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ABSTRACT

The recent development of Platform-FPGA or Field-
Programmable System-on-Chip architectures, with im-
mersed coarse-grain processors, embedded memories and IP
cores, offers the potential for immense computing power as
well as opportunities for rapid system prototyping. These
platforms require high-performance on-chip communication
architectures for efficient and reliable inter-processor com-
munication. However, as the number of embedded proces-
sors increases, communication bandwidth between embed-
ded components becomes a limiting factor to overall system
performance. In this paper, we survey the state-of-the-art
on-FPGA communication architectures and methodologies.
Salient factors, which include quantitative performance met-
rics and qualitative factors, relevant to design are identified
and used to analyze and classify the on-FPGA communica-
tion architectures. This survey aims to facilitate innovation
in and development of future on-FPGA communication ar-
chitectures.

1. INTRODUCTION

On-FPGA communication is important to provide high-
bandwidth and reliable data transfer between processing ele-
ments, and is therefore fundamental to overall FPGA-based
system performance. In recently developed FPGA architec-
tures, such as the so-called Platform-FPGA [1, 2] and Field-
Programmable System-on-Chip [3], pre-fabricated coarse-
grained modules including microprocessors, DSP units and
memory modules are immersed into the fine-grain pro-
grammable fabric. These can provide significant improve-
ments in speed, area as well as hardware configuration time
[1, 4]. Computational intensive tasks such as video and im-
age processing, biometric analysis and cryptographic anal-
ysis can gain speed in order-of-magnitude with judicious
hardware implementation using Platform-FPGA [5]. This is
also an effective solution to tackle the application and inte-
gration complexity challenges for product development with
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time-critical constraints. Furthermore, a communication ar-
chitecture can be used as an interconnect backbone for dif-
ferent coarse-grain components, providing a plug-and-play
style of modularity to facilitate system integration. How-
ever, as the number of embedded components increases, the
communication bandwidth between embedded components
becomes a fundamental factor to consider in overall sys-
tem performance. As a result, there is a requirement to ad-
vance communication architectures for better performance
and scalability.

However, technology scaling trends indicate that the per-
formance and energy consumption characteristics of global
interconnect are rapidly deteriorating, relative to logic com-
ponents [6]. This will result in a significant performance gap
between on-chip interconnects and logic gates, and the gap
will continue to grow even with the help of new interconnect
materials and aggressive interconnect optimization [7]. Pro-
grammable interconnect, such as local and global wire seg-
ments and programmable switches, are the most abundance
resources in FPGAs and are fundamental to system perfor-
mance and power dissipation. On-FPGA communication ar-
chitectures, which are built on top of the programmable in-
terconnect fabrics, need to tolerate and adapt to the technol-
ogy scaling challenge.

There are many notable efforts devoted to addressing the
on-FPGA communication issues, and a considerable number
of different architectures have been proposed. In this paper
we present a survey of on-FPGA communication architec-
tures. Although general on-chip communication architec-
tures will be presented as background information, our main
focus is on the most recent FPGA-based communication ar-
chitectures. Notable design factors are identified and used to
evaluate the FPGA-based communication architectures. The
contributions of this paper are as follows:

1. Providing an up-to-date survey on FPGA-based com-
munication architectures. For example, FPGA-based
network-on-chip and run-time reconfiguration bus ar-
chitectures will be discussed.

2. Identifying notable design factors, such as quantita-
tive performance metrics and qualitative design fac-



Point-to-point 
Interconnect Bus Network-on-Chip

Custom Uniform

Hierarchical
share Bus

Split bus

Custom Segmented
bus

Homogeneous Heterogene

On-Chip Communication

Fig. 1. Taxonomy of on-chip communication architectures

tors, and examining different FPGA-based communi-
cation architectures based on the design factors.

Note that on-FPGA communication architectures may be
referred as physical-level interconnect architectures in some
of the literature. In this paper, on-FPGA communication ar-
chitectures refers to the FPGA-based architecture, which is
built on top of the programmable interconnect fabrics. Pro-
grammable fabrics and interconnect architecture designs are
beyond the scope of this survey.

In section 2, a taxonomy of on-chip communication ar-
chitectures will be presented. Section 3 is devoted to the
description of the most notable FPGA-based communication
architectures. In section 4, seven design factors are presented
and they will be used to analyze and classify the surveyed ar-
chitectures. In section 5, the conclusion of the survey will be
presented.

2. ON-CHIP COMMUNICATION ARCHITECTURE
TAXONOMY

A taxonomy of on-chip communication architectures is
shown in Fig. 1. In general, communication architectures
can be categorized into three main classes. An architecture
defines the structure of interconnection between processing
elements, as well as protocols and interface design.

2.1. Point-to-Point Interconnect

In a point-to-point interconnect architecture, pairs of pro-
cessing units communicate directly over dedicated physi-
cally wired connections Because of its simplicity, point-to-
point interconnect has been widely adopted in many appli-
cations. Custom interconnect, sometimes referred as ad-hoc
interconnect, is simply connecting processing elements by
wires when there is a necessity. On the other hand, uni-
form interconnect often has well defined interconnect topol-
ogy, which can be precisely specified by equations or graphs.
Typical examples are systolic arrays and neural networks.

Simplicity is the major advantage of the point-to-point
interconnect architecture. A communication channel be-
tween processing elements is simply a set of wires. As the
channels are not shared by other processing elements, the la-
tency and performance is deterministic. However, the most
significant drawback is that the number of wires required
grows rapidly as the number of channels increases. Routing
of wires may become intractably difficult [7, 8]. Moreover,
a point-to-point scheme suffers from low wire utilization for
low bandwidth channels, and a high hardware overhead, as
dedicated interfaces for each channel are required.

2.2. Bus Architectures

For bus architectures, long wires are grouped together to
form a single physical communication channel, which is
shared among different logical channels. An arbitration
mechanism is used to control sharing of the bus. This ar-
chitecture significantly reduces the total length of wires re-
quired and also reduces hardware area necessary for inter-
faces, communication and control. In addition, buses pro-
vides a generic infrastructure backbone for interconnection
between processing elements.

A hierarchical shared bus defines a segmented bus archi-
tecture. Bus segments are connected via a bridge, which may
buffer data. Protocols and structures can be varied in differ-
ent bus segments and each segment may be dedicated to spe-
cific functions, such as providing high-performance or low-
power communications. The partitioning can further allow
optimization of local bus architecture and the communica-
tion performance. For example, AMBA (Advanced Micro-
Controller Bus Architecture) is a bus architecture developed
by ARM which is designed for efficient realization of com-
plex system-on-a-chip (SoC) design [9]. Two system seg-
mented buses are specified in AMBA: the Advanced High-
performance Bus (AHB) is for high-performance communi-
cation and Advanced Peripheral Bus (APB) is for low-power
application purposes. The overall bandwidth can be fur-
ther improved by using multi-layer interconnect, or crossbar
switch [10], in which multiple parallel channels are available
to support parallel data transmission.

In a hierarchical bus architecture there is restricted scope
to modify or customize the architecture structure and proto-
col. An alternative approach is to use a split-bus. This refers
to a set of custom-design segmented buses. Bus segments
can be interconnected in an ad-hoc manner, or based on a
systematic approach. In addition, several emerging split-
bus bus architectures, which provide multiple segments with
adaptive topologies, have been proposed [11, 12, 13]. En-
hancements in bandwidth and flexibility were reported.

Despite the advantages, shared bus architectures suffer
from power and performance scalability limitations. Long
bus wires are increasingly unfavorable in nanometer process
technologies. In addition, handling high complexity design



with more IP cores, partitioning and distribution of cores to
bus segments is often an ad-hoc task.

2.3. Network-on-Chip (NoC)

The Network-on-Chip (NoC) is an architecture inspired by
data communication networks, such as LANs and WANs,
with inter-processor communication supported by a packet-
switched network [14, 15]. The basic concept of NoC is to
communicate across the chip in the same way that messages
are transmitted over the Internet today. Communication is
achieved by sending message packets between blocks us-
ing an on-chip packet-switched network. It is believed the
contributions and architectures from the Internet could be
borrowed and used to resolve the on-chip communication
challenges. It has been reported that the NoC architecture
can overcome the long wire disadvantages from bus architec-
tures, as on-chip switches are connected in a regular topol-
ogy with point-to-point basis. Long wires can be eliminated
from the architecture. Also, the architecture is decoupled
into transaction and physical layers. Thus the layered archi-
tecture enables independent optimization on both sides.

There are two types of NoC: homogeneous and hetero-
geneous. This refers to whether the network topology is ar-
ranged in a regular network or an ad-hoc interconnection net-
work. Different topological arrangements of switches and
processing elements result in different performance. A typ-
ical example of a homogeneous network uses a mesh-based
architecture [16, 17]. A similar structure was also adopted
in other implementations [18, 19]. One concern is that func-
tional components are usually of different sizes. Mapping
these into regular blocks of fixed size can introduce area
wastage or larger chip sizes. In [20, 21], a heterogeneous
network topology was proposed. It was reported that the
heterogeneous architecture was more area efficient.

3. ON-FPGA COMMUNICATION
ARCHITECTURES

FPGA architectures provide a high density of pre-fabricated
wires and programmable switches that can be used to real-
ize different communication architectures. Note that the on-
FPGA communication architectures discussed in this section
inherit only the logical characteristics of the communication
architectures in the previous section. Research into modifi-
cations to the programmable interconnect fabric of FPGAs
is out of the scope of this survey.

3.1. Point-to-Point Interconnect

An early FPGA-based systolic array architecture, proposed
by Dick [22], provides an example of this architecture with
a structural and systematic topology. Processing elements
are connected in a well defined structure with data being

pumping through. In [22], the Discrete Fourier Transform is
mapped to a systolic array of processing elements. The well-
defined interconnection between the processing elements en-
ables effective parallel computation and control. The design
was implemented with a Xilinx XC4010 FPGA running at a
clock frequency of 15.3 MHz. By using more recent FPGA
the clock frequency of the design could be improved. In [23]
the systolic array design for gene sequencing, running at a
clock frequency of 202 MHz, was reported.

In [24], Shannon and Chow proposed a point-to-
point interconnection architecture for rapid system devel-
opment. The communication between processing elements
is achieved by System Integrating Module with Predefined
Physical Links (SIMPPL). Several modules are connected
on a point-to-point basis to form a generic computing sys-
tem. The mechanism for the physical transfer of data across
a link is provided so that the designer can focus on the mean-
ing of the data transfers, rather than how to connect the
wires. The SIMPPL model greatly facilitates the speed and
ease of hardware development. It was reported that hard-
ware systems can be developed in a few hours time. In ad-
dition, asynchronous FIFOs were implemented as the inter-
face between programmable switch and processing element,
such that the communication architecture is more adaptable
to IP cores with different operation frequency. The proposed
methodology was exemplified with multimedia applications
of video streaming and video camera snap shot. The de-
sign was implemented with Xilinx Virtex-II FPGA and the
SIMPPL control was able to run at 50 MHz.

3.2. Island-Based Architectures

In [25], Cong et. al. proposed a regular distributed reg-
ister microarchitecture, which offers regular point-to-point
communication between islands of computation resources.
Each island contains a Finite State Machine, register mem-
ory and arithmetic units. Algorithms or arithmetic opera-
tions can be partitioned and mapped to the islands, which
are then directly connected using wires. More importantly,
the proposed architecture provides direct support for multi-
cycle communication. Since propagating and synchronizing
a single clock signal to the whole chip is predicted to be
a difficult challenge in future technology, multicycle com-
munication takes into consideration the propagation delay of
signal wires. A prototype of the architecture has been real-
ized using an Altera Stratix FPGA. A 44% improvement on
clock-period was reported for data flow intensive examples
and a 28% improvement on clock-period for control flow ex-
amples. One concern of the multicycle architecture is the re-
quirement of extra wiring to handle many simultaneous data
transfers. The authors of [25] also suggested interconnect
pipelining and sharing may be effective in reducing the wire
overhead.

In [26], Royal and Cheung proposed an island-based



Globally Asynchronous Locally Synchronous (GALS) ar-
chitecture. FPGA programmable fabrics are partitioned into
islands, each of which is synchronised using a local clock.
The global clock signal can be removed, thus avoiding the
risk of clock skew and reducing clock power dissipation.
However, communication between multiple clock islands
may result in metastability, which may cause a functional
failure of the system. To avoid metastability, a pausible-
clock scheme is employed. A pausible-clock wrapper is
introduced to each of the islands and the clock of the cor-
responding island can be stopped and restarted, so as to
ensure data registering without metastability. The FPGA-
based GALS architecture is effective in avoiding the clock
skew problem and can potentially obtain higher computa-
tional speeds. More importantly, different coarse-grain mod-
ules can be integrated easily without the concerns of clock-
ing problems in the GALS framework. In other words, the
island-based GALS architecture provides high composibility
for Platform-FPGAs [27].

3.3. Hierarchical Shared Bus

The CoreConnect Bus architecture [28], developed by IBM,
has been adopted by Xilinx for both hard-core and soft-core
processors in their Virtex-II Pro and Virtex-4 FPGAs. There
is a close resemblance between CoreConnect and AMBA.
To enhance the bus performance, CoreConnect defines two
distinct bus segments, the Processor Local Bus (PLB) and
On-chip Peripheral bus (OPB) which are connected through
a bridge. The PLB is a high-speed and high-bandwidth bus.
Usually, processors, on-chip RAM and other high bandwidth
devices are attached to the PLB, such that it provides high
performance communication between the processors. OPB
is a low performance and low-power peripheral bus. It is
used for asynchronous interfaces and general purpose pe-
ripheral components. As an alternative, a bus architecture
developed by Altera [29], namely Avalon, provides a more
simple solution for system component integration on recon-
figurable logic devices.

In [30], IBM CoreConnect was used as the communi-
cation backbone between the embedded MicroBlaze soft-
processor and custom FPGA-based hardware logic in a cryp-
tography application. The bus architecture is regarded as
the only communication channel between the processing el-
ements. The system achieved 35-56 MHz operation fre-
quency.

3.4. Bus Architectures with Run-Time Reconfiguration

In [31], Sedcole et. al. proposed a structured methodology
for rapid development of FPGA-based systems. Systems
comprise two types of buses: a global bus providing com-
munication between all processing elements and a chain bus
providing communication between adjacent processing ele-

ments. Extra logic is required for the arbitration of the global
bus. Communication and computation tasks were separated
by implementing a router at each processing element. The
separation of communication and computation enhances the
possibility of system architecture reuse for other applica-
tions. The computation modules can be reconfigured at run-
time, so as to enhance the flexibility of system integration at
a late stage of a system development cycle. The proposed
methodology was exemplified with an architectural instance
of Sonic-on-a-Chip and was realized using Xilinx Virtex-II
Pro FPGA. It was reported that the system can be executed
at 50MHz and with a throughput of 59.3 Mega-sample per
second at its peak performance state.

In [32], a linear architecture for a System-on-Program-
mable-Chip was proposed. The system is initialized with an
AMBA bus backbone and is physically floorplanned to be
one dimensional. Processing elements can be attached to and
removed from the AMBA bus at run-time. The 1-D place-
ment has the advantages of predictable structure. Moreover,
the modules in this approach are not required to be fixed in
size. The design consists of run-time configurable Bridges,
which can be use as bridging between modules. Further, it
was found that the aspect ratio (ratio of the length and width
of modules) has great impact on the operation frequency of
the system.

3.5. GALS-Based Segmented Bus

In [11], Seceleanu suggested a segmented bus platform sup-
porting communication using multiple clock frequencies.
The bus was partitioned into segments of different operat-
ing frequency. A synchronizer was introduced into each bus
segment. A central arbiter monitors the sharing of global
buses. The proposed architecture was realized using an Al-
tera FPGA. A high system frequency can be achieved: 124
MHz was reported. In addition, the number of clock cycles
required was reduced from 3000 to 2880 at their experiment
on data item transmission between processing elements.

3.6. Reconfigurable Crossbar Switch

In [33], a crossbar switch architecture was proposed to inter-
connect multiple processing elements. The proposed cross-
bar switch architecture incorporates an additional bus which
can be scheduled to provide extra bandwidth dynamically.
This hybrid architecture scheme is motivated by the fact that
IP cores implement different functions with corresponding
differences in required operating frequency and bandwidth.
The additional bus can compensate the extra bandwidth re-
quirement of specific IP cores. The authors of [33] showed
that the architecture can provide the same bandwidth with
18% lowered operation frequency.



3.7. Adaptive Network-on-Chip

In line with the recently proposed Network-on-Chip (NoC)
architecture, several FPGA-based NoC implementations
have been reported [34, 35, 36, 37]. In [34], a dynamic
network on chip (DyNoC) for coarse-grain programmable
fabrics was proposed. It is an extension of an 1-D shared
bus architecture to a 2-D network interconnect architecture.
The authors pointed out that with dynamic reconfiguration,
a newly reconfigured module may introduce an obstacle to
block the packet transmission. A new routing algorithm
was proposed in so that that the network-on-chip architec-
ture can be realized with run-time reconfiguration. It should
be noted that on-chip switches consume a large area of the
design. For a Xilinx Virtex-II 1000 device, from 21% and
46% of logic resources were devoted to the on-chip switches
of wordlength 32-bit and 64-bit respectively. The operation
frequency of the system was around 70-77 MHz.

A topology adaptable communication network design
was proposed in [35]. Network generation is supported by
an operating system. The design of switches and routers are
critical to the overall system performance and area. The
paper reported that the number of slices required grows
quadratically with the number of input signals. Further, sig-
nificant hardware resources, including logic slices and mem-
ory, are required for solely network-based communication.
Typically, for a 9-switch network, around 3000 slices are re-
quired, correspondingto around 14% of the overall resources
of a Virtex-II Pro FPGA. The resources required is doubled
in a 16-switch network. It appears that optimization of the
area consumption is important for the effective realization
of NoC architecture. Also, it was reported that the network
can run at 50MHz with 16-bit wordlength, which results in a
data rate of 100 Mega-byte per second.

A multiple layered network transmission protocol, as
well as the design of routers and switches, were reported
in [36]. However, a significant overhead on hardware slice
consumption was reported. The overhead is attributed to the
complicated switch design and routing algorithm implemen-
tation.

4. DESIGN FACTORS AND DISCUSSION

Communication architecture design is a complex multi-
objective optimization problem that can be evaluated based
on a number of criteria and evaluation metrics. The funda-
mental characteristics and classification of on-FPGA com-
munication architectures are summarized in Table 1.

4.1. Quantitative Metrics

There are four important quantitative metrics. (i) The speed
performance of the communication architecture can be quan-
tified by the peak throughput, which is the amount of in-

Table 1. Principal characteristics and classifications of on-
FPGA communication architectures

Design Scalabi- 
lity 

Compati- 
bility 

Reusa-
bility 

Routing  
Complexity 

Design  
Space 

Scheduling

P2P [21, 
22, 23] 

Logical Interface Ac-hoc Complex Ac-hoc/ 
systematic 

Static 

Island 
[22, 23] 

Logical/ 
Physical 

Interface 
/GALS 

Ac-hoc Complex 
/Modular 

Ac-hoc Static 

Hierarch
ical [25, 
34] 

Logical Interface Protocol Modular Ac-hoc Dynamic 

RTR 
[28, 29] 

Logical Interface Separation Modular Ac-hoc Dynamic 

Segment 
[8] 

Logical/ 
Physical 

GALS Separation Modular  Ac-hoc Dynamic 

Crossbar 
[30] 

Logical/ 
Physical 

Interface Separation Modular Systematic Dynamic 

NoC 
[33, 34, 
35, 36] 

Logical/ 
Physical 

Interface 
/GALS 

Separation Modular Systematic Static/ 
Dynamic 

 

P2P: Point-to-point interconnects; RTR: Run-Time Reconfiguration; NoC:
Network-on-Chip; GALS: Globally Asynchronous Locally Synchronous

formation transmission completed per unit of time. The
throughput of the system is affected by the operation fre-
quency and bandwidth of the communication channels. Al-
ternatively, speed can be characterized as latency, which can
be formulated as the sum of sender overhead, transport la-
tency and receiver overhead. (ii) Area is an important cri-
terion for circuit design. It can be defined as number of
transistors, logics, memory and wire length. Especially, for
FPGA devices, number of logic slices are commonly used
as a area measurement. (iii) Interconnect utilization is the
amount or percentage of time that the wire is carrying infor-
mation. (iv) Power is the measurement of energy consump-
tion in interconnect wires.

Based on the published results, we have summarized
the quantitative performance measurements for different ar-
chitectures in Table 2. IBM CoreConnect provides a large
range of throughput and its maximum throughput signifi-
cantly outperforms other architectures. Although the oper-
ation frequency of the communication architecture is largely
a function of the chosen FPGA technology, the frequency
of the segmented-bus architecture is moderately higher than
other architectures. On the other hand, the area consumption
for the NoC architectures is substantial. However, there is
marginal improvement on the performance metrics, such as
the operation frequency which ranges from 40 to 64 MHz
and the throughput which ranges between 39.8 and 310.4
MByte/s.

4.2. Scalability

A logical scalable architecture implies that as more process-
ing elements are added to the communication fabrics, the



Table 2. Summary of the quantitative performance measure-
ments for different architectures

Design FPGA Format 
(modules) 

Throughput 
(MByte/s) 

Frequency 
(MHz) 

Bit-
length 
(Bit) 

Area 
(Slice) 

CoreCnnnect 
[27] 

Xilinx 
V2 Pro 

n.p. 264-1600 50-100 32-
128 

1073 

RTR-bus 
[30] 

Xilinx 
V2 Pro 

5-18 59.3  50 16 n.p. 

Segmented-
Bus [10] 

Altera 
Quartus 

2-4 43.06* 124 2-32 n.p. 

RMBoC 
[33] 

Xilinx 
V2 

16  2.1-2.4* 85-96 16 1074-
1759 

Interconnect 
Network 

[18] 

Xilinx 
Virtex 

2x2 310.4 40 16 3227 

NoC-OS 
[34] 

Xilinx 
V2 Pro 

3x3 100 50 16 5000 

RASoC [35] Altera 
Q-II 

n.p. n.p. 55.8-64 8, 16 n.p. 

LiPaR [36] Xilinx 
V2 Pro 

3x3 39.84* 33.33 16 3934 

*As results are not provided in the paper, these values are derived from
equations given in the papers; n.p.: results are not provided in the paper.

communication bandwidth and peripheral parameters should
be able to increases proportionally. In architectures such as
a shared bus, the peak bandwidth is fixed. When more pro-
cessing elements are added to the shred-bus, the overall com-
munication performance will decrease accordingly [15]. Al-
ternatively, Network-on-Chip architectures is logically scal-
able, as the total bandwidth of the network can be increased
when new processing elements are added by increasing the
number of network switches [15].

Physical scalability refers to communication architec-
tures that are adaptive to technology scaling and new pro-
cess technologies. Architectures comprised of many long
wires will not adapt well to nanometer process technologies.
This criterion usually refers to whether the design is tolerant
to physical-level problems.

4.3. Compatibility

Pre-fabricated or pre-designed IP cores usually have spe-
cific operating conditions, such as maximum operating fre-
quency. To effectively integrate IP cores, the interconnect
backbone requires robust and versatile interfaces. Globally
Asynchronous Locally Synchronous (GALS) wrappers pro-
vide a flexible interface for a wide range of operating fre-
quencies that can greatly enhance the composibility of dif-
ferent IP cores. In contrast, for interconnect, which does
not provide a GALS framework, it is necessary to design
a specific interface for each of the IP cores. Therefore, a
much longer development cycle is required. Point-to-point
GALS architectures [26], segmented buses [11] and some of
the NoC architectures implement the GALS framework.

4.4. Reusability

Increased productivity is achieved through system archi-
tecture and IP cores reuse. System-level timing is pre-
determined and one can effectively avoid the iterative design
and verification cycles usually necessary to achieve timing
closure [31]. The reusasibiltiy takes account of architectural
modularization, abstraction and the separation of communi-
cation and computation. For architectures such as point-to-
point interconnect, interface and interconnection topologies
are devoted to a specific application. Thus, it is almost im-
possible to reuse the hardware. Using a structured design
approach [31] explicitly exhibits the concern of separation
of communication and computation among the surveyed ar-
chitectures. Further, shared buses and network-on-chip ar-
chitectures are also highly reusable, simply because their
generic modularity and abstraction of communication.

4.5. Routing Complexity

The architectural and system design will be eventually real-
ized into the FPGA physical device. FPGA routing is a crit-
ical step, which translates the higher level communication
models into lower level physical interconnects by program-
ming switches. As the FPGA physical interconnect is not an
unlimited resource, it is intractably difficult to optimize the
programmable switches and physical interconnect for a com-
plex architecture. This may cause routing implementation
to take long periods and result in unsatisfied routing con-
straints. It has been advocated that modular design would
ease the layout tediousness for both microprocessor design
and reconfigurable computing [7, 31]. For the surveyed ar-
chitectures, shared buses and NoC architectures generally
are designed with modularity abstraction. For the island-
based architecture, the modularity and routing complexity
depends on the granularity of the “islands”.

4.6. Design-Space Exploration

Communication architectures provide a large range of archi-
tectural parameters and options for the designer to consider.
Due to the unique requirements of different applications,
there exists a problem of searching for the optimal architec-
ture from a huge design space. For example, the NoC topol-
ogy has a significant effect on network latency, throughput,
area, fault-tolerance and power consumption. Therefore, the
design of NoC topology plays an important role in routing
strategy and mapping the cores to the network nodes [38].
Although very little research focused on FPGA-based com-
munication design space exploration is found in the litera-
ture, it is considered an important issue when dealing with
communication architecture design. Choosing appropriate
architectures and parameters is often performed ad-hoc. Es-
pecially for hierarchical buses, decisions for mapping tasks



and modules to bus segments is usually based on designer
experiences. This ad-hoc design is limited when dealing
with large scale problems. In particular, automating part of
the communication architecture exploration task can be in-
valuable in finding the optimal or near optimal settings of
design parameters.

4.7. Scheduling

When communication channels are shared by several pro-
cessing units, arbitration is required to control and avoid
conflicts of requests from processing units. Design of ar-
bitration units has a great impact on the overall system per-
formance. There are two types of scheduling: static routing
and dynamic routing.

For static routing, the overall delay of communication
has a great impact on the overall system performance. Static
routing usually refers to the assignment of communication
channels design time. In other words, the routing will not be
changed according to the real-time traffic of the communica-
tion network. For example, the routing of wires in the multi-
cycle architecture is defined at synthesis-time. The pro-
grammable interconnect switches in FPGA architectures are
also a kind of static routing resources. There is an interesting
example in network-on-chip scheduling. In [17, 39, 24], in-
struction memory and a programmable controller are embed-
ded in the switches. Routing and arbitration are programmed
and scheduled at compiled time by a software compiler, thus
the overall latency of packet transmission is deterministic.

For dynamic routing, the routing can be modified based
on the real-time traffic information. For example, in [21], the
design of routing-table-based shortest path algorithms for
minimizing the overall latency is proposed. Although there
is an advantage of simplicity for the routing-table method,
extra latency is attributed to the routing logic which may
introduce an overhead in terms of power and speed to the
communication architecture.

Dynamic arbitration mechanisms follow a set of arbi-
tration policies. Typical policies, such as FIFO (First-In-
First-Out), priority queue, round robin and simply random
roulette-wheel approach are found in most of the existing
bus architectures [9, 28]. Further, stochastic arbitration poli-
cies were proposed recently [40]. The bus arbitration is for-
mulated as a Markov Decision Process, such that expectated
power utilization and efficiency can be optimized from the
perspective of stochastic processes.

5. CONCLUSION

On-FPGA communication architectures play a crucial role
in determining the performance and energy consumption
of platform-FPGAs containing embedded coarse-grain mod-
ules. In the survey, seven types of FPGA-based communica-
tion architectures are studied. The design of an efficient and

reliable communication architecture is a challenging multi-
objective optimization problem. To this end, we identified
and presented seven notable design factors. The design fac-
tors are used to analyze and classify the architectures. The
analysis leads to the following conclusions and suggestions.

Firstly, it is difficult to compare different communication
architectures. Most of the published results are based on ap-
plying the communication architectures to specific applica-
tions. The performance of the architecture may be varied
among different applications. Different protocols and varia-
tions of the architecture parameters can also generate differ-
ent results. A more systematic approach for evaluating the
communication architectures is required.

Secondly, Network-on-Chip (NoC) architectures has
been advocated and is believed to be a promising solu-
tion for the on-chip communication challenges, especially
in the Multi-Processor System-on-Chip (MP-SoC) design
[15]. However, only marginal improvement was found for
the FPGA implementation of NoCs. Although it is believed
that the NoC could have better logical and physical scalabil-
ity, the NoC architecture may not always be the best architec-
ture for on-FPGA communication because of the significant
area overhead.

Thirdly, there is little research on the on-FPGA commu-
nication architecture design space exploration. Most of the
existing architectural mapping work relies on an ad-hoc ap-
proach.

Fourthly, the architectures with Globally Asynchronous
Locally Synchronous (GALS) framework demonstrate a ro-
bust and versatile interconnect backbone. Innovative FPGA
architectures, which provide GALS support, may provide an
effective and reliable solution to the complexity and technol-
ogy scaling challenge.
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