
 - 809 -

CROSSOVER CONTEXT IN PAGE-BASED LINEAR GENETIC PROGRAMMING

G.C. Wilson, M.I. Heywood
Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 1W5

{gwilson, mheywood}@cs.dal.ca

Abstract

This work explores strategy learning through genetic
programming in artificial ‘ants’ that navigate the San
Mateo trail. We investigate several properties of linearly
structured (as opposed to typical tree–based) GP
including: the significance of simple register based
memories, the significance of constraints applied to the
crossover operator, and how ‘active’ the ant are. We
also provide a basis for investigating more thoroughly
the relation between specific code sequences and fitness
by dividing the genome into pages of instructions and
introducing an analysis of fitness change and
exploration of the trail done by particular parts of a
genome. By doing so we are able to present results on
how best to find the instructions in an individual’s
program that contribute positively to the accumulation
of effective search strategies.

Keywords: Genetic Programming, Strategy Learning

1. INTRODUCTION

The Artificial Ant problem (wherein the ant navigates a
trail of food) is considered to be a challenging GP
benchmark problem whose difficulty level is comparable
to real problem spaces [1]. The San Mateo Trail version
of the problem is the harder of the artificial ant problems
[2]. In the traditional form of the San Mateo Trail
problem, the trail consists of nine 13 x 13 toroidal grids
wherein the trail may have five different types of
discontinuities [2]. Koza, to save computer time,
altered the problem: the trail is divided into 9 parts
(fitness cases) of 13 x 13 grids, the grids are not toroidal,
touching the edges of the non-toroidal grids terminates a
fitness case, and moving onto a square containing food
throws program execution back to the beginning. The
ant can spin left or right 90 degrees, or move forward.
There are 96 pieces of food altogether on the trail, and

an ant’s fitness is the number of food pieces eaten. An
ant progresses between consecutive parts of the trail
(fitness cases) if the ant either touches the electrical
fence (it touches the edge), makes a total of 120 right or
left turns, or moves 80 times. The ant always begins
each 13 x 13 grid in the middle of the top row, facing
south. The food eaten in each of the nine sections of the
trail is totaled, and the ant’s goal is to eat as much food
as possible.

In section 2 we describe the specifics of our linear GP
implementation of the San Mateo Trail problem. In
section 3 we describe the concept of computational
effort (E-measure) and compare our E-measure results
with those of Koza for this problem. In section 4 we
introduce the quantitative concepts of fitness and non-
repeating path and examine which parts of the genome
contribute to performance gain. This motivates changes
that could lead to possible improvement, and the results
after these changes were implemented are discussed in
section 5. Finally, conclusions of our work are given in
section 6.

2. PAGE BASED LINEAR GP

We follow Koza’s description of the problem as closely
as possible, and we feel a sufficient match between
implementations is provided to allow comparison of
results. Koza’s implementation used tree-structured GP
(T-GP) with and without ADFs [2], whereas the solution
investigated here utilizes page-based linearly structured
GP (L-GP) without ADFs [3]. Moreover, implicit in L-
GP is the concept of registers. This leads to the
introduction of additional constraints to restrict the
number of times that the ant could load information into
registers on a particular level of the trail. The limit used
here is the maximum number of instructions per
individual. This essentially prevents an ant from living
forever by developing a program consisting of only
memory load instructions (that is, consisting entirely of
instructions which start with “0”).

 Proceedings of the 2002 IEEE Canadian Conference

on Electrical & Computer Engineering
0-7803-7514-9/02/$17.00 © 2002 IEEE

- 810 -

Thus, if an ant can die from either turning or moving too
many times, it will do that before it will die of too many
load instructions. Furthermore, we use a steady state
tournament instead of Koza’s generational tournament
approach. In his tournament, he used a population of
4000 individuals and allowed up to 50 generations. That
is, a total of 200 000 individuals are processed per run.
In comparison, when using a steady state tournament of
size 4, an equivalent number of evaluations per run is
given by a tournament limit of 50,000. We use the same
terminal set as Koza, that is, RIGHT, LEFT, and MOVE.
In an instruction, “00” means RIGHT, “01” means
LEFT, and “10” or “11” means MOVE. We accomplish
something like Koza’s IF-FOOD-AHEAD function
implicitly in the program through the interpretation of
any instruction that begins with the bit “1” (a fetch-
from-memory instruction).

A population of 125 ants is involved in our steady
state tournament. In each round of the tournament, the
two individuals with the highest fitness are preserved
(become the parents) and the two with the lowest fitness
are the children, which can be subject to the operators of
swapping, mutation, and/or crossover. If there is a tie
between two or more individuals regarding whether they
will become parents or not, the one(s) that become
parents are the one(s) first chosen to compete. Since the
4 ants were chosen to compete by random selection,
those that become parents in this situation are thus
essentially chosen randomly.

Mutation of a randomly chosen instruction occurs
with a probability of 0.5, crossover of a random page
between the two children in each tournament occurs
with probability 0.9, and the probability of swapping is
also 0.9. Mutation is done by bitwise XORing a
randomly generated string of instruction length with the
chosen instruction. Crossover is done with pages, or
groups of adjacent instructions. The size of the pages
involved in crossover is determined using dynamic
paging, a process described below.

Each individual consists of a 4 or 8 register memory
and an instruction set of 12-bit instructions. The
instructions sets of the ants are divided into pages to
give the crossover operators context. The size of the
instruction set is a maximum number of pages specified
by the user (16 or 32 pages in our experiments)
multiplied by the number of instructions allowed per
page. The number of instructions per page has a
maximum of 4 but varies throughout the run of the
program, as dynamic paging is employed. The dynamic
paging prevents plateaus in fitness levels from forming
prior to the maximum fitness level of 96 being achieved.
This is done by doubling the number of instructions
allowed per page (or setting it to 1 when the maximum
page size allowed is the current working page size)

whenever the maximum fitness remains the same over
10 rounds of the tournament. Dynamic paging
essentially results in kick-starting the process of solving
the trail if the ants begin to settle at a sub-optimal fitness
before eating all 96 pieces of food.

The way the instructions are interpreted depends on
the number of registers in the ant’s memory, but 12 bits
were given per instruction to allow for future flexibility
in the interpretation of the ant’s instructions. The ants
are of two major varieties that affect how they interpret
the strings of bits comprising their instructions. One
variety is called the “hyper” ants. When these ants
encounter an instruction telling them to load information
into their memory, they both load it and immediately act
on the instruction loaded. The other variety is called
“thoughtful.” These ants simply load the information in
a load instruction into the relevant register, but they do
not immediately act on the command loaded. (The
motivation behind the two varieties was to see if having
the ant take more action would mean solving the
problem more quickly.) Upon initialization, the ants
were given a number of instructions that was a multiple
of 4 (the initial number of instructions per page), with
the page limit chosen uniformly over the interval [1, …,
MaxPages] (16 or 32). All instructions were initialized
to random bits. All registers in the ants’ memories were
filled with “00,” meaning RIGHT.

3. E-MEASURE

The computational effort (called “E-measure”) of a GP
algorithm can be measured using a formula described by
Koza [4],

)),(1log((
)1log(

iTC
ziTE

−
−

××=

where T is the size of the tournament, i is the generation
where an individual solved the trail, z is the probability
of success (set to 0.99 in our experiments), and C(t, i) is
the cumulative probability of having an individual solve
the problem in the experiment. Note that when C(t, i) is
1.0, that is, when the cumulative probability of having
an individual solve the trail is 100%, the formula is not
valid. In this special case, the formula becomes simply

1××= iTE

Note that the special case will only occur in the last trial
of an experiment if and only if all trials (including the
last) were successful.
 A total of 20 runs were conducted in each
experiment, and four experiments for each of the hyper

- 811 -

and thoughtful ants (8 experiments in total) were
conducted using the implementation details described in
section 3. The programs were compiled using the Java 2
version 1.3.1 SDK. The four experiments involved ants
with combinations of these characteristics: 4 register
memory with 16 page maximum, 4 register memory with
32 page maximum, 8 register memory with 16 page
maximum, and 8 register memory with 32 page
maximum. Tables 1 and 2 indicate the generation at
which the hyper and thoughtful ants, respectively, solved
the trail in each trial of the experiments. Table 3
indicates the minimum and average E-measure results
based on Tables 1 and 2. We found that thoughtful ants
of all varieties completed the trail 100% of the time.

Table 1. Generation at which Hyper Ants
Successfully Completed the Trail

4 registers 8 registers

16 pg 32 pg 16 pg 32 pg
Min. 1823 2237 1799 915
Mean 6173 13901 9217 11413

Table 2. Generation at which Thoughtful Ants

Successfully Completed the Trail

4 registers 8 registers
16 pg 32 pg 16 pg 32 pg

Min. 1497 310 282 2555
Mean 7086 6744 5794 10207

Table 3. E-measure (×1000) Results

for Hyper Ants, Thoughtful Ants,
and Koza’s Ants for z = 0.99

Hyper Ants

4 registers 8 registers
16 pg 32 pg 16 pg 32 pg

Min. 174 436 153 167
Mean 280 574 278 276

Thoughtful Ants
4 registers 8 registers

16 pg 32 pg 16 pg 32 pg
Min. 98 74 57 130

Mean. 159 117 148 247
Koza’s Ants

 With ADFs Without ADFs
Effort* 136 272

*Based on Koza’s generational tournament version
of E-measure [2]

)1()(+××= izRME
where M = 4000 is population size, i = 16 is the
generation, and R(z) is the number of trials to solve
a problem by generation i with probability z = 0.99.

We can see from the above table that the best E-
measure results for the thoughtful ants, in all cases,
outperform Koza’s ants with or without ADFs. Also of
note in these results is that the thoughtful ants’ mean E-
measure, in all cases, perform better than Koza’s ants
that lack ADFs. (Our ants, by design of the L-GP
solution, lack ADFs.) The thoughtful 4 register, 32 page
limit ants even outperform (based on mean E-measure)
Koza’s ants that use ADFs. With the exception of the 4
register, 32 page maximum, the hyperactive ants (as a
group) are competitive with Koza’s ants.

Comparing our ants with one another, we noticed that
the thoughtful ants simply demand less computational
effort than the hyper ants. Moreover, the thoughtful ant
group with the worst performance (using either the
minimum or mean E-measure) still does better than the
best hyper ant group (considering either the minimum or
mean E-measure).

4. THE MOTIVATIONS FOR FURTHER
ALTERATION OF THE ALGORITHM

We decided to focus our analysis on the thoughtful ants
in light of the results of Section 4. When we decided to
take a look at the way the solutions that led to the above
results were generated by the thoughtful ants during the
execution of the algorithm, we suspected we could
further enhance the ants’ performance. We performed
this analysis of how a particular section of the genome
contributed to performance gain by using two measures:
fitness and the notion of a non-repeating path. Since
context of instructions was insured within pages already,
the next step could be to associate higher-level good
search strategies (measured by fitness gains and
exploration) with broader ranges of instructions in the
genome.

4.1 The Notion of Fitness Change

Fitness was incremented for each instruction, iteration
pair when the instruction in that pair resulted in a new
piece of food being eaten. The trials of the thoughtful
ant experiments all exhibited a similar pattern, as seen in
the graph for a typical trial shown below.

- 812 -

Fig. 1. Fitness change for which each instruction,
iteration pair is responsible. The behavior seen
above was for thoughtful 4 register ants with a 16
page limit. Fitness changes of 1 are light gray,
those <= 10 and > 1 are dark gray, and those > 10
are medium gray.

4.2 The Notion of Non-repeating Path

Non-repeating path is designed to measure whether or
not an instruction during a particular iteration is
contributing to an ant moving to a new area of the grid
that it has not yet explored. An array representing the 13
x 13 level of the trail the ant is currently on has an “x”
placed in one of its spaces when the ant visits it. If the
ant eats a piece of food, the grid is flushed clean. If the
ant visits a square already marked with an “x,” then the
non-repeating path of the ant is set to 0. If the ant moves
and it has not visited that square yet, the length of the
non-repeating path is incremented. For instructions
where the ant spins left or right, we employ a FIFO stack
to determine if the ant is facing a direction it has already
faced on a particular square. A typical trial result for
non-repeating path change can be seen below. Load
instructions in thoughtful ants result in no change in
non-repeating path, since no moving or spinning of the
ant is actually done.

The trend seen in the fitness graph of Figure 1 was
typical of all trials of the thoughtful ants, whereas the
trend seen in Figure 2 for non-repeating path was
prevalent, but not as typical as the fitness trend. We
noted that fitness (and in most cases, non-repeating path)
change tended to occur in the first portion of the ants’
instruction set. Moreover, the high count of fitness
difference early on, in combination with low non-
repeating path lengths, appears to indicate that good
search strategies are identified.

Fig. 2. Increase in non-repeating path
corresponding to each instruction, iteration pair.
The behavior seen above is for thoughtful 4 register
ants with a 16 page limit. Non-repeating paths of
length <= 10 are light gray, those > 10 and <= 50
are dark gray, and those > 50 are medium gray.

5. TWEAKING THE GP ALGORITHM

The San Mateo Trail problem is an example of a
strategy-learning problem in which instruction sequence
is significant. That is to say, if food is not located by the
first ten moves, then it is likely that a different search
strategy will be more successful than that currently being
perused, Figure 1. This might have implications for the
manner in which GP search operators are applied.
Moreover, in the case of Genetic Algorithms applied to
the job-shop scheduling problem using an indirect
encoding scheme, significant benefit was observed in
utilizing biased crossover and mutation operators [5].
Specifically, the authors reasoned that mutation does
little good in later parts of the genome that are just being
explored while the earlier part of the genome has
converged, so they felt it would increase fitness of the
individuals to bias mutation to occur earlier in the
genome. The authors also felt that crossover should be
biased toward the end of the genome, for crossover done
on the earlier, more stable portion of the genome would
not provide any change in schemata fitness.
Furthermore, crossover near the end of the genome
would lead to better exploitation through placing
different schema in different contexts.

In order to investigate whether our solutions may also
be suffering from premature convergence and
inadequate exploitation of crossover in later parts of the
genome, we biased mutation to work on earlier parts of
the genome and crossover to work on later parts of the
genome. The biasing was accomplished by associating a
probability with each instruction that was equal to the

- 813 -

cumulative fitness change at that instruction divided by
total fitness change for all instructions in the genome. If
two instructions had the same probability associated
with them, mutation would affect the earlier instruction
if the given probability were selected. Crossover applied
the same methodology; only probabilities for pages were
found by totaling probabilities of all instructions in the
page. If pages had the same probability and were to be
affected by crossover, the later page would be selected.
The results can be seen in Table 4 below.

Table 4. Generation at which Thoughtful Ants
Biased for Mutation and Crossover

Successfully Completed Trail

 4 registers 8 registers
 16 pg 32 pg 16 pg 32 pg

Min. 582 1953 1589 1324
Mean 8795 8937 6606 11929

As we can see by comparing Table 2 and 4, the

biasing of both mutation and crossover seemed to mostly
result in the better or mediocre solution-finding time of
the thoughtful ants to get worse, and the bad times to get
better. Believing the time for solution generation to
have gotten worse due to the affect of biased mutation
on the earlier portion of the genome that caused the
beneficial fitness gains in the first place, we attempted to
only bias crossover to affect the later part of the genome.
These results can be seen in Table 5 below. As can be
seen by comparing Table 2 and 5, this change did not
cause a solution to appear any faster. (The fastest
solution for the thoughtful ants was accomplished after
282 rounds; here the fastest solution appears after 619
rounds.)

Table 5. Generation at which Thoughtful Ants
Biased for Crossover Successfully Completed Trail

4 registers 8 registers

16 pg 32 pg 16 pg 32 pg
Min. 619 792 2488 2000
Mean 5186 7350 7747 9885

Table 6. E-measure (×1000)
Results for Hyper Ants, Thoughtful Ants,

 and Koza’s Ants for z = 0.99

 Ants Biased for Mutation & Crossover
4 registers 8 registers

16 pg 32 pg 16 pg 32 pg
Min. 134 116 132 160
Mean 209 264 221 275

Ants Biased for Crossover
4 registers 8 registers

16 pg 32 pg 16 pg 32 pg
Min. 71 112 111 160
Mean. 148 175 247 272

With respect to Table 6, the best E-measure of the

trials did not improve following these changes (with the
exception of the 4 register, 32 page limit ants’ minimum
E-measure, the significance of which is not apparent to
the authors). In all types of thoughtful ants, the mean E-
measure did not improve.

6. CONCLUSIONS

We present a linear GP implementation of the San
Mateo Trail problem using a steady state tournament that
outperforms the generational, tree-based GP
implementation discussed by Koza with respect to best
E-measure. We used two basic types of ants on the trail,
and the thoughtful ants outperformed the hyper ants with
respect to both how fast the solution to the trail was
discovered (minimum and mean) and E-measure
(minimum and mean) for the 20 trials in each
experiment.
 Analyzing the way the ants generated their solutions,
we introduced the notions of fitness change and non-
repeating path. Examining the graphs, we attempted to
further enhance performance of the ants by both biasing
the first part of each ant’s genome for mutation and
biasing the later part for crossover. Noticing no overall
improvement, we attempted to only bias the later part of
the genome for crossover. Again, no significant
performance gains were noted.
 While the operator-biased ants were not as successful
as our original non-biased ants at yielding faster
methods of producing solutions with less effort, the
performance gains realized by the thoughtful ants
indicate promise. Future work will address whether
linear GP with a classical crossover operator provides
similar distribution of fitness change and non-repeating
path.

- 814 -

ACKNOWLEDGEMENTS

We gratefully acknowledge the funding provided by the
Izaak Walton Killam Memorial Scholarship and
NSERC-PGSA (Garnett Wilson) and NSERC research
grant (Dr. M. Heywood).

REFERENCES

[1] W.B. Langdon and R. Poli, “Why Ants are Hard,”
Technical Report: CSRP-98-4, Univeristy of Birmingham,
Birmingham, pp. 1-16, January 1998.

[2] Koza, J.R., Genetic Programming: On the Programming of
Computers by Means of Natural Selection, Cambridge, MA:
MIT Press, 1992.

[3] Heywood M.I., Zincir-Heywood A.N., “Page-based Linear
Genetic Programming” IEEE Transactions in Systems, Man
and Cybernetics – Part B, 32(3), June 2002.

[4] Koza, J.R., Genetic Programming: Automatic Discovery of
Reusable Programmes, Cambridge, MA: MIT Press, 1994.

[5] Hsaio-Lan Fang, Peter Ross, and Dave Corne, “A
Promising Genetic Algorithm Approach to Job-Shop
Scheduling, Rescheduling, and Open-Shop Scheduling
Problems,” Proc. of the Fifth International Conference on
Genetic Algorithms, pp. 375-382, 1993.

