC, LRAC, LRES, and LREK overlaid on the original

image. To evaluate the accuracy and convergence rate, we used

the segmentation result of LREK in Fig. 1 (f) as the reference

to compute DSC over 1000 iterations as plotted in Fig. 2,

where x and y-axes represent iteration number and DSC,

respectively. We also presented computational time required

by different active contour models in the Table I.

With the scale of Gaussian kernel σK = 17, RSF con-

siders local intensity and handles non-uniform intensity well.

Convolving the local window to the entire image leads to

partitioning the brighter intensity as the object while the darker

one as the background. It is unable to locate the meniscus as

the only desirable object among other surroundings.

Active contours with local information are sensitive to initial

contour positions which are required to be placed near the

object. This limitation, on the other hand, gives advantages in

obtaining a particular object among other undesired objects,

depending on its initial position. They do not have a tendency

to capture the entire object as opposed to RSF that partitions

the image into bright and dark intensities.

To navigate the contour towards the object’s edge, GAC

relies on the image gradient. The speckle, often considered as

(a) (b) (c)

(d) (e) (f)

Fig. 1. Segmentation results of the meniscus (green): (a) initial contour, final
contour for (b) RSF (σK = 17), (c) GAC (α = 0), (d) LRAC (r = 10),
(e) LRES (s = 15,∆s = 5, thres = 5), and (f) LREK (d = 10,∆d = 5,
thres = 3), respectively. Image size is 288 × 364 pixels.
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Fig. 2. Convergence properties (from bottom up) of RSF, GAC, LRES, LRAC,
and LREK active contours in segmenting the meniscus.

false edge points, may prevent GAC from reaching the real

boundary. Balloon force (α = 0) can grow the contour either

inward or outward direction with a small capture range and

slow convergence, which impedes from penetrating into the

boundary concavity of the meniscus. Another choice of α can

help to gain a larger capture range, but making it sensitive

to initial position. The contour may also pass through weak

boundaries, particularly in the images with low contrast.

As active contours using local regional descriptors employ

pixel intensity instead of edge pixels, they are more robust

against noise [23]. They de-emphasize the role of image noise

by computing intensity statistics within the local window.

The contour can still evolve towards the boundary, although

in the presence of noise. LRAC provides a more complete

boundary than GAC although some areas are still excluded

as segmentation outcomes. In the shared boundaries between

the femoral condyle and the meniscus, the contour evolves

reaching the left part of the meniscus. Meanwhile, it only

arrives at the half boundary of the upper part. With r = 10,

the distance between the contour as the center of the circle and
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TABLE I
COMPUTATIONAL TIME OF THE DIFFERENT MODELS

Models Total Time (s)

RSF 1,070

GAC 1,958

LRAC 215

LRES 7,630

LREK 232

the boundary is too far. The problem of limited capture range

prevents the contour from evolving into the middle area of the

meniscus which is considered as a homogeneous area. LRES,

which utilizes extendable search lines for handling concave

parts, is able to segment only into half of the meniscus area.

In such low contrast images, the contour is confined in the

middle area of the meniscus as shown in Fig. 1 (e). This is

because the statistics on the long, thin search line may not

reliably describe the local intensity to generate enough force

to penetrate the other part of the meniscus.

We ran RSF, GAC, LRAC, LRES, and LREK iterate for

1000 iterations, plotted their DSC values in Fig. 2, and

summarized their computational time in Table I. According to

Fig. 2, they converge at approximately 50, 100, 750, 150, and

700 iterations. Instead of locating the meniscus, RSF partitions

the entire image. LREK converges faster than LRAC, yet gives

more complete boundaries. Although its initial scale is set to

10 pixels similar to that of LRAC, the feature of expandable

kernels results in a larger capture range to propagate into

the concave boundary of the meniscus as confirmed by the

higher value of DSC in Fig. 2. Some other models result

in less complete boundaries due to their inability to move

into the concave shape, thus giving smaller values of DSC.

With the speed of 7.63 seconds per iteration, LRES produces

time consuming performance. It requires more computational

steps to form two separate line regions inside and outside the

contour and also to extend each of them as compared to LREK

that just uses one kernel to form two local regions split by the

contour line and to be expanded. This helps LREK to converge

towards the intended boundary more rapidly than LRES. In

addition, the scalability of the kernel to image size leads to

a proportional computation in either small or large images.

The total computational time required for RSF, GAC, LRAC,

LRES, LREK to converge are 53.52, 195.79, 161.18, 1,144.49,

and 162.47 seconds, respectively.

B. Further Evaluations of the Proposed Model

1) Analysing the Threshold Value: We performed another

experiment to investigate the choice of the threshold value

thres, a key parameter in adapting the kernel size, in response

to the segmentation accuracy. We tested the performance of

the single level formulation with various threshold values in

segmenting a concave object of the meniscus. For this image,

we varied 8 different values of thres from 3 to 17 while setting

other parameters as d = 10 and ∆d = 5 and plotted their final

contours in Fig. 3. We computed DSC using the segmentation

result in Fig. 3 (a) as the reference. The corresponding DSC

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a)-(h) Shows segmentation results of LREK active contour on the
meniscus (green) with thres = 3, 5, 7, 9, 11, 13, 15, and 17, respectively.
Parameters d = 10, ∆d = 5, and l = 1000. Image size is 288 × 364 pixels.
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Fig. 4. Convergence properties of LREK active contour for different values
of threshold in segmenting the meniscus.

values for these 8 results are plotted over the number of

iterations in Fig. 4. It shows that the smallest value results

in a more complete boundary of the meniscus. Meanwhile,

the higher value of this parameter results in a less complete

boundary. The two highest threshold values take the shortest

time to converge at the same speed, however, into the least

inaccurate segmentation. Two groups of intermediate values

converge into two different speeds and segmentation accura-

cies. The first group with larger values converge faster, but into

a less accurate outcome than the second group with smaller

values. The smallest threshold value gives the lowest speed,

but the most accurate outcome. This is because the contour

requires more time to penetrate into the concave boundary. In

essence, this experiment illustrates that the smallest threshold

value enables the adaptation of the size of the kernel in order

to detect the nearest boundary. The bigger value results in less

ability of the kernel to expand and penetrate particular areas.

Hence, the user may select a small threshold value to enable

this feature and vice versa.

2) Multiple Region Segmentation: This experiment demon-

strates multiple object segmentation using single and multiple

level set formulation without and with the additional constraint

according to equations (7), (10), and (11), respectively. The

goal is to partition image pixels into separate objects of

femoral condyle, (FC), meniscus (M), and tibial plateau (TP).
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In Fig. 5 (b), each initial contour is placed in each object.

For the result in (d), three initial contours are embedded in a

single level set function φ. Although the final contours are

shown to locate each object with different positions, they

do not provide a complete separate boundary between the

meniscus and the tibial plateau. As multiple objects reside

close to each other, merging between adjacent contours occurs

in the shared boundaries which is undesirable in this case.

(a) Original image (b) Initial contours (c) Manually traced con-

tours

(d) Final contours ob-

tained by single level set

(e) Final contours ob-

tained by multiple level

set without constraint

(f) Final contours ob-

tained by multiple level

set with constraint

Fig. 5. Simultaneous segmentation of the femoral condyle (red), the meniscus
(green), and the tibial plateau (blue) with parameters (d = 15 and ∆d = 3)
for (c), (dFC = dTP = 8, dM = 15, and ∆dFC = ∆dM = ∆dTP = 3)
for (d) and (e), thres = 3, and l = 1100. Image size is 288 × 364 pixels.

To capture three separate object’s regions, we used n =
3 using triple level set function (φi)

3
i=1

that are used to

embed these three initial contours as in (e)-(f). Three sets

of zero level of the contours φ1, φ2, and φ3 to segment

femoral condyle, meniscus, and tibial plateau boundaries are

accordingly coloured as red, green, and blue and overlaid

on the original images. Although multiple initial contours

overlapped with one another, the final contours in (e) are

positioned on each object without any merging between the

adjacent contours. However, the neighbouring contours create

an overlapping region in the shared boundaries between the

meniscus and the tibial plateau where the contrast is low.

Hence, the framework with additional constraint is used to

prevent multiple contours from overlapping with each other as

depicted in (f). The corresponding area terms of the Heaviside

function of these triple level set functions φ1, φ2, and φ3
are

∑

p6=1
Hǫ(φp) = Hǫ(φ2) + Hǫ(φ3),

∑

p6=2
Hǫ(φp) =

Hǫ(φ1) + Hǫ(φ3), and
∑

p6=3
Hǫ(φp) = Hǫ(φ1) + Hǫ(φ2),

respectively. Within one time step, these triple level set func-

tions are updated. When evolving φ1, another two level set

functions φ2 and φ3 are described by their Heaviside functions

Hǫ(φ2) and Hǫ(φ3), respectively, and vice versa. As a result,

the multiple contours are evolved simultaneously to the desired

boundaries of the femoral condyle, the meniscus, and the tibial

plateau in a single image without any merging and overlapping

between the neighbouring contours. This is confirmed by DSC

and HD values computed from the segmented and manually

traced contours in (c) using single and multiple level set for-

mulation without and with the additional constraint which are

summarized in the first, second, and third rows of the matrices
[

− − −
0.9155 0.7731 0.9430
0.9061 0.7734 0.9434

]

and
[

− − −
5.5678 5.9161 5.4772
5.5678 6.4807 4.8990

]

, respectively.

3) Multiple Scale Parameters: We continued with a demon-

stration on how various parameters can be assigned differently

for each zero level contour. In Fig. 5, we observed that

different scales for each zero level contour in (e)-(f) may

increase segmentation accuracy compared to (d) that produces

a less accurate result. This is because the parameters’ values

cannot be set to be different for those three contours which

are embedded in a single level set function.

(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) Original image, (b) initial, (c) manually traced, and final contours
on femoral condyle (red), meniscus (green), and tibial plateau (blue) (d) with
dFC = dM = dTP = 13 and ∆dFC = ∆dM = ∆dTP = 5, (e) with
dFC = dM = 12, dTP = 13, ∆dFC = 5, and ∆dM = ∆dTP = 3, and (f)
with dFC = dM = 12, dTP = 13, ∆dFC = ∆dM = 3, and ∆dTP = 5.
Parameters thres = 3 and l = 700. Image size is 288 × 364 pixels.

In Fig. 6, we compared different choices of scale parameters

in the presented multiple level set framework. Similar choice

of scale parameters for each zero level contour (d = 13 and

∆d = 5) may not produce an accurate segmentation for every

object as some excluded areas are found in the segmentation

outcome (d). With different scales for each zero level contour,

some improvements are observed on the femoral condlye and

meniscus boundaries in (e). However, we noticed that the

contour on the femoral condyle are splitting and developing

new areas due to the scale step being too large, i.e., ∆dFC = 5.

On the other hand, the corner area in the upper left of the

tibial plateau is excluded because the scale step is too small

(∆dTP = 3). Therefore, we set ∆dFC = 3 for the femoral

condyle and ∆dTP = 5 for the tibial plateau to improve the

segmentation accuracy. Meanwhile, the choice of ∆dM to be

3 or 5 is shown to produce no effect on the meniscus part.

In addition, although two initial contours between the femoral

condyle and the meniscus created an overlap region, we no-
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ticed that the region vanishes after the contours have evolved.

DSC and HD values for segmentation results in (d), (e), and

(f) summarized accordingly in the first, second, and third rows

of the matrices
[

0.8724 0.7902 0.9244
0.8691 0.8543 0.9153
0.9137 0.8543 0.9245

]

and
[

4.2426 4.8990 4.8990
4.3589 4.5826 4.4721
4.2426 4.5826 4.8990

]

confirm that different scale parameters assigned to the multiple

objects of different size and shape can improve the result.

In summary, the value of d affects the accuracy of contour

placement on the boundary once the kernel has found the

boundary. As long as the kernel contains enough information,

the position is least affected and generally accurate. In addi-

tion, the value of ∆d determines the gradual increase of the

kernel scale when expanding in order to detect the nearest

boundary. If the value of this parameter is too large, it results

in sudden changes to the scale and causes splitting contours

developing new areas despite the main contour still capturing

the boundary. However, if the value is too small, the contour

is unable to reach some of the object region. Hence, a proper

choice of both scales will result in a gradual expansion of the

kernel and an accurate contour placement in the boundary.

C. Knee Meniscus Ultrasound Image Segmentation

In this subsection, we presented an application of the

proposed framework to segment knee meniscus ultrasound

images. Fig. 7 depicts a subset of 12 segmentation outcomes

that represents variation in size, shape, and position of the

objects from datasets of 70 images. The datasets that consist

of 3, 4, and 5 images were available from 10, 5, and 4

subjects, respectively. For these datasets, we set thres = 3,

l = 1000, dFC, dM, and dTP to be 8, 10, 12, 13, 14, or 15,

and ∆dFC, ∆dM, and ∆dTP to be 3 or 5. Although Fig. 7

has indicated visually satisfactory results, a precise assessment

to quantify the segmentation performance is of great concern.

We computed DSC and HD over 70 images from contours

obtained by MLREK and traced manually by the expert as

shown in Fig. 8. (a) and (b), respectively. Each contour of the

objects was segmented separately.

DSC values in the graph vary from 0.72 to 0.96. The value

above 0.7 indicates that the two compared regions have a

close similarity in area and location one and another [30]. The

value greater than 0.8 indicates a better similarity area which

provides more satisfactory and less inaccurate segmentation

outcomes. Meanwhile, HD values are ranging from 2.65 to

8.78 pixels where a smaller value indicates that two compared

shapes differ minimally each other. These values are quite

small compared to image size of 288 × 364 pixels. Such

a range in DSC and HD values may be influenced by the

low-contrast areas and weak boundaries that are excluded in

the segmentation outcomes. It may be caused by the scatter

distribution of speckle noise that varies the contrast of the

object ranging from low to high intensity changes. Although

the local model suffers sensitivity to initialization and scale

parameters [23], the results have demonstrated the robustness

against various shapes, sizes, and positions of the objects.

The mean of DSC and HD measures for all objects in Table

II falls in the range of 0.88 and 0.94 and of 4.41 and 5.80

pixels, demonstrating a good segmentation quality. Meanwhile,

the standard deviation for DSC is between 0.02 and 0.04

Fig. 7. A subset of 12 segmentation outcomes of the femoral condyle (red),
the meniscus (green), and the tibial plateau (blue) that represents variation in
size, shape, and position of the objects.
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Fig. 8. (a) DSC and (b) HD measures of the femoral condyle, the meniscus,
and the tibial plateau over 70 images.

and for HD is between 0.83 and 0.97 pixels, indicating that

MLREK provides consistent outcomes. Intraclass correlation

(ICC) values in Table II indicate a good reproducibility of

the three segmentation results of the femoral condyle, the

meniscus, and the tibial plateau. The Bland-Altman analysis

in Fig. 9 demonstrate a good agreement between two segmen-

tation results of the three objects where the bias is near zero
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Fig. 9. Bland-Altman plot for DSC measures of (a) the femoral condyle, (b) the meniscus, and (c) the tibial plateau.

TABLE II
STATISTICS OF THE MEASURES

Femoral Condyle Meniscus Tibial Plateau

DSC 0.91 ± 0.05 0.88 ± 0.04 0.94 ± 0.02

HD (pixels) 5.35 ± 0.91 4.41 ± 0.97 5.80 ± 0.83

ICC 0.8990 0.7040 0.8989

while the data points fall within the 95% confidence interval

(± 1.96 SD). Despite these good and consistent outcomes

confirm the visually pleasing results in Fig. 7 and reflects a

good agreement with its ground truth, an in-depth study of the

framework application for assessment of the knee meniscus

degeneration and displacement is very interesting for future

work. For example, DSC values below 0.8 which have more

than 20% area discrepancy may not be accurate for use in the

quantification, particularly for degeneration detection. Thus,

relative comparison of the meniscus area or position before and

after the degeneration or displacement needs to be investigated

further, where the occurrence usually takes place in a subject

after a long period of time.

V. CONCLUSION

In this work, we have presented a strategy inside the varia-

tional level set method to adapt the size of the local window

in order to avoid being trapped in homogeneous regions dur-

ing the segmentation process. Simultaneous segmentation of

femoral condyle, meniscus, and tibial plateau in an ultrasound

image to determine the area and the position of the meniscus is

required in order to quantify knee meniscus degeneration and

displacement. We then extend this framework to simultaneous

multiple object segmentation without merging and overlapping

between neighbouring contours in the shared boundaries of the

separate regions. We compare the proposed method to other

active contour models and show the improvement in terms of

segmentation performance, speed, and convergence properties

that can be achieved by the proposed method. Further evalu-

ation is performed by investigating the response of various

parameters in the proposed model to segmentation results.

Our experiment with varying the threshold value illustrates

how it should be chosen to adapt the kernel size in order

to successfully reach the concave parts. We show that it can

prevent merging and overlapping and perform simultaneous

segmentation of separate objects all at once in a single image.

We also illustrate a flexible choice in assigning different

parameter values for each contour when segmenting multiple

objects. Simultaneous segmentation of the three objects on a

set of knee meniscus ultrasound images indicates that MLREK

produces a good and consistent segmentation outcome. While

the focus of this work is on the segmentation of the knee

meniscus ultrasound images, application of the framework

for the assessment of the knee meniscus degeneration and

displacement is of interest and left for future work.

APPENDIX

DERIVATION OF SCALABLE LOCAL REGIONAL FORCE

In obtaining our scalable local regional force, we minimize

the first term of our total energy function in (7), which we

restate here for convenience. Then, we substitute ESLR with

equation (4).

E(φ) = −

∫

δ(φ(y))ESLR(φ(x))dy (16)

= −

∫

δ(φ(y))

∫

K ×
(

|I − µin|
2
Hǫ(φ(x))

+ |I − µout|
2
(1−Hǫ(φ(x)))

)

dxdy.

To compute the variation of φ, we replace φ with φ + ξψ

by writing E(φ) as E(φ+ ξψ).

E(φ+ ξψ) = −

∫

Ω

δ(φ(y) + ξψ)

∫

Ω

K (17)

×
(

|I(x) − µin|
2
Hǫ(φ(x) + ξψ)

+ |I(x)− µout|
2
(1−Hǫ(φ(x) + ξψ))

)

dxdy.

The first variation of E is derived to obtain the optimal φ.

The partial derivative of E is taken with respect to ξ for ξ = 0.

∂E(φ+ ξψ)

∂ξ
= −

(

∫

δ(φ(y))

∫

ψδ(φ(x)) (18)

K ×
(

|I − µin|
2
− |I − µout|

2
)

dxdy

+ψ

∫

δ′(φ(y))

∫

K ·
(

|I − µin|
2
Hǫ(φ(x))

+ |I − µout|
2
(1−Hǫ(φ(x)))

)

dxdy
)

.
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On the zero level set function, δ′(φ) evaluates to zero, thus

this term can be omitted. We use the chain rule and plug in

ξ = 0 to obtain ∂E
∂φ

.

∂E

∂φ
= −

∫

δ(φ(y))

∫

ψδ(φ(x)) (19)

K ×
(

|I − µin|
2
− |I − µout|

2
)

dxdy.

For all ψ, the partial derivative is zero, then we obtain ∂E
∂φ

=
0. Hence, the gradient flow equation is given as follows

∂φ

∂t
= δ(φ(y))

∫

δ(φ(x))

K ×
(

|I − µin|
2
− |I − µout|

2
)

dx

= δ(φ(y))FSLR(φ(x)) (20)
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