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Abstract 
 
This work explores strategy learning through genetic 
programming in artificial ‘ants’ that navigate the San 
Mateo trail. We investigate several properties of linearly 
structured (as opposed to typical tree–based) GP 
including: the significance of simple register based 
memories, the significance of constraints applied to the 
crossover operator, and how ‘active’ the ant are.  We 
also provide a basis for investigating more thoroughly 
the relation between specific code sequences and fitness 
by dividing the genome into pages of instructions and 
introducing an analysis of fitness change and 
exploration of the trail done by particular parts of a 
genome.  By doing so we are able to present results on 
how best to find the instructions in an individual’s 
program that contribute positively to the accumulation 
of effective search strategies. 
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1. INTRODUCTION 
 
The Artificial Ant problem (wherein the ant navigates a 
trail of food) is considered to be a challenging GP 
benchmark problem whose difficulty level is comparable 
to real problem spaces [1].  The San Mateo Trail version 
of the problem is the harder of the artificial ant problems 
[2].  In the traditional form of the San Mateo Trail 
problem, the trail consists of nine 13 x 13 toroidal grids 
wherein the trail may have five different types of 
discontinuities [2].   Koza, to save computer time, 
altered the problem: the trail is divided into 9 parts 
(fitness cases) of 13 x 13 grids, the grids are not toroidal, 
touching the edges of the non-toroidal grids terminates a 
fitness case, and moving onto a square containing food 
throws program execution back to the beginning.  The 
ant can spin left or right 90 degrees, or move forward.  
There are 96 pieces of food altogether on the trail, and 

an ant’s fitness is the number of food pieces eaten.  An 
ant progresses between consecutive parts of the trail 
(fitness cases) if the ant either touches the electrical 
fence (it touches the edge), makes a total of 120 right or 
left turns, or moves 80 times.  The ant always begins 
each 13 x 13 grid in the middle of the top row, facing 
south.  The food eaten in each of the nine sections of the 
trail is totaled, and the ant’s goal is to eat as much food 
as possible.   

In section 2 we describe the specifics of our linear GP 
implementation of the San Mateo Trail problem.  In 
section 3 we describe the concept of computational 
effort (E-measure) and compare our E-measure results 
with those of Koza for this problem.  In section 4 we 
introduce the quantitative concepts of fitness and non-
repeating path and examine which parts of the genome 
contribute to performance gain.  This motivates changes 
that could lead to possible improvement, and the results 
after these changes were implemented are discussed in 
section 5.  Finally, conclusions of our work are given in 
section 6. 
  

2. PAGE BASED LINEAR GP 
 
We follow Koza’s description of the problem as closely 
as possible, and we feel a sufficient match between 
implementations is provided to allow comparison of 
results.  Koza’s implementation used tree-structured GP 
(T-GP) with and without ADFs [2], whereas the solution 
investigated here utilizes page-based linearly structured 
GP (L-GP) without ADFs [3].  Moreover, implicit in L-
GP is the concept of registers. This leads to the 
introduction of additional constraints to restrict the 
number of times that the ant could load information into 
registers on a particular level of the trail.  The limit used 
here is the maximum number of instructions per 
individual. This essentially prevents an ant from living 
forever by developing a program consisting of only 
memory load instructions (that is, consisting entirely of 
instructions which start with “0”).
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Thus, if an ant can die from either turning or moving too 
many times, it will do that before it will die of too many 
load instructions.  Furthermore, we use a steady state 
tournament instead of Koza’s generational tournament 
approach.  In his tournament, he used a population of 
4000 individuals and allowed up to 50 generations.  That 
is, a total of 200 000 individuals are processed per run.  
In comparison, when using a steady state tournament of 
size 4, an equivalent number of evaluations per run is 
given by a tournament limit of 50,000.  We use the same 
terminal set as Koza, that is, RIGHT, LEFT, and MOVE.  
In an instruction, “00” means RIGHT, “01” means 
LEFT, and “10” or “11” means MOVE.  We accomplish 
something like Koza’s IF-FOOD-AHEAD function 
implicitly in the program through the interpretation of 
any instruction that begins with the bit “1” (a fetch-
from-memory instruction). 

A population of 125 ants is involved in our steady 
state tournament.  In each round of the tournament, the 
two individuals with the highest fitness are preserved 
(become the parents) and the two with the lowest fitness 
are the children, which can be subject to the operators of 
swapping, mutation, and/or crossover.  If there is a tie 
between two or more individuals regarding whether they 
will become parents or not, the one(s) that become 
parents are the one(s) first chosen to compete.  Since the 
4 ants were chosen to compete by random selection, 
those that become parents in this situation are thus 
essentially chosen randomly. 

Mutation of a randomly chosen instruction occurs 
with a probability of 0.5, crossover of a random page 
between the two children in each tournament occurs 
with probability 0.9, and the probability of swapping is 
also 0.9.  Mutation is done by bitwise XORing a 
randomly generated string of instruction length with the 
chosen instruction.  Crossover is done with pages, or 
groups of adjacent instructions.  The size of the pages 
involved in crossover is determined using dynamic 
paging, a process described below. 

Each individual consists of a 4 or 8 register memory 
and an instruction set of 12-bit instructions.  The 
instructions sets of the ants are divided into pages to 
give the crossover operators context.  The size of the 
instruction set is a maximum number of pages specified 
by the user (16 or 32 pages in our experiments) 
multiplied by the number of instructions allowed per 
page.  The number of instructions per page has a 
maximum of 4 but varies throughout the run of the 
program, as dynamic paging is employed.  The dynamic 
paging prevents plateaus in fitness levels from forming 
prior to the maximum fitness level of 96 being achieved.  
This is done by doubling the number of instructions 
allowed per page (or setting it to 1 when the maximum 
page size allowed is the current working page size) 

whenever the maximum fitness remains the same over 
10 rounds of the tournament. Dynamic paging 
essentially results in kick-starting the process of solving 
the trail if the ants begin to settle at a sub-optimal fitness 
before eating all 96 pieces of food. 

The way the instructions are interpreted depends on 
the number of registers in the ant’s memory, but 12 bits 
were given per instruction to allow for future flexibility 
in the interpretation of the ant’s instructions. The ants 
are of two major varieties that affect how they interpret 
the strings of bits comprising their instructions.  One 
variety is called the “hyper” ants.  When these ants 
encounter an instruction telling them to load information 
into their memory, they both load it and immediately act 
on the instruction loaded.  The other variety is called 
“thoughtful.”  These ants simply load the information in 
a load instruction into the relevant register, but they do 
not immediately act on the command loaded. (The 
motivation behind the two varieties was to see if having 
the ant take more action would mean solving the 
problem more quickly.)  Upon initialization, the ants 
were given a number of instructions that was a multiple 
of 4 (the initial number of instructions per page), with 
the page limit chosen uniformly over the interval [1, …, 
MaxPages] (16 or 32).  All instructions were initialized 
to random bits.  All registers in the ants’ memories were 
filled with “00,” meaning RIGHT. 
 

3. E-MEASURE 
 
The computational effort (called “E-measure”) of a GP 
algorithm can be measured using a formula described by 
Koza [4], 
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where T is the size of the tournament, i is the generation 
where an individual solved the trail, z is the probability 
of success (set to 0.99 in our experiments), and C(t, i) is 
the cumulative probability of having an individual solve 
the problem in the experiment.  Note that when C(t, i) is 
1.0, that is, when the cumulative probability of having 
an individual solve the trail is 100%, the formula is not 
valid.  In this special case, the formula becomes simply 
 

1××= iTE  
 

Note that the special case will only occur in the last trial 
of an experiment if and only if all trials (including the 
last) were successful. 
 A total of 20 runs were conducted in each 
experiment, and four experiments for each of the hyper 
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and thoughtful ants (8 experiments in total) were 
conducted using the implementation details described in 
section 3.  The programs were compiled using the Java 2 
version 1.3.1 SDK. The four experiments involved ants 
with combinations of these characteristics: 4 register 
memory with 16 page maximum, 4 register memory with 
32 page maximum, 8 register memory with 16 page 
maximum, and 8 register memory with 32 page 
maximum.  Tables 1 and 2 indicate the generation at 
which the hyper and thoughtful ants, respectively, solved 
the trail in each trial of the experiments.  Table 3 
indicates the minimum and average E-measure results 
based on Tables 1 and 2.  We found that thoughtful ants 
of all varieties completed the trail 100% of the time. 
 

Table 1. Generation at which Hyper Ants  
Successfully Completed the Trail 

 
4 registers 8 registers  

16 pg 32 pg 16 pg 32 pg 
Min. 1823 2237 1799 915 
Mean 6173 13901 9217 11413 

 
Table 2. Generation at which Thoughtful Ants  

Successfully Completed the Trail 
 

4 registers 8 registers  
16 pg 32 pg 16 pg 32 pg 

Min. 1497 310 282 2555 
Mean 7086 6744 5794 10207 

 
Table 3. E-measure (×1000) Results  

for Hyper Ants, Thoughtful Ants,  
and Koza’s Ants for z = 0.99 

 
Hyper Ants 

4 registers 8 registers  
16 pg 32 pg 16 pg 32 pg 

Min. 174 436 153 167 
Mean 280 574 278 276 

Thoughtful Ants 
4 registers 8 registers  

16 pg 32 pg 16 pg 32 pg 
Min. 98 74 57 130 

Mean. 159 117 148 247 
Koza’s Ants 

 With ADFs Without ADFs 
Effort* 136 272 

*Based on Koza’s generational tournament version 
of E-measure [2]  

)1()( +××= izRME  
where M = 4000 is population size, i = 16 is the 
generation, and R(z) is the number of trials to solve 
a problem  by generation i with probability z = 0.99. 

We can see from the above table that the best E-
measure results for the thoughtful ants, in all cases, 
outperform Koza’s ants with or without ADFs.  Also of 
note in these results is that the thoughtful ants’ mean E-
measure, in all cases, perform better than Koza’s ants 
that lack ADFs.  (Our ants, by design of the L-GP 
solution, lack ADFs.)  The thoughtful 4 register, 32 page 
limit ants even outperform (based on mean E-measure) 
Koza’s ants that use ADFs.   With the exception of the 4 
register, 32 page maximum, the hyperactive ants (as a 
group) are competitive with Koza’s ants. 

Comparing our ants with one another, we noticed that 
the thoughtful ants simply demand less computational 
effort than the hyper ants.   Moreover, the thoughtful ant 
group with the worst performance (using either the 
minimum or mean E-measure) still does better than the 
best hyper ant group (considering either the minimum or 
mean E-measure). 
 
4. THE MOTIVATIONS FOR FURTHER 
ALTERATION OF THE ALGORITHM 

 
We decided to focus our analysis on the thoughtful ants 
in light of the results of Section 4.  When we decided to 
take a look at the way the solutions that led to the above 
results were generated by the thoughtful ants during the 
execution of the algorithm, we suspected we could 
further enhance the ants’ performance.  We performed 
this analysis of how a particular section of the genome 
contributed to performance gain by using two measures: 
fitness and the notion of a non-repeating path.  Since 
context of instructions was insured within pages already, 
the next step could be to associate higher-level good 
search strategies (measured by fitness gains and 
exploration) with broader ranges of instructions in the 
genome. 
 
4.1 The Notion of Fitness Change 
 
Fitness was incremented for each instruction, iteration 
pair when the instruction in that pair resulted in a new 
piece of food being eaten.  The trials of the thoughtful 
ant experiments all exhibited a similar pattern, as seen in 
the graph for a typical trial shown below. 
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Fig. 1. Fitness change for which each instruction, 
iteration pair is responsible.  The behavior seen 
above was for thoughtful 4 register ants with a 16 
page limit.  Fitness changes of 1 are light gray, 
those <= 10 and > 1 are dark gray, and those > 10 
are medium gray.  
 
4.2 The Notion of Non-repeating Path 
 
Non-repeating path is designed to measure whether or 
not an instruction during a particular iteration is 
contributing to an ant moving to a new area of the grid 
that it has not yet explored.  An array representing the 13 
x 13 level of the trail the ant is currently on has an “x” 
placed in one of its spaces when the ant visits it.  If the 
ant eats a piece of food, the grid is flushed clean.  If the 
ant visits a square already marked with an “x,” then the 
non-repeating path of the ant is set to 0. If the ant moves 
and it has not visited that square yet, the length of the 
non-repeating path is incremented.  For instructions 
where the ant spins left or right, we employ a FIFO stack 
to determine if the ant is facing a direction it has already 
faced on a particular square. A typical trial result for 
non-repeating path change can be seen below.  Load 
instructions in thoughtful ants result in no change in 
non-repeating path, since no moving or spinning of the 
ant is actually done. 

The trend seen in the fitness graph of Figure 1 was 
typical of all trials of the thoughtful ants, whereas the 
trend seen in Figure 2 for non-repeating path was 
prevalent, but not as typical as the fitness trend.  We 
noted that fitness (and in most cases, non-repeating path) 
change tended to occur in the first portion of the ants’ 
instruction set. Moreover, the high count of fitness 
difference early on, in combination with low non-
repeating path lengths, appears to indicate that good 
search strategies are identified. 

 
Fig. 2. Increase in non-repeating path 
corresponding to each instruction, iteration pair.  
The behavior seen above is for thoughtful 4 register 
ants with a 16 page limit.  Non-repeating paths of 
length <= 10 are light gray, those > 10 and <= 50 
are dark gray, and those > 50 are medium gray. 
 

5. TWEAKING THE GP ALGORITHM 
 
The San Mateo Trail problem is an example of a 
strategy-learning problem in which instruction sequence 
is significant. That is to say, if food is not located by the 
first ten moves, then it is likely that a different search 
strategy will be more successful than that currently being 
perused, Figure 1. This might have implications for the 
manner in which GP search operators are applied. 
Moreover, in the case of Genetic Algorithms applied to 
the job-shop scheduling problem using an indirect 
encoding scheme, significant benefit was observed in 
utilizing biased crossover and mutation operators [5]. 
Specifically, the authors reasoned that mutation does 
little good in later parts of the genome that are just being 
explored while the earlier part of the genome has 
converged, so they felt it would increase fitness of the 
individuals to bias mutation to occur earlier in the 
genome.  The authors also felt that crossover should be 
biased toward the end of the genome, for crossover done 
on the earlier, more stable portion of the genome would 
not provide any change in schemata fitness.  
Furthermore, crossover near the end of the genome 
would lead to better exploitation through placing 
different schema in different contexts. 

In order to investigate whether our solutions may also 
be suffering from premature convergence and 
inadequate exploitation of crossover in later parts of the 
genome, we biased mutation to work on earlier parts of 
the genome and crossover to work on later parts of the 
genome.  The biasing was accomplished by associating a 
probability with each instruction that was equal to the 
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cumulative fitness change at that instruction divided by 
total fitness change for all instructions in the genome.  If 
two instructions had the same probability associated 
with them, mutation would affect the earlier instruction 
if the given probability were selected.  Crossover applied 
the same methodology; only probabilities for pages were 
found by totaling probabilities of all instructions in the 
page.  If pages had the same probability and were to be 
affected by crossover, the later page would be selected.  
The results can be seen in Table 4 below. 
 

Table 4. Generation at which Thoughtful Ants  
Biased for Mutation and Crossover  

Successfully Completed Trail 
 

 4 registers 8 registers 
 16 pg 32 pg 16 pg 32 pg 

Min. 582 1953 1589 1324 
Mean 8795 8937 6606 11929 

 
As we can see by comparing Table 2 and 4, the 

biasing of both mutation and crossover seemed to mostly 
result in the better or mediocre solution-finding time of 
the thoughtful ants to get worse, and the bad times to get 
better.  Believing the time for solution generation to 
have gotten worse due to the affect of biased mutation 
on the earlier portion of the genome that caused the 
beneficial fitness gains in the first place, we attempted to 
only bias crossover to affect the later part of the genome.  
These results can be seen in Table 5 below.  As can be 
seen by comparing Table 2 and 5, this change did not 
cause a solution to appear any faster.  (The fastest 
solution for the thoughtful ants was accomplished after 
282 rounds; here the fastest solution appears after 619 
rounds.) 
 

Table 5. Generation at which Thoughtful Ants 
Biased for Crossover Successfully Completed Trail 

 
4 registers 8 registers  

16 pg 32 pg 16 pg 32 pg 
Min. 619 792 2488 2000 
Mean 5186 7350 7747 9885 

 
 
 
 
 
 
 
 
 
 
 

Table 6. E-measure (×1000) 
Results for Hyper Ants, Thoughtful Ants, 

 and Koza’s Ants for z = 0.99 
 

 Ants Biased for Mutation & Crossover 
4 registers 8 registers  

16 pg 32 pg 16 pg 32 pg 
Min. 134 116 132 160 
Mean 209 264 221 275 

Ants Biased for Crossover 
4 registers 8 registers  

16 pg 32 pg 16 pg 32 pg 
Min. 71 112 111 160 
Mean. 148 175 247 272 

 
With respect to Table 6, the best E-measure of the 

trials did not improve following these changes (with the 
exception of the 4 register, 32 page limit ants’ minimum 
E-measure, the significance of which is not apparent to 
the authors).  In all types of thoughtful ants, the mean E-
measure did not improve. 
 

6. CONCLUSIONS 
 
We present a linear GP implementation of the San 
Mateo Trail problem using a steady state tournament that 
outperforms the generational, tree-based GP 
implementation discussed by Koza with respect to best 
E-measure.  We used two basic types of ants on the trail, 
and the thoughtful ants outperformed the hyper ants with 
respect to both how fast the solution to the trail was 
discovered (minimum and mean) and E-measure 
(minimum and mean) for the 20 trials in each 
experiment. 
 Analyzing the way the ants generated their solutions, 
we introduced the notions of fitness change and non-
repeating path.  Examining the graphs, we attempted to 
further enhance performance of the ants by both biasing 
the first part of each ant’s genome for mutation and 
biasing the later part for crossover.  Noticing no overall 
improvement, we attempted to only bias the later part of 
the genome for crossover.  Again, no significant 
performance gains were noted. 
 While the operator-biased ants were not as successful 
as our original non-biased ants at yielding faster 
methods of producing solutions with less effort, the 
performance gains realized by the thoughtful ants 
indicate promise.  Future work will address whether 
linear GP with a classical crossover operator provides 
similar distribution of fitness change and non-repeating 
path. 
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