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ABSTRACT  
The applicability of high spatial resolution hyperspectral data and small-footprint Light Detection 
and Ranging (lidar) data to map and describe sagebrush in a semi-arid shrub steppe rangeland is 
demonstrated. Hyperspectral processing utilized a spectral subset (605 nm to 984 nm) of the 
reflectance data to classify sagebrush presence to an overall accuracy of 74 percent. With the 
inclusion of co-registered lidar data, this accuracy increased to 89 percent. Furthermore, lidar data 
were utilized to generate stand specific descriptive information in areas of sagebrush presence 
and sagebrush absence. The methods and results of this study lay the framework for utilizing co-
registered hyperspectral and lidar data to describe semi-arid shrubs in greater detail than would be 
feasible using either dataset independently or by most ground based surveys. 
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INTRODUCTION  
Wyoming big sagebrush (Artemisia tridentata Spp. wyomingensis) is an important rangeland 
shrub associated with the Intermountain West shrub steppe environment. Many vertebrate species 
utilize habitats within sagebrush to maintain viable populations (e.g., pygmy rabbit (Brachylagus 
idahoensis), sage grouse (Centrocercus urophasianus), and sharp-tailed grouse (Tympanuchus 
phasianellus)). As sagebrush communities in the Intermountain West become increasingly 
fragmented due to agricultural and urban growth, range fires, and invasive weeds, critical habitats 
and historic grazing/browsing regimes become threatened (NPCC, 2004). Thus, land managers 
and conservation agencies need accurate tools to inventory and assess these semiarid shrubs. This 
study combines the strengths of passive, high spatial resolution, hyperspectral reflectance 
imagery and active, small-footprint Light Detection and Ranging (lidar) pulse data to assess 
sagebrush distribution and stand structure information, exceeding the mapping ability of either 
dataset alone.  
 
The study area for this project covers nine square kilometers within the Idaho National 
Engineering and Environmental Laboratory (INEEL) in southeastern Idaho (Figure 1). The 
vegetative composition of the sagebrush ecosystem in the study area commonly includes 
Wyoming big sagebrush, green rabbitbrush (Chrysothamnus viscidiflorus), Russian thistle 
(Salsola kali), and winterfat (Ceratoides lanata). Associated native grasses include thick-spiked 
wheatgrass (Elymus lanceolatus), bottlebrush squirreltail (Elymus elymoides), Indian ricegrass 
(Oryzopsis hymenoides), needle-and-thread grass (Stipa comata), and Nevada bluegrass (Poa 
secunda) (ESER, 2004).  
 
Two large fires burned across separate regions of the study area, the first in 1974 and the second 
in 2000. Wildfires are naturally occurring disturbances in semi-arid rangelands, and it may take 
decades for sagebrush to re-establish a viable population following a disturbance (Colket, 2003). 
Thus, in the burned areas, sagebrush is dominantly absent, having been replaced by increased 
populations of green rabbitbrush, cheatgrass (Bromus tectorum), native grasses, and Russian 
thistle. Additionally, land managers have seeded some burned areas with crested wheatgrass 
(Agropyron desertorum) in an attempt to increase botanical diversity.  
 
PREVIOUS WORK  
Remote sensing techniques have the unique ability to capture a spatial and temporal snapshot of 
an ecosystem that can feasibly be used to establish geographic context and perform spatial 
interrogation of ecological health and inventory (Patil and Myerst, 1999). Remotely sensed data 
also have the potential to provide large-scale information on vegetation in semi-arid and arid 
rangelands (Tueller, 1987). Multispectral sensors have been used for more than 30 years to 
characterize vegetation across the globe, while hyperspectral instruments came into widespread 
use in the 1990s. Warren and Hutchison (1984) document the utility of remote sensing for holistic 
change detection in shrub/grass rangeland. Other studies have demonstrated success at mapping 
ecological resources in semiarid systems using high spectral resolution data (e.g., Elmore et al., 
2000; Lewis et al., 2000; Okin et al., 1999), and the use of multiple or fractional end-members 
has been shown to increase classification confidence in semi-arid environments (e.g., Roberts et 
al., 1998). Okin et al. (2001), however, encountered complications in discrimination of spectrally 
indeterminate arid shrubs using high spectral resolution field data. Significant soil exposure and 
an increased level of non-linear spectral mixing in semi-arid environments likely influenced these 
complications (Huete and Jackson, 1988; Huete et al., 1985; Musick, 1984; Ray and Murray, 
1998).
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Figure 1. Location of the study area within the Idaho National Engineering and 
Environmental Laboratory (INEEL). In the hyperspectral image of the study area, dark 
lines bound the burned areas and points represent field validation sites. 
 
While lidar is newer technology than passive reflectance remote sensing, recent studies have 
demonstrated the applicability of small (1 m or less) and large (10 m to 25 m) footprint lidar data 
to precisely characterize forest canopies. Waveform returns from large-footprint lidar sensors 
such as the Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) and Laser 
Vegetation Imaging Sensor (LVIS) have successfully been used to measure variables such as tree 
height, canopy structure, leaf area index (LAI), and biomass (e.g., Drake et al., 2002; Harding et 
al., 2001; Hofton et al., 2002). Similarly, small-footprint lidar has been used to determine tree 
height and LAI in various forest types (e.g., Drake et al., 2002; Popescu et al., 2002; Riaño et al., 
2004).  
 
Relative to the number of forestry studies, little work has addressed lidar applications in 
rangeland ecosystems. Height profiles created by non-scanning lidar sensors have been used to 
measure plant height and canopy cover in a rangeland environment (Weltz et al., 1994) and to 
model rangeland surface roughness (Ritchie et al., 1995). Other studies have demonstrated the 
applicability of scanning lidar combined with multispectral video imagery to map shrub coppice 
dunes in desert grasslands (Rango et al., 2000). 
  
Hyperspectral and lidar data have fundamentally different characteristics. Lidar data are 
irregularly spaced monochromatic near-infrared laser pulses (postings) emitted by and reflected 
back to the sensor. The postings are distributed in a pseudorandom fashion and are thus assumed 
to statistically represent the terrain characteristics. Conversely, hyperspectral data are intensity 
values of radiation reflected from a contiguously recorded surface across a broad range of narrow 
electromagnetic bandwidths. Though these differences imply complications for data fusion, some 
recent work has quantitatively related lidar and reflectance datasets. Popescu and Wynne (2004) 
used multispectral imagery to distinguish between deciduous and pine trees, thereby enhancing 
lidar-dependent tree height models. Additionally, Hudak et al. (2002) successfully fused Landsat 
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ETM imagery with lidar to improve tree height calculation. Lee and Shan (2003) combined lidar 
with multispectral Ikonos imagery to improve upon supervised classification accuracies in a 
coastal environment, and Blackburn (2002) used lidar to mask tree gaps while using hyperspectral 
Compact Airborne Spectrographic Imager (CASI) data to estimate photosynthetic pigments in 
forest plantations. 
 
METHODS  
DATA COLLECTION  
This study fuses hyperspectral data collected in July 2002 with lidar data collected 
approximately two months later. The hyperspectral data were acquired by the HyVista 
Corporation of North Ryde, New South Wales, Australia. The dataset has a spatial resolution of 
4.6 m  4.6 m and contains 126 spectral bands between 450 nm and 2,500 nm, with spectral 
bandwidths of approximately 10 nm in the visible and near-infrared and 20 nm in the short-wave 
infrared. The lidar data were collected by the Airborne 1 Corporation of El Segundo, California 
using a 25 KHz scanning pulsed laser at a wavelength of 1,067 nm. The dataset contains 13.3 
million postings within the study area (approximately 1.2 postings per square meter) where each 
lidar posting has a diameter of approximately 25 cm. Two returns (first and last) were recorded 
for each posting, and each return included a time stamp, the X, Y, and Z coordinates, and an 
intensity value.  
 
A field survey in the summer of 2004 collected 157 differentially corrected Global Positioning 
System (GPS) validation samples within the study area (Figure 1). Each validation sample was 
acquired as a point location, attributed by fractional coverage of sagebrush, grass, rabbitbrush, 
and bare ground (oblique field estimates) to a search radius of approximately 15 m. In addition to 
the point data samples, GPS polygon samples and line features were also collected around 
geographically distinctive features in the study area (e.g., rock outcrops, sand dunes, and roads) 
to assist in the assessment of image registration errors.  
 
Although there was a two-year period between image acquisition and field data collection, we 
assume negligible changes in the sagebrush ecosystem. Independent test plot measurements of 
mature sagebrush canopy indicate a variation in cover between 5 percent and 10 percent over 
two-year intervals (Inouye, personal communication, 2004). Additionally, the study area is 
neither heavily grazed nor public land, and no major range fires or other disturbances occurred in 
the area between the time of data collection and the time the validation was performed.  
 
HYPERSPECTRAL PROCESSING  
The hyperspectral data were atmospherically corrected by the vendor using the MODTRAN4 
radiative transfer code (Berk et al., 1999). Exploratory data evaluation identified an inconsistency 
in cross-track illumination, which was rectified using a multiplicative correction algorithm built 
into the Environment for Visualizing Images (ENVI) software (RSI, 2004). Further evaluation 
revealed generally higher reflectance in the visible wavelengths within the fire scars as compared 
to areas of mature sagebrush. We hypothesized that these differences were the result of variation 
in vegetative composition and increased soil exposure. Preliminary unsupervised classifications, 
performed to explore the spectral variability within the data, determined that areas of sagebrush 
on the west side of the study area were spectrally distinct from areas of sagebrush on the east 
side. This artifact was correlated to a change in soil composition, with the east portion of the 
study area typified by thick floodplain sediments and the west portion by aeolian sands overlying 
basalt.  
 
Hyperspectral data were classified utilizing the Mixture Tuned Matched Filtering (MTMF) 
algorithm. MTMF is a partial unmixing algorithm that combines the strengths of linear spectral 
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unmixing and statistical matched filtering to produce a Matched Filter (MF) score (estimate of 
target abundance) and a measure of infeasibility (Boardman, 1998).  
 
MTMF classifications utilizing the full spectral range of the hyperspectral dataset overestimated 
sagebrush presence within the burn scars. Comparison of spectral profiles derived from areas of 
both sagebrush presence and sagebrush absence illustrated strong similarities across the spectral 
range of the dataset (Figure 2). In the visible and near-infrared, however, the profiles deviate 
slightly. Accordingly, the data were reprocessed using only the spectral range from 605 nm to 
984 nm (27 spectral bands), and the resulting classification generated a qualitatively improved 
representation of sagebrush distribution.  
 
MTMF classification requires the input of spectral training endmembers. While the objective of 
this study is to map the distribution of sagebrush, it is notable that there is a certain amount of 
heterogeneity within a sagebrush stand (e.g., dead brush, rabbitbrush, grasses, and soil exposure 
may vary locally) (Huete and Jackson, 1988). In this study, areas referred to as sagebrush are 
realistically only partially Artemisia tridentata, and it is assumed that no sagebrush stand will be 
an Artemisia tridentata monoculture. Thus, from an ecological perspective, it is important to 
consider any vegetative compositional variance within the sagebrush ecosystem when mapping. 
To model this variance, training areas were input in block (polygon) form (Chen and Stow, 2002). 
Iterative data classification demonstrated that a single sagebrush endmember (derived from an 
area of sand overlying basalt soils) effectively mapped sagebrush locally, but was not effective 
across the entire study area. We hypothesized that this anomaly was dominantly due to variability 
in underlying soil texture and composition. The addition of a second block endmember derived 
from an area of sagebrush underlain by floodplain sediments also performed well locally, and 
visually complemented the first endmember classification.  

 
Figure 2. Spectral profiles derived from burned (upper spectra, 22 sample mean) and 
unburned (lower spectra, 18 sample mean) areas. Typical burned areas lack any sagebrush, 
while the unburned areas had relatively high percent sagebrush cover. The spectral range 
used for the final hyperspectral analysis is noted. 
 
As MTMF is a linear operator with MF scores representing sub-pixel target abundance, the two 
endmember classifications, in the form of MF values, were arithmetically summed to derive a 
composite sub-pixel abundance of the target. An arithmetic average of the two bands of 
infeasibility was calculated and combined with the summed MF scores, generating a composite 
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MTMF classification. This composite classification represented both sagebrush endmembers, and 
more appropriately estimated sagebrush abundance across the entire study area.  
 
LIDAR PROCESSING  
The lidar data over the study area were collected in 22 separate flight lines, each approximately 
300 m wide. The vendor performed a GPS validation survey to constrain the absolute accuracy 
of the lidar coordinates to approximately 1 m in the horizontal direction and 25 cm in the 
vertical direction (two-sigma; Flood, 2004). A similar accuracy was determined in the study 
area using assessment methods modeled after Latypov (2002) which calculated the error 
between individual flight lines in areas of overlap.  
 
Relative error within individual flight lines was considerably lower, approximately 10 cm in the 
horizontal direction and 5 cm in the vertical direction. Relative errors of this size can be expected 
when using a properly calibrated lidar sensor under normal operating conditions (Airborne 1, 
2001). After using the time stamp of each posting to separate the data into individual flight lines, 
the relative vertical error within each flight line was estimated by calculating the standard 
deviation of the heights of points collected over a flat surface. The roofs of three structures and 
the surfaces of two cooling ponds, each spanning at least 75 m2 

and assumed to be 
topographically invariant, were used in this analysis. The horizontal accuracy of the lidar points 
was determined using a similar methodology applied to five different vertical walls of multi-story 
buildings, each of which is at least 5 m wide. Coordinates of lidar posts reflected from the walls 
were extracted and fit to a flat vertical plane, and the relative horizontal accuracy was estimated 
as the standard deviation of the points about this plane. In order to preserve the highest possible 
relative accuracy, subsequent processing considered all flight lines individually.  
 
As the study area is relatively devoid of major topographic features and semi-arid rangeland 
canopies are fairly open, the first return lidar data were used to characterize both the terrain and 
the vegetative canopy. Using a single lidar dataset instead of attempting to merge the first and last 
pulse datasets (each of which contain over ten million points within the study area) kept the 
overall processing requirements to a minimum and avoided the introduction of problems 
associated with detecting multiple returns at a similar height (Hodgson et al., 2003).  
 
Individual lidar postings were grouped into 5 m  5 m cells, where the lowest point in each cell 
was assumed to represent the ground surface. Using these ground points, an initial ground 
surface was interpolated across the study area using a thin plate spline (Meinguet, 1979). Heights 
above this surface were calculated for the remaining data points, and resulting values of zero or 
less were reclassified as ground points. The ground surface was re-interpolated iteratively until 
all lidar points were classified as either ground or non-ground (99 percent of the points 
converged after two iterations). Of all lidar points, 21 percent were classified as ground, and the 
remaining 79 percent were classified as non-ground. All resulting ground points were used to 
interpolate a final ground surface, and above-ground height values were calculated for all 
remaining (non-ground) points. The final height points were combined from all individual flight 
lines into a single dataset, and were subsequently grouped into 4.6 m cells (the same spatial 
resolution as the hyperspectral data). Surface roughness values were derived for each cell by 
computing the standard deviation of all height values, which generated a surface roughness raster 
matching the spatial resolution of the hyperspectral data (Figure 3).  
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Figure 3. Map of surface roughness within the study area (a), and a final MTMF sagebrush 
presence distribution map (b). Surface roughness ranges from 0 cm (white regions) to over 
300 cm (dark regions). 

 

In addition to surface roughness, lidar data were used to calculate several variables describing the 
physical properties of all vegetation in the study area. The mean height of each pixel was 
calculated as the average of all heights within the pixel, including the ground postings, while the 
mean vegetation height was calculated as the average height of only the non-ground postings. The 
highest single posting in each pixel was recorded (tallest vegetation) as was the fraction of lidar 
postings within each pixel that were classified as bare ground.  
 
CO-REGISTRATION  
Co-registration is the process of assigning exactly the same spatial context to two raster 
geographic datasets such that when overlain, pixels correspond to exactly the same geographic 
location. Previous work demonstrated that small differences in co-registration can lead to large 
errors, and that for quantitative analysis in semi-arid environments, co-registration must be 
accurate to between 0.5 and 1 pixel (Townshend, 1992).  
 
Lidar intensity data were interpolated into a raster with the same spatial resolution as the 
hyperspectral reflectance data (4.6 m). The hyperspectral band 43 (1,062 nm) corresponded most 
closely with the wavelength of the lidar laser (1,067 nm). This band was overlaid with both the 
interpolated lidar intensity data and five differentially corrected GPS ground control points. The 
lidar data were internally consistent and representative of GPS features (e.g., roads discernable in 
the image were straight and correctly positioned as compared to the GPS centerlines), and 
demonstrated less than one pixel error with respect to the GPS ground control points. The 
hyperspectral data expressed an image shift from the lidar dataset that averaged approximately 20 
m between GPS ground control points and image projected locations. A first-order polynomial 
transform was applied to the hyperspectral dataset using sixteen image-derived ground control 
points discernable in both datasets (lidar intensity data used as the base image). Following the 
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transform, agreement between the lidar and hyperspectral images was within one pixel at the GPS 
ground control points.  
 
Away from the GPS ground control points, the hyper-spectral image displayed geometric 
anomalies with a local shift between one and three pixels (compared to the lidar image). The 
lower geometric accuracy of the hyperspectral data is likely due to turbulent atmospheric 
conditions during data collection. Further, lidar geocorrection routines utilize differentially 
corrected GPS transects and real-time communication with mobile base stations for enhanced 
accuracy. Nine image control points were used to calculate a mean residual geometric error of 
11.5 m (standard deviation of 3 m) between lidar and hyperspectral equivalent locations. Because 
these anomalies were small scale and randomly distributed across the study area, both datasets 
were re-sampled to three hyperspectral pixels (13.8 m). The hyperspectral data were re-sampled 
using a pixel aggregate function, while lidar point height data were interpolated to an equivalent 
raster resolution. The resulting datasets did not have quantifiable geometric errors with respect to 
each other or to any of the GPS ground control data.  
 
Due to the possibility of uncertainties being generated and propagated by repeatedly projecting 
and re-sampling data as necessary for co-registration, both the hyperspectral and lidar data were 
processed in raw (reflectance and point, respectively) format. The analysis products were then 
geometrically transformed with the intent of preserving the integrity of the raw data while 
minimizing processing requirements.  
 
CLASSIFICATION AND FUSION  
Hyperspectral MTMF classification products were evaluated using scatterplots of MF versus 
infeasibility values. Pixels with MF values greater than zero and infeasibility values less than 
seven were considered to contain sagebrush. Classification accuracies for sagebrush presence and 
absence were calculated using error matrices and methods according to Congalton and Green 
(1999). Because field validation surveys (15 m diameter plots) were collected at approximately 
the same spatial scale as the resolution of the re-sampled and co-registered imagery (13.8 m 
pixels), validation plots were buffered by 0.5 pixels (6.9 m) to ensure that representative 
accuracies were determined. MF scores were extracted for the true positive field validation plots 
(field observed sagebrush coinciding with image classified sagebrush) as estimates of sub-pixel 
sagebrush components. Where multiple image pixels occurred within a single plot, the average 
value of all corresponding MF scores was used. The extracted MF values were correlated to field 
estimated sagebrush cover for each validation plot to evaluate the ability of MTMF to predict 
sub-pixel abundances of sagebrush. Positive MF values were rescaled to range between zero and 
one (representing 0 to 100 percent cover).  
 
Lidar roughness values were extracted for all field validation plots and were considered on a 
pixel-by-pixel basis. Separate distributions were drawn for sagebrush presence and sagebrush 
absence validation plots, and were compared using significance testing. The distribution of 
roughness values for sagebrush presence and absence plots overlap, yet are found to be 
statistically distinguishable according to an F-test for sample variances (Table 1).  
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Table 1. The statistical properties of the lidar-derived surface roughness values corresponding to 
the sagebrush present and sagebrush absent field validation sites  

Lidar Roughness Sagebrush Absent Sagebrush Present 
Mean (cm)  7.0  9.1  
Median (cm)  5.8  8.1  
Integer Mode (cm)  5  8  
Standard Deviation 
(cm)  

4.5  3.6  

Number of Samples  88  64  
F Statistic  1.57.    
FCrit (α = 95%)  1.48.    

 
Roughness values representing sagebrush were determined iteratively. The lowest roughness 
values were associated with smooth surfaces (e.g., paved roads or short grass), while the highest 
roughness values represented tall anthropogenic features (e.g., power poles). An upper roughness 
threshold of 75 cm (approximately 18 standard deviations above the mean: Table 1) was 
determined appropriate for removing most tall anthropogenic features. When plotted against MF 
values, roughness values generate two distinct groupings, one with slightly lower mean and lower 
MF values (correlated to sagebrush absence) and the other with a slightly higher mean and higher 
MF values (correlated to sagebrush presence: Figure 4). The lower roughness threshold was 
incrementally adjusted and accuracies calculated at each increment, and an optimal lower 
roughness value of 6.5 cm was determined.  

 
Figure 4. Scatterplot of Matched Filter (MF) score versus surface roughness for the entire 
study area, illustrating the relationship between areas of sagebrush presence (higher MF 
and higher roughness) and sagebrush absence (lower MF and lower roughness). Lines 
represent the roughness threshold of 6.5 cm and the MF threshold of zero that were used to 
generate sagebrush classifications. 
 
Because both MF scores and lidar roughness were correlated to sagebrush presence (Table 1; 
Figure 4), sagebrush was re-classified using a minimum MF value of zero, a maximum 
infeasibility value of seven, and roughness values between 6.5 cm and 75 cm. Image re-
classification using fused hyperspectral and lidar variables resulted in a more accurate and 
detailed sagebrush distribution map for the study area. The sagebrush classification was then 
augmented by the vegetative structure information derived using the lidar data. Population 
statistics for each of the previously derived lidar variables (roughness, mean height, mean 
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vegetation height, tallest vegetation, and percent bare ground) were tabulated for all pixels 
classified as either sagebrush present or sagebrush absent (Table 2; Figure 5). As in image 
classification, areas with very high surface roughness (greater than 75 cm) were eliminated from 
this analysis.  
 
Table 2. The mean, median, variance, and f-value (95% confidence level) of lidar height products 
for sagebrush present and sagebrush absent image classified areas of the entire study area. These 
values were calculated using 15,273 pixels from areas classified as sagebrush present and 28,601 
pixels from areas classified as sagebrush absent. Values are presented as sagebrush “not 
present/present”  

 

 
Figure 5. Histograms of lidar-derived tallest vegetation heights for both the sagebrush 
present (higher mean) and sagebrush absent (lower mean) classified areas. 
 
RESULTS  
All classification accuracies are summarized in Table 3. Sagebrush was successfully mapped 
from hyperspectral imagery using MTMF, resulting in producer’s, user’s, and overall accuracies 
of 91 percent, 64 percent, and 75 percent, respectively, with no infeasibility constraint. The 
inclusion of a maximum infeasibility threshold of seven resulted in producer’s, user’s, and overall 
accuracies of 72 percent, 75 percent, and 74 percent, respectively. Subsequent attempts at 
lowering the infeasibility threshold generated unacceptable producer’s accuracies. Fusion of lidar 
roughness values as a third variable in sagebrush classification increased producer’s, user’s, and 
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overall accuracies to 84 percent (12 percent increase), 92 percent (17 percent increase), and 89 
percent (15 percent increase), respectively. However, no significant correlation (R2 

 0.02) was 
found between field estimates of sagebrush canopy cover and MF scores.  
 
Table 3. Accuracy assessment results for multiple sagebrush classification strategies are 
investigated. Accuracies were calculated using 88 validation polygons with sagebrush presence 
and 152 polygons with sagebrush absence. 

 
 
With relatively good constraint on sagebrush distribution, vegetative structure information 
derived from lidar data was cross-tabulated against the final classification of sagebrush presence 
and absence. All tested populations were found to be significantly distinguishable according to an 
F-test for sample variances (95 percent confidence: Table 2). Overall, pixels with sagebrush 
present had significantly greater mean heights, mean vegetation heights, roughness, and percent 
bare ground than did pixels with no sagebrush present. The maximum vegetation height for areas 
of sagebrush presence was also significantly greater in general than in areas of sagebrush 
absence. Further, histograms of tallest vegetation height clearly indicate that areas with sagebrush 
have higher population means and medians than do areas with no sagebrush (Figure 5). 
 
DISCUSSION  
Hyperspectral classification utilizing the full electromagnetic range of the data resulted in highly 
confused classifications of the distribution of sagebrush in a semi-arid rangeland. This 
corresponds with results published by Okin et al. (2001) in that semi-arid partial-cover canopies 
with bright soil backgrounds are difficult to discriminate. The separation of sagebrush from 
background vegetation was optimized based on empirical evaluations of the spectral relationships 
shown in Figure 2, which substantially increased the quality of the sagebrush classification. We 
hypothesize that spectrally subsetting the data removed a significant portion of soil-dominated 
reflectance ranges confusing the classifications. Further, the use of multiple target endmembers 
increased classification accuracy in this study. It is notable that in large areas where holistic 
variability becomes difficult to model, the inclusion of all necessary endmembers may be 
difficult. These results indicate that future studies in areas of low variability or highly constrained 
parameters can produce useful results (e.g., indicator plots or key ecologic zones), though this 
methodology would be difficult over large and diverse areas.  
 
MTMF classification did not discern representative sub-pixel abundances of sagebrush. While it 
is likely that some degree of error in sagebrush percent cover estimation confused the relationship 
between the MF score and the actual sub-pixel component, we infer that there are additional 
complications. For example, MTMF calculates the image mean as spectral background, which is 
expected to be distinct from the target (Mundt et al., in review). In this study, the target is a large 
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component of the dataset, and it is possible that some of the target spectral properties were 
interpreted as background, confusing the classification. This limitation is demonstrated in Figure 
4, where the cluster of sagebrush present pixels crosses into negative MF space. While MTMF 
may not be the best approach to sub-pixel component estimation in this scenario, it still visually 
outperformed Linear Spectral Unmixing and Spectral Angle Mapping in iterative sagebrush 
presence and absence classifications.  
 
This study used a simple sum of individual classification MF values to represent the composite 
sagebrush abundance (MF) distribution. Combination of linear unmixing endmembers in this 
context is not well documented, and we hypothesize that alternative approaches may also be 
effective (e.g., non-linear or weighted combinations). The summation of MF variables in this 
study is justified as we were able to generate a distribution map in which we have high 
confidence (Figure 3). Further, other empirical combinations of MF and infeasibility 
classifications (e.g., using geometric instead of arithmetic means) did not produce significantly 
different products.  
 
While no correlation was found between MF scores and field estimates of sagebrush canopy 
cover, pixels with sagebrush presence generally had higher MF scores than pixels with sagebrush 
absence (Figure 4). Further, in most areas of sagebrush presence, field validation estimated 30 
percent cover, which is near the mean (as well as the median and mode) of the rescaled MF 
distribution (Table 2). In light of this, we hypothesize that the MF scores may potentially be 
useful, though they are likely confused by high degrees of mixing in an indeterminate spectral 
endmember (Okin et al., 2001).  
 
Lidar data significantly improved hyperspectral classifications and added useful stand structure 
information in a semi-arid rangeland. Though typical rangeland vegetation heights are of the 
same order as the absolute vertical accuracy of small-footprint lidar scanners (Table 2), it is 
possible to measure such heights if attention is paid to preserving the high relative accuracy 
throughout the processing. In this study, high vertical accuracy was maintained by processing the 
lidar data in individual flight lines and as raw, irregularly spaced posting data. This allowed for 
the measurement of heights as small as 5 cm and for the production of height and roughness maps 
which effectively describe a large number of geographic features in addition to sagebrush 
presence, including roads, railroads, power lines, drainage canals, and fences. It is further notable 
that most sagebrush in the study area was significantly taller than the vertical precision of the 
lidar data (Figure 5).  
 
Co-registration of high spatial resolution data is processing and time intensive, yet provides a 
significantly more useful product than either of the parent models for discrimination and 
description of sagebrush. Fusion of classification products increased overall accuracies by 14 
percent over standard hyperspectral processing. We assert that the fundamental differences 
between the two sensors adds significantly to the potential discrimination of semi-arid shrubs as 
long as the vegetative ecosystems are relatively static or the datasets are acquired in rapid 
succession. The increase in accuracy resulting from data fusion may justify the added processing 
time and cost in areas where precision monitoring is necessary or key environmental indicators 
are present.  
 
One of the major limitations of the co-registration process is the requirement to re-sample both 
datasets to a lower spatial resolution to accommodate geometric error. Although the 
hyperspectral imagery in this study was re-sampled to one-third of its acquired spatial resolution, 
it still maintained higher spatial resolution than high altitude Airborne Visible Infrared 
Spectrometer (AVIRIS) instrument, which has had documented success in the context of 
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vegetation discrimination (Merenyi et al., 2000). The lidar data were spatially re-sampled to a 
small fraction of their original resolution, yet were significantly useful in this study. 
Furthermore, because lidar data are geometrically precise, invaluable ecological descriptions for 
high-resolu-tion inventory and monitoring can be derived from the lidar data at a finer spatial 
scale than classifications from hyper-spectral data.  
 
General field observations of sagebrush in the study area found a mean height of approximately 
50 cm and a maximum height of approximately 1 m, while vegetation in areas of sagebrush 
absence was most commonly shorter than 50 cm (with rabbitbrush often reaching heights of 
approximately 30 cm). These field relationships are supported by the derived lidar products 
(Figure 5). Analyses using lidar-derived variables such as this have implications for high-
resolution habitat monitoring, biomass/fuel load calculations, and numerous other objectives that 
may not be efficiently interpreted by field survey crews. 
 
CONCLUSIONS 
This study introduces the utility of hyperspectral data for mapping sagebrush communities, 
demonstrates the applicability of lidar data to describe semi-arid shrubs, and successfully fuses 
the two datasets to generate improved classification accuracies and stand structure descriptions. 
These products are desirable in the context of long term monitoring, and may potentially be 
useful in habitat analysis or biomass calculations. Figure 4 clearly indicates the correlation 
between surface roughness and sagebrush presence; and fires scars (including sagebrush islands) 
are plainly visible in the final sagebrush distribution map (Figure 3). Spectral subsetting and 
multiple spectral endmember classification helped to minimize the spectral confusion introduced 
by partial cover canopies and soil variability. Sub-pixel components could not be accurately 
modeled in this study, likely due to complex mixing in semi-arid partial canopies. While 
accuracies from MTMF classification of sagebrush distribution were intermediate (75 percent 
overall accuracy), the inclusion of lidar-derived roughness notably increased the ability to map 
the distribution of sagebrush (89 percent overall accuracy). Following the generation of accurate 
and co-registered maps of sagebrush distribution and vegetative structure, quantitative statistics 
were derived that described sagebrush stands in terms of vegetation heights and percent bare 
ground. The methods and results of this study lay the framework for utilizing co-registered 
hyperspectral and lidar data to describe semi-arid shrubs in greater detail than would be feasible 
for most ground based surveys. Although it is currently not reasonable to use these methods to 
inventory or monitor large scale vegetative ecosystems (e.g., semi-arid shrubs in the Southwest 
U.S.), we assert that these methods are useful where small-scale precision has implications for 
large-scale inventory or land management objectives. 
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